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Abstract  31 

 32 

Coronavirus disease 2019 (COVID-19) outcomes vary from asymptomatic infection to 33 

death. This disparity may reflect different airway levels of the SARS-CoV-2 receptor, 34 

ACE2, and the spike protein activator, TMPRSS2. Here we explore the role of genetics 35 

and co-expression networks in regulating these genes in the airway, through the 36 

analysis of nasal airway transcriptome data from 695 children. We identify expression 37 

quantitative trait loci (eQTL) for both ACE2 and TMPRSS2, that vary in frequency 38 

across world populations. Importantly, we find TMPRSS2 is part of a mucus secretory 39 

network, highly upregulated by T2 inflammation through the action of interleukin-13, and 40 

that interferon response to respiratory viruses highly upregulates ACE2 expression. 41 

Finally, we define airway responses to coronavirus infections in children, finding that 42 

these infections upregulate IL6 while also stimulating a more pronounced cytotoxic 43 

immune response relative to other respiratory viruses. Our results reveal mechanisms 44 

likely influencing SARS-CoV-2 infectivity and COVID-19 clinical outcomes.     45 

 46 
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Introduction 54 

 55 

In December of 2019, a novel Coronavirus, SARS-CoV-2, emerged in China and has 56 

gone on to trigger a global pandemic of Coronavirus Disease 2019 (COVID-19), the 57 

respiratory illness caused by this virus1. While most individuals with COVID-19 58 

experience mild cold symptoms (cough and fever), some develop more severe disease 59 

including pneumonia, which often necessitates mechanical ventilation2. In fact, an 60 

estimated 5.7% of COVID-19 illnesses are fatal3. Enhanced risk of poor outcomes for 61 

COVID-19 has been associated with a number of factors including advanced age, male 62 

sex, and underlying cardiovascular and respiratory conditions4, 5. Yet, while the majority 63 

of serious COVID-19 illness occurs in adults over 60, children are also thought to be 64 

highly susceptible to infection. Moreover, recent data suggest that 38% of COVID-19 65 

cases occurring in children are of moderate severity and 5.8% are severe or critical6, 66 

highlighting a need for studying risk factors of illness in this population as well.  67 

 68 

One factor that may underlie variation in clinical outcomes of COVID-19 is the extent of 69 

gene expression in the airway of the SARS-CoV-2 entry receptor, ACE2, and 70 

TMPRSS2, the host protease that cleaves the viral spike protein and thus allows for 71 

efficient virus-receptor binding7. Expression of these genes and their associated 72 

programs in the nasal airway epithelium is of particular interest given that the nasal 73 

epithelium is the primary site of infection for upper airway respiratory viruses, including 74 

coronaviruses, and acts as the gateway through which upper airway infections can 75 

spread into the lung. The airway epithelium is composed of multiple resident cell types 76 
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(e.g., mucus secretory, ciliated, basal stem cells, and rare epithelial cell types) 77 

interdigitated with immune cells (e.g. T cells, mast cells, macrophages), and the relative 78 

abundance of these cell types in the epithelium can greatly influence the expression of 79 

particular genes8-10, including ACE2 and TMPRSS2. Furthermore, since the airway 80 

epithelium acts as a sentinel for the entire respiratory system, its cellular composition, 81 

along with its transcriptional and functional characteristics, are significantly shaped by 82 

interaction with environmental stimuli. These stimuli may be inhaled (e.g., cigarette 83 

smoke, allergens, microorganisms) or endogenous, such as when signaling molecules 84 

are produced by airway immune cells present during different disease states. One such 85 

disease state is allergic airway inflammation caused by type 2 (T2) cytokines (IL-4, IL-5, 86 

IL-13), which is common in both children and adults and has been associated with the 87 

development of both asthma and COPD in a subgroup of patients11-13. T2 cytokines are 88 

known to greatly modify gene expression in the airway epithelium, both through 89 

transcriptional changes within cells and epithelial remodeling in the form of mucus 90 

metaplasia11, 14, 15. Microbial infection is another strong regulator of airway epithelial 91 

expression. In particular, respiratory viruses can modulate the expression of thousands 92 

of genes within epithelial cells, while also recruiting and activating an assortment of 93 

immune cells16-18. Even asymptomatic nasal carriage of respiratory viruses, which is 94 

especially common in childhood, has been shown to be associated with both genome-95 

wide transcriptional re-programming and infiltration of macrophages and neutrophils in 96 

the airway epithelium19, demonstrating how viral infection can drive pathology even 97 

without overt signs of illness.  98 

 99 
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Genetic variation is another factor that may regulate gene expression in the airway 100 

epithelium. Indeed, expression quantitative trait loci (eQTL) analyses carried out in 101 

many tissues have suggested that as many as 70% of genes expressed by a tissue or 102 

organ are under genetic control20. Severity of human rhinovirus (HRV) respiratory illness 103 

has specifically been associated with genetic variation in the epithelial genes CDHR321 104 

and the ORMDL322 and, given differences in genetic variation across world populations, 105 

it is possible that functional genetic variants in SARS-CoV-2-related genes could partly 106 

explain population differences in COVID-19 clinical outcomes.  107 

 108 

Finally, there are important questions regarding the host response to SARS-CoV-2 109 

infection. For example, it is unclear whether specific antiviral defenses in the epithelium 110 

are blocked by SARS-CoV-2 or whether the virus may trigger epithelial or immune cell 111 

pathways that prolong airway infection, and/or even incite a hyperinflammatory state in 112 

the lungs in some individuals that leads to more severe disease. Although large cohorts 113 

of subjects infected by the novel coronavirus are still lacking, much can be learned by 114 

exploring transcriptional responses to other coronavirus strains. In particular, because 115 

nasal airway brushings capture both epithelial and immune cells present at the airway 116 

surface, such samples collected from a cohort of subjects infected by a range of viruses 117 

provide an opportunity to comprehensively investigate the potentially varied and 118 

cascading effects of coronavirus infection on airway expression and function. 119 

 120 

In this study, we first use single cell RNA-sequencing (scRNA-seq) to elucidate the 121 

cellular distribution of ACE2 and TMPRSS2 expression in the nasal airway epithelium. 122 
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We also perform network and eQTL analysis of bulk gene expression data on nasal 123 

airway epithelial brushings collected from a large cohort of asthmatic and healthy 124 

children in order to identify the genetic and biological regulatory mechanisms governing 125 

ACE2 and TMPRSS2 expression. We then use multi-variable modeling to estimate the 126 

relative contribution of these factors to population variation in the expression of these 127 

two genes, and by performing experiments on mucociliary airway epithelial cultures 128 

confirm a dominant role for both T2 inflammation and viral infection in regulating 129 

expression of ACE2 and TMPRSS2. Finally, we define the cellular and transcriptional 130 

responses to in vivo coronavirus infections in the nasal airway of children.  131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 



 8

Results 146 

 147 

ACE2 and TMPRSS2 are expressed by multiple nasal airway epithelial cell types 148 

 149 

We first examined ACE2 and TMPRSS2 expression at a cell type level through single 150 

cell RNA sequencing (scRNA-seq) of a nasal airway epithelial brushing from an 151 

asthmatic subject. Shared Nearest Neighbor (SNN)-based clustering of 8,291 cells 152 

identified 9 epithelial and 3 immune cell populations (Figure 1a, Supplementary Table 153 

1). We found that 7 epithelial cell populations contained ACE2+ cells (at low frequency), 154 

with the highest frequency of positive cells found among basal/early secretory cells, 155 

ciliated cells, and secretory cells (Figure 1b). We did not observe meaningful ACE2 156 

expression among any of the immune cell populations, which included T cells, dendritic 157 

cells, and mast cells. We found TMPRSS2 to be expressed by all epithelial cell types, 158 

with a higher frequency of positive cells among the different cell types, compared to 159 

ACE2 (Figure 1b,c). A small number of mast cells were also TMPRSS2+ (Figure 1c).  160 

 161 

 162 

TMPRSS2 is part of a mucus secretory co-expression network highly induced by 163 

T2 inflammation  164 

  165 

We next sought to determine the variation in nasal epithelial expression of ACE2 and 166 

TMPRSS2 across healthy and asthmatic children, and to identify biological mechanisms 167 

that regulate this variation. Thus, we performed weighted gene co-expression network 168 
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analysis (WGCNA) on whole transcriptome sequencing data from nasal airway 169 

brushings of 695 Puerto Rican healthy and asthmatic children in the Genes-170 

Environments and Asthma in Latino Americans II study (GALA II). This analysis 171 

identified 54 co-expression networks representing cell type-specific expression 172 

programs such as ciliogenesis, mucus secretion, and pathways of immunity and airway 173 

inflammation (Supplementary Table 2). The TMPRSS2 gene was contained within one 174 

of a set of three highly correlated networks exhibiting strong enrichments for mucus 175 

secretory cell genes and pathways (Figure 2a, Supplementary Table 2,3). For example, 176 

the black network, which was highly correlated with TMPRSS2 expression (r=0.64, 177 

p=1e-82), was strongly enriched for Golgi mediated transport and COPI-dependent 178 

Golgi to ER transport pathways, both of which are involved in the normal processing 179 

and transport of mucin proteins (Figure 2a). TMPRSS2 itself fell within and was highly 180 

correlated with expression of the pink network (r=0.68, p=3e-97), which was highly 181 

enriched for mucus goblet cell markers (p=2e-6, Figure 2a,b). The pink network was 182 

also enriched for genes involved in the O-linked glycosylation of mucins pathway (p=9e-183 

4), which is vital to the function of mucus secretory cells, especially those induced by T2 184 

inflammation (r=0.68, p=3e-97, Figure 2a,b). In fact, we found that this network 185 

contained the T2 cytokine IL13 while being particularly enriched for genes known to 186 

mark and transcriptionally regulate IL-13-induced mucus metaplasia (FCGBP, SPDEF, 187 

FOXA3). The saddle brown network was also related to mucus secretory cells, and 188 

contained the most canonical T2 inflammation markers11, 23 including POSTN, CLCA1, 189 

CPA3, IL1RL1, CCL26, and was strongly correlated with both TMPRSS2 (r=0.61, p=5e-190 

72, Figure 2c) and the other T2 mucus secretory network (pink) (r=0.92, p=3e-280, 191 
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Supplementary Table 4). In contrast, we found ACE2 expression to be strongly 192 

negatively correlated with expression of both T2 networks (pink: r=-0.61, p=3e-72, 193 

saddle brown: r=-0.7, p=2e-102, Figure 2e,f). To identify subjects with high and low T2 194 

inflammation, we hierarchically clustered all subjects based on the expression of genes 195 

in the canonical T2 network (saddle brown). This resulted in the identification of two 196 

distinct groups we labeled as T2-high (n=364) and T2-low (n=331) (Supplementary 197 

Figure 1a). We found that this expression-derived T2 status was strongly associated 198 

with traits known to be driven by T2 inflammation including IgE levels, exhaled nitric 199 

oxide (FeNO), blood eosinophils, and asthma diagnosis (Supplementary Figure 1b-e). 200 

Notably, TMPRSS2 levels were 1.3-fold higher in T2-high subjects (p=1e-62), while, 201 

ACE2 expression was 1.4-fold lower in T2-high subjects (p=2e-48) (Figure 2d,g).  202 

 203 

To investigate whether the strong in vivo relationship between airway T2 inflammation 204 

and TMPRSS2/ACE2 expression is causal in nature, we performed in vitro stimulation 205 

of paired air-liquid interface (ALI) mucociliary airway epithelial cultures with 72 hours of 206 

IL-13 or mock stimulus (n=5 donors, Figure 3a). Performing paired differential 207 

expression analysis between the mock and IL-13 stimulated cultures, we found that 208 

ACE2 and TMPRSS2 were strongly down- and up-regulated, respectively, supporting 209 

our in vivo analysis results (log2FC= -0.67, p=5e-3, log2FC= 1.20, p=5e-9, Figure 3b,c). 210 

To better understand the cellular basis of TMPRSS2 and ACE2 regulation by IL-13, we 211 

leveraged scRNA-seq data previously generated on tracheal airway epithelial cultures 212 

that were chronically stimulated (10 days) with IL-13 or control media (Figure 3a,d). 213 

Similar to our results from in vivo nasal scRNA-seq data, we observed that ACE2 214 
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expression was highest among basal, ciliated, and early/intermediate secretory cell 215 

populations, with ACE2 being significantly downregulated by IL-13 among both basal 216 

and intermediate secretory cells (Figure 3e). Also mirroring the in vivo scRNA-seq data, 217 

TMPRSS2 was expressed across all epithelial cell types, but at a higher frequency 218 

among secretory cells (Figure 3f). IL-13 stimulation induced dramatic upregulation of 219 

TMPRSS2 in early secretory, intermediate secretory, and mature mucus secretory cell 220 

populations (Figure 3f). Furthermore, IL-13 stimulated mucus metaplasia that resulted in 221 

the development of a novel mucus secretory cell type and an IL-13 inflammatory 222 

epithelial cell that both highly expressed TMPRSS2 (Figure 3f). Together, our in vivo 223 

and in vitro analyses strongly suggest that TMPRSS2 is part of a mucus secretory cell 224 

network that is highly induced by IL-13-mediated T2 inflammation. 225 

 226 
 227 

 228 

 229 

ACE2 belongs to an interferon response network that is induced by respiratory 230 

virus infections 231 

 232 

Returning to the in vivo nasal airway epithelial expression networks, we found that 233 

ACE2 expression was highly correlated with expression of two networks (purple and 234 

tan) (purple: r=0.74, p=3e-120, tan: r=0.72, p=2e-110, Figure 4a,b). The purple network 235 

was highly enriched for genes that mark cytotoxic T cells and antigen-presenting 236 

dendritic cells, both of which are particularly abundant in a virally infected epithelium 237 

(Figure 4c, Supplementary Table 2), whereas the tan network was strongly enriched for 238 
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interferon and other epithelial viral response genes (IFI6, IRF7, CXCL10, CXCL11) 239 

(Figure 4c, Supplementary Table 2). Clustering of subjects based on the interferon 240 

response network genes resulted in two groups, one highly (interferon-high=78) and 241 

one lowly (interferon-low=617) expressing these interferon response network genes 242 

(Supplementary Figure 2). We found that ACE2 expression was 1.7-fold higher in the 243 

interferon-high vs. interferon-low group (Figure 4d). In a previous study, we found that 244 

children with nasal gene expression characteristic of the interferon network tended to be 245 

infected with a respiratory virus, despite being asymptomatic19. To explore the 246 

possibility of this relationship in our current dataset, we metagenomically analyzed the 247 

RNA-seq data for all subjects to identify those harboring reads for a respiratory virus. 248 

This analysis found that 18% of GALA II children were asymptomatically harboring a 249 

respiratory virus from one of eight general respiratory virus groups (Figure 4e). 250 

Strikingly, we found that 78% of interferon-high subjects were virus carriers compared to 251 

only 10% of interferon-low subjects. These results demonstrate how asymptomatic virus 252 

carriage nonetheless stimulates an active viral response that includes ACE2.  253 

 254 

To directly test the effect of respiratory virus infection on epithelial ACE2 gene 255 

expression we again employed our ALI mucociliary epithelial culture system. Performing 256 

mock or human rhinovirus-A16 infection of mature cultures (Day 27, Figure 4f) from 5 257 

donors we found 7.7-fold upregulation of ACE2 gene expression with HRV-A infection 258 

(p=1.3e-51, Figure 4g). In contrast, we only observed a trend for down regulation of 259 

TMPRSS2 gene expression among virally infected subjects (Figure 4h). These results 260 

confirm the strong regulation of ACE2 gene expression by viral infection. 261 
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 262 

Genetic determinants of ACE2 and TMPRSS2 expression in the nasal airway 263 

epithelium  264 

 265 

We next explored the role of genetic regulatory variants in helping to drive epithelial 266 

expression of ACE2 and TMPRSS2. To do this, we performed cis-eQTL analysis for 267 

these two genes, using nasal gene expression and genome-wide genetic variation data 268 

collected from the GALA II study children. We identified 316 and 36 genetic variants 269 

significantly associated with expression of ACE2 and TMPRSS2, respectively (Figure 270 

5a,b). Stepwise forward-backward regression analysis of these eQTL variants revealed 271 

a single independent eQTL variant (rs181603331) for the ACE2 gene (6e-23), located 272 

~20kb downstream of the transcription start site (Figure 5a). This rare eQTL variant 273 

(allele frequency [AF]=1%) was associated with a large decrease in ACE2 expression 274 

(log2AFC=-1.6) (Figure 5c).  275 

Similar analysis of the TMPRSS2 eQTL variants yielded three independent eQTL 276 

variants (rs1475908 AF=20%, rs74659079 AF=4%, and rs2838057 AF=13%, Figure 277 

5b). The eQTL variant rs1475908 was associated with a decrease in TMPRSS2 278 

expression (log2AFC=-0.37, Figure 5d), whereas both the rs74659079 and rs2838057 279 

eQTL variants were associated with increased TMPRSS2 expression (log2AFC=0.38, 280 

0.43, respectively, Supplementary Figure 3). 281 

 282 

Examining the frequency of these eQTL variants among eight world populations listed in 283 

the gnomAD genetic variation database (v2.1.1), we found that the ACE2 eQTL variant 284 
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was only present in people of African descent and at a low frequency (AF=0.7%, Figure 285 

5e). In contrast, the TMPRSS2 eQTL variant associated with decreased expression, 286 

rs1475908, occurred across all world populations, with the highest allele frequencies 287 

among East Asians (AF=38%), Europeans (AF=35%), intermediate frequencies among 288 

Africans (AF=26%) and Ashkenazi Jews (AF=23%), and the lowest frequency among 289 

Latinos (AF=17%). The two TMPRSS2 eQTL variants associated with increased 290 

expression exhibited much more disparate allele frequencies across world populations. 291 

Namely, the allele frequency of rs74659079 is above 1% only among people of African 292 

descent (AF=11%) and 4% in the participating Puerto Rican population. Likewise, the 293 

rs2838057 eQTL variant, which was associated with increased TMPRSS2 expression 294 

was present at a frequency of 32% in East Asians, 20% in Latinos, and <10% in all 295 

other world populations. Together, these results suggest that if TMPRSS2 levels 296 

influence susceptibility to SARS-CoV-2, then genetics may play a significant role in 297 

infection risk and that this risk will vary significantly across world populations.   298 

 299 

 300 

Multi-variable modeling of airway ACE2 and TMPRSS2 gene expression 301 

 302 

Our analyses indicate that T2 inflammation, interferon/viral response signaling, and 303 

genetics are all determinants of ACE2 and TMPRSS2 gene expression in the airway 304 

epithelium of children. Therefore, we next sought to determine the relative importance of 305 

these factors in determining levels of these genes using multi-variable regression 306 

analysis. We included asthma status, age, and sex as model covariates since chronic 307 
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lung disease, increasing age, and male sex have all been associated with increased risk 308 

of poor COVID-19 illness outcomes. Modeling ACE2 expression among GALA II 309 

children, we found that T2 and interferon statuses had the strongest effects on ACE2 310 

expression (p=1.6e-57, p=6.5e-43, respectively), with T2-low and interferon-high 311 

individuals exhibiting the highest levels of expression. These two variables 312 

independently explained 24% and 17% of the variance in ACE2 expression (Table 1). 313 

While the ACE2 eQTL variant, rs181603331, was associated with a notable decrease in 314 

ACE2 levels, it only accounted for 1.2% of the variance, reflecting the low frequency of 315 

this variant in our population. Increasing age and asthma diagnosis were both 316 

associated with small decreases in ACE2 expression, although both variables 317 

accounted for less than 2% of the variance, and sex was not a significant predictor 318 

(Table 1).  319 

 320 

Similar modeling of TMPRSS2 expression found that T2-high status dramatically 321 

increased expression, with an effect size 5.4x larger than any other variable, capturing 322 

33% of total variation in TMPRSS2 (Table 1). While statistically significant, the two 323 

TMPRSS2 eQTL variants associated with increased expression exhibited small effect 324 

sizes totaling <1% of variance explained. All other predictors were not significant. 325 

Collectively, these modeling results confirm that both T2 and interferon inflammation are 326 

strong and antagonistic regulators of ACE2 expression and show that T2 inflammation 327 

is the lone dominant driver of airway expression of TMPRSS2. 328 

 329 

Coronavirus Infections drive an enhanced cytotoxic immune response 330 
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 331 

Our metagenomic analysis of RNA-seq data from the nasal brushings identified 18 332 

children with viral sequence reads from one of four different coronavirus (CoV) species 333 

(OC43, JKU1, 229E, NL63) (Supplementary Table 5). This allowed us to explore airway 334 

transcriptomic responses to infection with coronavirus subfamily viruses specifically, 335 

which will likely most resemble responses to SARS-CoV-2. To increase the likelihood 336 

that these subjects were experiencing an active viral infection, we limited our analysis to 337 

the 11 most highly infected subjects, comparing them to all subjects not infected with a 338 

virus (n=571). To allow us to discriminate CoV-enhanced responses from those that are 339 

more general to respiratory viruses, we also established a virus control group composed 340 

of the 37 subjects highly infected with human rhinovirus species (HRV) (Supplementary 341 

Table 6). We first compared expression of genes in the cytotoxic immune response 342 

(purple) network and interferon response (tan) network (discussed earlier; see Figure 343 

4a, b) among these virus infected groups, and found that both networks were more 344 

highly expressed in virus-infected individuals (Figure 6a, b). Moreover, while the 345 

induction in interferon response was similar for both CoV and HRV groups, induction in 346 

the cytotoxic immune response was considerably higher in CoV-infected (ΔEg = 0.049) 347 

compared to HRV-infected individuals (ΔEg = 0.032, Figure 6b).  348 

To further explore this increase in cytotoxic immune response and other potential 349 

pathways in CoV-infected individuals, we next performed a transcriptome-wide screen 350 

for genes differentially expressed in CoV or HRV-infected groups compared to 351 

uninfected individuals. These analyses revealed 2,515 differentially expressed genes 352 

(DEGs) with CoV infection and 2,357 DEGs with HRV infection (FDR < 0.05 and log2FC 353 
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> |0.5|), of which 35% and 31% were only observed with CoV and HRV infections, 354 

respectively, based on our significance cutoff (Figure 6c). Upstream regulator analysis 355 

with IPA carried out separately on CoV and HRV infection response genes showed that 356 

the top cytokines and transcription factors that may regulate these infections are shared 357 

between the two virus families, including IL10, IL1B, IFNG, IFNA2, and STAT1 (Figure 358 

6d). One inferred upstream regulator of CoV response genes, IL-6, which was also 359 

among the genes upregulated with CoV infection (log2FC=2.2, Figure 6e), is especially 360 

noteworthy considering that an IL-6 blocking antibody therapy is currently under 361 

investigation for use in treatment of COVID-19 illnesses24. Additionally, we found ACE2 362 

among the shared upregulated genes, reinforcing its upregulation in the course of 363 

different respiratory virus infections (log2FC in CoV+=0.6, log2FC in HRV+=0.5, Figure 364 

6e).  365 

 366 

In trying to understand the biological basis of the viral responses we found to be CoV-367 

specific in our differential expression analysis, we considered whether the differential 368 

presence and/or response of various immune cell types was an explanatory factor. To 369 

investigate this, we used gene set enrichment analysis (GSEA) to test for enrichment of 370 

CoV-specific, HRV-specific, and CoV/HRV-shared DEG sets among gene markers for 371 

11 different flow-sorted human immune cell types defined based on whole transcriptome 372 

data (citation) (Supplementary Table 7). The shared viral DEGs showed significant 373 

enrichment for genes characteristic of macrophages, monocytes, neutrophils, dendritic 374 

cells, and NK cells. In contrast, the set of CoV-enhanced DEGs resulted in strong 375 

enrichments for both CD8+ T cells and dendritic cells, suggesting an especially 376 
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important role for activation of cytotoxic T cells though antigen presentation by dendritic 377 

cells in CoV infections (Figure 6f). Also supporting an enriched cytotoxic response 378 

among CoV-infected subjects was a strong enrichment for CoV-specific DEGs among 379 

NK cells, which participate heavily in the killing of virally infected cells (Figure 6g). We 380 

note that these enrichments were not observed among HRV-enhanced DEGs, which 381 

were instead most strongly enriched among neutrophils, as well as eosinophils, 382 

macrophages, and monocytes. Furthermore, through pathway analysis we identified 383 

multiple pathways related to cytotoxic T cell and NK cell activity that were enriched 384 

either specifically or more dramatically among CoV DEGs compared to HRV DEGs 385 

(Figure 6e). These results suggest that while CoV infections are highly similar to HRV 386 

infections, they likely elicit an enhanced cytotoxic immune response.   387 

 388 

Discussion 389 

 390 

Although the high variability in clinical outcomes of COVID-19 illness is now well 391 

documented and multiple demographic and clinical traits have been associated with 392 

severe disease, little is known about the host biologic factors underlying this variability. 393 

In the current study, we reasoned that population variation in upper airway expression 394 

of the ACE2 receptor for SARS-CoV-2 and the virus-activating TMPRSS2 protease, 395 

would drive infection susceptibility and disease severity. We therefore deployed network 396 

and eQTL analysis of nasal airway epithelial transcriptome data from a large cohort of 397 

healthy and asthmatic children to determine mechanisms associated with airway 398 

expression of these genes, and their relative power in explaining variation in the 399 
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expression of these genes among children. We observed only weak associations with 400 

asthma status, age, and gender among children aged 8-21 years. Moreover, although 401 

we found that genetics does influence expression of these genes, the effect of this 402 

variation was small in comparison to the dramatic influence of T2 cytokine-driven 403 

inflammation on both ACE2 (downregulation) and TMPRSS2 (upregulation) expression 404 

levels. We found an equally important role for viral-driven interferon inflammation in 405 

regulating levels of ACE2 in the airway. Additionally, through study of in vivo upper 406 

airway CoV subfamily infections, we not only identify inflammatory regulators of these 407 

infections, but also provide evidence that this subfamily of viruses drives an enhanced 408 

cytotoxic immune response. Our work provides a set of biomarkers that can be easily 409 

examined in COVID-19 patients, through analysis of nasal swabs, to determine the 410 

relative importance of these mechanisms and genes in governing susceptibility to 411 

infection, severe illness and death.  412 

 413 

Our single cell analysis of an in vivo nasal brushing observed ACE2 expression, albeit 414 

at low frequency, primarily among basal, ciliated, and less mature, early secretory cells. 415 

These results are supported by a recent report of ACE2 expression in transient 416 

secretory cells, likely a close equivalent to our early secretory population25. Although a 417 

much higher portion of cells, representing all epithelial cell types, expressed TMPRSS2, 418 

the low frequency of ACE2+ cells resulted in very few dual ACE2/TMPRSS2 expressing 419 

cells. However, we caution that a cell may not need to be TMPRSS2+ to be susceptible 420 

to infection, since it has been demonstrated the TMPRSS2 protein is secreted from 421 

nasal airway epithelial cells26. We also caution that scRNA-seq data are known to 422 
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exhibit biases in gene detection, and thus the level and frequency of ACE2 expression 423 

across cells may be much higher than we observe here. In line with this possibility we 424 

observe more moderate levels of ACE2 expression in our bulk RNA-seq data on nasal 425 

brushings.      426 

 427 

Airway inflammation caused by type 2 cytokine production from infiltrating immune cells 428 

plays a prominent role in the control of cellular composition, expression, and thus 429 

biology of the airway epithelium11, 13, 23, 27. Moreover, while T2 airway inflammation is an 430 

important driver of T2-high asthma and COPD disease endotypes, it is also associated 431 

with atopy in the absence of lung disease, a very common phenotype in both children 432 

and adults. In fact, among the children in this study, we find that 43% of non-asthmatics 433 

were scored as T2-high based on expression profile, further substantiating the high 434 

prevalence of T2 airway inflammation outside of those with lung disease. Our data 435 

suggest that airway epithelial TMPRSS2 expression is highly upregulated by T2 436 

inflammation, and specifically by IL-13. Both our network and single cell data show that 437 

TMPRSS2 is most prominent in less developed “early secretory” cells as well as in more 438 

mature mucus secretory cells. Based on our in vitro data, IL-13 upregulates TMPRSS2 439 

across nearly all types of epithelial cells, but the core of this effect appears to be in the 440 

metaplastic mucus secretory cells that are generated as a consequence of IL-13 441 

signaling14, 15. In fact, our network data suggest that, although TMPRSS2 expression is 442 

highly correlated with that of a co-expressed network of mucus secretory genes 443 

characterizing “normal”, non-metaplastic, mucus secretory cells, it’s correlated even 444 

more strongly with a network that characterizes mucus secretory cells undergoing IL-13-445 
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induced metaplasia. In contrast to enhanced levels of TMPRSS2, T2 inflammation, 446 

whether observed in vivo or induced with IL-13 stimulation, precipitated a dramatic 447 

reduction in levels of epithelial ACE2, thus complicating expectations for how T2 448 

inflammation might affect overall risk for a poor COVID-19 outcome. Germane to this 449 

question, a recent study of 85 fatal COVID-19 subjects found that 81.2% of them 450 

exhibited very low levels of blood eosinophil levels4. Blood eosinophil levels are a 451 

strong, well-known predictor of airway T2 inflammation and were strongly correlated 452 

with T2 status in our study as well11, 23. Together, these studies provisionally suggest 453 

that T2 inflammation may predispose individuals to experience better COVID-19 454 

outcomes through a decrease in airway levels of ACE2 that override any countervailing 455 

effect from increased expression of TMPRSS2.  However, both in vitro experiments 456 

examining IL-13 effects on SARS-CoV-2 infection and empirical data on COVID-19 457 

outcomes among T2-high and T2-low patients will certainly be needed to determine 458 

whether this common airway inflammatory endotype ultimately protects against or 459 

exacerbates COVID-19 illness. As mentioned above, we note that measurement of 460 

blood eosinophil levels could be used as an informative and more accessible (albeit less 461 

powerful) proxy for investigating the association between airway T2 inflammation and 462 

outcomes of COVID-19. Moreover, given the higher frequency of T2 inflammation 463 

among asthmatic subjects, this population should be monitored especially closely given 464 

the enhanced risk of complications due to respiratory virus infection in those with 465 

asthma.   466 

 467 
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In addition to a strong negative influence of T2 inflammation on ACE2 expression in the 468 

airway, we found an equally strong positive influence of respiratory virus infections on 469 

levels of this gene. Network analysis placed ACE2 within an interferon viral response 470 

network suggesting that these cytokines are a driving force behind ACE2 upregulation. 471 

This information is interesting in several regards. First, it suggests that SARS-CoV-2 472 

and other coronaviruses using ACE2 as a receptor could leverage the host anti-viral 473 

response to increase the infectability of airway cells. Secondly, as data here and 474 

elsewhere show, asymptomatic carriage of respiratory viruses is common, especially in 475 

young children19, 28-31. Children in the GALA II cohort included in this study ranged in 476 

age from 8-21 years; among them we found 18% who were carrying respiratory viruses 477 

without illness. However, as we show in this and our previous study19, even 478 

asymptomatic carriage of respiratory viruses exacts a fundamental change in airway 479 

epithelial expression and immune cell presence, including upregulation of ACE2 480 

expression. In determining outcomes, this potential detrimental influence of virus 481 

carriage may also be weighed against a potentially beneficial influence of virus carriage 482 

through a more potent cross serologic-immune defense in these individuals, especially if 483 

the virus carried is a coronavirus family member. Ultimately, the effect of current or 484 

recent virus carriage on COVID-19 outcomes will need to be determined by in vivo 485 

studies in patients, followed up with controlled in vitro studies of virally infected cells. At 486 

any rate, the apparent dependence of ACE2 expression on interferon signaling 487 

suggests that targeted blockade of this interferon effect could control SARS-CoV-2 488 

infection. 489 

 490 
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Our evaluation of genetic influences on airway ACE2 and TMPRSS2 expression 491 

revealed a single rare eQTL for ACE2 and several more frequent eQTL variants for 492 

TMPRSS2. While both the effect size and explanatory power of these variants paled in 493 

comparison to the influence of T2 inflammation and interferon signaling in multi-variable 494 

modeling of expression for these genes, the effect of these variants may still be strong 495 

enough to alter infection rates and or illness severity, especially in the populations 496 

where these variants are most frequent. Thus, future genetic studies of COVID-19 497 

should pay particular attention to these eQTL variants.  498 

 499 

A particularly vexing question regards the mechanisms that underlie the unusual 500 

severity of illness associated with SARS-CoV-2, especially when compared to most 501 

circulating respiratory viruses. Clearly, severe disease often entails development of 502 

pneumonia, possibly resulting from an expanded tropism of SARS-CoV-2 to include 503 

lower lung airway and alveolar cells. The most severe patients also appear to 504 

experience an exuberant immune response, characterized a “cytokine storm”24, 505 

occurring with and possibly driving the development of acute respiratory distress 506 

syndrome (ARDS). Supposing that aspects of epithelial response to coronavirus family 507 

members would be shared, including with SARS-CoV-2, we examined in vivo 508 

coronavirus infection among the GALA II children. We found that CoV infections elicit a 509 

broad airway transcriptome response, similar to HRV infections, and we identified a 510 

panel of cytokines and transcription factors that likely regulate these responses. In 511 

particular, we found that IL-6 was predicted to regulate responses to CoV and was itself 512 

upregulated with these infections. These data support the recent investigation of 513 
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tocilizumab (IL-6R blocking antibody) for the treatment of COVID-19 illnesses24. 514 

Strikingly our analysis revealed an increased cytotoxic immune response with CoV 515 

infection, driven by the differential presence and activity of cytotoxic CD8+ T cells and 516 

NK cells, as compared to the more heavily neutrophil-based responses to HRV 517 

infection. Although preliminary, this finding, if similarly occurring with SARS-CoV-2 518 

infection, could partly explain the dramatic inflammation observed in SARS-CoV-2 519 

patients, which can extend to the distal lung.   520 

 521 

In summary, our data suggests that the strongest determinants of airway ACE2 and 522 

TMPRSS2 expression are T2 inflammation and viral-induced interferon inflammation, 523 

with limited but noteworthy influence from genetic variation. Whether these factors drive 524 

better or worse clinical outcomes remains to be determined, but closely watching 525 

individuals with these airway endotypes in the clinical management of COVID-19 526 

illnesses would be prudent.  527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

  536 
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Methods 537 

 538 

MATERIALS AND CORRESPONDENCE 539 

Further information and requests for resources and reagents should be directed to and 540 

will be fulfilled by Max A. Seibold, Ph.D. (seiboldm@njhealth.org) 541 

 542 

EXPERIMENTAL METHODS 543 

 544 

Human subject information  545 

Under the Institutional Review Board (IRB) approved Asthma Characterization Protocol 546 

(ACP) at National Jewish Health (HS-3101) we consented a 56 year old asthmatic 547 

subject, from which we  collected nasal airway epithelial cells. The nasal airway cells 548 

were brushed from the inferior turbinate using a cytology brush and used for the scRNA-549 

seq experiment described in Figure 1.  Nasal airway epithelial cells used for bulk RNA-550 

seq network and eQTL analysis came from GALA II study subjects described below. 551 

Nasal airway epithelial cell ALI culture experiments all used cells derived from GALA II 552 

study subjects. Human tracheal airway epithelial cells used for in vitro IL13 stimulation 553 

and scRNA-seq experiment were isolated from a single de-identified lung donor 554 

obtained from the International Institute for the Advancement of Medicine (Edison, NJ), 555 

and Donor Alliance of Colorado. The National Jewish Health Institutional Review Board 556 

(IRB) approved our research on the tracheal airway epithelial cells under IRB protocol 557 

HS-3209. These cells were processed and given to us through the National Jewish 558 
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Health (NJH) live cell core, which is an institutional review board-approved study (HS-559 

2240) for the collection of tissues from consented patients for researchers at NJH.  560 

 561 

GALA II study subjects  562 

The Genes-Environment & Admixture in Latino Americans study (GALA II) is an on-563 

going case-control study of asthma in Latino children and adolescents. GALA II was 564 

approved by local institutional review boards (UCSF, IRB number 10–00889, Reference 565 

number 153543, NJH HS-2627) and all subjects and legal guardians provided written 566 

informed assent and written informed consent, respectively32, 33. A full description of the 567 

study design and recruitment has been previously described elsewhere32-34. Briefly, the 568 

study includes subjects with asthma and healthy controls of Latino descent between the 569 

ages of 8 and 21, recruited from the community centers and clinics in the mainland U.S. 570 

and Puerto Rico (2006-present). Asthma case status was physician-diagnosed. 571 

Recruited subjects completed in-person questionnaires detailing medical, 572 

environmental, and demographic information. Physical measurements including 573 

spirometry were obtained, and subjects provided a blood sample for DNA extraction and 574 

later Whole Genome Sequencing. GALA subjects that were part of this analysis were all 575 

recruited from Puerto Rico (n=695). A nasal airway inferior turbinate brushing was used 576 

to collect airway epithelial cells from these subjects for whole transcriptome sequencing 577 

(n=695). Network analyses were performed on all subjects with nasal brushing whole 578 

transcriptome sequencing data (n=695) and eQTL analysis was performed on the 579 

subset (n=681) with whole genome sequencing generated genotype data.  580 

 581 
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 582 

Bulk RNA sequencing of GALA II and ALI Samples 583 

Total RNA was isolated from GALA II subject nasal airway epithelial brushings using the 584 

AllPrep DNA/RNA Mini Kit (QIAGEN, Germantown, MD). Whole transcriptome libraries 585 

were constructed using the KAPA Stranded mRNA-seq library kit (Roche Sequencing 586 

and Life Science, Kapa Biosystems, Wilmington, MA) from 250ng of total input RNA 587 

with the Beckman Coulter Biomek FXP automation system (Beckman Coulter, Fullerton, 588 

CA) according to the manufacturers protocol. Barcoded libraries were pooled and 589 

sequenced using 125bp paired-end reads on the Illumina HiSeq 2500 system (Illumina, 590 

San Diego, CA). Bulk RNA-seq data for the nasal and tracheal ALI cultures to measure 591 

ACE2 and TMPRSS2 levels reported in Figures 3b,c and 4g,h, was generated with 592 

KAPA Hyperprep Stranded mRNA-seq library kits (Roche Sequencing and Life Science, 593 

Kapa Biosystems, Wilmington, MA) and sequenced with a Novaseq 6000 using 150bp 594 

paired end reads. 595 

 596 

 597 

Whole genome sequencing of GALA II Samples 598 

Genomic DNA was extracted from whole blood obtained from GALA II study subjects 599 

using the Wizard Genomic DNA Purification kits (Promega, Fitchburg, WI), and DNA 600 

was quantified by fluorescent assay. DNA samples were sequenced as part of the 601 

Trans�Omics for Precision Medicine (TOPMed) whole genome sequencing (WGS) 602 

program35. WGS was performed at the New York Genome Center and the Northwest 603 

Genomics Center on a HiSeqX system (Illumina, San Diego, CA) using a paired�end 604 
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read length of 150 base pairs, to a minimum of 30X mean genome coverage. Details on 605 

DNA sample handling, quality control, library construction, clustering and sequencing, 606 

read processing, and sequence data quality control are described elsewhere35. Variant 607 

calls were obtained from TOPMed data freeze 8 variant call format files.  608 

 609 

 610 

Experiments using an air-liquid interface, mucociliary culture system 611 

Primary human basal airway epithelial cells were expanded and differentiated at air-612 

liquid interface (ALI) in vitro according to established protocols36. Paired tracheal ALI 613 

cultures were mock-treated or treated with 10 ng/mL IL-13 in media (20 µL apical; 500 614 

µL basolateral) for the final 10 days of differentiation (ALI days 11-21) before harvest 615 

and scRNA-seq analysis. In contrast, nasal ALI cultures used for bulk RNA-seq analysis 616 

(N = 5 GALA II subjects) were either stimulated with IL-13 for 72h following completion 617 

of mucociliary differentiation (25 days) or were infected with human rhinovirus strain 618 

A16 for 4 h during the final 24 h of the 28 days of differentiation. Control cultures were 619 

only treated with media. 620 

 621 

Preparation of ALI cultures for 10X scRNAseq 622 

Following stimulation experiments involving the tracheal airway epithelial ALI samples, 623 

apical culture chambers were washed once with PBS and once with PBS supplemented 624 

with dithiothreitol (DTT;10mM), followed by two PBS washes to remove residual DTT. 625 

Cold active protease (CAP) solution (Bacillus licheniformis protease 2.5 μg/mL, DNase 626 

125 U/mL, and 0.5 mM EDTA in DPBS w/o Ca2+Mg2+) was added to apical culture 627 
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chamber and incubated on ice for 10 minutes with mixing every 2.5 minutes. 628 

Dissociated cells in CAP solution were added to 500 μL cold FBS, brought up to 5 mL 629 

with cold PBS, and centrifuged at 225 x g and 4°C for 5 minutes. The cell pellet was 630 

resuspended in 1 mL cold PBS+DTT, centrifuged at 225 x g and 4°C for 5 minutes, and 631 

then washed twice with cold PBS.  The final cell pellet was resuspended in PBS with 632 

0.04% BSA for single cell gene expression profiling with the 10X Genomics system. 633 

Sample capture, cDNA synthesis, and library preparation for 10d IL-13 ALI stimulations 634 

was performed using protocols and reagents for 10X Genomics Chromium Single Cell 635 

3’ v3 kit. Single cell libraries were pooled for sequencing on an Illumina NovaSeq 6000. 636 

 637 

Nasal brush 10X scRNA-seq 638 

Nasal brush cells were dissociated from the brush using Bacillus licheniformis cold 639 

active protease (10mg/ml), EDTA (0.5mM), and EGTA (0.5mM) at 4°C with vortex 640 

mixing, followed by enzyme neutralization with FBS.  Red blood cell lysis was 641 

performed and cells were washed twice in 0.04% BSA/PBS.  Cell concentration was 642 

adjusted to 400 cells/μL for cell capture of ~8000 cells using the 10X Genomics 643 

Chromium Next GEM Single Cell 3’ reagent kit chemistry.  Sample capture, cDNA 644 

synthesis, and library preparation was performed following 10X Genomics Chromium 645 

Next GEM Single Cell 3’ v3 kit. The single cell library was sequenced on an Illumina 646 

NovaSeq 6000. 647 

 648 

QUANTIFICATION AND STATISTICAL ANALYSIS 649 

 650 
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Nasal airway epithelium brushing bulk RNA-seq analysis  651 

 652 

Preprocessing of RNA-seq data 653 

Raw sequencing reads were trimmed using skewer37 (v0.2.2) with the following 654 

parameter settings: end-quality=15, mean-quality=25, min=30. Trimmed reads were 655 

then aligned to the human reference genome GRCh38 using GSNAP38 (v20160501) 656 

with the following parameter settings: max-mismatches=0.05, indel-penalty=2, batch=3, 657 

expand-offsets=0, use-sarray=0, merge-distant-same-chr. Gene quantification was 658 

performed with htseq-count39 (v0.9.1) using iGenomes GRCh38 gene transcript model. 659 

Variance stabilization transformation (VST) implemented in DESeq240 (v1.22.2) was 660 

then carried out on the raw gene count matrix to create a variance stabilized gene 661 

expression matrix suitable for downstream analyses.  662 

 663 

Weighted Gene Co-expression Network Analysis (WGCNA) on GALA II RNA-seq data 664 

To understand what biological mechanisms regulate the variation of nasal airway 665 

epithelial gene expression, Weighted Gene Co-expression Network Analysis41 666 

(WGCNA) v1.68 was performed on the VST matrix of 17,473 expressed genes. 667 

WGCNA analysis is a network-based approach that assumes a scale-free network 668 

topology. To adhere to the scale-free assumption of the constructed biological networks, 669 

a soft thresholding parameter (ß) value of 9 was chosen based on WGCNA guidelines. 670 

Furthermore, minClusterSize was set to 20, deepSplit was set to 2, and pamStage was 671 

set to TRUE. A total of 54 co-expression networks were identified and described in 672 

Supplementary Table 2. WGCNA networks are referred to by different colors, and two of 673 
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the these identified networks, saddle brown and tan were found to capture co-674 

expressed genes that underlie T2 inflammation and interferon inflammation, 675 

respectively. We hierarchically clustered all subjects based on expression of genes in 676 

the saddle brown network and then used the first split in the dendrogram as the basis 677 

for assigning individuals to T2-high or T2-low categories (Supplementary Figure 1a). 678 

Similarly, we hierarchically clustered subjects using the genes in tan network and then 679 

selected the dendrogram branches with the highest tan network expression as 680 

interferon-high and the other subjects as interferon-low (Supplementary Figure 2a). 681 

 682 

Cis-eQTL analysis of nasal RNA-seq data 683 

Cis-expression quantitative trait locus (eQTL) analysis was performed by following the 684 

general methodology of the Genotype-Tissue Expression (GTEx) project version 7 685 

protocol42, using the nasal RNA-seq data and WGS variant data from 681 GALA II 686 

subjects.  687 

Namely, WGS variant data was filtered based on allele frequency (minor allele 688 

frequency > 1%) and allele subject count (total number of subjects carrying minor allele 689 

≥ 10). After filtering, 12,590,800 genetic variants were carried forward into the eQTL 690 

analysis. For expression data filtering and preparation, we first ran Kallisto43 (v0.43.0) to 691 

generate transcript per million (TPM) values. We filtered out any genes that did not 692 

reach both TPM > 0.1 and raw counts > 6 for at least 20% of our samples. After filtering, 693 

17,039 genes were then TMM normalized using edgeR44 (v3.22.3). Finally, we applied 694 

an inverse normal transformation into the TMM-normalized expression values to render 695 

them suitable for eQTL analysis. To account for global population structure, we ran 696 
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ADMIXTURE45 (v1.3.0) on the genotype data to create five admixture factors. We then 697 

ran Probabilistic Estimation of Expression Residuals46 (PEER, v1.3) to create 60 PEER 698 

factors to utilize as covariates in the eQTL analysis along with admixture estimates, 699 

gender, age, body-mass index (BMI), and asthma diagnosis status. To perform cis-700 

eQTL analysis, we utilized a modified version of FastQTL47 that was provided by the 701 

GTEx project. Furthermore, we performed stepwise regression analysis to identify 702 

independent eQTL variants using QTLTools48 (v1.1). Allelic Fold Change (AFC) of the 703 

eQTL variant is computed using the aFC python script49.  704 

  705 

Virus identification and quantification from bulk RNA-Seq data 706 

To identify individuals with asymptomatic virus infection at the time of sample collection, 707 

viral genomic sequences were recovered from bulk RNA-seq data using a modified 708 

version of the Virus Finder 2.0 (VF2) pipeline50. A custom respiratory virus reference 709 

database comprising >600k sequences was employed to improve specificity. Using 710 

VF2, viral reads were garnered by removing human reads using Bowtie251 (default 711 

settings) and selecting viral reads using BLAT52 (minIdentity=80); contigs were 712 

assembled using Trinity53; short (<200 bp) or low complexity (DUST score < 0.07) 713 

contigs and contigs matching the human genome at a BLAST54  e-value <0.05 were 714 

discarded; the remaining contigs were classified using BLAST (e-value <0.05); read 715 

counts were obtained by read mapping using BLAT (minIdentity=98). Of the 468 distinct 716 

viral reference sequences detected by VF2, 7 were identified as erroneous and 717 

removed. The remaining 461 matches were manually assigned viral serotypes and the 718 

results aggregated with R.  719 
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 720 

Defining CoV and HRV infected groups and associated analysis  721 

To ensure we selected subjects that were experiencing an active host response to a 722 

CoV infection, we examined the distribution of viral reads for the 18 CoV+ infected 723 

subjects. We observed a clear break between the 7 subjects with the lowest viral read 724 

counts (<3,000 reads) and 11 subjects with the highest viral read counts (>60,000 725 

reads). Therefore, we selected these 11 highly infected subjects for analysis of host 726 

responses to CoV infection. To generate a similar infection-control group, composed of 727 

subjects highly infected with a different virus species, we examined the 67 HRV infected 728 

subjects in GALA, enforcing a comparable lower bound of viral reads as with CoV, 729 

adjusting for the smaller HRV genome size. Specifically, HRV genomes are ~7,000 730 

base pairs, whereas CoV genomes are ~30,000 base pairs, making the HRV genome 731 

~25% of the size of the CoV genome. Therefore, we selected a cutoff of 15,000 viral 732 

reads for subjects to be included in the HRV+ highly infected group. Therefore, we 733 

selected a cutoff of 15,000 viral reads for subjects to be included in the HRV+ highly 734 

infected group (n=37) analyzed in Figure 6. All non-infected subjects (n=571), based on 735 

the Virus Finder analysis described above, were used as comparison group for the 736 

CoV+ and HRV+ groups. 737 

In performing the CoV+ and HRV+ transcriptome-wide differential expression analyses, 738 

to account for the class imbalance of this experiment, log2 count-normalized expression 739 

values in units of counts per million (calculated using edgeR v3.28.0) were passed to 740 

the function arrayWeights function in the limma55 R package (3.42.0). limma-voom was 741 

then used to perform differential expression analysis on the count normalized 742 
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expression values between the CoV+ and uninfected groups, as well as between the 743 

HRV+ and uninfected groups, controlling for age, gender, and asthma diagnosis status. 744 

Genes were required to have an FDR adjusted p-value < 0.05, and an absolute log2FC 745 

> 0.5 to be considered significant. Based on these cutoffs, genes were classified as 746 

being shared if they were significant in both comparisons, or as CoV+–specfic or HRV+–747 

specific if significant in only one comparison.  748 

 749 

Gene set enrichment analysis.  750 

To investigate enriched pathways within WGCNA networks (see Figure 2a) or within 751 

genes differentially expressed in CoV+ and/or HRV+ infected subject groups (see Figure 752 

6c and 6c), we used Enrichr56 to test for gene overrepresentation of network genes 753 

within a panel of annotated gene databases (Gene Ontology [GO] Biological Process 754 

[BP] 2018, GO Molecular Function [MF] 2018, GO Cellular Component [CC] 2018, 755 

Kyoto Encyclopedia of Genes and Genomes [KEGG] 2019 Human, and Reactome 756 

2016). For cell type enrichments within WGCNA networks reported in Figure 2a, we 757 

tested for overrepresentation of network genes within gene marker sets (FDR < 0.05) 758 

for each of 35 epithelial and immune cell types inferred using scRNA-seq of human lung 759 

tissue57. 760 

 761 

For the plots in Figure 6f-g, transcriptomic data for 11 flow sorted immune cell 762 

populations were obtained from GEO experiments GSE3982 and GSE22886 and then 763 

batch corrected using the ComBat58 function from the SVA R package (v3.34.0). limma 764 

was then used to perform differential expression analysis between each cell type and all 765 
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the rest in order to obtain gene log2FC values for each cell type with which to rank order 766 

the genes. Gene set enrichment analysis (GSEA) was then used to test for association 767 

between upregulated genes in the shared, CoV+–specific, and HRV+–specific gene sets 768 

and each of the cell types, based on the cell type-specific ordered gene lists. GSEA was 769 

carried out using the FGSEA R package (v1.12.0). 770 

 771 

 772 

Canonical pathway analysis.  773 

We used QIAGEN’s Ingenuity Pathway Analysis (IPA) program (v01-16; content 774 

version: 51963813, release 2020-03-11) to investigate canonical pathways and 775 

upstream regulators that were significantly enriched in one or both of the upregulated 776 

CoV+-specific or HRV+-specific gene sets. 777 

 778 

Analysis of scRNA-seq data from the nasal epithelial brushing 779 

Initial processing of 10X scRNA-seq data, including cell demultiplexing, alignment to the 780 

human genome GRCh38, and UMI-based quantification was performed with Cell 781 

Ranger (version 3.0). Since the nasal brushing sample contains both epithelial and 782 

immune cell populations that have distinct expression profiles (e.g.: Immune cell types 783 

express far fewer genes compared to epithelial cell types), clustering and cell type 784 

identification were done in two stages: 1) an initial clustering with a less stringent filter to 785 

identify major epithelial and immune cell clusters was performed, 2) cells were 786 

reclustered with different independent filtering criteria for epithelial and immune cell 787 

types. All these analyses were performed using Seurat59 R package (v3.0). 788 
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 789 

In the first stage, we removed cells with fewer than 100 genes detected or cells with 790 

greater than 25% mitochondrial reads. Additionally, to remove possible doublets, we 791 

removed cells with higher than 6,000 genes detected and/or more than 20,000 UMIs. 792 

Lowly expressed genes (detected in fewer than 4 cells) were also removed. We then 793 

performed normalization using SCTransform60 and ran PCA on the top 5000 highly 794 

variable normalized genes. Clustering analysis was performed on the top 20 PCs using 795 

a shared nearest neighbor (SNN) based SLM61 algorithm with the following parameter 796 

settings: resolution=0.8, algorithm=3. The single cell expression profiles were visualized 797 

via embedding into two dimensions with UMAP62 (Uniform Manifold Approximation and 798 

Projection), resulting in the identification of 11,157 epithelial cells and 229 immune cells 799 

based on known cell type signatures.  800 

 801 

In the second stage, we retained all the immune cells but removed epithelial cells with 802 

fewer than 1,000 detected genes. After this filtering, a combined 8,291 epithelial and 803 

immune cells were then normalized as in the first stage. Clustering analysis performed 804 

on the top 30 PCs with parameters (resolution=0.4, algorithm=1, k.param=10) identified 805 

15 clusters. We then ran differential expression analysis using a Wilcoxon test 806 

implemented in Seurat’s “FindMarkers” function to help with cell type identification. 807 

Based on these cluster marker lists, two clusters were merged into a single secretory 808 

cluster, another two clusters were merged into a single ciliated cluster, and a final two 809 

clusters were combined as “indeterminate,” based on the lack of defining marker genes 810 

for these clusters. Through this merging process, we arrived at 8 epithelial and 3 811 
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immune cell populations (Figure 1a, Supplementary Table 1) 812 

 813 

 814 

Analysis of bulk RNA-seq data from IL-13 and HRV infected ALI nasal airway 815 

epithelial cultures  816 

Raw sequencing reads were trimmed using skewer with the following parameter 817 

settings: end-quality=15, mean-quality=25, min=30. Trimmed reads were then aligned to 818 

the human reference genome GRCh38 using HISAT263 (v2.1.0) using default parameter 819 

settings. Gene quantification was performed with htseq-count using the GRCh38 820 

Ensembl v84 gene transcript model. After removing mitochondrial, ribosomal, and lowly 821 

expressed genes (those not expressed in at least two samples), we carried out 822 

differential expression analyses between paired IL-13-stimulated and control samples 823 

(N = 5 donors) and between paired HRV-infected and control samples (N = 5 donors) 824 

using the DESeq2 R package (v1.22.2). 825 

 826 

Analysis of scRNA-seq data from 10 day IL-13-stimulated and control tracheal cell 827 

ALI cultures 828 

As with the nasal brushing scRNA-seq data, 10X scRNA-seq data from ALI cultures 829 

grown from a single tracheal donor that were either mock- or IL-13 stimulated for 10 830 

days were pre-processed using Cell Ranger (version 3.0, 10X Genomics). To safeguard 831 

against doublets, we removed all cells with gene or UMI counts exceeding the 99th 832 

percentile. We also removed cells expressing fewer than 1,500 genes or for which > 833 

30% of genes were mitochondrial (genes beginning with MTAT, MT-, MTCO, MTCY, 834 
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MTERF, MTND, MTRF, MTRN, MRPL, or MRPS), resulting in a total of 6,969 cells 835 

(2,715 IL-13-stimulated and 4,254 controls). After removing mitochondrial, ribosomal 836 

(RPL and RPS), and very lowly expressed genes (expressed in < 0.1% of cells), we 837 

integrated expression data from IL-13 and control cells using the dataset integration 838 

approach in Seurat64. For the integration analysis, we used the top 30 dimensions from 839 

a canonical correlation analysis (CCA) based on SCTransform normalized expression of 840 

the top 3,000 most informative genes across the two datasets, where “informativeness” 841 

was defined by gene dispersion (i.e., the log of the ratio of expression variance to its 842 

mean) across cells, calculated after accounting for its relationship with mean 843 

expression. We then carried out principle component analysis (PCA) on the integrated 844 

dataset and used the top 20 components for clustering and visualization. We used SNN 845 

(Louvain algorithm, resolution=0.23, k.param=10) to cluster the integrated cells into 11 846 

populations, which we visualized in two dimensions using UMAP (see Figure 3d). These 847 

clusters were assigned cell type labels based their most upregulated genes, which were 848 

identified by carrying out differential expression analysis between each cluster and all 849 

others using Seurat’s logistic regression (LR) test, in which cell treatment was included 850 

as a latent variable.  851 

 852 

DATA AVAILABILITY 853 

All raw and processed RNA-seq data used in this study are currently being deposited in 854 

the National Center for Biotechnology Information/Gene Expression Omnibus (GEO). 855 

 856 
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Figure Legends 1111 

 1112 

Figure 1. ACE2 and TMPRSS2 are expressed by multiple nasal airway epithelial 1113 

cell types  1114 

(a) UMAP visualization of cells derived from a human nasal airway epithelial brushing 1115 

depicts multiple epithelial and immune cell types identified through unsupervised 1116 

clustering.  1117 

(b) Normalized expression of ACE2 in epithelial and immune cell types. 1118 

(c) Normalized expression of TMPRSS2 in epithelial and immune cell types. 1119 

 1120 

Figure 2. TMPRSS2 is a mucus secretory network gene regulated by T2 1121 

inflammation  1122 

(a) WGCNA identified networks of co-regulated genes related to mucus secretory 1123 

function (black), T2 inflammation-induced mucus secretory function (pink), and 1124 



 51

canonical T2 inflammation biomarkers (saddle brown). TMPRSS2 was within the pink 1125 

network. Select pathway and cell type enrichments for network genes are shown.  1126 

(b) Scatterplot revealing a strong positive correlation between TMPRSS2 expression 1127 

and summary (eigengene) expression of the T2 inflammatory, mucus secretory network. 1128 

(c) Scatterplot revealing a strong positive correlation between TMPRSS2 expression 1129 

and summary (eigengene) expression of the canonical T2 inflammation biomarker 1130 

network.  1131 

(d) Box plots revealing strong upregulation of TMPRSS2 expression among T2-high 1132 

compared to T2-low subjects.  1133 

(e) Scatterplot revealing a strong negative correlation between ACE2 expression and 1134 

summary (eigengene) expression of the T2 inflammation mucus secretory network. 1135 

(f) Scatterplot revealing a strong negative correlation between ACE2 expression and 1136 

summary (eigengene) expression of the canonical T2 inflammation biomarker network.  1137 

(g) Box plots revealing strong downregulation of ACE2 expression among T2-high 1138 

compared to T2-low subjects. 1139 

 1140 

Figure 3. ACE2 and TMPRSS2 expression are both regulated by IL-13 in the 1141 

mucociliary airway epithelium  1142 

(a) Experimental schematic detailing the timeline for differentiation of basal airway 1143 

epithelial cells into a mucociliary airway epithelium and treatment with chronic (10 days) 1144 

or acute (72 hours) IL-13 (10ng/ml). 1145 



 52

(b) Box plots of count-normalized expression between paired nasal airway cultures 1146 

(control/IL-13) revealing strong downregulation of bulk ACE2 expression with IL-13 1147 

treatment. Differential expression results are from DESeq2. 1148 

(c) Box plots of count-normalized expression between paired nasal airway cultures 1149 

(control/IL-13) revealing strong upregulation of bulk TMPRSS2 expression with IL-13 1150 

treatment. Differential expression results are from DESeq2. 1151 

(d) UMAP visualization of cells derived from control and IL-13 stimulated tracheal airway 1152 

ALI cultures depict multiple epithelial cell types identified through unsupervised 1153 

clustering. 1154 

(e) Violin plots of normalized ACE2 expression across epithelial cell types from tracheal 1155 

airway ALI cultures, stratified by treatment (gray = control, red =  IL-13). Differential 1156 

expression using a Wilcoxon test was performed between control and IL-13-stimulated 1157 

cells with significant differences in expression for a cell type indicated by a * (p < 0.05).   1158 

(f) Violin plots of normalized TMPRSS2 expression across epithelial cell types from 1159 

tracheal airway ALI cultures, stratified by treatment (gray = control, red = IL-13). 1160 

Differential expression using a Wilcoxon test was performed between control and IL-13-1161 

stimulated cells with significant differences in expression for a cell type indicated by a * 1162 

(p < 0.05).  1163 

 1164 

Figure 4. ACE2 is an interferon response network gene regulated by respiratory 1165 

virus infections  1166 

(a) Scatter plot revealing a strong positive correlation between ACE2 expression and 1167 

summary (eigengene) expression of the cytotoxic immune response network (purple). 1168 
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(b) Scatterplot revealing a strong positive correlation between ACE2 expression and 1169 

summary (eigengene) expression of the interferon response network (tan). 1170 

 (c) WGCNA analysis identified networks of co-regulated genes related to cytotoxic 1171 

immune response (purple) and interferon response (tan). ACE2 was within the purple 1172 

network. Select pathway and cell type enrichments for network genes are shown.  1173 

(d) Box plots of count-normalized expression from GALA II nasal epithelial samples 1174 

reveal strong upregulation of ACE2 expression among interferon-high compared to 1175 

interferon-low subjects. Differential expression results are from DESeq2. 1176 

(e) Pie graph depicting the percentage of each type of respiratory virus infection found 1177 

among GALA II subjects in whom viral reads were found.  1178 

(f) Experimental schematic detailing timeline for differentiation of basal airway epithelial 1179 

cells into a mucociliary airway epithelium and experimental infection with HRV-A16. 1180 

(g) Box plots of count-normalized expression between paired nasal airway cultures 1181 

(control/HRV-A16 infected) revealing strong upregulation of ACE2 expression with 1182 

HRV-A16 infection. Differential expression results are from DESeq2. 1183 

(h) Box plots of count-normalized expression between paired nasal airway cultures 1184 

(control/HRV-A16-infected) revealing no effect of HRVA-16 on TMPRSS2 expression. 1185 

Differential expression results are from DESeq2. 1186 

 1187 

Figure 5. ACE2 and TMPRSS2 nasal airway expression are regulated by eQTL 1188 

variants 1189 

(a) Locuszoom plot of ACE2 eQTL signals. The lead eQTL variant (rs18160331) is 1190 

highlighted with a purple dot. The strength of Linkage Disequilibrium (LD) between 1191 
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rs18160331 and other variants is discretely divided into five quantiles and mapped into 1192 

five colors (dark blue, sky blue, green, orange, and red) sequentially from low LD to high 1193 

LD. 1194 

(b) Locuszoom plot of TMPRSS2 eQTL signals. The three independent eQTL variants 1195 

(rs1475908, rs2838057, rs74659079) and their LD with other variants (r2) are 1196 

represented by red, blue, and green color gradient respectively. 1197 

(c) Box plots of normalized ACE2 expression among the three genotypes of the lead 1198 

ACE2 eQTL variant (rs18160331). log2AFC = log2 of the allelic fold change associated 1199 

with the variant. 1200 

(d) Box plots of normalized TMPRSS2 expression among the three genotypes of the 1201 

lead TMPRSS2 eQTL variant (rs1475908). log2AFC = log2 of the allelic fold change 1202 

associated with the variant. 1203 

(e) Bar plots depicting allele frequencies of the ACE2 eQTL variant rs18160331 and 1204 

TMPRSS2 eQTL variants (rs1475908, rs2838057, rs74659079) across world 1205 

populations. Allele frequency data were obtained from gnomAD v2.1.1. 1206 

 1207 

Figure 6. Coronavirus infections elicit an enhanced cytotoxic immune response 1208 

from the airway epithelium  1209 

(a) Box plots revealing a strong and equivalent upregulation of summary (eigengene 1210 

[Eg]) expression for the interferon response network among HRV and CoV-infected 1211 

GALA II subjects, compared to uninfected subjects.   1212 
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(b) Box plots revealing upregulation in summary (eigengene) expression for the 1213 

cytotoxic immune response network among HRV-infected GALA II subjects that is even 1214 

stronger for the CoV infected group. 1215 

(c) Venn Diagram describing the number of differentially expressed genes in HRV and 1216 

CoV infected groups compared to the uninfected group, and the extent of their overlap. 1217 

For genes differentially expressed in both groups, select enriched pathways and 1218 

underlying genes that are highly differentially expressed are shown.   1219 

(d) Top upstream regulators predicted by Ingenuity Pathway Analysis to be regulating 1220 

the genes that were upregulated in CoV. Enrichment values for these CoV regulators, 1221 

using the HRV upregulated genes are also shown.  1222 

(e) Heatmap of the log2FC in gene expression for CoV and HRV groups when 1223 

compared to the uninfected group. Top significantly upregulated genes are shown, 1224 

along with ACE2, IL6, and genes identified as belonging to cytotoxic pathways, which 1225 

were enriched within the virally upregulated CoV group DEGs based on IPA canonical 1226 

pathway analysis. Color bars indicate which WGCNA network and or IPA canonical 1227 

pathway each gene belongs to. 1228 

(f) Gene set enrichment analysis plot for CD8+ T cells. The black (shared), yellow (CoV-1229 

enhanced), and red (HRV-enhanced) curves display the enrichment score for the 1230 

indicated viral gene set as the analysis walks down the ranked distribution of genes 1231 

ordered by fold change in expression between CD8+ T cells relative to all other immune 1232 

cell types (red-blue color bar). Genes are represented by vertical bars in the same color 1233 

as the curve of the viral gene group they represent. Denoted genes are a representative 1234 

set from the leading edge (most responsible for the enrichment).  1235 
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(g) Gene set enrichment analysis plot for NK cells. The black (shared), yellow (CoV-1236 

enhanced), and red (HRV-enhanced) curves display the enrichment score for the 1237 

indicated viral gene set as the analysis walks down the ranked distribution of genes 1238 

ordered by fold change in expression between NK cells relative to all other immune cell 1239 

types (red-blue color bar). Genes are represented by vertical bars in the same color as 1240 

the curve of the viral gene group they represent. Denoted genes are from the leading 1241 

edge (most responsible for the enrichment).  1242 
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Partial R2
Variable Ref. (%) Coeff. SE t p-value

Age n/a 1.03 -0.032 0.009 -3.64 0.000300
Interferon Status Low 17.09 1.301 0.088 14.78 6.50e-43
Type 2 Inflammation Low 24.44 -1.001 0.057 -17.68 1.58e-57
Sex Male 0.14 0.075 0.056 1.33 0.185421
Asthma Healthy 0.58 -0.160 0.059 -2.73 0.006415
rs181603331 (G>T) G/G 1.20 -0.635 0.162 -3.92 0.000097

Age n/a 0.07 -0.008 0.010 -0.88 0.380112
Interferon Status Low 0.07 0.087 0.098 0.88 0.378731
Type 2 Inflammation Low 33.24 1.177 0.063 18.77 1.74e-63
Sex Male 0.02 -0.031 0.062 -0.50 0.616276
Asthma Healthy <0.01 0.014 0.065 0.22 0.829301
rs1475908 (G>A) G/G 0.22 -0.082 0.054 -1.51 0.130251
rs74659079 (C>T) C/C 0.39 0.216 0.107 2.03 0.043151
rs2838057 (A>C) A/A 0.42 0.139 0.066 2.12 0.034678

Table 1. Results for multivariate models predicting ACE2 and TMPRSS2 expression

TMPRSS2

ACE2

Effect Size t-testPredictor
Model


