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Abstract

Aberrant activation of RAS oncogenes is prevalent in lung adenocarcinoma, with somatic
mutation of KRAS occurring in ~30% of tumors. Recently, we identified somatic mutation of the
RAS-family GTPase RIT1 in lung adenocarcinoma, but relatively little is known about the
biological pathways regulated by RIT1 and how these relate to the oncogenic KRAS network.
Here we present quantitative proteomic and transcriptomic profiles from KRAS-mutant and
RIT1-mutant isogenic lung epithelial cells and globally characterize the signaling networks
regulated by each oncogene. We find that both mutant KRAS and mutant RIT1 promote S6
kinase, AKT, and RAF/MEK signaling, and promote epithelial-to-mesenchymal transition and
immune evasion via HLA protein loss. However, KRAS and RIT1 diverge in regulation of
phosphorylation sites on EGFR, USO1, and AHNAK proteins. The majority of the proteome
changes are related to altered transcriptional regulation, but a small subset of proteins are
differentially regulated by both oncoproteins at the post-transcriptional level, including
intermediate filament proteins, metallothioneins, and MHC Class | proteins. These data provide
the first global, unbiased characterization of oncogenic RIT1 network and identify the shared

and divergent functions of oncogenic RIT1 and KRAS GTPases in lung cancer.

Introduction

Somatic mutation of the KRAS proto-oncogene is a prevalent feature of human cancers,
particularly in lung adenocarcinomas where KRAS is mutated in up to 30% of tumors. Cancer-
associated variants such as G12V and Q61H alter the normal regulation of KRAS GTPase
activity by disrupting GTP hydrolysis activity or physical interaction with GTPase-activating
proteins (GAPs)'?, resulting in heightened downstream cellular signaling through the canonical

RAS effector pathways RAF/MEK and PISK/AKT as well as others. Following the discovery of
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cancer-associated RAS mutations in the 1980s>#, thousands of studies have delineated the

critical pathways involved in RAS-mediated cellular transformation, metastasis, and metabolism.

Recently, another RAS-family GTPase gene, RIT1, was found to harbor somatic mutations in
lung cancer® and myeloid leukemias®. Interestingly, germline RIT1 mutations are found in
families with Noonan Syndrome, a developmental “RAS”-opathy involving altered craniofacial
morphology and cardiac abnormalities’, and which can also be caused by germline mutations in
KRAS itself or other RAS-pathway genes such as SOS1, SOS2, LZTR1 and SHOC2

(https://omim.org/). In cancer and development, RIT1 mutations are found in cases that lack

canonical KRAS mutations, suggesting that RIT1 may impart the same phenotypes conferred by

activation of RAS.

Prior studies have characterized the role of RIT1 in neural development® and we and others
have described the role of mutant RIT1 in cellular transformation®®'°, knowledge of the function
of cancer- and Noonan-associated RIT1 variants is relatively limited. Unlike KRAS, RIT1
mutations are rarely observed near the critical glycine residues involved in GTP hydrolysis (e.g.
G12 and G13 in KRAS or G30 and G31 in RIT1). Instead, RIT1 mutations occur most frequently
near the switch Il domain, also targeted by Q61 KRAS variants (Fig. 1a). Nevertheless, these
mutations may enhance GTP-bound levels of RIT1""'?. The molecular consequences of RIT1
switch || domain mutations may additionally be linked to the loss of RIT1’s physical interaction
with LZTR1, a ubiquitin-conjugating enzyme responsible for degradation of RIT1"". Cancer- and
Noonan-associated RIT1 variants lose the ability to interact with LZTR1 and consequently are

highly overexpressed, resulting in increased signaling activity through the RAF/MEK pathway".
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Prior studies of RIT1 function focus on candidate cellular signaling pathways based on RIT1’s
homology to KRAS. To our knowledge, unbiased mapping of downstream RIT1-regulated
pathways has not been performed to date. Here we sought to broadly describe the proteome,

phosphoproteome, and transcriptome changes induced by wild-type RIT1 and RIT1%9,

a
cancer- and Noonan-associated variant, and to compare these changes to those induced by
oncogenic KRAS variants. With a particular interest in the consequences of RIT1"% in lung

MOl
1

cancer, we profiled the effects of RIT mutation in AALE cells, a non-transformed,

immortalized, human lung epithelial cell line™.

By comparing the downstream pathways regulated by oncogenic KRAS and RIT1, we uncover
previously unknown consequences of RIT1 activation, such as induction of the epithelial-to-
mesenchymal transition (EMT) and post-translational regulation of HLA protein expression. In
addition, we uncover additional functional differences between KRAS and RIT1 including a
distinct and unique role of KRAS mutants in regulation of EGFR and USO1 phosphorylation.

These data provide the first systems-level view of RIT1 and RIT1"% function.

Results

Multi-omic profiling of RIT1- and RAS-transformed human lung epithelial cells

We previously demonstrated that RIT1"® and other cancer-associated RIT1 variants can
promote cellular transformation of NIH3T3 cells in vitro and in vivo®. To determine whether
RIT1M" was capable of transforming human lung epithelial cells, we expressed mutant RIT1 or
KRAS in the human lung epithelial cell line, AALE. Similar to our previous findings in rodent

cells, both RIT1"® and KRAS®'?Y enabled AALE cells to form colonies in soft agar (Fig. 1b).
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The canonical function of oncogenic RAS variants is the downstream activation of the
RAF/MEK/ERK cellular signaling cascade™, and RIT1 shares the ability to bind C-RAF and
induce transcription of ERK target genes activity'". To determine if such regulation is active in
AALE cells, we stably expressed wild-type RIT1 or KRAS, or the mutant forms RIT1Y%
KRAS®'? and KRAS®®™ in AALE cells. KRAS®®™™ was included since this mutant more closely
resembles the switch |l domain mutants observed in RIT1 in cancer (Fig. 1a). RIT1",
KRAS®'?", and KRAS®'™™ all enhanced ERK phosphorylation compared to their respective wild-
type protein or vector control (Fig. 1c). Interestingly, wild-type RIT1 overexpression also

modestly enhanced ERK phosphorylation whereas wild-type KRAS suppressed basal ERK

phosphorylation.

To systematically characterize the signaling networks perturbed by mutant RIT1 and KRAS in
lung cancer, we expressed each variant in AALE cells and performed both RNA-seq and deep
proteome and phosphoproteome profiling by liquid chromatography tandem mass spectrometry
(LC-MS/MS). Following trypsin digestion, peptides were labeled with tandem mass tag (TMT)
reagents in two overlapping 10-plex sets for relative quantification of proteome and
phosphopeptides by LC-MS/MS (Fig. 1d and Supplementary Fig. 1a-b). Following basic
reverse phase chromatography, fractions were either directly subjected to LC-MS/MS for total
proteome quantification, or subjected to immobilized metal affinity chromatography (IMAC) to
enrich for phosphopeptides and then subjected to LC-MS/MS, or. In total, we identified 10,131
proteins, 9002 of which were detected and quantified in every sample, and 29,140
phosphopeptides, 12,325 of which were identified in common in every sample (Supplementary

Tables 1 and 2 and Supplementary Files 1 and 2).



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

In parallel, we generated deep transcriptome profiles of the same isogenic cell lines.
Transcriptome profiling was performed in triplicate on the Illlumina NovaSeq platform to a
median read-depth per replicate of 70.1 million reads (Fig. 1e, Supplementary Table 3 and
Supplementary Fig. 1e). No compensatory feedback regulation of RIT1 to KRAS or vice versa
was observed (Fig. 1f). Despite relatively low protein expression of KRAS variants in the AALE
lines (Fig. 1c), the majority of KRAS transcripts in each isogenic cell line corresponded to G12V
or Q61H variants, respectively, with 84.1% of reads harboring the G12V variant in KRAS®'?Y
cells, and 73.3% of reads corresponding to the Q61H allele in KRAS®®™ cells (Fig. 1g). As

expected, known KRAS-regulated gene sets were strongly up- and down-regulated in KRAS-

mutant cells (Supplementary Fig. 1d).

Multi-omic profiling identifies global similarity between signaling regulated by RIT1"%
and oncogenic KRAS

Differentially abundant proteins were identified by comparison to the vector control cells using a
two-tailed moderated t-test (Fig. 2a). Selected proteins observed to be significantly modulated
by LC-MS/MS were cross-validated by Western blot. FOSL1, also known as FRA1, is a basic
leucine zipper transcription factor in the FOS family'®. Activation of RAS is known to promote
transcriptional upregulation and protein stabilization of FOSL1'®"". By LC-MS/MS, FOSL1 was
markedly overexpressed in KRAS®'?Y, KRAS®'" and RIT1"°_mutant cells compared to wild-
type cells or vector control cells (Fig. 2b). Consistently, Western blot of independently-derived
AALE isogenic lines demonstrated greater abundance of FOSL1 in KRAS- or RIT1-mutant cells
compared to wild-type expressing cells (Fig. 2b). TXNIP is an inhibitor of thioredoxin involved in
both redox regulation and glucose metabolism''®. Prior literature identified HRAS®'?'-induced
suppression of TXNIP transcription and protein translation>%'. TXNIP was among the top down-

regulated proteins in KRAS- and RIT1-mutant proteomes, and was decreased in Western blot
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analysis of independently derived cells (Fig. 2c). These validation data demonstrate the utility of
LC-MS/MS to describe protein expression changes and additionally suggest the mechanism of

RAS-mediated modulation of FOSL1 and TXNIP is shared with RIT1'"

Next we compared the global effects of RIT1"" and RIT1" to that of KRAS"" and KRAS
variants. Proteome and phosphoproteome data from RIT1"*°-expressing cells were highly
correlated with KRAS®'?Y and KRAS®*'" profiles, suggesting largely similar downstream
consequences (r = 0.70-0.80 and 0.72-0.75 for proteome and phosphoproteome, respectively;
Fig. 2d). Despite differences in KRAS protein abundance, KRAS®'? and KRAS®™ proteomes
and phosphoproteomes were highly correlated (proteome r = 0.85 and phospho r = 0.79; Fig.
2d). In contrast, wild-type KRAS replicates were the most divergent of all profiles, showing

limited correlation to either the KRAS-mutant profiles or RIT1 profiles.

A recent study found that RIT1 variants, including M90I, may function by relieving negative
regulation of RIT1 by a LZTR1-dependent proteasomal degradation mechanism'". Accordingly,
overexpression of wild-type RIT1 should largely phenocopy expression of RIT1"°". Consistent
with this idea, RIT1"" cells more closely resembled both RIT1"?”" and KRAS-mutant cells than
KRAS"T cells (Fig. 2d). These data highlight a critical divergence between KRAS and RIT1:
expression of wild-type KRAS is not capable of activating downstream oncogenic pathways,
whereas expression of wild-type RIT1 in part resembles activation of RIT1 or KRAS by
mutation. We confirmed this observation in a principal component analysis of transcriptome
data, which further revealed a high degree of similarity between RIT1"" and RIT1"%"regulated

gene expression (Fig. 2e and Supplementary Table 4).
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Oncogenic RIT1 promotes epithelial-to-mesenchymal transition

To identify the downstream pathways regulated by oncogenic KRAS and RIT1, we performed
gene set overlap analysis using MSigDB Hallmark Pathway gene sets®* (Fig. 3a). The epithelial-
to-mesenchymal transition (EMT) pathway was the most significant gene set enriched among
up-regulated proteins for both KRAS®'?Y/KRAS®'™" and RIT1VT/RIT1"® cell lines. EMT is a
cellular transdifferentiation process promoted by cell-extrinsic signaling proteins and
orchestrated by activation of transcription factors such as Twist, Snail, and Zeb family
transcription factors®. It has long been observed that oncogenic RAS proteins, including KRAS
mutants, promote EMT. An EMT-signature is associated with KRAS dependence?*, which has
been functionally linked to activation of FOSL1%. Interestingly, we find both RIT1"% and
KRAS®'2Y/KRAS®™ are capable of promoting expression changes of key EMT markers,
including up-regulation of Vimentin, N-Cadherin, and Fibronectin, and downregulation of Keratin
19 (Fig. 3b and Supplementary Fig. 2a). Although canonical EMT transcription factors Snail
(SNA1) and Slug (SNA2) were not detected by proteomic analysis, transcriptomes from RIT1-
and KRAS-mutant cells showed increased activity of these EMT transcription factors as
determined by ChEAS transcription factor enrichment analysis (Fig. 3c-d and Supplementary
Fig. 2b). To our knowledge, this is the first demonstration of mutant RIT1 promoting EMT in any

cell type.

Oncogenic KRAS and RIT1 suppress Class | MHC expression via a post-transcriptional
mechanism

Among the top suppressed proteins with differential abundance in both mutant KRAS and
RIT1Y cells, were major histocompatibility complex (MHC) proteins. Class | MHC proteins
HLA-A, HLA-B, HLA-C, and HLA-F were potently suppressed by KRAS®'?Y KRAS®®'" and

RIT1" (Fig. 4a-b and Supplementary Fig. 3a). Recently there has been a renewed interest
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in expression of immune modulatory proteins in cancer due to the appreciation of the potent role
of the immune system in shaping cancer evolution. Further understanding the regulation of HLA
expression in cancer is particularly critical in metastatic KRAS-mutant lung adenocarcinoma,
where chemotherapy combined with immune checkpoint blockade is often used in the first-line

setting.

Class | MHC genes HLA-A, HLA-B, and HLA-C harbor loss-of-function mutations in cancer®,
demonstrating selective pressure to lose MHC function during tumorigenesis. Both MHC
expression loss and upregulation of the immune suppressive protein PD-L1 enable tumor
evasion of T-cell recognition of aberrant cancer cell proteins?. Moreover, expression loss of
HLA proteins or B2M, another MHC Class | complex protein, is associated with resistance to
immunotherapy in cancer®. We found that RIT1"? KRAS®'?Y, and KRAS®™ cells all promoted

loss of B2M protein abundance in addition to HLA protein loss (Fig. 4c).

Class | MHC expression is known to be dynamically regulated by upstream signals controlled by
interferon gamma exposure, NF-kB signaling, and chromatin regulators such as EZH2%**. Each
of these mechanisms involves transcriptional regulation of class | MHC genes. However, there
were no transcriptional differences in HLA genes in the KRAS-mutant and RIT1-mutant cells nor
were any transcriptional differences observed in the upstream regulators of MHC Class |
expression NLRCS and IRF1 and IRF2 (Supplementary Fig. 3b). Moreover, we excluded the
possibility that lentiviral transduction or expression of a foreign antigen was responsible for the
HLA suppression, because HLA protein expression was maintained or enhanced in RIT1"'-

expressing cells as well as vector control cells, which express the Renilla luciferase gene.
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To identify the possible mechanism of RIT1"%°- and KRAS-mediated MHC suppression, we

identified other proteins that, like HLA, were upregulated in RIT1""

cells but suppressed in
RIT1-mutant and KRAS-mutant cells (Fig. 4d). This analysis revealed the pervasive
downregulation of the Rab-mediated ER/Golgi vesicle-trafficking pathway that controls MHC
Class | processing and presentation as well as the MHC Class | complex proteins themselves
(Fig. 4e). In addition, expression of the proteasomal subunit PSMB9 correlated with loss of the
MHC processing machinery (Fig. 4f and Supplementary Fig. 3c). Loss of PSMB9, also known
as LMP2, has been previously linked to loss of MHC expression after oncogenic
transformation®'. We conclude that RIT1" and KRAS®'?Y/KRAS®'™ suppress MHC Class |
expression through a post-transcriptional mechanism possibly involving PSMB9. Further

investigation of MHC Class | expression loss driven by these oncogenic RIT1 and KRAS is

critical to better understand the role of RAS and RIT1 signaling on immune evasion in cancer.

The identification of a major class of proteins regulated at the post-transcriptional level in RIT1-
and KRAS-transformed lung epithelial cells brought to our attention the possibility of other post-
transcriptional regulation by RIT1 and KRAS. Indeed, oncogenic RAS signaling profoundly
alters cap-dependent translation via activation of the p90 ribosomal S6 kinases (RSKs)* and
PI3K/mTOR?, so differential protein translation could significantly contribute to altered protein
abundance in RAS-transformed cells. To determine whether there were other protein classes in
addition to MHC Class | proteins with significant post-transcriptional regulation, we performed a
global correlation analysis of the transcriptome and proteome. Significant linear correlations
between transcript and protein abundance were observed for RIT1 and KRAS variants, with the
correlation highest for cells expressing mutant KRAS®™?Y (r = 0.3725) or KRAS®®™ (r = 0.3620)
(Fig. 4g). While expression of the majority of genes were correlated at the RNA and protein

levels, the metallothionein protein family including MT1E, MT1F and MT1X was highly

10
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upregulated in the proteome but not transcriptome of KRAS-mutant cells (Fig. 4g). In addition,
intermediate filament proteins were also substantially regulated post-transcriptionally; both
alpha-internexin (INA) and vimentin (VIM) were expressed more highly in the proteome than
expected from RNA-seq data (Fig. 4g). These data highlight the utility of LC-MS/MS to identify

protein abundance changes that would not be predicted from transcriptome analysis.

Phosphoproteome profiling illuminates shared and unique signaling by RIT1 and KRAS
Protein phosphorylation is a reversible and dynamic mechanism of intracellular signaling that
enables rapid intracellular transduction of signals controlling cell proliferation, survival, and
metabolism. Although both RIT1 and KRAS act as GTPase switches, they both stimulate
activation of cellular protein kinases such as BRAF. We therefore evaluated protein
phosphorylation regulated by wild-type and mutant RIT1 and KRAS. Phosphosite abundance
was expressed as a relative abundance normalized to the total protein abundance for each
phosphoprotein. Unsupervised hierarchical clustering of the phospho-signatures identified the
RIT1Y phosphoproteome as most similar to KRAS®'?Y and KRAS®®™™ phospho-signatures
(Supplementary Fig. 4a). We performed Kinase-Substrate Enrichment Analysis (KSEA*),
which uses kinase-substrate pairings from PhosphoSitePlus>® and NetworKIN®® to identify
differential phosphorylation of kinase-substrate families (Supplementary Table 5). These data
further confirmed the similarity in phosphorylation state between RIT1-mutant and KRAS-mutant
cells. The top kinases with increased substrate phosphorylation in RIT1-mutant and KRAS-
mutant cells were ribosomal S6 kinase (RPS6KA1), Protein kinase C (PRKCA), AKT1, and
MAPKAPK2 (Fig. 5a-c, Supplementary Fig. 4b-e, and Supplementary Table 5). The levels of
phosphorylation of RPS6KA1 and MAPKAPK2 substrates were enhanced most strongly in the
mutant cells and less in RIT1 WT and KRAS WT-expressing cells (Fig. 5b-c). Substrates of

Aurora kinase B and CDK1 and PAK1 were suppressed in RIT1- and KRAS-mutant cells (Fig.

11
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5a and Supplementary Fig. 4b-c and Supplementary Fig. 4f). Although the total
phosphorylation of each substrate reflects the balance between kinases and phosphatases in
the cell, these data suggest that RIT1"%% like oncogenic KRAS, can activate the canonical RAS

effector pathways involving S6 kinase and AKT.

Next we assessed the divergent functions of RIT1""' and KRAS®'?/KRAS®*'" by identifying

AMO_mutant cells. 902

proteins with differential phosphorylation in KRAS-mutant versus RIT
differentially phosphorylated sites were identified by two-tailed t-test and multiple hypothesis
correction (Fig. 5d; FDR < 0.05). Interestingly, the top site with lower phosphorylation in
KRAS®'?Y and KRAS®™ cells was EGFR serine 1026 (Fig. 5d). In lung adenocarcinoma, KRAS
mutations and EGFR mutations are mutually exclusive, suggesting a powerful genetic
interaction between these two genes. Recent work demonstrated that mutant KRAS and EGFR
display synthetic lethality®”. However the mechanism underlying this lethality is unknown.
Further inspection of the phospho-proteome signatures revealed extensive alteration of EGFR
phosphorylation by KRAS®'?Y and KRAS®'™™ but not by RIT1"%?'. 11 of 12 EGFR sites detected
by LC-MS/MS occur in the cytoplasmic carboxy-terminal tail of EGFR (Fig. 5e). Five of these
sites (8991, S991/T993 double phosphorylation, S1026, S1039, and T1041/S1045 double
phosphorylation) were significantly depleted of phosphorylation in KRAS®'? and KRAS®®'-
expressing cells but not in RIT1"%_expressing cells. Interestingly, these sites lie in a region of
EGFR that is involved in receptor internalization and endocytosis® and a phosphorylation-
deficient mutant at S991 is defective at internalization®. Consistently, EGFR protein abundance
was increased in KRAS-mutant cells (Supplementary Fig. 4g) Although the specific regulatory

mechanisms leading to this depletion remain unknown, these data point to the existence of

feedback regulatory signaling from oncogenic KRAS to EGFR.

12
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Examining phosphorylation uniquely promoted by KRAS®'? and KRAS®®™ we identified USO1
phosphorylation at S48 as one of the top most significantly increased phosphorylation events in
KRAS-mutant cells. USO1, also known as p115, is a vesicle tethering factor involved in ER-
Golgi intracellular trafficking*’. Although wild-type KRAS and KRAS-mutant proteomic
signatures were largely divergent, USO1 serine 48 phosphorylation was promoted by both
KRAS"T and mutant KRAS (Fig. 5f). KRAS relies on vesicle trafficking to ensure proper post-
translational farnesylation and palmitoylation, which are required for targeting of KRAS to the
plasma membrane*'. We hypothesized that USO1 S48 phosphorylation was therefore
correlated with KRAS expression rather than activity. Indeed, a significant correlation was
observed between overall KRAS expression and USO1 phosphorylation (Fig. 5g). In contrast,
USO1 S48 phosphorylation was only modestly changed in RIT1-mutant cells (Fig. 5d). Notably,
RIT1 lacks the farnesylation and palmitoylation signals present in RAS isoforms*?, so the
differential regulation of USO1 by KRAS and RIT1 may be related to differences in RIT1 and

KRAS trafficking.

Also among the top differentially phosphorylated sites were 32 phosphorylation sites in AHNAK
proteins 1 and 2. AHNAK and AHNAK?2 are large scaffolding proteins that have been implicated
as tumor suppressor proteins in breast and lung cancer****. Among all phospho-proteins, a
higher proportion (32/117) of sites on AHNAK and AHNAK2 were differentially phosphorylated
than expected by chance (P < 0.0001 by Chi Square test; Supplementary Fig. 4h). Intriguingly,
two recent proximity-labeling proteomic studies identified AHNAK and AHNAK2 as KRAS-

45,46

interacting proteins™ ™, raising the possibility that a direct physical interaction between KRAS

and AHNAK proteins may be involved in the differential AHNAK phosphorylation we observe.
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Discussion

Here we describe quantitative proteomic, phosphoproteomic, and transcriptomic datasets that

provide the first systematic view of the RIT1"%

-regulated signaling network. These datasets
were generated from isogenic human lung epithelial cells to provide a physiological view of the
consequences of RIT1 activation in the same cellular compartment that is involved in lung
adenocarcinoma, a tumor type with prevalent mutations in KRAS and RIT1. Broadly, we find
that ‘omic signatures from RIT1"*°-expressing cells largely phenocopy those from cells with
overexpression of wild-type RIT1. This finding lends further support to the notion that oncogenic
RIT1 variants function at least in part through increasing RIT1 abundance’’. This is in contrast
to KRAS, where overexpression of wild-type KRAS induces signatures unrelated or opposite to
that of oncogenic KRAS variants G12V and Q61H. The opposing functions of wild-type and
mutant KRAS is consistent with recent evidence suggesting that KRAS functions as a dimer and
that wild-type KRAS directly inhibits the function of oncogenic KRAS variants via physical
dimerization*’. This divergence in the function of wild-type RIT1 and KRAS hints at fundamental
differences in molecular regulation of each wild-type GTPase. The ability of RIT1 to promote
downstream RAF/MEK/ERK signaling when aberrantly expressed suggests that RIT1 may not
be subject to the same tight regulation by GTPase-activating proteins (GAPs) that normally
keep RAS in an inactive state. Furthermore, these data raise the possibility that wild-type RIT1
overexpression in RIT1-amplified cancers may contribute to tumorigenesis. RIT1, on
chromosome 1q, is frequently amplified in uterine carcinosarcoma, liver hepatocellular cancer,
cholangiocarcinoma, breast cancer, lung adenocarcinoma, and ovarian cancer. RIT1 mRNA
expression is increased in amplified cases, regardless of tissue type, raising the possibility that

RIT1 overexpression could play a role in tumorigenesis in these cancers.
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We find that RIT1"® KRAS®'? and KRAS®™ share the ability to activate canonical RAS
effector pathways PI3K/AKT and RAF/MEK. Likely as a consequence of RAF/MEK signaling to
FOSL1, RIT1" also shares the ability to induce EMT markers including Vimentin, N-cadherin,
and fibronectin. KRAS and RIT1 variants also shared the ability to profoundly suppress HLA-A, -
B, and -C expression via a posttranscriptional mechanism. Taking advantage of differential
expression of HLA proteins between RIT1"" and all other isogenic lines, we identified an entire
Rab-mediated endocytic network that was lost together with HLA proteins in RIT1- and KRAS-
mutant cells. This downregulated module also included PSMB9, a subunit of the
immunoproteasome that is involved in antigen processing for class | MHC presentation. RAS
oncogenes have long been recognized to suppress surface MHC expression*, in some cases
transcriptionally and in others post-transcriptionally>'. Our data link both oncogenic RIT1 and
RAS to modulation of the processing and trafficking of MHC Class | molecules. Further
identification of the mechanism of RIT1/RAS-mediated MHC suppression will provide a better
understanding of tumor immune evasion which is critically needed to optimize patient

stratification of cancer immunotherapy.

In addition to the largely concordant regulation of proteins by mutant RIT1 and KRAS, we
identified several unique phosphoproteins with differential abundance in RIT1Y*" and KRAS-
mutant cells. These included EGFR, a key oncoprotein in lung adenocarcinoma, which showed
reduced phosphorylation of sites involved in receptor internalization and endocytic trafficking.
Given the potent genetic interactions between KRAS and EGFR in lung cancer and colon
cancer, it is attractive to speculate that feedback regulation of KRAS to EGFR could provide an
explanatory mechanism for this phenomenon. Future work is needed to determine the basis of

the specific regulation of EGFR phosphorylation by oncogenic KRAS but not RIT1.
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Together, these results demonstrate the power of quantitative proteomics and transcriptomics to
provide global views of cancer oncogene signaling. Our multi-omic analysis validated known
consequences of RAS activation such as EMT and activation of RAF/MEK and PI3K signaling.
For the first time, we gained a global view of RIT1 function, which confirmed its ability to
stimulate canonical RAS signaling. However, phosphoproteomic profiling identified a number of
key divergent mechanisms between KRAS- and RIT1-mutant cells, which point to the existence
of novel, unique regulators or effectors of KRAS and RIT1 still to be identified. Future work is
needed to investigate the mechanisms of these differences between KRAS and RIT1, the

results of which will have important implications for cancer therapy and Noonan Syndrome.
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Methods

Isogenic Cell Line Generation

Plasmid constructs were cloned using Gateway Technology (Invitrogen/ThermoFisher) using
pLX301 destination vector (Broad Institute) and pDONR223-RIT1 donor vectors previously
described®. Lentivirus was generated by transfection of HEK293T cells with packaging and
envelope vectors using standard protocols. AALE cells were a kind gift of Jesse Boehm (Broad
Institute). Isogenic cells were generated by transduction of lentivirus generated from pLX317-
Renilla luciferase or pLX301-RIT1"T, pLX301-RIT1 pLX301-KRAS"T, pLX301-KRAS®'?Y, or
pLX301-KRAS®®™ and selection with puromycin. Stable pools of cells were maintained in small

airway growth medium (Lonza).

Soft Agar Assay

1x10° cells were suspended in 1 ml of 0.33% select agar in small airway growth medium without
EGF (Lonza) and plated on a bottom layer of 0.5% select agar in the same media in six-well
dishes. Each cell line was analyzed in triplicate. Colonies were photographed after 14-21 days

and quantified using CellProfiler**.

Transcriptome profiling

Three technical replicates per cell line were harvested at ~90% confluence (n = 18 total dishes).
Cells were lysed and total RNA was extracted using Direct-zol RNA Miniprep plus (Zymo
Research). Libraries were constructed using the non-strand-specific poly-A selection Illumina
TruSeq kit for 50bp paired-end reads. Libraries were then pooled and sequenced on the
lllumina NovaSeq platform (Fred Hutch Genomics Core). Reads were aligned to the human
reference genome build hg19/GRCh37 using STAR v.2.5.3a*°. Alignments were annotated for

duplicates and read groups, and then reordered and indexed, using Picard Tools v.1.114°".
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Read statistics for each RNA-seq sample were calculated using RSeQC®. Quantification of
gene transcripts was performed by the featureCounts program within the Subread package®?,
using hg19 gene annotation from UCSC Gene level CPM and RPKM values were calculated
with edgeR v.3.22.3**, and converted into transcripts per million (TPM values with an in-house
script. In total, 12,887 genes were identified with average logCPM at least 0.1 across all
samples. Differential expression analyses comparing KRAS or RIT1 perturbed cell lines against

vector control lines were performed using edgeR>*.

High performance liquid chromatography tandem mass spectrometry (LC-MS/MS)

Cells were washed in ice-cold PBS, scraped into PBS, pelleted, and snap frozen in liquid
nitrogen. The experimental workflow for sample processing, TMT-labeling, peptide enrichment,
and LC-MS/MS were largely as previously described®. Briefly, pellets were lysed in 200 pl of
chilled urea lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris (pH 8.0), 1 mM EDTA, 2 ug/ml
aprotinin, 10 ug/ml leupeptin, 1 mM PMSF, 1:100 (vol/vol) Phosphatase Inhibitor Cocktail 2,
1:100 Phosphatase Inhibitor Cocktail 3, 10 mM NaF, and 20 uM PUGNACc) for each ~50 mg
portion of wet-weight tissue. Lysates were reduced with 5mM DTT, alkylated with 10 mM IAM,
and digestion performed in solution with 1 mAU LysC per 50 ug of total protein and trypsin at an
enzyme/substrate ratio of 1:49. Reactions were quenched with FA and brought to pH = 3 with
FA. Peptides were desalted on 200 mg tC18 SepPak cartridges and dried by vacuum
centrifugation. 340 pg of peptides were labeled with 10-plex Tandem Mass Tag reagents
(TMT10, Fisher Scientific), according to manufacturer's instructions. To enable quantification of
peptides across all 12 samples, the samples were labeled in sets of 10 across two different
TMT10 pools in a crossover design with 8 of 12 samples analyzed in both TMT10 pools. A
50/50 mix of both AALE vector control lysates was used as an internal reference in both TMT10

runs (Supplementary Fig. 1b).
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Each TMT10-plex was desalted in a 200 mg tC18 SepPak cartridge and fractionated using
offline HPLC. 5% of each fraction was collected into an HPLC vial for proteome analysis by LC-
MS/MS. The remaining 95% was processed for phospho-peptide enrichment via immobilized
metal affinity chromatography (IMAC). IMAC enrichment was performed using Ni-NTA
Superflow Agarose beads incubated with peptides solubilized in a final concentration of 80%
MeCN/0.1% TFA. Phospho-enriched peptides were desalted and collected into an HPLC vial for

analysis by LC-MS/MS.

Online fractionation was performed using a nanoflow Proxeon EASY-nLC 1200 UHPLC system
(Thermo Fisher Scientific) and separated peptides were analyzed on a benchtop Orbitrap Q
Exactive Plus mass spectrometer (Thermo Fisher Scientific) equipped with a nanoflow
ionization source (James A. Hill Instrument Services, Arlington, MA). In-house packed columns
(20 cm x 75 ym diameter C18 silica picofrit capillary column; 1.9 um Reprosll-Pur C18-AQ
beads, Dr. Maisch GmbH, r119.aq; Picofrit 10 um tip opening, New Objective, PF360-75-10-N-
5). Mobile phase flow rate was 200 nL/min, comprised of 3 % acetonitrile/0.1 % formic acid
(Solvent A) and 90 % acetonitrile /0.1 % formic acid (Solvent B). The 110 min LC-MS/MS
method consisted of a 10 min column-equilibration procedure; a 20 min sample-loading
procedure; and the following gradient profile: (min: % B) 0:2; 2:6; 85:30; 94:60; 95:90; 100:90;
101:50; 110:50 (the last two steps at 500 nL/min flow rate). Data-dependent acquisition was
performed using Xcalibur QExactive v2.4 software in positive ion mode at a spray voltage of
2.00 kV. MS1 Spectra were measured with a resolution of 70,000, an AGC target of 3e6 and a
mass range from 300 to 1800 m/z. Up to 12 MS/MS spectra per duty cycle were triggered at a
resolution of 35,000, an AGC target of 5e4, an isolation window of 0.7 m/z, a maximum ion time

of 120 msec, and normalized collision energy of 30. Peptides that triggered MS/MS scans were
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dynamically excluded from further MS/MS scans for 20 sec. Charge state screening was
enabled to reject precursor charge states that were unassigned, 1, or >6. Peptide match was

set to preferred for monoisotopic precursor mass assignment.

Protein-peptide identification, phosphosite localization, and quantification

MS data was interpreted using the Spectrum Mill software package v6.0 pre-release (Agilent
Technologies, Santa Clara, CA. MS/MS spectra were merged if they were acquired within +/- 45
sec of each other with the same precursor m/z. Also, MS/MS spectra that did not have a
sequence tag length > 0 (i.e., minimum of two masses separated by the in chain mass of an
amino acid) or did not have a precursor MH+ in the range of 750-6000 were excluded from
searching. MS/MS spectra searches were performed against a concatenated UniProt human
reference proteome sequence database containing 58,929 human proteins including isoforms
(obtained 10/17/2014) and 150 additional common laboratory contaminants. ESI-QEXACTIVE-
HCD-3 scoring parameters were used for both whole proteome and phosphoproteome datasets.
Spectra were allowed +/- 20 ppm mass tolerance for precursor as well as product ions, 30%
minimum matched peak intensity, and “trypsin allow P” was set as enzyme specificity with up to
4 missed cleavages allowed. Carbamidomethylation at cysteine was set as fixed modification
together with TMT10 isobaric labels at lysine residues (N-termini would be considered
regardless if it was TMT labelled). Acetylation of protein N-termini andoxidized methionine were
set as variable modifications with a precursor MH+ shift range of -18 to 64 Da for the proteome
searches. For the phosphoproteome searches the precursor MH+ shift range was set to 0 to
272 Da and variable modifications of phosphorylation of serine, threonine, and tyrosine.
Identities interpreted for individual spectra were automatically designated as confidently
assigned using the Spectrum Mill autovalidation module to use target-decoy based false

discovery rate (FDR) estimates to apply score threshold criteria. For the whole proteome
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datasets, thresholding was done at the spectral (< 1.2%) and protein levels (< 0.1%) . For the
phosphoproteome datasets, thresholding was done at the spectral (< 1.2%) and phosphosite

levels (< 1.0%).

Replicates across TMT-plexes were highly correlated (Supplementary Fig. 1c) with median
Pearson r = 0.87 and 0.69 for proteome and phosphoproteome, respectively. Technical
replicates and biological replicates were merged to generate final total proteome and phospho-
proteome profiles for each isogenic cell line (Supplementary Tables 1 and 2). Replicate-level
profiles are also supplied as JavaScript Object Notation (.json) files that can be visualized and
analyzed using the Morpheus Matrix Visualization and Analysis Software at

https://software.broadinstitute.org/morpheus (Supplementary Files 1 and 2). Differential

protein and phospho-site signatures were generated by computing the mean log,(fold change)
of the abundance of each site in each sample compared to the vector control cells. Statistical
significance of differentially abundant proteins and phosphosites was determined by performing
a one sample moderated t-test with multiple hypothesis correction (Supplementary Tables 1

and 2).

Integrative Analysis
Correlation of changes in protein expression and changes in RNA expression was modeled
using R’s Im() function. 95% prediction intervals were calculated to determine genes with weak

concordance between protein and RNA expression.

Gene Set Enrichment Analysis
Analysis of enrichment of KRAS signaling in differential RNA expression profiles was performed
in R with the goseq package®®. KRAS signaling gene sets were taken from MSigDB hallmark

gene sets?®’.
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Transcription Factor Target Enrichment Analysis

Analysis of over-representation of Transcription Factor targets was performed with ChEA3 by
submitting lists of differentially expressed genes (JLFC| > 1 and FDR < 0.05). ChEA3 performs
Fisher's Exact Test to compare the input gene set to TF target gene sets in six different
libraries®. Analysis of the Enrichr Queries library was selected as the focus of the present
study. Transcription factors resulting from this analysis were annotated as one of four groups of
EMT association. These four groups were the Snail gene family, confirmed EMT genes defined
by dbEMT?®, genes shown to be associated with EMT in at least one study in literature, and

genes unrelated to EMT.

Antibodies and immunoblotting

Antibodies against FOSL1 (D80B4), TXNIP (D5F3E), and Vimentin (D21H3) were purchased
from Cell Signaling Technology. Vinculin (V9264) was purchased from Sigma Aldrich.
Secondary antibodies StarBright Blue 700 Goat anti-Rabbit IgG, StarBright Blue 520 Goat anti-
Rabbit IgG and StarBright Blue 520 Goat anti-Mouse IgG (12005867) were purchased from Bio-
Rad. Antibody against RIT1 (#53720) was purchased from Abcam. Cell lysates were prepared
in RTK lysis buffer with protease (11836153001, Roche) and phosphatase (04906837001,
Roche) inhibitors added and quantified by the BCA assay (Thermo Scientific Waltham, MA).
Samples were then boiled in Laemmli buffer (1610747, Bio-Rad, Hercules, CA) and 50 ug of
protein was loaded onto 4-15% Mini-Protean TGX (4561084, Bio-Rad, Hercules, CA) gels.
Protein gels were run and transferred to PVDF membranes (1704274, Bio-Rad, Hercules, CA)
according to manufacturer's instructions. Proteins were detected by specific primary antibody
and secondary antibody then visualized using the ChemiDoc MP Imaging System (Bio-Rad,

Hercules, CA).
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KSEA analysis
Kinase-substrate enrichment analysis (KSEA)® was performed using the KSEA App**

(https://casecpb.shinyapps.io/ksea/) using kinase-substrate mappings from PhosphoSitePlus®

and a p value threshold of < 0.05. A minimum of five detected phospho-site substrates were
needed for kinases to be included in the analysis. The full list of kinase scores and number of
substrates are shown in Supplementary Table 5. 36 kinases had sufficient substrate sites
detected to be included in the analysis. Kinase-substrate mappings are shown in

Supplementary Table 5.

DATA AVAILABILITY

The RNA-seq data have been deposited in the NCBI Gene Expression Omnibus database with
accession number GSE146479. All mass spectra contributing to this study can be downloaded
in the original instrument vendor format from the MassIVE online repository (Accession number

to be updated prior to publication.)
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Figure Legends

Figure 1. Comparative multi-omic profiling of KRAS- and RIT1-mutant human lung
epithelial cells. a, Protein alignment of KRAS-4B (Uniprot #P01116-2) and RIT1 Isoform 1
(Uniprot #Q92963-1) generated by ClustalW2°'. Stars indicate the position of the RIT1"¥ or
KRAS®'? and KRAS®®" variants used in this study. Asterisks indicate fully conserved residues.
Colons indicate strongly conserved residues. Periods indicate weakly conserved residues. b,
Soft agar colony formation assay of isogenic AALE human lung epithelial cells. **, p < 0.01; ****,
p<0.0001 by two-tailed t-test. ¢, Western blot using anti-RAS and anti-RIT1 antibodies (top
panels), or antibodies against phosphorylated ERK1/2 or vinculin (loading control). SE = short
exposure, LE = long exposure. Isogenic AALE cells were cultured in the presence or absence of
EGF for 12 hours. d, LC-MS/MS workflow for generation of proteome and phosphoproteome
profiles. bRP, basic reverse phase chromatography. IMAC, immobilized metal affinity
chromatography. e, Workflow for lllumina RNA-seq analysis. f, mMRNA quantification in
transcripts per million (TPM) showing mean = SD of RIT1 (left) or KRAS (right) in isogenic AALE
cells, n = 3 per cell line. *, p < 0.05; ****, p < 0.0001 by two-tailed Student’s t-test compared to
vector control cells. g, RNA-seq quantification of variant allele expression. Data shown is the
percentage of reads at the M90I, G12V, or Q61H variant site for the variant allele or wild-type

allele.

Figure 2. Quantitative proteome and transcriptome profiling identifies similarity in
RITIM-mutant and KRAS-mutant signaling networks. a, Volcano plots of global proteome
data from isogenic AALE cells showing the log(fold change) (“LFC”) in protein abundance in
each cell line compared to vector control cells. The y-axis displays the negative logq(p value)
calculated from a one sample moderated t-test with multiple hypothesis correction by the
Benjamini-Hochberg method. b, Western blot validation of FOSL1 increased protein abundance

in RIT1- and KRAS-mutant cells. The chart shows the LFC of FOSL1 as determined by LC-
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MS/MS. Western blot below shows FOSL1 abundance or Vinculin (loading control). ¢, Western
blot validation of TXNIP protein abundance in RIT1- and KRAS-mutant cells. The chart shows
the LFC of TXNIP as determined by LC-MS/MS. d, Correlation heatmap showing pairwise
Pearson and Spearman correlations of each proteome and phosphoproteome replicate to every
other replicate. To enable correlation of proteome with phosphoproteome, phosphosites were
collapsed to the protein level by taking the median of all phosphosites for each protein. e,
Principal component analysis (PCA) of RNA-seq data. Circles correspond to control vector or

wild-type replicates. Diamonds correspond to RIT1- or KRAS-mutant profiles.

Figure 3. RITI"® promotes epithelial-to-mesenchymal (EMT) transition. a, Gene set
overlap analysis of up-regulated (“Up”; LFC>2) and down-regulated (“down”; LFC<-2) proteins
using MSigDB Hallmark Pathways?. “K” and “R” indicate analysis based on mean LFC of
KRAS®'?/KRAS®™ cells or RIT1VT/RIT1M cells, respectively. Circle size corresponds to the p
value of gene set overlap analysis determined by MSigDB. b, LFC of protein abundance of EMT
marker genes as determined by LC-MS/MS, relative to vector control cells. ¢, Transcription
factor target enrichment analysis of differentially expressed genes in RIT1"°-mutant cells using
Enrichr libraries. FET, Fisher’'s exact test. Red = Snail family. Orange = confirmed EMT genes in
SG12V_

dbEMT®®. Pale orange = EMT-associated genes in literature. d, Enrichr analysis of KRA

mutant proteome data. Annotation is the same as in c.

Figure 4. RIT1- and KRAS-mutant cells suppress Class | MHC expression via global loss
of antigen processing and presenting machinery. a, Rank plot of all protein abundance
changes in KRAS®'?Y-mutant cells compared to vector control, generated by LC-MS/MS. HLA-
A,-B,-C, and -F proteins are labeled in blue. b, Heat map showing HLA protein abundance in
each global proteome replicate. Replicates were clustered by unsupervised hierarchical

clustering using all detected proteins. ¢, Protein abundance of B2M in LC-MS/MS data. d, Top
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differentially abundant proteins between RIT1"T cells and all other cell lines. Proteins are
ranked by the signal-to-noise (S2N) statistic, shown in the bar chart at the right. e, StringDB®
network analysis of proteins with S2N>2.5 in analysis shown in d. The network was significantly
more connected than expected by chance (p < 1e-16). Disconnected nodes, single connected
nodes, and disconnected clusters have been removed from the visualization. Edges represent
high confidence interaction scores (>0.9) and network edge thickness indicates the strength of
data support from all StringDB active interaction sources. f, Protein abundance of PSMB9 in LC-
MS/MS data. g, Global proteome-transcriptome correlation analysis. A dashed diagonal line
displays the linear regression generated by comparing the LFC of each gene in the
transcriptome to its respective protein LFC in the proteome. The resulting Pearson correlation
coefficient (r) is shown. Genes outside the 95% prediction interval are plotted in red, and include
HLA genes, metallothioneins, and intermediate filament proteins Vimentin (VIM) and alpha

internexin (INA).

Figure 5. Phosphoproteomic profiling illuminates novel differential post-translational
modifications in RIT1M- and KRAS-mutant cells. a, KSEA analysis of AALE
phosphoproteomes. Top differentially phosphorylated kinase substrates are shown. The full
KSEA results are shown in Supplementary Fig 4b-c. b, Violin plot of phospho-site abundance
of phospho-sites that are RPS6KA1 substrates. c, Violin plot of phospho-site abundance of
phospho-sites that are MAPKAPK2 substrates. d, Marker selection analysis identifies
differentially phosphorylated sites in KRAS-mutant cells compared to RIT1-mutant cells.
Phosphosites from KRAS-mutant and RIT1"-mutant replicate-level phosphoproteome profiles
(Supplementary File 2) were compared by two-tailed t-test. The top 20 significantly (FDR <
0.05) differentially phosphorylated sites in each direction are shown and ranked by t-statistic. A
heat map displays the LFC in phosphorylated peptide abundance of each site compared to

vector control, after normalizing to total protein abundance. e, LFC of EGFR phosphosites in
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639 KRAS-mutant and RIT1-mutant cells. Data shown is the mean + SD of n=8 KRAS-mutant

640 replicates and n=4 RIT1-mutant replicates. *, FDR < 0.01 as determined by two-tailed t-test and
641  two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli. f, Relative

642  phosphorylation of USO1 at serine 48 as determined by LC-MS/MS. Box and whiskers show the
643  25th-75th percentiles and minimum to maximum of the data, respectively. g, Relationship of
644  USO1 S48 phosphorylation to KRAS total protein abundance. A dashed line displays the linear
645 regression fit and gray lines display the 95% confidence interval of the linear model. r = 0.70, p
646 <0.01.

647

648 SUPPLEMENTARY FIGURE LEGENDS

649 Supplementary Figure 1. Workflow and quality control of proteomic and transcriptomic
650 profiling. a, Replicate-level workflow for tandem mass tag (TMT) labeling and LC-MS/MS.

651 Lysates from duplicate sets of six isogenic cell lines were used to generate two TMT-plex sets,
652  with control samples used to link the two sets. b, TMT 10-plex layout showing mass tags

653  associated with each replicate. c, Average pairwise replicate correlations (Pearson r) of all

654 replicates from each sample group indicated. d, Enrichment analysis of differentially expressed
655 genes between KRAS or RIT1 perturbed lines and vector controls using goseq®. mSigDB

656  hallmark gene sets specific to KRAS signaling are shown. e, RNA-seq run and mapping

657  statistics show total reads, mapped reads, and reads mapped to rRNA, for each sample.

658

659 Supplementary Figure 2. RIT1 and KRAS promote epithelial-to-mesenchymal transition.
660 a, Changes in mRNA transcript levels of EMT genes VIM, CDH2, FN1, and KRT19, in each

661  isogenic cell line compared to vector control. LFC, log,(fold-change) compared to vector cells. b,
662  Transcription factor target enrichment analysis using Enrichr libraries of differentially expressed

663  genes in RIT1"T, KRAS"T, and KRAS®"-mutant cells. FET, Fisher’s exact test. Red = Snail
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family. Orange = confirmed EMT genes in dbEMT®®. Pale orange = EMT-associated genes in

literature.

Supplementary Figure 3. Post-transcriptional loss of Class | MHC proteins. a, Rank plot of
all protein abundance changes in KRAS®""-mutant or RIT1"**-mutant cells compared to vector
control, generated by LC-MS/MS. HLA-A,-B,-C, and -F proteins are labeled. LFC, log, fold-
change. b, Change in mRNA transcript levels of HLA genes and upstream regulators of MHC
Class |, in each isogenic cell line compared to vector controls. LFC, log, fold change compared
to vector cells. ¢, Correlation of protein levels in HLA-A and PSMB9 across each isogenic cell

line. A line is the best-fit linear regression with significant non-zero slope (p < 0.05).

Supplementary Figure 4. Phosphoproteome profiling identifies enhanced
phosphorylation of specific kinase substrates in KRAS- and RIT1-mutant cells. a, Pairwise
replicate correlation (Pearson r) heatmap and unsupervised clustering of phosphoproteome
data. b, KSEA of phosphoproteome data for RIT1"" and RIT1"*-expressing cells. The kinase
z-score indicates the overall score for each kinase listed, normalized by the total number of
substrates. Significant scores (p<0.05) are indicated in red and blue. Phospho-sites of kinases
in red were more highly abundant in the cell line compared to vector control, whereas phospho-
sites of kinases in blue were more highly abundant in vector control than the indicated cell line.
¢, KSEA of phosphoproteome data for KRAS-expressing cells. Labeling as in (b). d, Violin plot
of phospho-site abundance of AKT1 substrate sites. e, Violin plot of phospho-site abundance of
PRKCA substrate sites. f, Violin plot of phospho-site abundance of AURKB substrate sites. g,
EGFR protein abundance in LC-MS/MS data compared to vector control. f, Proportion of
phosphorylated sites in AHNAK proteins with differential phosphorylation between KRAS-mutant

and RIT1M®.mutant cells. Data shown is the percentage of differentially abundant
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phosphorylation sites in AHNAK and AHNAK2 compared to all other sites. Significance was
determined from the analysis in (b), FDR < 0.05. ****, p < 0.0001 by two-sided Fisher’s exact

test.
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