

1 Measuring antimicrobial use on dairy farms: a longitudinal method comparison study.

2 Rees

3 This study compares the 3 most common methods for measuring antimicrobial use in dairy
4 farming with a pre-determined ‘gold standard’ measure, in order to assess which method may
5 be the most appropriate. Although no method is perfect, by comparing the results of
6 veterinary sales data, on-farm medicine records and on-farm medicine waste bins, this study
7 concludes that veterinary sales data is the most appropriate proxy for actual antimicrobial use.
8 Measuring antimicrobial use accurately is important to national and global efforts to tackle
9 antimicrobial resistance, therefore these results can be of great value to policymakers and
10 researchers worldwide.

11

12 **RUNNING HEAD: MEASURING ANTIMICROBIAL USE ON DAIRY FARMS**

13

14 **Measuring antimicrobial use on dairy farms: a longitudinal method comparison study**

15

16 **G. M. Rees[□], D. C. Barrett[□], F. Sánchez-Vizcaíno[□] [†], & K. K. Reyher[□] [†]**

17 [□] Bristol Veterinary School, University of Bristol, Langford House, North Somerset, UK.
18 BS40 5DU

19 [†] These authors contributed equally to this work

20 Corresponding author. Gwen M. Rees, Bristol Veterinary School, Langford House, Langford,
21 North Somerset, UK BS40 5DU gwen.rees@bristol.ac.uk Telephone: +447855804270

22

23 **ABSTRACT**

24 Antimicrobial use on UK dairy farms is measured for surveillance purposes and utilizes
25 veterinary sales data as a proxy for use. Two other methods of recording use have been used
26 commonly on-farm: medicine waste bins and farm medicine records. However, none of these
27 methods have been validated to measure antimicrobial use. The objectives of this research are
28 to assess agreement between the 3 most common methods for measuring on-farm
29 antimicrobial use with a pre-determined “gold standard” measure. Antimicrobial use was
30 measured prospectively on 26 UK dairy farms using medicine waste bins into which
31 participants placed all discarded medicine packaging for a 12-month period. At the end of 12
32 months, farm medicine records and veterinary sales data were obtained retrospectively for
33 participating farms. The systematic difference between the mean on-farm antimicrobial use
34 measured by each of the 3 methods with a gold standard measure was investigated using one-
35 way repeated measures ANOVAs. Reliability and clinical relevance of the agreement
36 between each pair of methods was quantified using the concordance correlation coefficient
37 and the Bland-Altman method, respectively. Veterinary sales data shows excellent reliability
38 for all forms of antimicrobial when compared with the gold standard. Medicine waste bins
39 show moderate to excellent reliability for injectables, poor to good reliability for
40 intramammary and no agreement for other forms of antimicrobial. Farm medicine records
41 do not show agreement for any form of antimicrobial when compared with the gold standard.
42 The use of veterinary sales data as a proxy for on-farm antimicrobial use in the UK represents
43 excellent statistical reliability and offers a clinically acceptable agreement with a gold
44 standard method when used to measure both injectable antimicrobials and intramammary
45 antimicrobials. These results have policy implications both nationally and internationally and
46 are essential in quantifying the actual impact of agricultural antimicrobial use on both animal
47 and human health.

48 **Key words:** antimicrobial use, veterinary medicine, antimicrobial resistance

49 **INTRODUCTION**

50 Measuring antimicrobial use (**AMU**) is challenging (WHO, 2015; O'Neill, 2016; Kallen et
51 al., 2019), and this is particularly true when measuring agricultural and veterinary AMU
52 (RUMA, 2017; Mills et al. 2018; VMD, 2019a). An accurate understanding of AMU in
53 animal health is essential for understanding patterns of resistance and informing antimicrobial
54 stewardship policy from a One Health perspective (O'Neill, 2016). Indeed, the latest UK
55 Government action plan specifically advocated “a clear need for more robust data on how
56 antimicrobials are used to improve our understanding of the links between animal health and
57 welfare, productivity, drug usage and resistance and to provide the evidence we need to
58 design effective interventions and controls” (UK Government, 2019).

59 The UK measures veterinary AMU at a national level and publishes an annual report (VMD,
60 2019a), along with joint One Health reports with Public Health England (VMD, 2015;
61 2019b). The most recent One Health report shows veterinary AMU accounted for 36% of
62 total UK use in 2017, although it has been acknowledged that AMU surveillance in
63 agriculture is complex and current data are lacking validation (RUMA, 2017; VMD, 2019).
64 Use of antimicrobials in the dairy sector has fallen by 30-35% since 2015, primarily through
65 voluntary stewardship (RUMA, 2019; VMD, 2019a). In food-producing animals, dairy cattle
66 represent the fourth highest user of antimicrobials by total weight (4.9 tonnes), behind pigs,
67 poultry and gamebirds (VMD, 2019a). Since 2016, the data used to measure AMU in dairy
68 cattle for the annual UK Veterinary Antimicrobial Resistance and Sales Surveillance report
69 has estimated veterinary practice sales data as a proxy for use. These data are obtained from a
70 small sample of UK veterinary practices and their representativeness is currently unknown.
71 Pig and poultry sector AMU data, however, are considered robust, while AMU data from the

72 beef and sheep sectors are currently in the process of being established (RUMA, 2015; 2019).

73 Moving towards species-specific AMU data increases the granularity of such data, however

74 the use of veterinary sales data as a proxy for use has not been validated (Mills et al., 2018;

75 VMD, 2019).

76 The 3 most common methods for measuring on-farm AMU are veterinary sales data, on-farm

77 medicine records and on-farm medicine waste bin audits. This paper presents a method

78 agreement analysis of these common ways to measure AMU in dairy cattle. By assuming a

79 gold standard measurement of actual AMU *a priori*, all 3 individual methods could be

80 compared with the gold standard and an initial estimate of the appropriateness of each

81 method made.

82 MATERIALS AND METHODS

83 This study gained ethical approval from the University of Bristol Faculty of Health Sciences

84 Research Ethics Committee; reference number 33021.

85 ***Recruitment and Data Collection***

86 Dairy farms (n=27) from South West England and South Wales were recruited to a wider

87 study through purposive maximum-variation sampling using a combination of direct

88 approach, nomination by local veterinary practices or self-nomination. Further details of herd

89 characteristics can be found in Online Supplements Table 1, and details of sampling for this

90 study can be found in Rees et al. (2018). Sample size estimation for reliability calculations

91 was based on two observations per subject because all 3 methods of measurement were

92 compared separately with the gold standard. An expected reliability value of 0.9 and an

93 acceptable lower limit of reliability width of the 95% confidence interval of 0.7 were used,

94 which gave a sample size requirement of 18 farms. This was then corrected to 23 farms based

95 on an expected drop-out rate of 20% (Walter et al., 1998). This was deemed to be acceptable

96 as 27 farms were enrolled onto the original project and complete data was collected for 26
97 farms.

98 An initial medicine inventory and structured questionnaire were undertaken on each
99 participating farm; data on medicine name, quantity, number of individual items, storage
100 location and expiry date of all antimicrobials present, farm demographics, herd health and
101 management protocols were collected. Medicine waste bins were placed on each farm, and
102 participants were requested to dispose of all used or discarded medicine packs (bottles, tubes,
103 packaging etc.) in these bins. Bins were collected every quarter (90 days +/- 20); the final
104 visit and second medicine inventory was conducted at day 365 (+/- 3 days). Farm medicine
105 records were obtained at the final visit either in written or electronic form depending on the
106 farmer's usual record-keeping format and veterinary sales data was requested retrospectively
107 from each farm's veterinary practice for the duration of the study period. In the UK, all
108 prescription veterinary medicine sales data must be recorded and stored by the veterinary
109 practice. These records were computerized in all instances, although the software used, and
110 the format provided varied between practices.

111 For each participating farm, an individual medicine workbook was created using Excel
112 (Microsoft Office 365, USA) listing every medicine listed on the Veterinary Medicines
113 Directorate's Product Information Database (VMD, 2018). The contents of medicine waste
114 bins were sorted, counted and data entered into the workbook. 10% of bins were double
115 counted by a second researcher. Veterinary sales data and on-farm treatment record data were
116 sorted, cleaned and entered into the workbook.

117 ***Defining a “Gold Standard”***

118 Developing a “gold standard” for AMU was necessary to devise a comparator for the 3
119 methods of recording, none of which had previously been validated. While the term ‘gold

120 ‘standard’ is often understood to mean the true value, in medical statistics the gold standard
121 can be described as “the diagnostic test or benchmark that is the best available under
122 reasonable conditions” (Versi, 1992). For this study, the gold standard was determined *a*
123 *priori* and in discussion with experts in epidemiology, data handling and farm animal science,
124 taking into account the potential for over- and underestimation of true AMU for each measure
125 (Table 1). We determined that the most appropriate gold standard for AMU which minimized
126 the potential for over- and under-estimation was based on a corrected value of veterinary
127 sales data, adjusted by taking into account the full inventory of veterinary sales during the
128 period between the beginning and the end of the study:

129 “Gold Standard” = (initial inventory + veterinary sales data) - end inventory

130 The gold standard was based on veterinary sales data, as sales data were deemed to be least
131 open to bias as they do not rely on farmer compliance or memory. The potential for a ‘time-
132 lag’ in veterinary sales data could also be corrected for by taking a full inventory on the first
133 and last days of the study. Therefore, while this gold standard was based in part on veterinary
134 sales data, it is sufficiently different from that sales data to warrant comparison as it accounts
135 for actual storage and use on farm.

136 Antimicrobials were classified according to their Veterinary Medicines Directorate
137 classification for analysis as follows:

138 • Injectable antimicrobials: all antimicrobial products in injectable form
139 • Intramammary antimicrobials: all antimicrobial products in intramammary form
140 • Other antimicrobials: all antimicrobials that do not fit into the above two categories.
141 This included ocular preparations, tablets, boluses and powders used as footbaths.

142 Combination products containing at least 1 antimicrobial as an active ingredient were
143 classified as antimicrobials. Methods of quantification of antimicrobials in the inventory and
144 the medicine waste bins can be found in Rees et al. (2018).

145 ***Data Analysis***

146 Initially, one-way repeated measures ANOVAs were used to investigate whether there was a
147 systematic difference between the mean on-farm antimicrobial use measured by 4 different
148 recording methods for the following combinations: Veterinary sales vs. Gold standard,
149 Medicine waste bins vs. Gold standard and Farm medicine records vs. Gold standard.
150 Providing there is no evidence of a systematic difference between the measurements obtained
151 from each pair of methods, the reliability and clinical relevance of the agreement between
152 each pair was then quantified using the concordance correlation coefficient (CCC) and the
153 Bland-Altman method, respectively. Analysis was conducted separately for the 3 different
154 classifications of antimicrobials.

155 In the one-way repeated measures ANOVAs, “antimicrobial use” was the dependent variable
156 and the independent variable was “recording method”. Where the normality assumption was
157 not met after data transformation, a non-parametric Quade test was conducted to assess
158 whether the distribution of values for each recording method was equal. The Greenhouse-
159 Geisser correction was used where sphericity was violated. If significant results were found,
160 post-hoc tests for differences between means were adjusted for multiple comparisons using
161 Tukey’s test. When a Quade test was conducted, post-hoc tests for differences between
162 distribution of values were adjusted for multiple comparisons following Holm’s method.

163 Reliability of methods was measured using CCC (Watson and Petrie, 2010). CCC point
164 estimates along with 95% CIs were calculated using U-statistics (Carrasco et al., 2007).
165 Values of CCC less than 0.5 indicate poor reliability, values between 0.5 and 0.75 indicate

166 moderate reliability, values between 0.75 and 0.9 indicate good reliability, and values greater
167 than 0.90 indicate excellent reliability.

168 The Bland-Altman method was used to get an insight into the pattern and extent of agreement
169 between each pair of methods, as well as to determine whether such an agreement was likely
170 to be clinically relevant at the farm level. This method calculates the 'bias' and 95% limits of
171 agreement between 2 methods where the bias is the mean difference between the 2 methods
172 (Bland and Altman, 1986). While the 95% limits show visually how well 2 methods of
173 measurement agree, this quality judgement of this agreement depends on clinical context. The
174 limits of maximum acceptable differences (limits of agreement expected) were defined prior
175 to analysis, based on clinically and analytically relevant criteria agreed in discussions
176 between the authors and clinicians working in dairy veterinary practice. Specifically, it was
177 decided that if the 95% limits of agreement were within more than +/- 30% of the median
178 total for the gold standard, this would equate to 'clinically poor agreement'; within +/- 30%
179 of the median total for the gold standard would represent 'clinically reasonable agreement';
180 within +/- 20% of the median total for the gold standard would equate to 'clinically good
181 agreement'; and within +/- 10% of the median total for the gold standard would represent
182 'clinically excellent agreement'. The influence of large outliers was evaluated by
183 recalculating the limits of agreement with those outliers excluded (Watson and Petrie, 2010).
184 Where the between-method differences did not follow a normal distribution, a logarithmic
185 transformation of both measurements was conducted before analysis. If the normality
186 assumption was not met after data transformation, a non-parametric form of the limits of
187 agreement method was carried out as described by Bland and Altman (1999) and used instead
188 for defining satisfactory agreement.

189

RESULTS AND DISCUSSION

190 There is no evidence of systematic difference between the mean quantities of injectable
191 antimicrobials (**INJAM**) and intramammary antimicrobials (**IMAM**) measured by the gold
192 standard method and the mean amounts measured using veterinary sales data (INJAM: $P =$
193 0.995; IMAM: $P = 0.999$) or a medicine waste bin method (INJAM: $P = 0.822$; IMAM: $P =$
194 0.355), but there is a systematic difference with the mean amounts measured using the farm
195 medicine records (INJAM: $P < 0.001$; IMAM: $P = 0.04$) (Online Supplementary Materials
196 Table 2). In the case of other antimicrobials (**OtherAM**), mean quantities measured by the
197 gold standard method are significantly different to the quantities measured by all the methods
198 except for veterinary sales data (OtherAM: $P = 0.47$) (Online Supplementary Materials Table
199 2). Hence, veterinary sales are the only recording method for which both the reliability and
200 the clinical level of agreement were evaluated for these OtherAM. Further information about
201 the statistical tests and transformations used to investigate whether there was a systematic
202 difference between the recording methods is shown in the Online Supplementary Materials
203 Tables 2 & 3.

204 Based on CCC estimates, veterinary sales data show excellent reliability (95% CI >0.9) when
205 measuring all 3 antimicrobial types (Table 2). In contrast, medicine waste bins show
206 moderate to excellent reliability when measuring INJAM, and poor to good reliability when
207 measuring intramammary antimicrobials (Table 2). Intraclass correlation coefficient (**ICC**)
208 and CCC are 2 of the most popular overall indices used to assess agreement between methods
209 when the outcome of interest is measured on a continuous scale (Carrasco and Jover, 2003).
210 Both approaches are also advocated in Watson and Petrie's (2010) review of the correct
211 methodology for method agreement analysis. However, ICC is consistent only if the ANOVA
212 model assumptions hold (Chen and Barnhart, 2008). In our study, the assumptions of
213 normality and homogeneous variance were not met for some recording methods. Therefore,

214 we used CCC instead, which was estimated using U-statistics, a recommended approach for
215 skewed and non-normal data with low sample size (Carrasco et al., 2007).

216 When measurements differed among methods, the Bland-Altman method was also used to
217 determine whether those differences were likely to be clinically relevant at the farm level.
218 Here veterinary sales data also show the best levels of agreement with the gold standard, with
219 good to excellent agreement for INJAM and reasonable agreement for IMAM, although these
220 data show clinically poor agreement for OtherAM (Table 3). In contrast, medicine waste bins
221 show widely variable clinical agreement, ranging from poor to excellent agreement for
222 INJAM and clinically poor to good agreement for IMAM (Table 3).

223 For INJAM, veterinary sales data on average measure 118 ml less than the gold standard per
224 farm over a 12-month period (Table 3 and Figure 1 (INJAM-a)). For 95% of farms, a yearly
225 measurement of INJAM by veterinary sales data would be between 782.3 ml less and 546.1
226 ml greater than a measurement by the gold standard method (Table 3). Because these limits
227 of agreement cross zero, veterinary sales data may under- or overestimate actual use of
228 INJAM. This equates to a difference of 14.2% underestimation to 9.9% overestimation for
229 95% of farms when compared with the median total per farm measured by the gold standard
230 method. The clinical interpretation of agreement is arguably the most important when
231 comparing methods of measurement. Using the defined clinical agreement criteria, this
232 represents good (within -20%) to excellent (within +10%) agreement between veterinary
233 sales data and the gold standard method for INJAM (Table 3). Further results from the Bland-
234 Altman method describing the agreement between veterinary sales and gold standard for
235 IMAM are shown in Table 3 and in Figure 1 (IMAM-a), and for OtherAM in Table 3 and
236 Figure 1 (OtherAM).

237 Interestingly, the Bland-Altman plot reveals 2 large outliers where the gold standard method
238 gives measurements for INJAM considerably above the medicine waste bin method (Figure 1
239 (INJAM-b)). Removing these outliers improves the closeness of the between-method
240 differences to a normal distribution but does not solve the violation of normality. These 2
241 outliers also have a large influence on the mean difference between the 2 methods and on the
242 limits of agreement, although not large enough as to change the clinical interpretation of the
243 agreement (Table 3). A non-parametric form of the 95% limits of agreement show that the
244 medicine waste bin method may produce values between 425.6 ml above the gold standard
245 method to 7938.7 ml below the gold standard for INJAM (Table 3 and Figure 1 (INJAM-b)).

246 For IMAM, a logarithmic transformation of both the medicine waste bin measures and the
247 gold standard measures slightly improves the closeness of the between-method differences to
248 a normal distribution. A non-parametric form of the 95% limits of agreement derived from
249 log-transformed data was back-transformed (antilog) to give limits for the ratio of
250 measurements by these methods (Table 3) (Bland and Altman, 1986). The antilogs of these
251 non-parametric 95% limits of agreement indicate that for 95% of farms the quantity of
252 IMAM recorded by the medicine waste bin method would be between 0.37 and 1.13 times
253 the quantity recorded by the gold standard method over a 12-month period. Thus, the
254 medicine waste bin measurement may differ from the gold standard measurement by 63%
255 below to 13% above actual use (Table 3). The Bland-Altman plot reveals a very large outlier
256 where the gold standard method gives a measurement considerably above the medicine waste
257 bin method (Figure 1 (IMAM-b)). Removing this outlier solves the violation of normality and
258 has a substantial impact on the mean difference between the 2 methods and on the limits of
259 agreement (Table 3). After excluding it, the medicine waste bin measurement differs from the
260 gold standard measurement by 21% below to 15% above. Therefore, removing this outlier
261 improves the clinical interpretation of the agreement between both methods for measuring

262 IMAM from poor to reasonable. However, to the best of our knowledge the measurements
263 captured by both methods for the outlier farm were correctly recorded and its removal cannot
264 be fully justified. It is possible that this farm forgot to use the medicine waste bins, and this is
265 important to capture as it may represent realistic use of this recording method. Some lack of
266 agreement between different methods of measurement is inevitable. In this study, veterinary
267 sales data tends to underestimate AMU but can both under- and overestimate use. Veterinary
268 sales data differs substantially from the gold standard on certain farms; this can be explained
269 by the fact that those farms either bought antimicrobials before the measurement period
270 which were then used during this period or bought antimicrobials during this period which
271 were not used until after measurement had ceased. However, these findings suggest that
272 veterinary sales data is a valid method for measuring AMU which offers a clinically
273 acceptable agreement with the gold standard method when used to measure both INJAM and
274 IMAM. It is of note, however, that neither veterinary sales data nor the other alternative
275 recording methods show clinically acceptable levels of agreement with the gold standard
276 when measuring OtherAM. The reasons for this are not clear, but it may be that measuring
277 OtherAM is complicated by the various units of measurements, depending on what
278 pharmaceutical form the ‘other’ antimicrobial took. For example, ophthalmic ointments were
279 measured on a per tube basis, while antimicrobial powders were measured per sachet, and
280 tablets or boluses measured per packet. This presents difficulty when comparing these figures
281 with those for INJAM or IMAM as the potential for over- or underestimation may vary by
282 pharmaceutical form. These OtherAM are an important component of AMU surveillance;
283 however, they make up a very small proportion of overall AMU, with INJAM and IMAM
284 known to be the most commonly used and stored antimicrobials (Hyde et al., 2017; Rees et
285 al., 2018; VMD, 2019a). Consequently, veterinary sales data may offer an acceptable
286 alternative method for measuring AMU on dairy farms in the UK.

287 Medicine waste bins have been used in academic research to measure AMU on dairy farms in
288 Canada and Peru (Saini et al., 2012; Redding et al., 2014; Nobrega et al., 2017). In this study,
289 veterinary sales data outperformed medicine waste bin data as a proxy for actual on-farm
290 AMU, due both to an increased reliability and a higher level of clinical agreement with the
291 gold standard. Medicine waste bin audits were also more time-consuming, labor-intensive
292 and required greater farmer acceptance and compliance. Thus, their use may be justified and
293 potentially preferable in cases where obtaining veterinary sales data is difficult due to non-
294 existence or data protection issues, but in most instances using veterinary sales data would be
295 the superior method of estimating AMU.

296 In this study, farm medicine records were not a good method of measuring AMU as we have
297 shown their mean measures to be statistically different to the gold standard for all
298 antimicrobial types. It has previously been demonstrated that farmers place little value on
299 maintaining accurate medicine records, see them as an unnecessary bureaucratic burden,
300 deliberately omit certain medicines in order to achieve targets or forget to record medicines
301 due to the practical constraints of medicine recording on a farm (Escobar, 2015). Improving
302 the quality of farmer-recorded data (especially if access to good quality integrated electronic
303 medicine records were available) could benefit AMU surveillance because such data benefits
304 from increased granularity and chronology.

305 The use of veterinary sales data as a basis for calculating the ‘gold standard’ has obvious
306 limitations. Comparing agreement between 2 methods where both rely on the same dataset
307 makes it likely that the 2 methods will show some agreement. It is however clinically
308 important not only to compare the 3 methods between themselves, but to attempt to validate
309 these methods by comparing them with what is believed to be true (or the closest
310 approximation to the truth). As such, each method needs to be compared with the closest

311 approximate measurement to the true measurement, in order to be able to ascertain which
312 method gives the best result. In this case, it was determined that the best possible gold
313 standard was one based on veterinary sales data, for the reasons outlined in Materials and
314 Methods. While this gold standard is based on veterinary sales data, the incorporation of on-
315 farm data in the form of pre- and post-study inventories means the gold standard differs from
316 veterinary sales data enough to justify comparing the 2. While it could be argued that the 2
317 methods not utilized when calculating the gold-standard are therefore less likely to compare
318 well with the gold standard, this is still an important result. That veterinary sales data agrees
319 best with the gold standard is not necessarily surprising, however validating its usefulness
320 and importance can be of use to veterinary researchers and policymakers. That using
321 medicine waste bins is a valid option for measuring injectable antimicrobials where
322 veterinary sales data are not available or documenting that farm medicine records vary so
323 greatly from the gold standard as to not be comparable are both important outcomes when
324 considering methods to measure AMU.

325 The relatively small number of farms involved in this study mean that there is a risk of bias
326 from outliers. Dairy farms contributing to this study were only located in the South West of
327 the UK and were recruited purposively, so findings derived from this study cannot
328 necessarily be considered to be generalizable. However, the characteristics of the recruited
329 farms were broadly representative of the national picture (Online Supplementary Materials
330 Table 3). Several assumptions were made when collecting and analyzing the data. Where
331 labels on antimicrobials found in medicine waste bins had perished and the type of medicine
332 was unidentifiable, these were disregarded. The proportion of medicine units this applied to
333 was small (8/2809; 0.3%), meaning their exclusion from the study was unlikely to have
334 affected overall conclusions. Where antimicrobials were in use or contained some remaining
335 medicine, the quantity was estimated to the nearest 10%. Final inventory visits and bin

336 collections were carried out on the 12-month anniversary of the study +/- 3 days. This led to a
337 potential 6-day difference in the length of time some farms were studied, although it was
338 assumed that this was unlikely to substantially affect the farm's medicine recording given
339 that for each farm the veterinary sales data and farm medicine records were measured for the
340 same time period that bins were present.

341 **CONCLUSIONS**

342 This study corroborates the use of veterinary sales data as a proxy for AMU on UK dairy
343 farms. AMU data provided by medicine waste bins are inferior to that provided by veterinary
344 sales data when compared with a gold standard and it is important to acknowledge and
345 attempt to mitigate the current poor quality of farmer-recorded data identified in this study.
346 Veterinary sales data is a valid method of recording AMU in the UK given that all veterinary
347 antimicrobials are prescription-only, and that in general the veterinary surgeon both issues the
348 prescriptions and supplies the antimicrobials. It should be noted that where prescription and
349 supply is decoupled, for example where internet pharmacies are used or where legal
350 decoupling of prescription and supply is proposed, veterinary sales data would not represent
351 use.

352 ***Acknowledgements***

353 The authors would like to thank Prof. Henry Buller of the University of Exeter, Prof. Helen
354 Lambert and Prof. Alastair Hay from the University of Bristol for their contributions to the
355 wider project and also the participating farmers for their contribution to this research.

356 ***Funding***

357 This work was supported by The Langford Trust for Animal Health and Welfare, Registered
358 Charity No. 900380.

359 ***Transparency Declaration***

360 None to declare

361

362

REFERENCES

Bland, J. M. and D. G. Altman. 1986. Statistical methods for assessing agreement between two methods of clinical assessment. *Lancet* 8(1):307-310. doi: [https://doi.org/10.1016/S0140-6736\(86\)90837-8](https://doi.org/10.1016/S0140-6736(86)90837-8)

Bland, J. M. and D. G. Altman. 1999. Measuring agreement in method comparison studies. *Stat. Methods Med. Res.* 8(2):135-160. doi: 10.1177/096228029900800204

Carrasco, J. L. and L. Jover. 2003. Estimating the Generalized Concordance Correlation Coefficient through Variance Components. *Biometrics* 59(4):849-858. doi: 10.1111/j.0006-341x.2003.00099.x

Carrasco, J. L., L. Jover, T. S. King, and V. M. Chinchilli. 2007. Comparison of Concordance Correlation Coefficient Estimating Approaches with Skewed Data. *J. Biopharm. Stat.* 17(4):673-684. doi: 10.1080/10543400701329463

Chen, C.-C. and H. X. Barnhart. 2008. Comparison of ICC and CCC for assessing agreement for data without and with replications. *Comput. Stat. Data Anal.* 53(2):554-564. doi: <https://doi.org/10.1016/j.csda.2008.09.026>

Escobar, M. 2015. DEFRA Report: Perceptions and practices of farm record-keeping and their implications for animal welfare and regulation. file:///C:/Users/gr14229/Downloads/12768_Finalreport-perceptionsandpracticesoffarmerrecord-keeping.pdf

Hyde, R. M., J. G. Remnant, A. J. Bradley, J. E. Breen, C. D. Hudson, P. L. Davies, T. Clarke, Y. Critchell, M. Hylands, E. Linton, E. Wood, and M. J. Green. 2017. Quantitative analysis of antimicrobial use on British dairy farms. *Vet. Rec.* 181(25):683. doi: 10.1136/vr.104614.

Kallen, M. C., S. Natsch, B. C. Opmeer, M. Hulscher, J. A. Schouten, J. M. Prins, and P. van der Linden. 2019. How to measure quantitative antibiotic use in order to support antimicrobial stewardship in acute care hospitals: a retrospective observational study. *Eur. J. Clin. Microbiol. Infect. Dis.* 38(2):347-355. doi: <https://doi.org/10.1007/s10096-018-3434-0>

Mills, H. L., A. Turner, L. Morgans, J. Massey, H. Schubert, G. Rees, D. Barrett, A. Dowsey, and K. K. Reyher. 2018. Evaluation of metrics for benchmarking antimicrobial use in the UK dairy industry. *Vet. Rec.* 182(13):379-379. doi: 10.1136/vr.104701.

Nobrega, D. B., J. De Buck, S. A. Naqvi, G. Liu, S. Naushad, V. Saini, and H. W. Barkema. 2017. Comparison of treatment records and inventory of empty drugcontainers to quantify antimicrobial usage in dairy herds. *J. Dairy Sci.* 100(12):9736-9745. doi: 10.3168/jds.2017-13116.

O'Neill, J. 2016. Tackling Drug Resistant Infections Globally: Final report and recommendations. The Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf

Redding, L. E., F. Cubas-Delgado, M. D. Sammel, G. Smith, D. T. Galligan, M. Z. Levy, and S. Hennessy. 2014. Comparison of two methods for collecting antibiotic use data on small dairy farms. *Prev. Vet. Med.* 114(3-4):213-222. doi: 10.1016/j.prevetmed.2014.02.006.

Rees, G. M., D. C. Barrett, H. Buller, H. L. Mills, and K. K. Reyher. 2018. Storage of prescription veterinary medicines on UK dairy farms: a cross-sectional study. *Vet. Rec.* 184:153. doi: 10.1136/vr.105041.

RUMA Alliance. 2015. RUMA Guidelines: Responsible use of antimicrobials in cattle production. Responsible Use of Medicines in Agriculture Alliance. London, UK. https://www.ruma.org.uk/wp-content/uploads/2015/07/RUMA_antimicrobial_long_cattle_revised_2015.pdf.

RUMA Alliance. 2017. Targets Task Force Report. Responsible Use of Medicines in Agriculture Alliance. London, UK. <https://www.ruma.org.uk/wp-content/uploads/2017/10/RUMA-Targets-Task-Force-Report-2017-FINAL.pdf>.

RUMA Alliance. 2019. Targets Task Force: Two Years On. Responsible Use of Medicines in Agriculture Alliance. London, UK. <https://www.ruma.org.uk/wp-content/uploads/2019/10/RUMA-TTF-update-2019-two-years-on-FULL-REPORT.pdf>

Saini, V., J. T. McClure, D. Leger, S. Dufour, A. G. Sheldon, D. T. Scholl, and H. W. Barkema. 2012. Antimicrobial use on Canadian dairy farms. *J. Dairy Sci.* 95(3):1209-1221. doi: 10.3168/jds.2011-4527.

UK Government. 2019. Tackling antimicrobial resistance 2019–2024: The UK's 5-Year National Action Plan. Global and Public Health Group, ed. HM Government. London, UK.
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/784894/UK_AMR_5_year_national_action_plan.pdf

Versi, E. 1992. "Gold standard" is an appropriate term. *BMJ (Clinical research ed.)* 305(6846): 187. doi: 10.1136/bmj.305.6846.187-b

VMD. 2015. Joint report on human and animal antibiotic use, sales and resistance, 2013. UK One Health Report. Veterinary Medicines Directorate, ed, Addlestone, UK.
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/447319/One_Health_Report_July2015.pdf

VMD. 2018. Product Information Database. Veterinary medicines Directorate. in <https://www.vmd.defra.gov.uk/ProductInformationDatabase/> Date accessed: 6th July 2017

VMD. 2019a. UK Veterinary Antibiotic Resistance and Sales Surveillance Report (UK-VARSS 2018). Veterinary Medicines Directorate. Addlestone, UK.
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/842678/PCDOCS-_1705145-v1-UK-VARSS_2018_Report__2019__FINAL_v2.pdf

Veterinary Medicines Directorate. 2019b. UK One Health Report: Joint report on antibiotic use and antibiotic resistance, 2013–2017. VMD, ed. Veterinary Medicines Directorate, Addlestone, UK.
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/775075/One_Health_Report_2019_v45.pdf

Walter, S. D., M. Eliasziw, and A. Donner. 1998. Sample size and optimal designs for reliability studies. *Stat. Med.* 17(1):101-110. doi: [https://doi.org/10.1002/\(SICI\)1097-0258\(19980115\)17:1%3C101::AID-SIM727%3E3.0.CO;2-E](https://doi.org/10.1002/(SICI)1097-0258(19980115)17:1%3C101::AID-SIM727%3E3.0.CO;2-E)

Watson, P. F. and A. Petrie. 2010. Method agreement analysis: a review of correct methodology. *Theriogenology* 73(9):1167-1179. doi: 10.1016/j.theriogenology.2010.01.003.

World Health Organisation. 2015. Global action plan on antimicrobial resistance. World Health Organization, <http://www.who.int/iris/handle/10665/193736>.

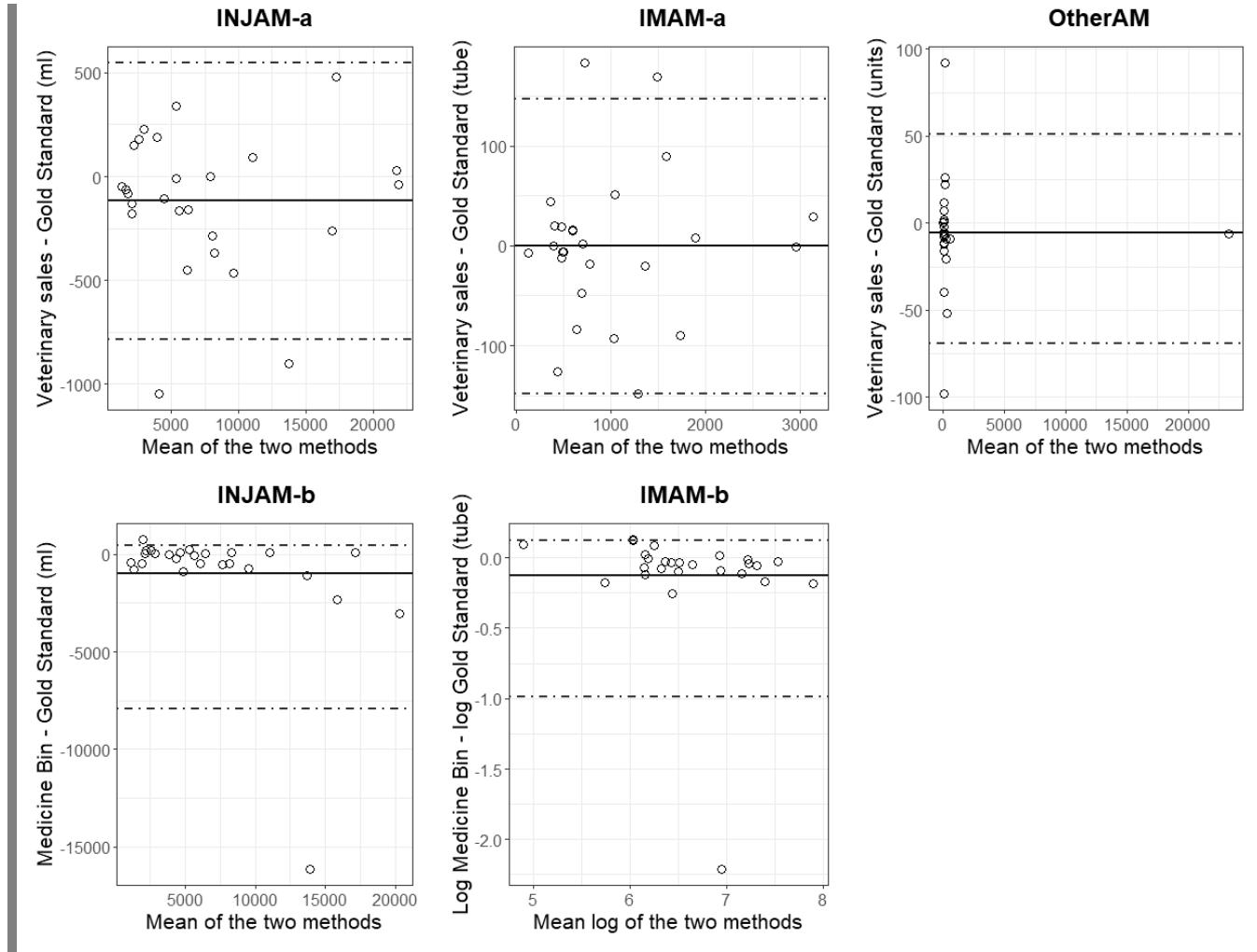
Table 1. Potential for over- or underestimation of antimicrobial use for the 3 different recording methods

Method of measurement	Bias	Potential for error
Veterinary sales data	Overestimation	<ul style="list-style-type: none">- Purchased more antimicrobial during the time period than was used- Wasted antimicrobials not accounted for- Antimicrobials ascribed to wrong species
	Underestimation	<ul style="list-style-type: none">- Used antimicrobials which were purchased before the study period- Antimicrobials purchased or obtained from sources other than veterinary practice- Antimicrobials ascribed to wrong species
Farm medicine records	Overestimation	<ul style="list-style-type: none">- Farmer records more antimicrobial being used than administered
	Underestimation	<ul style="list-style-type: none">- Farmer forgets or neglects to record treatments
Medicine waste bins	Overestimation	<ul style="list-style-type: none">- Farmer discards medicines packaging into bins which were used before study period
	Underestimation	<ul style="list-style-type: none">- Farmer forgets or chooses not to use the bin or only uses the bin for some treatments and not others- Antimicrobials used by the veterinary surgeon and not left on the farm

Table 2. Concordance correlation coefficients (CCC) and statistical interpretation of reliability comparing veterinary sales and medicine waste bin data with a gold standard for different antimicrobial types

Method comparison	Antimicrobial type	Concordance Correlation Coefficient (CCC)	95% confidence intervals of CCC	Statistical Interpretation of CCC results
Veterinary sales vs. “Gold standard”	Injectable antimicrobials	0.998	0.996 – 0.999	Excellent
	Intramammary antimicrobials	0.995	0.989 – 0.998	Excellent
	Other antimicrobials	0.999	0.999 – 0.999	Excellent
Medicine waste bin vs. “Gold standard”	Injectable antimicrobials	0.821	0.620 – 0.921	Moderate to excellent
	Intramammary antimicrobials	0.642	0.314 – 0.833	Poor to good

Table 3. Bland-Altman Plot statistics and clinical interpretation of agreement for all comparison of antimicrobial use recording methods


Antimicrobial Type (unit)	Comparison	Mean difference (95% CI)	SD	95% limits of agreement	Antilog of 95% limits of agreement	% farms within 95% limits	Assumptions met	Non-parametric 95% limits of agreement	Antilog of non-parametric 95% limits of agreement	% farms within non-parametric 95% limits	95% limits of agreement compared with the median quantity recorded by the gold standard (based on non-parametric 95% limits)	Clinical interpretation of agreement (based on non-parametric 95% limits)
Injectable antimicrobials (ml)	Veterinary sales vs. gold standard	-118.11 (-255.03 to 18.80)	338.89	-782.34 to 546.11	NA	92.3	Yes	NA	NA	NA	-14.21% to 9.92%	Good to excellent
	Waste bin vs. gold standard	-999.63 (-2286.33 to 287.06)	3184.89	-7242.01 to 5242.75	NA	96.1	No	-7938.75 to 425.62	NA	92.3	(-144.14% to 7.73%)	(Poor to excellent)
	Waste bin vs. gold standard ¹	-285.02 (-543.15 to -26.89)	610.91	-1482.4 to 912.36	NA	95.8	No	-1618.5 to 450.38	NA	91.7	(-30.8% to 8.57%)	(Poor to excellent)
Intramammary antimicrobials (tube)	Veterinary sales vs. gold standard	-0.519 (-30.94 to 29.90)	75.30	-148.10 to 147.07	NA	92.3	Yes	NA	NA	NA	-21.53% to 21.38%	Reasonable
	Waste bin vs. gold standard ²	-0.13 (-0.31 to 0.05)	0.43	-0.98 to 0.72	0.37 to 2.06	96.2	No	-0.99 to 0.12	0.37 to 1.13	92.3	(-62.79% to 13.11%)	(Poor to good)
	Waste bin vs. gold standard ³	-0.05 (-0.09 to -0.01)	0.096	-0.23 to 0.14	0.79 to 1.15	96.0	Yes	NA	NA	NA	-20.90% to 15.12%	Reasonable to good
Other antimicrobials (unit)	Veterinary sales vs. gold standard	-5.38 (-17.99 to 7.22)	31.20	-66.54 to 55.77	NA	92.3	No	-69.25 to 51.06	NA	92.3	(-153.89% to 113.47%)	(Poor)

¹ two outliers removed

² log transformed

³ log transformed and one outlier removed

Figure 1:

Figure 1 Caption:

Bland-Altman plots comparing:

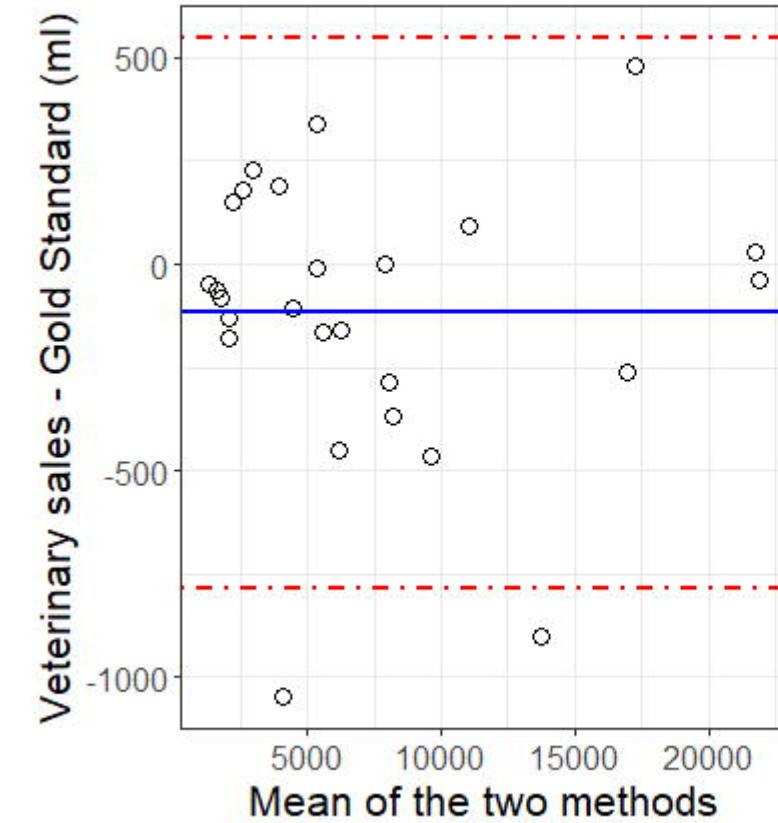
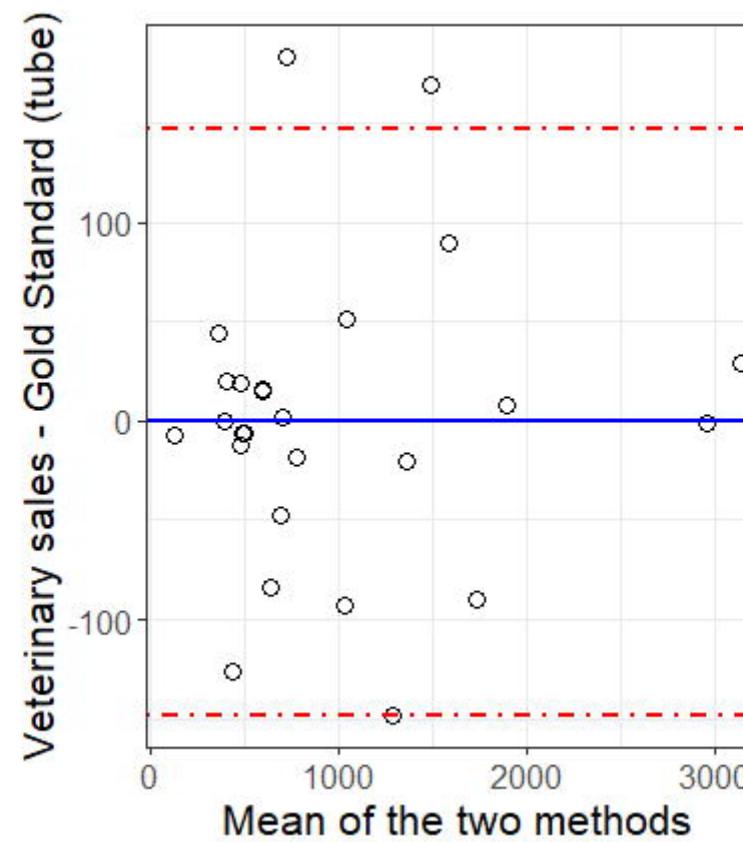
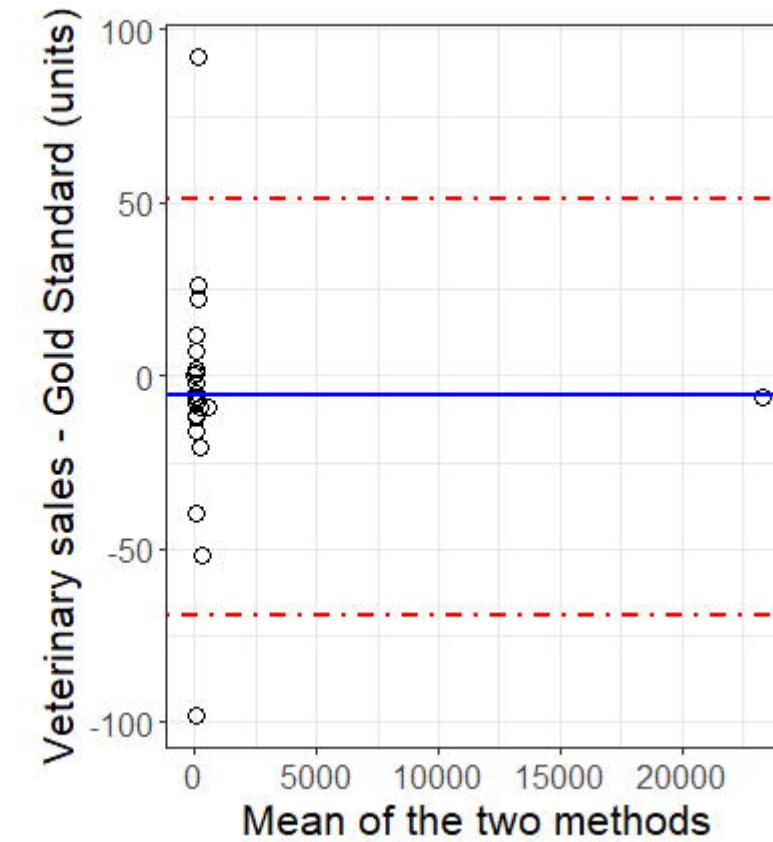
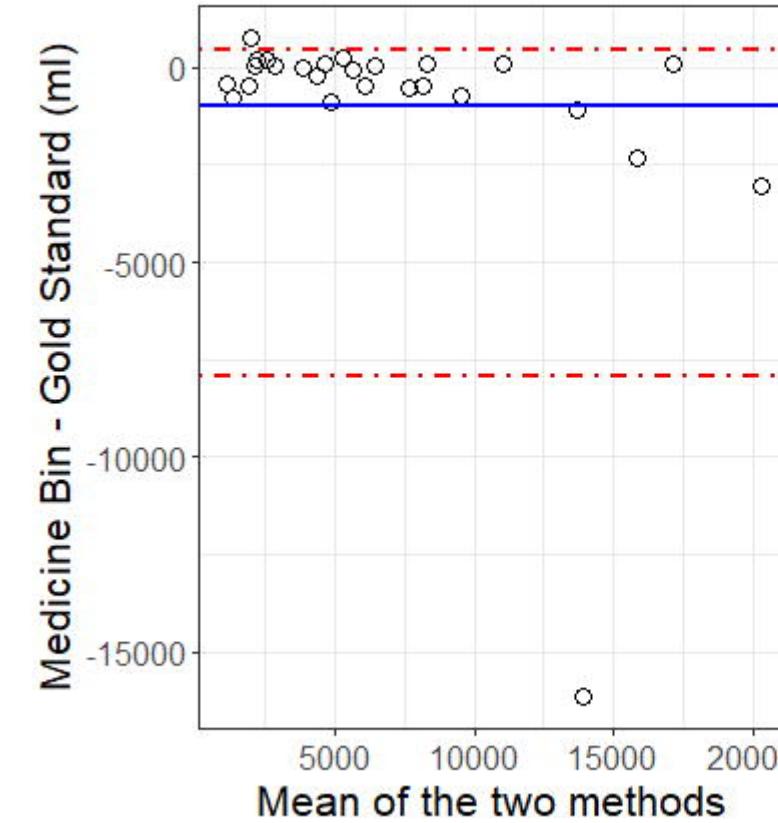
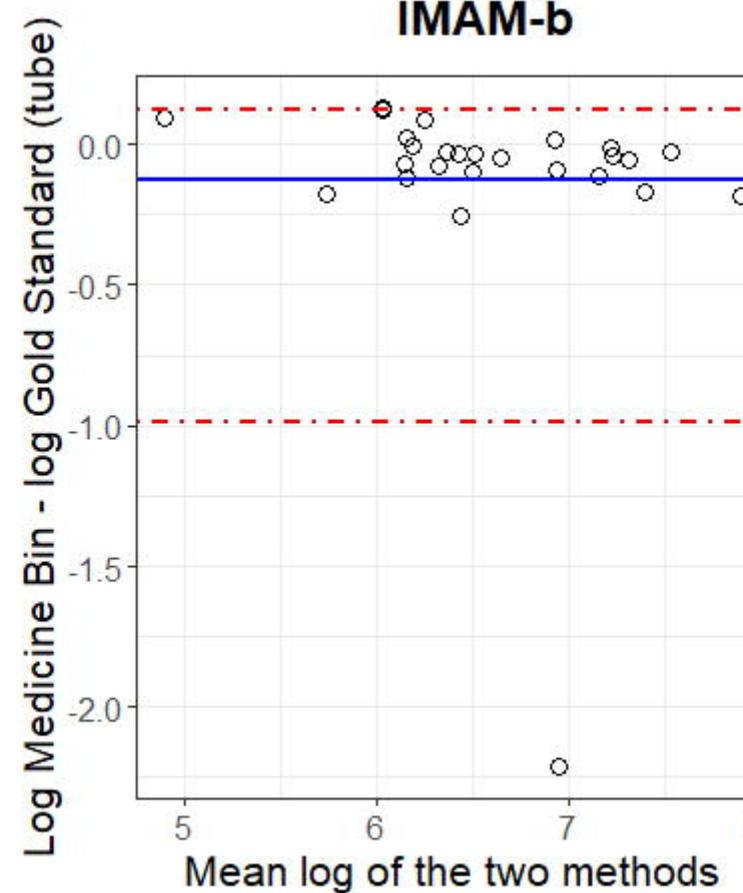
INJAM-a: veterinary sales data with a gold standard recording method for injectable antimicrobials in total ml

INJAM-b: medicine waste bin data with a gold standard recording method for injectable antimicrobials in total ml

IMAM-a: Veterinary sales data with a gold standard recording method for intramammary antimicrobials in total number of tubes

IMAM-b: Medicine waste bin data with a gold standard recording method for intramammary antimicrobials in total number of tubes

OtherAM: Veterinary sales data with a gold standard recording method for ‘other’ antimicrobials in total number of units






In each plot, the y-axis represents the difference between the two named methods and the x-axis represents the mean of the two methods; note that in IMAM-b, both y-axis and x-axis are in the logarithm scale. Dots represent the mean difference between the methods for each participating farm. The solid line represents the mean difference between methods across all farms. The hashed line represents the 95% limits of agreement in INJAM-a and IMAM-a; and it represents the non-parametric 95% limits of agreement in INJAM-b, IMAM-b and OtherAM.

Abbreviations:

INJAM – Injectable antimicrobials

IMAM – Intramammary antimicrobials

OtherAM – All other antimicrobials

INJAM-a**IMAM-a****OtherAM****INJAM-b****IMAM-b**