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Abstract

Coronavirus disease 2019 (COVID-19) outcomes vary from asymptomatic infection to
death. This disparity may reflect different airway levels of the SARS-CoV-2 receptor,
ACEZ2, and the spike protein activator, TMPRSS2. Here we explore the role of genetics
and co-expression networks in regulating these genes in the airway, through the
analysis of nasal airway transcriptome data from 695 children. We identify expression
guantitative trait loci (eQTL) for both ACE2 and TMPRSS2, that vary in frequency
across world populations. Importantly, we find TMPRSS2 is part of a mucus secretory
network, highly upregulated by T2 inflammation through the action of interleukin-13, and
that interferon response to respiratory viruses highly upregulates ACE2 expression.
Finally, we define airway responses to coronavirus infections in children, finding that
these infections upregulate IL6 while also stimulating a more pronounced cytotoxic
immune response relative to other respiratory viruses. Our results reveal mechanisms

likely influencing SARS-CoV-2 infectivity and COVID-19 clinical outcomes.
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Introduction

In December of 2019, a novel Coronavirus, SARS-CoV-2, emerged in China and has
gone on to trigger a global pandemic of Coronavirus Disease 2019 (COVID-19), the
respiratory illness caused by this virus'. While most individuals with COVID-19
experience mild cold symptoms (cough and fever), some develop more severe disease
including pneumonia, which often necessitates mechanical ventilation?. In fact, an
estimated 5.7% of COVID-19 illnesses are fatal®. Enhanced risk of poor outcomes for
COVID-19 has been associated with a number of factors including advanced age, male
sex, and underlying cardiovascular and respiratory conditions® °. Yet, while the majority
of serious COVID-19 iliness occurs in adults over 60, children are also thought to be
highly susceptible to infection. Moreover, recent data suggest that 38% of COVID-19
cases occurring in children are of moderate severity and 5.8% are severe or critical®,

highlighting a need for studying risk factors of illness in this population as well.

One factor that may underlie variation in clinical outcomes of COVID-19 is the extent of
gene expression in the airway of the SARS-CoV-2 entry receptor, ACE2, and
TMPRSS2, the host protease that cleaves the viral spike protein and thus allows for
efficient virus-receptor binding’. Expression of these genes and their associated
programs in the nasal airway epithelium is of particular interest given that the nasal
epithelium is the primary site of infection for upper airway respiratory viruses, including
coronaviruses, and acts as the gateway through which upper airway infections can

spread into the lung. The airway epithelium is composed of multiple resident cell types
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(e.g., mucus secretory, ciliated, basal stem cells, and rare epithelial cell types)
interdigitated with immune cells (e.g. T cells, mast cells, macrophages), and the relative
abundance of these cell types in the epithelium can greatly influence the expression of

particular genes®*°

, including ACE2 and TMPRSS2. Furthermore, since the airway
epithelium acts as a sentinel for the entire respiratory system, its cellular composition,
along with its transcriptional and functional characteristics, are significantly shaped by
interaction with environmental stimuli. These stimuli may be inhaled (e.g., cigarette
smoke, allergens, microorganisms) or endogenous, such as when signaling molecules
are produced by airway immune cells present during different disease states. One such
disease state is allergic airway inflammation caused by type 2 (T2) cytokines (IL-4, IL-5,
IL-13), which is common in both children and adults and has been associated with the
development of both asthma and COPD in a subgroup of patients'*™*3. T2 cytokines are
known to greatly modify gene expression in the airway epithelium, both through
transcriptional changes within cells and epithelial remodeling in the form of mucus
metaplasia'> '* *°. Microbial infection is another strong regulator of airway epithelial
expression. In particular, respiratory viruses can modulate the expression of thousands
of genes within epithelial cells, while also recruiting and activating an assortment of
immune cells'®*®. Even asymptomatic nasal carriage of respiratory viruses, which is
especially common in childhood, has been shown to be associated with both genome-
wide transcriptional re-programming and infiltration of macrophages and neutrophils in

the airway epithelium®®, demonstrating how viral infection can drive pathology even

without overt signs of iliness.
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Genetic variation is another factor that may regulate gene expression in the airway
epithelium. Indeed, expression quantitative trait loci (eQTL) analyses carried out in
many tissues have suggested that as many as 70% of genes expressed by a tissue or
organ are under genetic control®’. Severity of human rhinovirus (HRV) respiratory iliness
has specifically been associated with genetic variation in the epithelial genes CDHR3%
and the ORMDL3% and, given differences in genetic variation across world populations,
it is possible that functional genetic variants in SARS-CoV-2-related genes could partly

explain population differences in COVID-19 clinical outcomes.

Finally, there are important questions regarding the host response to SARS-CoV-2
infection. For example, it is unclear whether specific antiviral defenses in the epithelium
are blocked by SARS-CoV-2 or whether the virus may trigger epithelial or immune cell
pathways that prolong airway infection, and/or even incite a hyperinflammatory state in
the lungs in some individuals that leads to more severe disease. Although large cohorts
of subjects infected by the novel coronavirus are still lacking, much can be learned by
exploring transcriptional responses to other coronavirus strains. In particular, because
nasal airway brushings capture both epithelial and immune cells present at the airway
surface, such samples collected from a cohort of subjects infected by a range of viruses
provide an opportunity to comprehensively investigate the potentially varied and

cascading effects of coronavirus infection on airway expression and function.

In this study, we first use single cell RNA-sequencing (scRNA-seq) to elucidate the

cellular distribution of ACE2 and TMPRSS2 expression in the nasal airway epithelium.
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We also perform network and eQTL analysis of bulk gene expression data on nasal
airway epithelial brushings collected from a large cohort of asthmatic and healthy
children in order to identify the genetic and biological regulatory mechanisms governing
ACE2 and TMPRSS2 expression. We then use multi-variable modeling to estimate the
relative contribution of these factors to population variation in the expression of these
two genes, and by performing experiments on mucociliary airway epithelial cultures
confirm a dominant role for both T2 inflammation and viral infection in regulating
expression of ACE2 and TMPRSS2. Finally, we define the cellular and transcriptional

responses to in vivo coronavirus infections in the nasal airway of children.
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Results

ACE2 and TMPRSS2 are expressed by multiple nasal airway epithelial cell types

We first examined ACE2 and TMPRSS2 expression at a cell type level through single
cell RNA sequencing (scRNA-seq) of a nasal airway epithelial brushing from an
asthmatic subject. Shared Nearest Neighbor (SNN)-based clustering of 8,291 cells
identified 9 epithelial and 3 immune cell populations (Figure 1la, Supplementary Table
1). We found that 7 epithelial cell populations contained ACE2" cells (at low frequency),
with the highest frequency of positive cells found among basal/early secretory cells,
ciliated cells, and secretory cells (Figure 1b). We did not observe meaningful ACE2
expression among any of the immune cell populations, which included T cells, dendritic
cells, and mast cells. We found TMPRSS2 to be expressed by all epithelial cell types,
with a higher frequency of positive cells among the different cell types, compared to

ACE?2 (Figure 1b,c). A small number of mast cells were also TMPRSS2" (Figure 1c).

TMPRSS2 is part of a mucus secretory co-expression network highly induced by

T2 inflammation

We next sought to determine the variation in nasal epithelial expression of ACE2 and
TMPRSS2 across healthy and asthmatic children, and to identify biological mechanisms

that regulate this variation. Thus, we performed weighted gene co-expression network
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analysis (WGCNA) on whole transcriptome sequencing data from nasal airway
brushings of 695 Puerto Rican healthy and asthmatic children in the Genes-
Environments and Asthma in Latino Americans Il study (GALA 1lI). This analysis
identified 54 co-expression networks representing cell type-specific expression
programs such as ciliogenesis, mucus secretion, and pathways of immunity and airway
inflammation (Supplementary Table 2). The TMPRSS2 gene was contained within one
of a set of three highly correlated networks exhibiting strong enrichments for mucus
secretory cell genes and pathways (Figure 2a, Supplementary Table 2,3). For example,
the black network, which was highly correlated with TMPRSS2 expression (r=0.64,
p=1e-82), was strongly enriched for Golgi mediated transport and COPI-dependent
Golgi to ER transport pathways, both of which are involved in the normal processing
and transport of mucin proteins (Figure 2a). TMPRSS2 itself fell within and was highly
correlated with expression of the pink network (r=0.68, p=3e-97), which was highly
enriched for mucus goblet cell markers (p=2e-6, Figure 2a,b). The pink network was
also enriched for genes involved in the O-linked glycosylation of mucins pathway (p=9e-
4), which is vital to the function of mucus secretory cells, especially those induced by T2
inflammation (r=0.68, p=3e-97, Figure 2a,b). In fact, we found that this network
contained the T2 cytokine IL13 while being particularly enriched for genes known to
mark and transcriptionally regulate IL-13-induced mucus metaplasia (FCGBP, SPDEF,
FOXA3). The saddle brown network was also related to mucus secretory cells, and
contained the most canonical T2 inflammation markers** ?® including POSTN, CLCAL,
CPA3, IL1IRL1, CCL26, and was strongly correlated with both TMPRSS2 (r=0.61, p=5e-

72, Figure 2c) and the other T2 mucus secretory network (pink) (r=0.92, p=3e-280,
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Supplementary Table 4). In contrast, we found ACE2 expression to be strongly
negatively correlated with expression of both T2 networks (pink: r=-0.61, p=3e-72,
saddle brown: r=-0.7, p=2e-102, Figure 2e,f). To identify subjects with high and low T2
inflammation, we hierarchically clustered all subjects based on the expression of genes
in the canonical T2 network (saddle brown). This resulted in the identification of two
distinct groups we labeled as T2-high (n=364) and T2-low (n=331) (Supplementary
Figure 1a). We found that this expression-derived T2 status was strongly associated
with traits known to be driven by T2 inflammation including IgE levels, exhaled nitric
oxide (FeNO), blood eosinophils, and asthma diagnosis (Supplementary Figure 1b-e).
Notably, TMPRSS2 levels were 1.3-fold higher in T2-high subjects (p=1e-62), while,

ACE2 expression was 1.4-fold lower in T2-high subjects (p=2e-48) (Figure 2d,Q).

To investigate whether the strong in vivo relationship between airway T2 inflammation
and TMPRSS2/ACE2 expression is causal in nature, we performed in vitro stimulation
of paired air-liquid interface (ALI) mucociliary airway epithelial cultures with 72 hours of
IL-13 or mock stimulus (n=5 donors, Figure 3a). Performing paired differential
expression analysis between the mock and IL-13 stimulated cultures, we found that
ACE2 and TMPRSS2 were strongly down- and up-regulated, respectively, supporting
our in vivo analysis results (log,FC= -0.67, p=5e-3, log,FC= 1.20, p=5e-9, Figure 3b,c).
To better understand the cellular basis of TMPRSS2 and ACE2 regulation by IL-13, we
leveraged scRNA-seq data previously generated on tracheal airway epithelial cultures
that were chronically stimulated (10 days) with IL-13 or control media (Figure 3a,d).

Similar to our results from in vivo nasal scRNA-seq data, we observed that ACE2
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expression was highest among basal, ciliated, and early/intermediate secretory cell
populations, with ACE2 being significantly downregulated by IL-13 among both basal
and intermediate secretory cells (Figure 3e). Also mirroring the in vivo scRNA-seq data,
TMPRSS2 was expressed across all epithelial cell types, but at a higher frequency
among secretory cells (Figure 3f). IL-13 stimulation induced dramatic upregulation of
TMPRSS2 in early secretory, intermediate secretory, and mature mucus secretory cell
populations (Figure 3f). Furthermore, IL-13 stimulated mucus metaplasia that resulted in
the development of a novel mucus secretory cell type and an IL-13 inflammatory
epithelial cell that both highly expressed TMPRSS2 (Figure 3f). Together, our in vivo
and in vitro analyses strongly suggest that TMPRSS2 is part of a mucus secretory cell

network that is highly induced by IL-13-mediated T2 inflammation.

ACE2 belongs to an interferon response network that is induced by respiratory

virus infections

Returning to the in vivo nasal airway epithelial expression networks, we found that
ACE2 expression was highly correlated with expression of two networks (purple and
tan) (purple: r=0.74, p=3e-120, tan: r=0.72, p=2e-110, Figure 4a,b). The purple network
was highly enriched for genes that mark cytotoxic T cells and antigen-presenting
dendritic cells, both of which are particularly abundant in a virally infected epithelium

(Figure 4c, Supplementary Table 2), whereas the tan network was strongly enriched for

11



239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

interferon and other epithelial viral response genes (IFI6, IRF7, CXCL10, CXCL11)
(Figure 4c, Supplementary Table 2). Clustering of subjects based on the interferon
response network genes resulted in two groups, one highly (interferon-high=78) and
one lowly (interferon-low=617) expressing these interferon response network genes
(Supplementary Figure 2). We found that ACE2 expression was 1.7-fold higher in the
interferon-high vs. interferon-low group (Figure 4d). In a previous study, we found that
children with nasal gene expression characteristic of the interferon network tended to be
infected with a respiratory virus, despite being asymptomatic’®. To explore the
possibility of this relationship in our current dataset, we metagenomically analyzed the
RNA-seq data for all subjects to identify those harboring reads for a respiratory virus.
This analysis found that 18% of GALA Il children were asymptomatically harboring a
respiratory virus from one of eight general respiratory virus groups (Figure 4e).
Strikingly, we found that 78% of interferon-high subjects were virus carriers compared to
only 10% of interferon-low subjects. These results demonstrate how asymptomatic virus

carriage nonetheless stimulates an active viral response that includes ACE2.

To directly test the effect of respiratory virus infection on epithelial ACE2 gene
expression we again employed our ALI mucociliary epithelial culture system. Performing
mock or human rhinovirus-Al16 infection of mature cultures (Day 27, Figure 4f) from 5
donors we found 7.7-fold upregulation of ACE2 gene expression with HRV-A infection
(p=1.3e-51, Figure 4g). In contrast, we only observed a trend for down regulation of
TMPRSS2 gene expression among virally infected subjects (Figure 4h). These results

confirm the strong regulation of ACE2 gene expression by viral infection.
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Genetic determinants of ACE2 and TMPRSS2 expression in the nasal airway

epithelium

We next explored the role of genetic regulatory variants in helping to drive epithelial
expression of ACE2 and TMPRSS2. To do this, we performed cis-eQTL analysis for
these two genes, using nasal gene expression and genome-wide genetic variation data
collected from the GALA 1l study children. We identified 316 and 36 genetic variants
significantly associated with expression of ACE2 and TMPRSS2, respectively (Figure
5a,b). Stepwise forward-backward regression analysis of these eQTL variants revealed
a single independent eQTL variant (rs181603331) for the ACE2 gene (6e-23), located
~20kb downstream of the transcription start site (Figure 5a). This rare eQTL variant
(allele frequency [AF]=1%) was associated with a large decrease in ACE2 expression
(log2Arc=-1.6) (Figure 5c).

Similar analysis of the TMPRSS2 eQTL variants yielded three independent eQTL
variants (rs1475908 AF=20%, rs74659079 AF=4%, and rs2838057 AF=13%, Figure
5b). The eQTL variant rs1475908 was associated with a decrease in TMPRSS2
expression (log.Agc=-0.37, Figure 5d), whereas both the rs74659079 and rs2838057
eQTL variants were associated with increased TMPRSS2 expression (log2Arc=0.38,

0.43, respectively, Supplementary Figure 3).

Examining the frequency of these eQTL variants among eight world populations listed in

the gnomAD genetic variation database (v2.1.1), we found that the ACE2 eQTL variant

13
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was only present in people of African descent and at a low frequency (AF=0.7%, Figure
5e). In contrast, the TMPRSS2 eQTL variant associated with decreased expression,
rs1475908, occurred across all world populations, with the highest allele frequencies
among East Asians (AF=38%), Europeans (AF=35%), intermediate frequencies among
Africans (AF=26%) and Ashkenazi Jews (AF=23%), and the lowest frequency among
Latinos (AF=17%). The two TMPRSS2 eQTL variants associated with increased
expression exhibited much more disparate allele frequencies across world populations.
Namely, the allele frequency of rs74659079 is above 1% only among people of African
descent (AF=11%) and 4% in the participating Puerto Rican population. Likewise, the
rs2838057 eQTL variant, which was associated with increased TMPRSS2 expression
was present at a frequency of 32% in East Asians, 20% in Latinos, and <10% in all
other world populations. Together, these results suggest that if TMPRSS2 levels
influence susceptibility to SARS-CoV-2, then genetics may play a significant role in

infection risk and that this risk will vary significantly across world populations.

Multi-variable modeling of airway ACE2 and TMPRSS2 gene expression

Our analyses indicate that T2 inflammation, interferon/viral response signaling, and
genetics are all determinants of ACE2 and TMPRSS2 gene expression in the airway
epithelium of children. Therefore, we next sought to determine the relative importance of
these factors in determining levels of these genes using multi-variable regression

analysis. We included asthma status, age, and sex as model covariates since chronic
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lung disease, increasing age, and male sex have all been associated with increased risk
of poor COVID-19 iliness outcomes. Modeling ACE2 expression among GALA i
children, we found that T2 and interferon statuses had the strongest effects on ACE2
expression (p=1.6e-57, p=6.5e-43, respectively), with T2-low and interferon-high
individuals exhibiting the highest levels of expression. These two variables
independently explained 24% and 17% of the variance in ACE2 expression (Table 1).
While the ACE2 eQTL variant, rs181603331, was associated with a notable decrease in
ACE?2 levels, it only accounted for 1.2% of the variance, reflecting the low frequency of
this variant in our population. Increasing age and asthma diagnosis were both
associated with small decreases in ACE2 expression, although both variables
accounted for less than 2% of the variance, and sex was not a significant predictor

(Table 1).

Similar modeling of TMPRSS2 expression found that T2-high status dramatically
increased expression, with an effect size 5.4x larger than any other variable, capturing
33% of total variation in TMPRSS2 (Table 1). While statistically significant, the two
TMPRSS2 eQTL variants associated with increased expression exhibited small effect
sizes totaling <1% of variance explained. All other predictors were not significant.
Collectively, these modeling results confirm that both T2 and interferon inflammation are
strong and antagonistic regulators of ACE2 expression and show that T2 inflammation

is the lone dominant driver of airway expression of TMPRSS2.

Coronavirus Infections drive an enhanced cytotoxic immune response

15
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Our metagenomic analysis of RNA-seq data from the nasal brushings identified 18
children with viral sequence reads from one of four different coronavirus (CoV) species
(OC43, JKU1, 229E, NL63) (Supplementary Table 5). This allowed us to explore airway
transcriptomic responses to infection with coronavirus subfamily viruses specifically,
which will likely most resemble responses to SARS-CoV-2. To increase the likelihood
that these subjects were experiencing an active viral infection, we limited our analysis to
the 11 most highly infected subjects, comparing them to all subjects not infected with a
virus (n=571). To allow us to discriminate CoV-enhanced responses from those that are
more general to respiratory viruses, we also established a virus control group composed
of the 37 subjects highly infected with human rhinovirus species (HRV) (Supplementary
Table 6). We first compared expression of genes in the cytotoxic immune response
(purple) network and interferon response (tan) network (discussed earlier; see Figure
4a, b) among these virus infected groups, and found that both networks were more
highly expressed in virus-infected individuals (Figure 6a, b). Moreover, while the
induction in interferon response was similar for both CoV and HRV groups, induction in
the cytotoxic immune response was considerably higher in CoV-infected (AEy = 0.049)
compared to HRV-infected individuals (AEg = 0.032, Figure 6b).

To further explore this increase in cytotoxic immune response and other potential
pathways in CoV-infected individuals, we next performed a transcriptome-wide screen
for genes differentially expressed in CoV or HRV-infected groups compared to
uninfected individuals. These analyses revealed 2,515 differentially expressed genes

(DEGSs) with CoV infection and 2,357 DEGs with HRV infection (FDR < 0.05 and log,FC
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> [0.5]), of which 35% and 31% were only observed with CoV and HRV infections,
respectively, based on our significance cutoff (Figure 6¢). Upstream regulator analysis
with IPA carried out separately on CoV and HRYV infection response genes showed that
the top cytokines and transcription factors that may regulate these infections are shared
between the two virus families, including IL10, IL1B, IFNG, IFNA2, and STAT1 (Figure
6d). One inferred upstream regulator of CoV response genes, IL-6, which was also
among the genes upregulated with CoV infection (log,FC=2.2, Figure 6e), is especially
noteworthy considering that an IL-6 blocking antibody therapy is currently under
investigation for use in treatment of COVID-19 illnesses®*. Additionally, we found ACE2
among the shared upregulated genes, reinforcing its upregulation in the course of
different respiratory virus infections (logzFC in CoV*=0.6, log,FC in HRV*'=0.5, Figure

6e).

In trying to understand the biological basis of the viral responses we found to be CoV-
specific in our differential expression analysis, we considered whether the differential
presence and/or response of various immune cell types was an explanatory factor. To
investigate this, we used gene set enrichment analysis (GSEA) to test for enrichment of
CoV-specific, HRV-specific, and CoV/HRV-shared DEG sets among gene markers for
11 different flow-sorted human immune cell types defined based on whole transcriptome
data (citation) (Supplementary Table 7). The shared viral DEGs showed significant
enrichment for genes characteristic of macrophages, monocytes, neutrophils, dendritic
cells, and NK cells. In contrast, the set of CoV-enhanced DEGs resulted in strong

enrichments for both CD8+ T cells and dendritic cells, suggesting an especially

17



377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

important role for activation of cytotoxic T cells though antigen presentation by dendritic
cells in CoV infections (Figure 6f). Also supporting an enriched cytotoxic response
among CoV-infected subjects was a strong enrichment for CoV-specific DEGs among
NK cells, which participate heavily in the killing of virally infected cells (Figure 6g). We
note that these enrichments were not observed among HRV-enhanced DEGs, which
were instead most strongly enriched among neutrophils, as well as eosinophils,
macrophages, and monocytes. Furthermore, through pathway analysis we identified
multiple pathways related to cytotoxic T cell and NK cell activity that were enriched
either specifically or more dramatically among CoV DEGs compared to HRV DEGs
(Figure 6e). These results suggest that while CoV infections are highly similar to HRV

infections, they likely elicit an enhanced cytotoxic immune response.

Discussion

Although the high variability in clinical outcomes of COVID-19 illness is now well
documented and multiple demographic and clinical traits have been associated with
severe disease, little is known about the host biologic factors underlying this variability.
In the current study, we reasoned that population variation in upper airway expression
of the ACE2 receptor for SARS-CoV-2 and the virus-activating TMPRSS2 protease,
would drive infection susceptibility and disease severity. We therefore deployed network
and eQTL analysis of nasal airway epithelial transcriptome data from a large cohort of
healthy and asthmatic children to determine mechanisms associated with airway

expression of these genes, and their relative power in explaining variation in the

18



400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

expression of these genes among children. We observed only weak associations with
asthma status, age, and gender among children aged 8-21 years. Moreover, although
we found that genetics does influence expression of these genes, the effect of this
variation was small in comparison to the dramatic influence of T2 cytokine-driven
inflammation on both ACE2 (downregulation) and TMPRSS2 (upregulation) expression
levels. We found an equally important role for viral-driven interferon inflammation in
regulating levels of ACE2 in the airway. Additionally, through study of in vivo upper
airway CoV subfamily infections, we not only identify inflammatory regulators of these
infections, but also provide evidence that this subfamily of viruses drives an enhanced
cytotoxic immune response. Our work provides a set of biomarkers that can be easily
examined in COVID-19 patients, through analysis of nasal swabs, to determine the
relative importance of these mechanisms and genes in governing susceptibility to

infection, severe illness and death.

Our single cell analysis of an in vivo nasal brushing observed ACE2 expression, albeit
at low frequency, primarily among basal, ciliated, and less mature, early secretory cells.
These results are supported by a recent report of ACE2 expression in transient
secretory cells, likely a close equivalent to our early secretory population®. Although a
much higher portion of cells, representing all epithelial cell types, expressed TMPRSS2,
the low frequency of ACE2" cells resulted in very few dual ACE2/TMPRSS2 expressing
cells. However, we caution that a cell may not need to be TMPRSS2" to be susceptible
to infection, since it has been demonstrated the TMPRSS2 protein is secreted from

nasal airway epithelial cells?®. We also caution that scRNA-seq data are known to
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exhibit biases in gene detection, and thus the level and frequency of ACE2 expression
across cells may be much higher than we observe here. In line with this possibility we
observe more moderate levels of ACE2 expression in our bulk RNA-seq data on nasal

brushings.

Airway inflammation caused by type 2 cytokine production from infiltrating immune cells
plays a prominent role in the control of cellular composition, expression, and thus
biology of the airway epithelium* ** 2% 27 Moreover, while T2 airway inflammation is an
important driver of T2-high asthma and COPD disease endotypes, it is also associated
with atopy in the absence of lung disease, a very common phenotype in both children
and adults. In fact, among the children in this study, we find that 43% of non-asthmatics
were scored as T2-high based on expression profile, further substantiating the high
prevalence of T2 airway inflammation outside of those with lung disease. Our data
suggest that airway epithelial TMPRSS2 expression is highly upregulated by T2
inflammation, and specifically by IL-13. Both our network and single cell data show that
TMPRSS2 is most prominent in less developed “early secretory” cells as well as in more
mature mucus secretory cells. Based on our in vitro data, IL-13 upregulates TMPRSS2
across nearly all types of epithelial cells, but the core of this effect appears to be in the
metaplastic mucus secretory cells that are generated as a consequence of IL-13
signaling™ *°. In fact, our network data suggest that, although TMPRSS2 expression is
highly correlated with that of a co-expressed network of mucus secretory genes
characterizing “normal”, non-metaplastic, mucus secretory cells, it's correlated even

more strongly with a network that characterizes mucus secretory cells undergoing IL-13-

20



446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

induced metaplasia. In contrast to enhanced levels of TMPRSS2, T2 inflammation,
whether observed in vivo or induced with IL-13 stimulation, precipitated a dramatic
reduction in levels of epithelial ACE2, thus complicating expectations for how T2
inflammation might affect overall risk for a poor COVID-19 outcome. Germane to this
guestion, a recent study of 85 fatal COVID-19 subjects found that 81.2% of them
exhibited very low levels of blood eosinophil levels®. Blood eosinophil levels are a
strong, well-known predictor of airway T2 inflammation and were strongly correlated
with T2 status in our study as well' 2. Together, these studies provisionally suggest
that T2 inflammation may predispose individuals to experience better COVID-19
outcomes through a decrease in airway levels of ACE2 that override any countervailing
effect from increased expression of TMPRSS2. However, both in vitro experiments
examining IL-13 effects on SARS-CoV-2 infection and empirical data on COVID-19
outcomes among T2-high and T2-low patients will certainly be needed to determine
whether this common airway inflammatory endotype ultimately protects against or
exacerbates COVID-19 illness. As mentioned above, we note that measurement of
blood eosinophil levels could be used as an informative and more accessible (albeit less
powerful) proxy for investigating the association between airway T2 inflammation and
outcomes of COVID-19. Moreover, given the higher frequency of T2 inflammation
among asthmatic subjects, this population should be monitored especially closely given
the enhanced risk of complications due to respiratory virus infection in those with

asthma.
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In addition to a strong negative influence of T2 inflammation on ACE2 expression in the
airway, we found an equally strong positive influence of respiratory virus infections on
levels of this gene. Network analysis placed ACEZ2 within an interferon viral response
network suggesting that these cytokines are a driving force behind ACE2 upregulation.
This information is interesting in several regards. First, it suggests that SARS-CoV-2
and other coronaviruses using ACE2 as a receptor could leverage the host anti-viral
response to increase the infectability of airway cells. Secondly, as data here and
elsewhere show, asymptomatic carriage of respiratory viruses is common, especially in
young children*® ?®3%_ Children in the GALA Il cohort included in this study ranged in
age from 8-21 years; among them we found 18% who were carrying respiratory viruses
without illness. However, as we show in this and our previous study®, even
asymptomatic carriage of respiratory viruses exacts a fundamental change in airway
epithelial expression and immune cell presence, including upregulation of ACE2
expression. In determining outcomes, this potential detrimental influence of virus
carriage may also be weighed against a potentially beneficial influence of virus carriage
through a more potent cross serologic-immune defense in these individuals, especially if
the virus carried is a coronavirus family member. Ultimately, the effect of current or
recent virus carriage on COVID-19 outcomes will need to be determined by in vivo
studies in patients, followed up with controlled in vitro studies of virally infected cells. At
any rate, the apparent dependence of ACE2 expression on interferon signaling
suggests that targeted blockade of this interferon effect could control SARS-CoV-2

infection.
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Our evaluation of genetic influences on airway ACE2 and TMPRSS2 expression
revealed a single rare eQTL for ACE2 and several more frequent eQTL variants for
TMPRSS2. While both the effect size and explanatory power of these variants paled in
comparison to the influence of T2 inflammation and interferon signaling in multi-variable
modeling of expression for these genes, the effect of these variants may still be strong
enough to alter infection rates and or illness severity, especially in the populations
where these variants are most frequent. Thus, future genetic studies of COVID-19

should pay particular attention to these eQTL variants.

A particularly vexing question regards the mechanisms that underlie the unusual
severity of illness associated with SARS-CoV-2, especially when compared to most
circulating respiratory viruses. Clearly, severe disease often entails development of
pneumonia, possibly resulting from an expanded tropism of SARS-CoV-2 to include
lower lung airway and alveolar cells. The most severe patients also appear to
experience an exuberant immune response, characterized a “cytokine storm”*,
occurring with and possibly driving the development of acute respiratory distress
syndrome (ARDS). Supposing that aspects of epithelial response to coronavirus family
members would be shared, including with SARS-CoV-2, we examined in vivo
coronavirus infection among the GALA Il children. We found that CoV infections elicit a
broad airway transcriptome response, similar to HRV infections, and we identified a
panel of cytokines and transcription factors that likely regulate these responses. In

particular, we found that IL-6 was predicted to regulate responses to CoV and was itself

upregulated with these infections. These data support the recent investigation of
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tocilizumab (IL-6R blocking antibody) for the treatment of COVID-19 illnesses®.
Strikingly our analysis revealed an increased cytotoxic immune response with CoV
infection, driven by the differential presence and activity of cytotoxic CD8+ T cells and
NK cells, as compared to the more heavily neutrophil-based responses to HRV
infection. Although preliminary, this finding, if similarly occurring with SARS-CoV-2
infection, could partly explain the dramatic inflammation observed in SARS-CoV-2

patients, which can extend to the distal lung.

In summary, our data suggests that the strongest determinants of airway ACE2 and
TMPRSS2 expression are T2 inflammation and viral-induced interferon inflammation,
with limited but noteworthy influence from genetic variation. Whether these factors drive
better or worse clinical outcomes remains to be determined, but closely watching
individuals with these airway endotypes in the clinical management of COVID-19

illnesses would be prudent.
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Methods

MATERIALS AND CORRESPONDENCE
Further information and requests for resources and reagents should be directed to and

will be fulfilled by Max A. Seibold, Ph.D. (seiboldm@njhealth.org)

EXPERIMENTAL METHODS

Human subject information

Under the Institutional Review Board (IRB) approved Asthma Characterization Protocol
(ACP) at National Jewish Health (HS-3101) we consented a 56 year old asthmatic
subject, from which we collected nasal airway epithelial cells. The nasal airway cells
were brushed from the inferior turbinate using a cytology brush and used for the scRNA-
seq experiment described in Figure 1. Nasal airway epithelial cells used for bulk RNA-
seq network and eQTL analysis came from GALA Il study subjects described below.
Nasal airway epithelial cell ALI culture experiments all used cells derived from GALA I
study subjects. Human tracheal airway epithelial cells used for in vitro 1L13 stimulation
and scRNA-seq experiment were isolated from a single de-identified lung donor
obtained from the International Institute for the Advancement of Medicine (Edison, NJ),
and Donor Alliance of Colorado. The National Jewish Health Institutional Review Board
(IRB) approved our research on the tracheal airway epithelial cells under IRB protocol

HS-3209. These cells were processed and given to us through the National Jewish
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Health (NJH) live cell core, which is an institutional review board-approved study (HS-

2240) for the collection of tissues from consented patients for researchers at NJH.

GALA Il study subjects

The Genes-Environment & Admixture in Latino Americans study (GALA Il) is an on-
going case-control study of asthma in Latino children and adolescents. GALA Il was
approved by local institutional review boards (UCSF, IRB number 10-00889, Reference
number 153543, NJH HS-2627) and all subjects and legal guardians provided written
informed assent and written informed consent, respectively®® *3. A full description of the
study design and recruitment has been previously described elsewhere®?3*. Briefly, the
study includes subjects with asthma and healthy controls of Latino descent between the
ages of 8 and 21, recruited from the community centers and clinics in the mainland U.S.
and Puerto Rico (2006-present). Asthma case status was physician-diagnosed.
Recruited subjects completed in-person questionnaires detailing medical,
environmental, and demographic information. Physical measurements including
spirometry were obtained, and subjects provided a blood sample for DNA extraction and
later Whole Genome Sequencing. GALA subjects that were part of this analysis were all
recruited from Puerto Rico (n=695). A nasal airway inferior turbinate brushing was used
to collect airway epithelial cells from these subjects for whole transcriptome sequencing
(n=695). Network analyses were performed on all subjects with nasal brushing whole
transcriptome sequencing data (n=695) and eQTL analysis was performed on the

subset (N=681) with whole genome sequencing generated genotype data.
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Bulk RNA sequencing of GALA Il and ALI Samples

Total RNA was isolated from GALA Il subject nasal airway epithelial brushings using the
AllPrep DNA/RNA Mini Kit (QIAGEN, Germantown, MD). Whole transcriptome libraries
were constructed using the KAPA Stranded mRNA-seq library kit (Roche Sequencing
and Life Science, Kapa Biosystems, Wilmington, MA) from 250ng of total input RNA
with the Beckman Coulter Biomek FX® automation system (Beckman Coulter, Fullerton,
CA) according to the manufacturers protocol. Barcoded libraries were pooled and
sequenced using 125bp paired-end reads on the Illumina HiSeq 2500 system (lllumina,
San Diego, CA). Bulk RNA-seq data for the nasal and tracheal ALI cultures to measure
ACE2 and TMPRSS2 levels reported in Figures 3b,c and 4g,h, was generated with
KAPA Hyperprep Stranded mRNA-seq library kits (Roche Sequencing and Life Science,
Kapa Biosystems, Wilmington, MA) and sequenced with a Novaseq 6000 using 150bp

paired end reads.

Whole genome sequencing of GALA Il Samples

Genomic DNA was extracted from whole blood obtained from GALA Il study subjects
using the Wizard Genomic DNA Purification kits (Promega, Fitchburg, WI), and DNA
was quantified by fluorescent assay. DNA samples were sequenced as part of the
Trans! 1Omics for Precision Medicine (TOPMed) whole genome sequencing (WGS)
program®. WGS was performed at the New York Genome Center and the Northwest

Genomics Center on a HiSegX system (Illumina, San Diego, CA) using a pairedl lend
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read length of 150 base pairs, to a minimum of 30X mean genome coverage. Details on
DNA sample handling, quality control, library construction, clustering and sequencing,
read processing, and sequence data quality control are described elsewhere®. Variant

calls were obtained from TOPMed data freeze 8 variant call format files.

Experiments using an air-liquid interface, mucociliary culture system

Primary human basal airway epithelial cells were expanded and differentiated at air-
liquid interface (ALI) in vitro according to established protocols®. Paired tracheal ALI
cultures were mock-treated or treated with 10 ng/mL IL-13 in media (20 pL apical; 500
pL basolateral) for the final 10 days of differentiation (ALI days 11-21) before harvest
and scRNA-seq analysis. In contrast, nasal ALI cultures used for bulk RNA-seq analysis
(N = 5 GALA Il subjects) were either stimulated with IL-13 for 72h following completion
of mucociliary differentiation (25 days) or were infected with human rhinovirus strain
A16 for 4 h during the final 24 h of the 28 days of differentiation. Control cultures were

only treated with media.

Preparation of ALI cultures for 10X scRNAseq

Following stimulation experiments involving the tracheal airway epithelial ALI samples,
apical culture chambers were washed once with PBS and once with PBS supplemented
with dithiothreitol (DTT;10mM), followed by two PBS washes to remove residual DTT.
Cold active protease (CAP) solution (Bacillus licheniformis protease 2.5 ug/mL, DNase

125 U/mL, and 0.5 mM EDTA in DPBS w/o Ca**Mg?") was added to apical culture
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chamber and incubated on ice for 10 minutes with mixing every 2.5 minutes.
Dissociated cells in CAP solution were added to 500 uL cold FBS, brought up to 5 mL
with cold PBS, and centrifuged at 225 x g and 4°C for 5 minutes. The cell pellet was
resuspended in 1 mL cold PBS+DTT, centrifuged at 225 x g and 4°C for 5 minutes, and
then washed twice with cold PBS. The final cell pellet was resuspended in PBS with
0.04% BSA for single cell gene expression profiling with the 10X Genomics system.
Sample capture, cDNA synthesis, and library preparation for 10d IL-13 ALI stimulations
was performed using protocols and reagents for 10X Genomics Chromium Single Cell

3’ v3 kit. Single cell libraries were pooled for sequencing on an lllumina NovaSeq 6000.

Nasal brush 10X scRNA-seq

Nasal brush cells were dissociated from the brush using Bacillus licheniformis cold
active protease (10mg/ml), EDTA (0.5mM), and EGTA (0.5mM) at 4°C with vortex
mixing, followed by enzyme neutralization with FBS. Red blood cell lysis was
performed and cells were washed twice in 0.04% BSA/PBS. Cell concentration was
adjusted to 400 cells/pL for cell capture of ~8000 cells using the 10X Genomics
Chromium Next GEM Single Cell 3’ reagent kit chemistry. Sample capture, cDNA
synthesis, and library preparation was performed following 10X Genomics Chromium
Next GEM Single Cell 3’ v3 kit. The single cell library was sequenced on an lllumina

NovaSeq 6000.

QUANTIFICATION AND STATISTICAL ANALYSIS

29



651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

Nasal airway epithelium brushing bulk RNA-seq analysis

Preprocessing of RNA-seq data

Raw sequencing reads were trimmed using skewer® (v0.2.2) with the following
parameter settings: end-quality=15, mean-quality=25, min=30. Trimmed reads were
then aligned to the human reference genome GRCh38 using GSNAP* (v20160501)
with the following parameter settings: max-mismatches=0.05, indel-penalty=2, batch=3,
expand-offsets=0, use-sarray=0, merge-distant-same-chr. Gene quantification was
performed with htseg-count®® (v0.9.1) using iGenomes GRCh38 gene transcript model.
Variance stabilization transformation (VST) implemented in DESeq2*° (v1.22.2) was
then carried out on the raw gene count matrix to create a variance stabilized gene

expression matrix suitable for downstream analyses.

Weighted Gene Co-expression Network Analysis (WGCNA) on GALA Il RNA-seq data

To understand what biological mechanisms regulate the variation of nasal airway
epithelial gene expression, Weighted Gene Co-expression Network Analysis*
(WGCNA) v1.68 was performed on the VST matrix of 17,473 expressed genes.
WGCNA analysis is a network-based approach that assumes a scale-free network
topology. To adhere to the scale-free assumption of the constructed biological networks,
a soft thresholding parameter (3) value of 9 was chosen based on WGCNA guidelines.
Furthermore, minClusterSize was set to 20, deepSplit was set to 2, and pamStage was
set to TRUE. A total of 54 co-expression networks were identified and described in

Supplementary Table 2. WGCNA networks are referred to by different colors, and two of
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the these identified networks, saddle brown and tan were found to capture co-
expressed genes that underlie T2 inflammation and interferon inflammation,
respectively. We hierarchically clustered all subjects based on expression of genes in
the saddle brown network and then used the first split in the dendrogram as the basis
for assigning individuals to T2-high or T2-low categories (Supplementary Figure l1a).
Similarly, we hierarchically clustered subjects using the genes in tan network and then
selected the dendrogram branches with the highest tan network expression as

interferon-high and the other subjects as interferon-low (Supplementary Figure 2a).

Cis-eQTL analysis of nasal RNA-seq data

Cis-expression quantitative trait locus (eQTL) analysis was performed by following the
general methodology of the Genotype-Tissue Expression (GTEXx) project version 7
protocol®®, using the nasal RNA-seq data and WGS variant data from 681 GALA ||
subjects.

Namely, WGS variant data was filtered based on allele frequency (minor allele
frequency > 1%) and allele subject count (total number of subjects carrying minor allele
= 10). After filtering, 12,590,800 genetic variants were carried forward into the eQTL
analysis. For expression data filtering and preparation, we first ran Kallisto*® (v0.43.0) to
generate transcript per million (TPM) values. We filtered out any genes that did not
reach both TPM > 0.1 and raw counts > 6 for at least 20% of our samples. After filtering,
17,039 genes were then TMM normalized using edgeR* (v3.22.3). Finally, we applied
an inverse normal transformation into the TMM-normalized expression values to render

them suitable for eQTL analysis. To account for global population structure, we ran
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ADMIXTURE® (v1.3.0) on the genotype data to create five admixture factors. We then
ran Probabilistic Estimation of Expression Residuals*® (PEER, v1.3) to create 60 PEER
factors to utilize as covariates in the eQTL analysis along with admixture estimates,
gender, age, body-mass index (BMI), and asthma diagnosis status. To perform cis-
eQTL analysis, we utilized a modified version of FastQTL*' that was provided by the
GTEx project. Furthermore, we performed stepwise regression analysis to identify
independent eQTL variants using QTLTools* (v1.1). Allelic Fold Change (Arc) of the

eQTL variant is computed using the aFC python script®.

Virus identification and quantification from bulk RNA-Seq data

To identify individuals with asymptomatic virus infection at the time of sample collection,
viral genomic sequences were recovered from bulk RNA-seq data using a modified
version of the Virus Finder 2.0 (VF2) pipeline®. A custom respiratory virus reference
database comprising >600k sequences was employed to improve specificity. Using
VF2, viral reads were garnered by removing human reads using Bowtie2>! (default
settings) and selecting viral reads using BLAT®? (minldentity=80); contigs were
assembled using Trinity>®; short (<200 bp) or low complexity (DUST score < 0.07)
contigs and contigs matching the human genome at a BLAST>* e-value <0.05 were
discarded; the remaining contigs were classified using BLAST (e-value <0.05); read
counts were obtained by read mapping using BLAT (minldentity=98). Of the 468 distinct
viral reference sequences detected by VF2, 7 were identified as erroneous and
removed. The remaining 461 matches were manually assigned viral serotypes and the

results aggregated with R.
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Defining CoV and HRV infected groups and associated analysis

To ensure we selected subjects that were experiencing an active host response to a
CoV infection, we examined the distribution of viral reads for the 18 CoV" infected
subjects. We observed a clear break between the 7 subjects with the lowest viral read
counts (<3,000 reads) and 11 subjects with the highest viral read counts (>60,000
reads). Therefore, we selected these 11 highly infected subjects for analysis of host
responses to CoV infection. To generate a similar infection-control group, composed of
subjects highly infected with a different virus species, we examined the 67 HRV infected
subjects in GALA, enforcing a comparable lower bound of viral reads as with CoV,
adjusting for the smaller HRV genome size. Specifically, HRV genomes are ~7,000
base pairs, whereas CoV genomes are ~30,000 base pairs, making the HRV genome
~25% of the size of the CoV genome. Therefore, we selected a cutoff of 15,000 viral
reads for subjects to be included in the HRV" highly infected group. Therefore, we
selected a cutoff of 15,000 viral reads for subjects to be included in the HRV" highly
infected group (n=37) analyzed in Figure 6. All non-infected subjects (n=571), based on
the Virus Finder analysis described above, were used as comparison group for the
CoV" and HRV" groups.

In performing the CoV" and HRV" transcriptome-wide differential expression analyses,
to account for the class imbalance of this experiment, log, count-normalized expression
values in units of counts per million (calculated using edgeR v3.28.0) were passed to
the function arrayWeights function in the limma® R package (3.42.0). limma-voom was

then used to perform differential expression analysis on the count normalized
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expression values between the CoV' and uninfected groups, as well as between the
HRV" and uninfected groups, controlling for age, gender, and asthma diagnosis status.
Genes were required to have an FDR adjusted p-value < 0.05, and an absolute log,FC
> 0.5 to be considered significant. Based on these cutoffs, genes were classified as
being shared if they were significant in both comparisons, or as CoV'—specfic or HRV'—

specific if significant in only one comparison.

Gene set enrichment analysis.

To investigate enriched pathways within WGCNA networks (see Figure 2a) or within
genes differentially expressed in CoV* and/or HRV" infected subject groups (see Figure
6¢c and 6¢c), we used Enrichr*® to test for gene overrepresentation of network genes
within a panel of annotated gene databases (Gene Ontology [GO] Biological Process
[BP] 2018, GO Molecular Function [MF] 2018, GO Cellular Component [CC] 2018,
Kyoto Encyclopedia of Genes and Genomes [KEGG] 2019 Human, and Reactome
2016). For cell type enrichments within WGCNA networks reported in Figure 2a, we
tested for overrepresentation of network genes within gene marker sets (FDR < 0.05)
for each of 35 epithelial and immune cell types inferred using scRNA-seq of human lung

tissue®’.

For the plots in Figure 6f-g, transcriptomic data for 11 flow sorted immune cell
populations were obtained from GEO experiments GSE3982 and GSE22886 and then
batch corrected using the ComBat™® function from the SVA R package (v3.34.0). limma

was then used to perform differential expression analysis between each cell type and all
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the rest in order to obtain gene log,FC values for each cell type with which to rank order
the genes. Gene set enrichment analysis (GSEA) was then used to test for association
between upregulated genes in the shared, CoV'—specific, and HRV'—specific gene sets
and each of the cell types, based on the cell type-specific ordered gene lists. GSEA was

carried out using the FGSEA R package (v1.12.0).

Canonical pathway analysis.

We used QIAGEN'’s Ingenuity Pathway Analysis (IPA) program (v01-16; content
version: 51963813, release 2020-03-11) to investigate canonical pathways and
upstream regulators that were significantly enriched in one or both of the upregulated

CoV'-specific or HRV*-specific gene sets.

Analysis of scRNA-seq data from the nasal epithelial brushing

Initial processing of 10X scRNA-seq data, including cell demultiplexing, alignment to the
human genome GRCh38, and UMI-based quantification was performed with Cell
Ranger (version 3.0). Since the nasal brushing sample contains both epithelial and
immune cell populations that have distinct expression profiles (e.g.: Immune cell types
express far fewer genes compared to epithelial cell types), clustering and cell type
identification were done in two stages: 1) an initial clustering with a less stringent filter to
identify major epithelial and immune cell clusters was performed, 2) cells were
reclustered with different independent filtering criteria for epithelial and immune cell

types. All these analyses were performed using Seurat™ R package (v3.0).
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In the first stage, we removed cells with fewer than 100 genes detected or cells with
greater than 25% mitochondrial reads. Additionally, to remove possible doublets, we
removed cells with higher than 6,000 genes detected and/or more than 20,000 UMIs.
Lowly expressed genes (detected in fewer than 4 cells) were also removed. We then
performed normalization using SCTransform® and ran PCA on the top 5000 highly
variable normalized genes. Clustering analysis was performed on the top 20 PCs using
a shared nearest neighbor (SNN) based SLM®! algorithm with the following parameter
settings: resolution=0.8, algorithm=3. The single cell expression profiles were visualized
via embedding into two dimensions with UMAP®? (Uniform Manifold Approximation and
Projection), resulting in the identification of 11,157 epithelial cells and 229 immune cells

based on known cell type signatures.

In the second stage, we retained all the immune cells but removed epithelial cells with
fewer than 1,000 detected genes. After this filtering, a combined 8,291 epithelial and
immune cells were then normalized as in the first stage. Clustering analysis performed
on the top 30 PCs with parameters (resolution=0.4, algorithm=1, k.param=10) identified
15 clusters. We then ran differential expression analysis using a Wilcoxon test
implemented in Seurat's “FindMarkers” function to help with cell type identification.
Based on these cluster marker lists, two clusters were merged into a single secretory
cluster, another two clusters were merged into a single ciliated cluster, and a final two
clusters were combined as “indeterminate,” based on the lack of defining marker genes

for these clusters. Through this merging process, we arrived at 8 epithelial and 3
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immune cell populations (Figure 1a, Supplementary Table 1)

Analysis of bulk RNA-seq data from IL-13 and HRV infected ALI nasal airway
epithelial cultures

Raw sequencing reads were trimmed using skewer with the following parameter
settings: end-quality=15, mean-quality=25, min=30. Trimmed reads were then aligned to
the human reference genome GRCh38 using HISAT2%® (v2.1.0) using default parameter
settings. Gene quantification was performed with htseg-count using the GRCh38
Ensembl v84 gene transcript model. After removing mitochondrial, ribosomal, and lowly
expressed genes (those not expressed in at least two samples), we carried out
differential expression analyses between paired IL-13-stimulated and control samples
(N = 5 donors) and between paired HRV-infected and control samples (N = 5 donors)

using the DESeq2 R package (v1.22.2).

Analysis of scRNA-seq data from 10 day IL-13-stimulated and control tracheal cell
ALI cultures

As with the nasal brushing scRNA-seq data, 10X scRNA-seq data from ALI cultures
grown from a single tracheal donor that were either mock- or IL-13 stimulated for 10
days were pre-processed using Cell Ranger (version 3.0, 10X Genomics). To safeguard
against doublets, we removed all cells with gene or UMI counts exceeding the 99th
percentile. We also removed cells expressing fewer than 1,500 genes or for which >

30% of genes were mitochondrial (genes beginning with MTAT, MT-, MTCO, MTCY,
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MTERF, MTND, MTRF, MTRN, MRPL, or MRPS), resulting in a total of 6,969 cells
(2,715 IL-13-stimulated and 4,254 controls). After removing mitochondrial, ribosomal
(RPL and RPS), and very lowly expressed genes (expressed in < 0.1% of cells), we
integrated expression data from IL-13 and control cells using the dataset integration
approach in Seurat®. For the integration analysis, we used the top 30 dimensions from
a canonical correlation analysis (CCA) based on SCTransform normalized expression of
the top 3,000 most informative genes across the two datasets, where “informativeness”
was defined by gene dispersion (i.e., the log of the ratio of expression variance to its
mean) across cells, calculated after accounting for its relationship with mean
expression. We then carried out principle component analysis (PCA) on the integrated
dataset and used the top 20 components for clustering and visualization. We used SNN
(Louvain algorithm, resolution=0.23, k.param=10) to cluster the integrated cells into 11
populations, which we visualized in two dimensions using UMAP (see Figure 3d). These
clusters were assigned cell type labels based their most upregulated genes, which were
identified by carrying out differential expression analysis between each cluster and all
others using Seurat’s logistic regression (LR) test, in which cell treatment was included

as a latent variable.
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Figure Legends

Figure 1. ACE2 and TMPRSS2 are expressed by multiple nasal airway epithelial
cell types

(&) UMAP visualization of cells derived from a human nasal airway epithelial brushing
depicts multiple epithelial and immune cell types identified through unsupervised
clustering.

(b) Normalized expression of ACE2 in epithelial and immune cell types.

(c) Normalized expression of TMPRSS2 in epithelial and immune cell types.

Figure 2. TMPRSS2 is a mucus secretory network gene regulated by T2
inflammation
(&) WGCNA identified networks of co-regulated genes related to mucus secretory

function (black), T2 inflammation-induced mucus secretory function (pink), and
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canonical T2 inflammation biomarkers (saddle brown). TMPRSS2 was within the pink
network. Select pathway and cell type enrichments for network genes are shown.

(b) Scatterplot revealing a strong positive correlation between TMPRSS2 expression
and summary (eigengene) expression of the T2 inflammatory, mucus secretory network.
(c) Scatterplot revealing a strong positive correlation between TMPRSS2 expression
and summary (eigengene) expression of the canonical T2 inflammation biomarker
network.

(d) Box plots revealing strong upregulation of TMPRSS2 expression among T2-high
compared to T2-low subjects.

(e) Scatterplot revealing a strong negative correlation between ACE2 expression and
summary (eigengene) expression of the T2 inflammation mucus secretory network.

(f) Scatterplot revealing a strong negative correlation between ACE2 expression and
summary (eigengene) expression of the canonical T2 inflammation biomarker network.
(g) Box plots revealing strong downregulation of ACE2 expression among T2-high

compared to T2-low subjects.

Figure 3. ACE2 and TMPRSS2 expression are both regulated by IL-13 in the
mucociliary airway epithelium

(a) Experimental schematic detailing the timeline for differentiation of basal airway
epithelial cells into a mucociliary airway epithelium and treatment with chronic (10 days)

or acute (72 hours) IL-13 (10ng/ml).
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(b) Box plots of count-normalized expression between paired nasal airway cultures
(control/IL-13) revealing strong downregulation of bulk ACE2 expression with IL-13
treatment. Differential expression results are from DESeq2.

(c) Box plots of count-normalized expression between paired nasal airway cultures
(control/IL-13) revealing strong upregulation of bulk TMPRSS2 expression with IL-13
treatment. Differential expression results are from DESeq2.

(d) UMAP visualization of cells derived from control and IL-13 stimulated tracheal airway
ALl cultures depict multiple epithelial cell types identified through unsupervised
clustering.

(e) Violin plots of normalized ACE2 expression across epithelial cell types from tracheal
airway ALl cultures, stratified by treatment (gray = control, red = IL-13). Differential
expression using a Wilcoxon test was performed between control and IL-13-stimulated
cells with significant differences in expression for a cell type indicated by a * (p < 0.05).
() Violin plots of normalized TMPRSS2 expression across epithelial cell types from
tracheal airway ALl cultures, stratified by treatment (gray = control, red = IL-13).
Differential expression using a Wilcoxon test was performed between control and IL-13-
stimulated cells with significant differences in expression for a cell type indicated by a *

(p <0.05).

Figure 4. ACE2 is an interferon response network gene regulated by respiratory
virus infections
(a) Scatter plot revealing a strong positive correlation between ACE2 expression and

summary (eigengene) expression of the cytotoxic immune response network (purple).
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(b) Scatterplot revealing a strong positive correlation between ACE2 expression and
summary (eigengene) expression of the interferon response network (tan).

(c) WGCNA analysis identified networks of co-regulated genes related to cytotoxic
immune response (purple) and interferon response (tan). ACE2 was within the purple
network. Select pathway and cell type enrichments for network genes are shown.

(d) Box plots of count-normalized expression from GALA Il nasal epithelial samples
reveal strong upregulation of ACE2 expression among interferon-high compared to
interferon-low subjects. Differential expression results are from DESeq2.

(e) Pie graph depicting the percentage of each type of respiratory virus infection found
among GALA Il subjects in whom viral reads were found.

() Experimental schematic detailing timeline for differentiation of basal airway epithelial
cells into a mucociliary airway epithelium and experimental infection with HRV-A16.

(g) Box plots of count-normalized expression between paired nasal airway cultures
(control/HRV-A16 infected) revealing strong upregulation of ACE2 expression with
HRV-A16 infection. Differential expression results are from DESeq2.

(h) Box plots of count-normalized expression between paired nasal airway cultures
(control/HRV-A16-infected) revealing no effect of HRVA-16 on TMPRSS2 expression.

Differential expression results are from DESeq2.

Figure 5. ACE2 and TMPRSS2 nasal airway expression are regulated by eQTL
variants
(@) Locuszoom plot of ACE2 eQTL signals. The lead eQTL variant (rs18160331) is

highlighted with a purple dot. The strength of Linkage Disequilibrium (LD) between
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rs18160331 and other variants is discretely divided into five quantiles and mapped into
five colors (dark blue, sky blue, green, orange, and red) sequentially from low LD to high
LD.

(b) Locuszoom plot of TMPRSS2 eQTL signals. The three independent eQTL variants
(rs1475908, rs2838057, rs74659079) and their LD with other variants (r°) are
represented by red, blue, and green color gradient respectively.

(c) Box plots of normalized ACE2 expression among the three genotypes of the lead
ACE2 eQTL variant (rs18160331). log.Arc = log2 of the allelic fold change associated
with the variant.

(d) Box plots of normalized TMPRSS2 expression among the three genotypes of the
lead TMPRSS2 eQTL variant (rs1475908). log.Arc = log2 of the allelic fold change
associated with the variant.

(e) Bar plots depicting allele frequencies of the ACE2 eQTL variant rs18160331 and
TMPRSS2 eQTL variants (rs1475908, rs2838057, rs74659079) across world

populations. Allele frequency data were obtained from gnomAD v2.1.1.

Figure 6. Coronavirus infections elicit an enhanced cytotoxic immune response
from the airway epithelium

(a) Box plots revealing a strong and equivalent upregulation of summary (eigengene
[Eq]) expression for the interferon response network among HRV and CoV-infected

GALA 1l subjects, compared to uninfected subjects.
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(b) Box plots revealing upregulation in summary (eigengene) expression for the
cytotoxic immune response network among HRV-infected GALA Il subjects that is even
stronger for the CoV infected group.

(c) Venn Diagram describing the number of differentially expressed genes in HRV and
CoV infected groups compared to the uninfected group, and the extent of their overlap.
For genes differentially expressed in both groups, select enriched pathways and
underlying genes that are highly differentially expressed are shown.

(d) Top upstream regulators predicted by Ingenuity Pathway Analysis to be regulating
the genes that were upregulated in CoV. Enrichment values for these CoV regulators,
using the HRV upregulated genes are also shown.

(e) Heatmap of the log,FC in gene expression for CoV and HRV groups when
compared to the uninfected group. Top significantly upregulated genes are shown,
along with ACEZ2, IL6, and genes identified as belonging to cytotoxic pathways, which
were enriched within the virally upregulated CoV group DEGs based on IPA canonical
pathway analysis. Color bars indicate which WGCNA network and or IPA canonical
pathway each gene belongs to.

(f) Gene set enrichment analysis plot for CD8+ T cells. The black (shared), yellow (CoV-
enhanced), and red (HRV-enhanced) curves display the enrichment score for the
indicated viral gene set as the analysis walks down the ranked distribution of genes
ordered by fold change in expression between CD8+ T cells relative to all other immune
cell types (red-blue color bar). Genes are represented by vertical bars in the same color
as the curve of the viral gene group they represent. Denoted genes are a representative

set from the leading edge (most responsible for the enrichment).
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(g) Gene set enrichment analysis plot for NK cells. The black (shared), yellow (CoV-
enhanced), and red (HRV-enhanced) curves display the enrichment score for the
indicated viral gene set as the analysis walks down the ranked distribution of genes
ordered by fold change in expression between NK cells relative to all other immune cell
types (red-blue color bar). Genes are represented by vertical bars in the same color as
the curve of the viral gene group they represent. Denoted genes are from the leading

edge (most responsible for the enrichment).
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Table 1. Results for multivariate models predicting ACE2 and TMPRSS2 expression

Model Predictor Partial R? Effect Size t-test
Variable Ref. (%) Coeff. SE t p-value

ACE2 Age n/a 1.03 -0.032  0.009 -3.64 0.000300
Interferon Status Low 17.09 1.301 0.088 14.78 6.50e-43
Type 2 Inflammation Low 24.44 -1.001 0.057 -17.68 1.58e-57
Sex Male 0.14 0.075  0.056 1.33 0.185421
Asthma Healthy 0.58 -0.160  0.059 -2.73 0.006415
rs181603331 (G>T) G/G 1.20 -0.635 0.162 -3.92 0.000097

TMPRSS2 Age n/a 0.07 -0.008 0.010 -0.88 0.380112
Interferon Status Low 0.07 0.087 0.098 0.88 0.378731
Type 2 Inflammation Low 33.24 1.177 0.063 18.77 1.74e-63
Sex Male 0.02 -0.031 0.062 -0.50 0.616276
Asthma Healthy <0.01 0.014 0.065 0.22 0.829301
rs1475908 (G>A) G/IG 0.22 -0.082  0.054 -1.51 0.130251
rs74659079 (C>T) C/C 0.39 0.216  0.107 2.03 0.043151
rs2838057 (A>C) A/A 0.42 0.139  0.066 212 0.034678




