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Abstract:

Nitric oxide (NO) is a free radical gaseous messenger with a broad distribution across the animal
kingdom. However, the early evolution of nitric oxide-mediated signaling in animals is unclear
due to limited information about prebilaterian metazoans such as placozoans. Here, we analyzed
NO synthases (NOS) in four different species of placozoans (haplotypes H1, H2, H4, H13). In
contrast to all other invertebrates studied, Hoilungia and Trichoplax have three distinct NOS genes,
including PDZ domain-containing NOS. To characterize NOS activity in Trichoplax adhaerens,
we used capillary electrophoresis for microchemical assays of NO-related metabolites.
Specifically, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO
synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of
functional NOS. Next, using fluorescent single-molecule in situ hybridization, we showed that
distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution
close to the edge regions of Trichoplax. These data suggest the compartmentalized release of this
messenger and a greater diversity of cell types in placozoans than anticipated. We also revealed a
dramatic diversification of NO receptor machinery, including identification of both canonical and
novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors.
Thus, although Trichoplax is considered to be one of the morphologically simplest free-living
animals, the complexity of NO-cGMP-mediated signaling is greater to those in vertebrates. This
situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate
sensors from the common ancestor of Metazoa.

Keywords: Placozoa, basal Metazoa, Trichoplax, Hoilungia, the evolution of nitric oxide
signaling, capillary electrophoresis, nitrites, L-citrulline, in situ hybridization, NIT domain,
cGMP, ctenophores.
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Short Abstract

Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution.
Here, we analyzed NO synthases (NOS) in four different species of placozoans — one of the early-
branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia
have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive
capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline
(co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming
the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ
hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells,
with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the
compartmentalized release of NO and a greater diversity of cell types in placozoans than
anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing
soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and
Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-
cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates
multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common
ancestor of Metazoa.
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Introduction

Nitric oxide (NO) is a versatile
gaseous transmitter widely distributed among
prokaryotes and eukaryotes *. Multiple
functions of this messenger are direct
reflections of the free-radical nature of NO
and, subsequently, its complex free radical
chemistry °. Dissolved NO passes readily
across membranes and diffuses into
neighboring cells interacting with many
biological molecules including DNA, lipids,
proteins ° with several specialized receptors
such as guanylate cyclases ®®. Thus, NO can
act as a volume transmitter locally, and it is
easily converted into nitrite and nitrate
radical by oxygen and water. In cells, NO is
catalyzed by the enzyme NO synthase (NOS)
through a series of complex redox reactions
by the deamination of the amino acid L-
arginine to L-citrulline. The reaction requires
the presence of oxygen as a precursor and
NADPH °. The large enzyme operates as a
dimer and consists of two enzymatic
portions, an oxygenase domain that binds
heme and the redox factor
tetrahydrobiopterin (H4B) and a reductase
domain that is related to NADPH-dependent
microsomal cytochrome P450 °.

The role and mechanism of NO
signaling are well studied in mammals.
However, little is known about the early
evolution of NO signaling in animals, mostly
due to limited comparative data from basally
branching metazoans, including Cnidaria,
Porifera, Ctenophora, and Placozoa.

Among other things, NO is involved
in feeding, chemosensory processing, and
locomotion of such cnidarians as Hydra and
Aglantha %13 where  NO-dependent
communications were likely mediated by just
one type of NO synthase (NOS) . In the
sponge Amphimedon, only one NOS gene has
been identified 4. NO-cGMP signaling has
been implemented in the regulation of larval
settlement ° and rhythmic body contractions

8, In the ctenophore, Mnemiopsis leidyi,

again, only one NOS gene has been
recognized so far 17, but the functional role of
NO has not been studied. Interestingly, in
another ctenophore species, Pleurobrachia
bachei, NOS appears to have been lost 8.

Nothing is known about the presence
and the distribution of NO signaling in
Placozoa — an important but little-studied
lineage of cryptic marine animals. The
current consensus stands that Placozoa is the
sister group to the clade Cnidaria+Bilarteria
1820 although some authors consider
Placozoa as highly derived and secondarily
simplified cnidarians 2. Regardless of the
proposed phylogenies, Placozoa represents a
crucial taxon to understand the origin and
evolution of animal traits and the nervous
system in particular %2,

Placozoans, such as Trichoplax and
their kin 23, are the simplest known free-
living animals with only six morphologically
recognized cell types organized in three
layers 2. Nevertheless, Trichoplax has quite
complex behaviors 228 including social-like
patterns 2°. Here, we biochemically showed
that Trichoplax exhibits functional NOS
activity, and, in contrast to other pre-
bilaterian animals, placozoa independently
evolved three distinct NOSs (as vertebrates)
with a profound diversification of NO-cGMP
signaling components, and likely the
capabilities of nitrite/nitrate sensing by
distinct NIT domain-containing guanylyl
cyclases, which represents a remarkable
example of the evolution of gaseous
transmission in the animal kingdom.

Materials and Methods

Animals and culturing. Trichoplax
adhaerens (H1 haplotype) and Hoilungia
hongkongensis (H13 haplotype), 0.3-2 mm in
diameter, were maintained in the laboratory
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culture as described elsewhere, and animals
were fed on rice grains and algae 24%,

Direct microchemical assays of NOS
metabolites such as NO., L-arginine, L-
citrulline were performed using high-
resolution capillary electrophoresis (CE)
with both conductivity and laser-induced
fluorescence (LIF) detectors. The principles
and details of major protocols for NOS
activity assay were reported 313 with some
minor modifications. We made minor
adjustments to these protocols, which we
briefly summarize below.

Nitrite/Nitrate Microanalysis using
CE with Contactless Conductivity. CE,
coupled with a TraceDec contactless
conductivity detector (Strasshof, Austria)
was used for the assay of nitrite and nitrate.
To reduce CI" in a sample, we used OnGuard
Il Ag (DIONEX Corp., Sunnyvale, CA). We
used custom-built cartridges for small
volume (20 pL) sample clean-up by a solid-
phase extraction technique as reported 3. In
brief, 4~5 mg of the resin was backloaded in
a 10 uL filter-pipette tip, and the micro-
cartridge was washed with 1 mL of ultrapure
water using a 3 mL disposable syringe. The
pre-washed cartridge was put into a 200 puL
pipette tip to avoid surface contamination
during further centrifugation. Extra water
remaining in the cartridge was removed by
centrifugation at 1000 rpm for 30 seconds.
Then, the assembly was inserted into a 0.5
mL PCR tube, and a final diluted sample was
loaded into the preconditioned cartridge
followed by centrifugation at 1000 rpm for 30
seconds, causing the sample to pass through
the silver resin. To quantitate any potential
sample loss, the custom-made chloride
cartridge was tested for sample recovery of
both nitrite and nitrate.

All experiments were conducted
using a 75 cm length of 50 um I.D. x 360 um
O.D. fused silica capillary (Polymicro
Technologies, AZ) with an insulated outlet

conductivity cell. Arginine/borate electrolyte
was used for a separation buffer with
tetradecyltrimethylammonium hydroxide
(TTAOH) added as an EOF modifier. The
modifier was prepared from
tetradecyltrimethylammonium bromide
(TTABr) by an OnGuard-Il A cartridge
(DIONEX Corp., CA) treated with 1 M
NaOH. For separation steps, the capillary
inner-wall was successively washed with 1M
NaOH, ultrapure water, and the separation
buffer (25 mM Arg, 81 mM Boric acid, and
0.5mM TTAOH, pH 9.0) by applying
pressure (1900 mbar) to the inlet vial. Since
nitrite and nitrate concentrations were very
low in diluted samples, capillary
isotachophoresis (CITP), a sample stacking
method, was employed. The leading solution
was introduced into the capillary by pressure
injection (25 mbar for 12s), and then a
neuronal sample was loaded using
electrokinetic injection (-5kV for 12s). The
separation was performed under a stable -
15kV voltage at 20°C.

Amino Acids Microanalysis using
CE with laser-induced fluorescence
detection. The CE, coupled with the
ZETALIF detector (Picometrics, France),
was used for the assay of amino acids. In this
work, a helium-cadmium laser (325nm) from
Melles Griot, Inc. (Omnichrome® Series56,
Carlsbad, CA) was used as the excitation
source. Before the photomultiplier tube
(PMT), the fluorescence was both
wavelengths filtered and spatially filtered
using a machined 3-mm pinhole. All
instrumentation, counting, and high-voltage
CE power supply were controlled using DAX
7.3 software.

All solutions were prepared with
ultrapure Milli-Q water (Milli-Q filtration
system, Millipore, Bedford, MA) to
minimize the presence of impurities. Borate
buffer (30 mM, pH 9.5) was used for sample
preparation. All solutions were filtered using


https://doi.org/10.1101/2020.04.10.034207
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.10.034207; this version posted April 12, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.2 um filters to remove particulates. The
buffers were degassed by ultrasonication for
10 min to minimize the chance of bubble
formation. A 75 mM OPA/B-
mercaptoethanol (B-ME) stock solution was
prepared by dissolving 10 mg of OPA in 100
uL of methanol and mixing with 1 mL of 30
mM borate and 10 puL of B-ME. Stock
solutions (10 mM) of amino acids were
prepared by dissolving each compound in the
borate buffer. OPA and B-ME were stored in
a refrigerator, and fresh solutions were
prepared weekly.

All experiments were conducted
using a 75 cm length of 50 um I.D. x 360 um
O.D. fused silica capillary (Polymicro
Technologies, AZ). A 30 mM borate/30 mM
sodium dodecyl sulfate (SDS) electrolyte
(adjusted to pH 10.0 with NaOH) was used as
the separation buffer for amino acid analysis.
The pre-column derivatization method was
used. A1 uL of o-Phthalaldehyde (OPA) was
incubated in a 0.5 mL PCR tube. The total
volume of a sample, OPA, and internal
standard inside the tube was 20 uL. For
separation steps, the capillary inner-wall was
successively washed with 1M NaOH, Milli Q
water, and the separation buffer by applying
pressure (1900 mbar) to the inlet vial. Then
the sample was loaded using electrokinetic
injection (8 kV for 12s). The separation was
performed under a stable 20 kV voltage at
20°C.

In all CE tests, once an
electropherogram was acquired, peaks were
assigned based on the electrophoretic
mobility of each analyte, and the assignments
were confirmed by spiking corresponding
standards into the sample. Five-point
calibration  curves (peak area vs.
concentration) of analytes were constructed
for quantification using standard solutions.
All chemicals for buffers were obtained from
Sigma-Aldrich, and standard amino acids
were purchased from Fluka. Ultrapure Milli-

Q was used for all solutions and sample
preparations.

NOS inhibitors’ tests. To establish
that NOS enzymatic activity is responsible
for producing the Arg/Cit ratio and nitrite
measured in Trichoplax, the whole animal
was incubated in one of NOS inhibitors (e.g.,
NC-nitro-l-arginine methyl ester (L-NAME);
besides, another NOS inhibitor, L-N°-(1-
iminoethyl)-lysine (L-NIL), showed very
effective inhibition as in molluscan
preparations *°.

After the animals were isolated from
the culture medium, they were placed ina 0.5
mL PCR tube and incubated with certain
concentrations of NOS inhibitors for 30
minutes at room temperature, followed by
washing with artificial seawater. Then, all the
water was removed, and 1 pL of Milli Q
water was dropped onto the animal, and the
tube was stored at -80° C until use.

Specifically, we also performed a
series of control tests to see if there were any
small molecules that might interfere with
peak identifications. Water, L-NAME, and
L-NIL controls were first tested, and no
nitrite was observed. However, chloride and
nitrate ions were always present, because all
NOS inhibitors contain chloride, and nitrate
IS a common impurity in most of the
commercially used chemicals. Fresh single
individuals of Trichoplax by itself, and
Trichoplax incubated with NOS inhibitors
were then analyzed. An effective NOS
inhibitor should cause the nitrite level to be
lower than in the animal compared to control
tests.

Comparative bioinformatic
analyses. We used the data from the
sequenced genomes of two sequenced
placozoan species %% and our additional
sequencing data are presented in the
supplement 1.


https://doi.org/10.1101/2020.04.10.034207
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.10.034207; this version posted April 12, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Protein sequences were aligned in
MUSCLE 3. Phylogenetic trees were
inferred using Maximum  Likelihood
algorithm implemented in IQTREE web
server http:/igtree.cibiv.univie.ac.at/,*. Tree
robustness was tested with 2000 replicates of
ultrafast bootstrap 4941,

To test for positive and negative
selection, the following algorithms were
used: codon-based Z-test and Fischer’s exact
test implemented in MEGA X “** and
ABSREL, BUSTED, FUBAR and MEME in
HyPhy package +>*°. Evolutionary distances
were calculated in MEGA X under the
Poisson method and gamma-distributed rates
across sites.

Fixative-resistant NADPH-
diaphorase activity has been widely used as
a histochemical reporter of NOS in both
vertebrates and invertebrates 33°9-53, Thus, we
used this approach to screen for putative NOS
activity in Trichoplax and Hoilungia. All
methodological details of the protocol have
been described earlier ***’, and we used 45
and 90 min fixation in 4% freshly made
paraformaldehyde solution made using the
filtered seawater.

In situ hybridization was performed
using the RNAscope multiplex fluorescent
Reagent kit v2 assay (Advanced Cell
Diagnostics, Inc, Bio-Techne, USA) as
specified by the company protocol
(https://acdbio.com/rnascope% C2%AE-
multiplex-fluorescent-v2-assay). In brief, we
transferred 10-15 animals to the glass slides
with cavities with 2 mL fresh 0.2 um filtered
seawater, washed three times, and removed
the seawater under a microscope. Next, we
fixed animals using 4% paraformaldehyde in
seawater for 30 min at room temperature,
performed dehydration and rehydration steps
with increased and decreased concentrations
of ethanol (30%, 50%, 70%, 100% on PBS)
at room temperature. We pretreated animals
in Protease Ill (Sigma) for 10 min at room

temperature. The rest of the protocol is
reported  elsewhere  (Advanced Cell
Diagnostics, ACD #323110 at web site
https://acdbio.com/rnascope%C2%AE-
multiplex-fluorescent-v2-assay). The key
point in the procedure is to use tyramide
signal amplification steps to detect low -
abundant genes as NOSs.

For all imaging, we used fluorescent
microscope Nikon Ti2 (Nikon, Japan) with a
spinning disk (Crest Optics X-Light VV2).

Results and Discussion

Comparative analysis of NOSs

Fig. 1 shows the genealogical relationships
among different animal NOSs, where
representatives of all basal metazoan lineages
form distinct branches for their respected
NOSs with evidence for relatively recent
duplication events consistent to an early
origin and diversification of NOSs in other
eukaryotic groups including Amebozoa and
Fungi as sister lineages to Metazoa. We did
not find the evidence for NOS in
choanoflagelates sequenced so far, including
Monosiga with the sequenced genome.
Choanozoa, the phylogenetically closest
taxon to Metazoa 8, might have lost NOS
from its eukaryotic ancestor. Interestingly,
ctenophores, known as the sister lineage to
the rest of metazoans 1°2%%  have only one
highly derived NOS as represented by two
Mnemiopsis species and Cestum in the tree

(Fig. 1).

All studied invertebrates have only
one or two NOS genes, which do not directly
correspond to the well-established vertebrate
subfamilies of the enzymes ®. In contrast, we
identified three distinct NOS genes in the
Trichoplax genome (haplotype H1), and
three other placozoan species or haplotypes
H2, H4, H13, and one of the NOSs contains
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the PDZ domain similar to the mammalian
neuronal NOS.

The presence of PDZ domain-
containing NOSs is a distinct feature of all
four placozoan species sequenced so far
(NOS1in H1, H2, H4, and H13). H1 and H2
represent the classical Trichoplax genus 23,
while H4 and H13 belong to the newly
described genus Hoilungia 300 The
clustering of NOSs in placozoans reflects
their phylogenetic relationships stressing that
H4 and H13 (Hoilungia) vs. H1 and H2
(Trichoplax) belong to different lineages.

The PDZ domain and N-terminal
motifs are required for the anchoring of NOS
to plasmatic or intracellular membranes,
subcellular localization, and integration to
many signaling components like in the
mammalian neuronal nNOS %1% nNOS is
different from the two other mammalian
isoforms as its N-terminal PDZ domain can
heterodimerize with the PDZ domains of
PSD95 or syntrophin % and others °. Thus, we
might suggest similar molecular functions in
Trichoplax and Hoilungia.

The rate of evolution of the PDZ
domain-containing NOSs is comparable to
other NOSs for all placozoan species. The
branching patterns of NOS trees (Fig. 1)
reveals that three NOSs in Placozoa are the
results of two independent duplication events
from the common placozoan ancestor. The
first splitting separated NOS1, and the
second, more recent split led to NOS2 and
NOS3.

Of note, we also identified two NOSs
in the stony coral Stylophora, which has one
NOSs with the PDZ domain (Fig. 1), and a
PDZ domain was detected upstream of the
Nematostella NOS gene. Also, two sponges
(Amphimedon and Spongilla) possess PDZ-
containing NOS. As the PDZ domains of
NOSs appear to be homologous, it should be
investigated whether the PDZ domain-

containing form represents the ancestral form
in animals. In contrast, ctenophores and
many other animal lineages (Fig. 1) do not
have PDZ-containing NOS genes.

NOS is a complex enzyme requiring
several co-factors for its activation, and Ca?*-
dependence of different NOSs in mammals is
determined by the presence of the
autoinhibitory inserts and calmodulin-
binding sites ®73.  Fig. 2 shows the
presence/absence of such motifs and the
auto-inhibitory loops across basal metazoan
lineages. The canonical human Ca?*-
independent iNOS lacks such a loop; it is
bound to CaM in a Ca?*-independent manner.
Mammalian iNOS activation is often induced
by lipopolysaccharides as a part of innate
immunity responses on bacterial infection *.
Ctenophore, the demosponge Amphimedon,
Nematostella, and three coral NOSs also lack
the auto-inhibitory loop (Fig. 2) and could be
Ca2*-independent and, apparently, inducible
(e.g., by bacteria or during development and
differentiation). However, all three
Trichoplax and Hoilungia NOSs contains an
intermediate size insert in this position: these
NOSs might be dormant or, at least, partially
inducible. Thus, the direct detection of
endogenous enzymatic activity is needed to
validate NOS expression, which we
performed using direct microchemical
assays.

Detection of endogenous NOS activity in
Trichoplax

Because some NOSs can be inducible
or pseudogenes, the molecular/sequence
information itself is not sufficient for the
demonstration of NOS activity. Thus, we
implement two complementary approaches
to confirm the presence of functional NOSs
in placozoans.

Arginine/citrulline assays. NO is known to
be produced enzymatically from molecular
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oxygen and L-arginine with L-citrulline as
the co-product °. Using a highly sensitive
capillary electrophoresis (CE) microchemical
assay with attomole detection limits, we
demonstrated that Trichoplax produced L-
citrulline, and its production is also
eliminated by NOS inhibitors (Fig. 3). It was
expected from experiments on vertebrates
and mollusks 323335 that the arginine-to-
citrulline ratio would increase after
Trichoplax was incubated in either L-
NAME/D-NAME or L-NIL. the arginine-to-
citrulline ratio increased by two-fold in the
case of L-NIL (Fig. 3). However, there was
only a small increase with L-NAME,
indicating L-NIL effectively inhibited the
NOS enzyme as in mollusks 32333% but L-
NAME did not. The reason for this difference
might reflect differences in either L-arginine
uptake, which might be blocked by arginine
analogs or distinct enzymatic regulation of
NOS in placozoans, or nonenzymatic
interference of these inhibitors with NO
production ™.

It was interesting that all NOS-related
metabolites were detected in Trichoplax at
relatively high concentrations, 0.35 mM for
arginine and 0.5 mM for citrulline.
Combined, these CE/microchemical data
indicate that placozoans have a substantial
level of endogenous NOS activity.

Nitrite assays. Due to rapid NO oxidation in
biological tissues °, NO," is considered as the
most reliable reporter of functional NOS. In
contrast, more stable (and less dynamic)
terminal oxidation products of NO - nitrates
(NO3’) cannot be used for these purposes
since they can also be accumulated from
various food sources. Thus, by employing CE
with the conductivity detection, we provided
the additional direct evidence for endogenous
NOS activity using nitrite (NO2") assay 3%,

NO oxidation metabolites were
monitored, and concentrations were derived
from in vitro calibration curves prepared

from standard solutions of nitrate and nitrite
at various concentrations (10 nM - 500 uM).
With the regression equations, the limit of
detection (LOD) of nitrate was determined to
be 13.3 nM for nitrite and 32.4 nM for nitrate.
These LODs were sufficient to quantify
nitrite and nitrate in Trichoplax.

Surprisingly, we found than
Trichoplax contains millimolar
concentrations of NO,” and NOgz", which were
eliminated, within 30 min, by NOS inhibitors
such as L-NAME and L-NIO (Fig. 4). In
control Trichoplax, about 1.5 mM nitrite was
detected, but after incubated with the NOS
inhibitors, no nitrite  was observed,
suggesting the suppression of endogenous
NOS activity (Fig. 4).

The expression and distribution of NOS in
Trichoplax

Fixative-resistant NADPH-
diaphorase (NADPH-d) histochemistry has
been reported as a marker of functional NOS
in both vertebrates and invertebrates 33°053,
Here, we employed this assay for the initial
screening of the NOS expression in
Trichoplax adhaerens (H1) and its related
species Hoilungia hongkongensis 6. The
NADPH-d histochemical activities in both
placozoans were significantly  weaker
compared to the majority of other species
studied using the same protocol 13-545557.75-17,
We noted that the intensity of NADPH-d
labeling was similar to those described in the
pelagic pteropod mollusk Clione limacina,
where NO controlled swimming *°.

We revealed very similar NADPH-d
labeling patterns in both Trichoplax and
Hoilungia (Fig. 5A, B). There were several
large (>10 pm) structures; some of them
correspond to the so-called “shinny spheres”
8 and numerous small (4-6 um) NADPH-d
reactive cells were broadly distributed over
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different parts of the animal including the
dorsal epithelial layer. We estimate that about
2% of placozoan cells might be NADPH-d
reactive. These cells might be candidates for
NOS-containing  (NO-releasing)  cells.
However, NADPH-d histochemistry cannot
distinguish different NOS isoforms.

Single-molecule in fluorescent in situ
hybridization (FISH)

Next, we used sequences for both
NOS1 and NOS3 to characterize their
expression and distribution in Trichoplax
adhaerens by single-molecule FISH as the
most sensitive assay for this purpose. In both
cases, we observed the cell-specific
distribution of distinct NOS isoforms (Fig.
5C). Most of the NOS-containing cells were
broadly distributed (similar to NADPH-d
reactivity, but ‘shiny spheres” were not
labeled by in situ hybridization probes). It
appears that PDZ containing NOS1
expressed in more cells than NOS3, and only
partial co-localization of the two NOSs was
observed (Fig. 5C). We also noted that the
NOSs are not located to the most peripheral
cell layer but found in cells close to the edge.
Due to a relatively high level of endogenous
fluorescence in the central part of the animal,
the precise cell identity of NOS-positive cells
was difficult to determine. However, we
noticed that both NOS could be co-localized
in a very small subset of cells close to the
edge of these disk-like animals.

NO targets and diversification of cGMP
signaling in Placozoa

NO can act via cyclic guanosine
monophosphate or cGMP as second
messenger. In this signaling pathway, NO
binds to the heme group of soluble guanylate
cyclases (sGCs), member of the adenylyl
cyclase superfamily ">, with a characteristic

catalytic CYC domain, leading to the
increase of cGMP synthesis 68818 py
binding to ATP, sGC can also couple NO
signaling to cellular metabolism .

Surprisingly, the Trichoplax and
Hoilungia genomes encode seven sGCs (Fig.
6A), whereas only three orthologs were
identified in humans. All these enzymes have
the canonical heme NO binding domain and
associated domain organization, and the
predicted sGCs from placozoans from
clusters appropriately with the o and B sGCs
of humans.

We identified in Trichoplax and their
kin additional membrane-bound NO receptor
candidates (Fig. 6A). Trichoplax also has five
orthologs of atrial natriuretic peptide-like
receptors (ANPRs) with CYC/cGMP
coupling as in humans. But there is no atrial
natriuretic peptide detected in any sequenced
placozoan genome. There are also four
Trichoplax adenylate cyclases, which have
two CYC domains (humans have nine
adenylate cyclases); these are probably not
involved in NO binding and we used them as
outgroups.

Unexpectedly, we discovered 12
additional guanylyl cyclases with unique NIT
domains &, which were only previously
known from bacteria as nitrate and nitrite
sensors &8 Nitrate/nitrite sensing type
domain in placozoans (NIT: PF08376) is
flanked between two transmembrane
domains and a C-terminal guanylate cyclase
catalytic domain (AC/GC: PF00211). The
same critical amino acid residues that were
observed in the bacterial sequences were also
present in the predicted placozoan NIT
domains. (Fig. 6B). The tree shows clearly
that they belong to the ANPR type/group and
probably arose by lateral gene transfer into an
existing ANPR type, which is established as
guanylate cyclase.
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The heme-dependent NO sensor
HNOBA (PF07701) is also found associated
with some of these predicted proteins.

To the best of our knowledge, these
types of NIT containing proteins have not
been previously characterized in animals.
There is no NIT domain detected in the
sequenced genomes of ctenophores and
sponges. However, the observed NIT
abundance in placozoans suggests potential
sensing of nitrites and/or nitrates. This
hypothesis is consistent with our present
finding of the micromolar concentration of
nitrites in  Trichoplax. Because many
placozoan cells (e.g., fiber cells) do contain
endosymbiotic bacteria, additional levels of
intra- and intercellular NO-dependent
communications are also highly likely and
can be tested in future studies.

Even more interesting, we found
NIT-containing GCs across bilaterians
including molluscs, annelids, arthropods,
priapulids, echinoderms, hemichordates and
basal chordates but vertebrates apparently
lost NIT domains (Fig. 2 Supplement).
Apparently, molluscs, hemichordates
(Saccoglossus) and placozoans have one of
the largest numbers of predicted NIT domain
genes compared to all studied metazoans.

The model cnidarian Nematostella
has no NIT domain, but there are NIT-
containing genes in the genome of related
anthozoan species including corals. The
supplementary phylogenetic tree shows that
all metazoan NIT-GCs cluster together and
their NIT domains are more similar to each
other than to bacterial NITSs.

The exact function of the NIT domain
in animals is yet to be elucidated, but the
same architectural domain organization of
the NIT domain 8% is observed across
metazoans (Fig. 6B) inferring a similar
function. In bacteria, it has been proposed
that the NIT domain regulates cellular

functions in response to changes in nitrate
and/or  nitrite  concentrations,  both
extracellular and intracellular &, The same
possibility of nitrite/nitrate sensing might be
widespread across the animal kingdom.
Functional studies would be needed to
carefully test this hypothesis in the future.
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Highlights:

1. The phylogenetic position of Placozoa, as
an early branching metazoan lineage, and the
simplicity of morphological organization
emphasizes the importance of Trichoplax as
one of the key reference species for
understanding the origin and evolution of
animals and their signaling mechanisms %,
including NO-/cGMP-mediated signaling.

2. Our combined genomic, molecular, and
microchemical analyses strongly indicate the
presence of functional NOSs in Trichoplax,
which is broadly distributed across different
cell populations. In contrast to other
prebilaterian animals, placozoans
independently evolved three different NOS
genes, similar to the situation in vertebrates.
This relatively recent diversification of
enzymes producing gaseous free radical
messenger illustrates the parallel
development of complex  signaling
mechanisms in placozoans and implies a
much greater complexity of intercellular
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communications than it was anticipated
before.

3. The molecular targets of NO in Trichoplax
can be seven soluble guanylyl cyclases
(sGCs) and five membrane-bound ANP-like
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twelve cyclases with unique NIT domains.
Placozoans have the largest number of
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studied metazoans. We hypothesize that in
placozoans, as in bacteria, the putative NIT
domain is used as nitrate/nitrite-sensing due
to the high levels of nitrate/nitrites measured
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In summary, although canonical
functional NO-cGMP signaling could be a
highly conservative feature across Metazoa,
the enormous diversity of molecular
components of these and related pathways in
placozoans stress the cryptic complexity of
these morphologically simplest animals.
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Figure 1. The diversity and evolutionary relationships of nitric oxide synthases in animals.

The representative lineages of deuterostomes, protostomes, and basal metazoans are highlighted
with unicellular eukaryotes and algae as outgroups. Names of the species are indicated in each
case with the existing classification of NOSs (see text for details). The references for each
particular gene with relevant gene accession numbers are summarized in the method section and
supplementary Table 1.
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Figure 3. Detection of NOS amino acid-derived metabolites by capillary electrophoresis and
their sensitivity to NOS inhibitors. A. Electropherograms of individual animal samples and L-
Arginine to L-Citrulline ratios of Trichoplax adhaerens following treatment with NOS inhibitors.
Arginine and citrulline peaks were identified with spike standards and shown as Arg and Cit,
respectively. i.s. is internal standards (see methods for details). Samples were loaded using
electrokinetic injection (8 kV for 12s) and then analyzed under a stable 20kV voltage at 20°C in
50 um 1.D. and 360 pum O.D. capillary with 30 mM borate/30 mM SDS, pH 10.0. (A)
Electropherograms of Trichoplax incubated with NC-nitro-l-arginine methyl ester or L-NAME
(500 pM), D-NAME (500 uM), and L-N6-(1-iminoethyl)-lysine, L-NIL (1 mM), for 30 min at
room temperature. B. Arginine-to-Citrulline ratio of Trichoplax after treatment with putative NOS
inhibitors; only L-NIL induced statistically significant increase of Arg/Cit ration suggesting the
suppression of L-citrulline production (n=5, p< 0.05, see results for details).
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Figure 4. Detection of products of NO oxidation (NO2 and NO3) by capillary electrophoresis
and their sensitivity to NOS inhibitors. Nitrites, products of NO oxidation, were detected in all
control samples and eliminated following NOS inhibitor incubation (see text for details). The
separation was conducted in a 75cm length of 50 um I.D. and 360 pum O.D. capillary with
arginine/borate buffer, pH 9.0. All samples were loaded using electrokinetic injection (-1 kV for
12s), and then analyzed under a stable -15 kV voltage at 20°C. A. Electropherograms of Trichoplax
only, and Trichoplax incubated for 30 mins with N®-nitro-I-arginine methyl ester or L-NAME (500

M), and L-N8-(1-iminoethyl)-lysine or L-NIL (1 mM). B. Nitrite and nitrate concentration
profiling after 30 mins of NOS inhibition (n=5, p< 0.05).
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Figure 5. NOS expression in Placozoans. (A, B) NADPH-diaphorase histochemistry and the
distribution of putative nitrergic cells in two species of Placozoa: Trichoplax adhaerens (A) and
Hoilungia hongkongensis (B). NADPH-d reactive cells (black) are broadly distributed across the
animal. In both species, relatively large cells (asterisks) correspond to so-called “shiny spheres,”
whereas the arrows indicate an example of NADPH-d reactive cells with some tendencies of their
distribution close to the edge of animals. (C) Expression of two NOSs in Trichoplax using single
molecules fluorescent in situ hybridization (FISH). Blue dots — PDZ-containing NOS1 and purple
dots — NOS3. A dotted circle indicates an example of a cell where both NOS are co-localized.
Note, NOS-expressed cells do not occur at the very edge of the animal. Scale: 10 pm.
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Figure 6. The diversity and lineage-specific expansion of sGC and related NO receptors in
placozoans. A. Maximum likelihood phylogenetic tree of placozoan soluble guanylyl cyclases
(sGC) and two groups of related enzymes: Atrial Natriuretic Peptide-like receptors (ANPRS), some
of which contain unusual NIT domains — putative nitrite/nitrate sensing receptors (see text), and
adenylate cyclases as outgroups. 119 protein sequences (Supplementary Table 1) were trimmed


https://doi.org/10.1101/2020.04.10.034207
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.10.034207; this version posted April 12, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

down to cyclase domains and produced an alignment 325 aa long. Alignment was analyzed in
IQTREE °2 using LG+I+G4 evolution model chosen automatically with Bayesian information
criterion. Tree robustness was tested with 2000 replicates of ultrafast bootstrap. Orthologous
proteins from 4 placozoan species (red text) were analyzed and their branches collapsed in the tree:
Trichoplax adhaerens (H1), Trichoplax sp. (H2), Hoilungia sp. (H4) and Hoilungia hongkongensis
(H13), except for adenylate cyclases that were only from Trichoplax adhaerens, and NIT domain
GCY3 which were found only in Hoilungia genus. Human and Drosophila orthologs are shown.
The domain organization of three groups of predicted guanylyl cyclases in placozoans is also
schematically illustrated. Full (uncollapsed) version of this tree can be found in Supplemental
Figure 1S.

B. NIT domains in placozoans. The putative nitrate- and nitrite-sensing NIT domains of animals
are homologous to prokaryotic NIT domains. Phyre2 was used to generate a structural model for
the NIT domain of 007393 from Trichoplax adhaerens. The Phyre model is mostly based on the
structure NIT domain of the NasR transcription antiterminator (pdb ID: 4AKK). The NIT domain
consists of two four-helix bundles, shown in yellow and red. At their interface, two conserved
arginines are thought to be involved in ligand binding. The sequence conservation of the two
helices at the interface is shown by a webLogo representation 3. The overall height of a stack
indicates the sequence conservation at a certain position, whereas the height of symbols within the
stack indicates the relative frequency of each amino acid at that position.
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Figure 1S. Maximum likelihood phylogenetic tree of placozoan soluble guanylyl cyclases (sGC)
and two groups of related enzymes: Atrial Natriuretic Peptide-like receptors (ANPRs), some of
which contain unusual NIT domains, and adenylate cyclases. Proteins from all four placozoan
species used in this study are represented (see Fig 6A in the main text).
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Figure 2S. Maximum likelihood phylogenetic tree of NIT domains containing guanylyl cyclases
in placozoans (Trichoplax sp. H2 only), cnidarians and bilaterians. Guanylate cyclases with NIT
domains are found in most animal phyla except sponges, ctenophores, vertebrates and
urochordates. Extensive lineage-specific duplications are evident in placozoans, molluscs and
hemichordates. 66 protein sequences were trimmed down to NIT+cyclase domains and produced
an alignment 689 aa long. Alignment was analyzed in IQTREE % using LG+F+R6 evolution model
chosen automatically with Bayesian information criterion. Tree robustness was tested with 2000
replicates of ultrafast bootstrap.
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