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Abstract 49 

The Anaphase-Promoting Complex/Cyclosome (APC/C) is an E3 ubiquitin ligase and 50 

critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to 51 

globally map APC/C substrates. By combining orthogonal features of known substrates, we 52 

predicted APC/C substrates in silico. This analysis identified many known substrates and 53 

suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among 54 

putative substrates and we show that several chromatin proteins bind APC/C, oscillate during the 55 

cell cycle and are degraded following APC/C activation, consistent with being direct APC/C 56 

substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key 57 

chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. 58 

Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and 59 

perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates 60 

crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences 61 

in normal cell physiology, where the chromatin environment changes depending on proliferative 62 

state, as well as in disease. 63 
  64 
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Introduction 65 

Regulated protein degradation is central to cell and organismal physiology and plays a 66 

particularly important role in proliferation. In eukaryotes, protein degradation is controlled largely 67 

by the ubiquitin (Ub) system. E3 Ub ligases provide substrate specificity and facilitate the transfer 68 

of Ub onto substrates. The formation of poly-Ub chains on substrates provides a signal that often 69 

targets substrates to the proteasome for degradation (1).  70 

The Anaphase-Promoting Complex/Cyclosome (APC/C) is a 1.2 megadalton, multi-71 

subunit E3 ligase and essential cell cycle regulator. APC/C utilizes two coactivators, Cdc20 and 72 

Cdh1, which directly bind substrates, recruiting them to the E3 complex (2). APC/CCdc20 becomes 73 

active in mid-mitosis and promotes the metaphase to anaphase transition. APC/CCdh1 becomes 74 

active in late mitosis and remains active until the end of G1, during which time it prevents S-phase 75 

entry (3). Thus, APC/CCdc20 and APC/CCdh1 play opposing roles, the former promoting cell cycle 76 

progression in mitosis and the latter inhibiting cell cycle progression in G1.  77 

In addition to its role in normal cell cycles, APC/C dysfunction has been implicated in 78 

disease. Cdh1 is a haploinsufficient tumor suppressor in mice and cooperates with the 79 

retinoblastoma protein to restrain proliferation (4–8). Several oncogenic kinase cascades impinge 80 

on Cdh1 function, further supporting a role for APC/CCdh1 in tumor suppression (9–11). In 81 

addition, the APC/C subunit Cdc27 is mutated in cancer and associated with aneuploidy (12). 82 

APC/C is also linked to inherited disorders that give a range of disease phenotypes, including 83 

microcephaly, cancer predisposition, and skeletal abnormalities (13,14).  84 

Cdh1 and Cdc20 bind substrates through short, linear sequence motifs termed degrons. The 85 

most well-defined APC/C degron motifs are the KEN-box and D-box (15,16). In addition, binding 86 

of Cdc20 and Cdh1 to APC/C promotes a conformational change in the E3 that stimulates ligase 87 
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activity (17). This results in substrate poly-ubiquitylation by its two cognate E2 enzymes. 88 

UBE2C/UbcH10 deposits the first Ub monomers onto substrates and forms short Ub chains, 89 

whereas UBE2S elongates poly-Ub chains (18–21).  90 

Most known APC/C substrates are linked to cell cycle processes, including mitotic 91 

progression, spindle function and DNA replication. The paramount importance of APC/C in cell 92 

cycle and non-cell cycle processes, and its dysfunction in disease, highlight the importance of 93 

systematically defining substrates, whose regulation (or dysregulation), will likely contribute to 94 

proliferation and disease phenotypes. Nevertheless, barriers exist to the identification of APC/C 95 

substrates, as well as most other E3s. E3-substrate interactions are dynamic and binding often 96 

triggers substrate proteolysis. Additionally, the abundance of most substrates is low, and for 97 

APC/C, most targets are cell cycle regulated. Furthermore, since APC/C is a massive complex 98 

with many substrates, the relative binding stoichiometry to each individual substrate is low. 99 

Finally, degron sequences are short and occur vastly across proteomes, making it difficult to 100 

predict substrates. 101 

We developed a simple in silico approach to identify potential APC/C targets. We took 102 

advantage of common features among known substrates, namely their transcriptional regulation 103 

during cell cycle and the presence of a degron motif. Super-imposing these features onto the 104 

proteome enriched for substrates and suggested previously undescribed targets.  105 

This analysis revealed a role for APC/C in chromatin biology. We validate several 106 

substrates involved in chromatin dynamics, highlighting a previously underappreciated role for 107 

APC/C in chromatin regulation. We further define the mechanisms of ubiquitylation for UHRF1 108 

(Ubiquitin-like with PHD and RING finger domains 1), a multivalent chromatin binding protein 109 

and itself an E3 ligase that can ubiquitylate histone H3 (22–25). UHRF1 plays an important role 110 
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in DNA methylation and has been implicated in other DNA templated processes, including DNA 111 

repair (26–28). Additionally, UHRF1 is suggested to be an oncogene, whose expression correlates 112 

with high tumor grade and poor prognosis (29–31). 113 

Altogether, these results reveal a role for APC/C-dependent UHRF1 degradation in cell 114 

cycle progression and shaping the DNA methylation landscape. More broadly, our data suggest 115 

that cell cycle regulated protein degradation helps organize the epigenetic landscape during 116 

proliferation. This suggests a potential mechanistic link contributing to changes in the chromatin 117 

landscape observed between proliferating and non-proliferating cells (32,33). We predict that 118 

altering APC/C function could promote changes in the histone and DNA modification landscape, 119 

and that these effects could contribute to the biochemical and phenotypic features of diseases, 120 

including cancer and neurological disorders.   121 
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Results 122 

Identification of APC/C substrates 123 

To identify human APC/C substrates, we first performed FLAG immunoprecipitations (IP) 124 

from HEK-293T cells expressing amino-terminal tagged FLAG-Cdh1 or an empty vector and 125 

analyzed precipitated proteins by mass spectrometry (Table S1). Several APC/C complex 126 

components and known substrates, including Rrm2, Kif11, Claspin, and cyclin A were enriched 127 

in Cdh1 pulldowns. Compared to a previously established dataset (34), we identified 15 out of 53 128 

known substrates. However, hundreds of proteins were enriched over controls and many known 129 

substrates scored weakly, confounding our ability to prioritize candidates. For example, a single 130 

spectral count was observed for the substrate Kif22/KID (35,36).  131 

We considered computationally identifying substrates based on features common among 132 

substrates. APC/C binds substrates most often through D- and KEN-box degron motifs. The 133 

minimal D-box motif (R-x-x-L) is present in most human proteins and insufficient as a prediction 134 

tool. The KEN-motif is found in approximately 10% of human proteins (2,206; Table S2), and 135 

several D-box regulated substrates also contain a KEN-motif, including Securin and Cdc6 (37,38). 136 

In addition, the gene expression of most APC/C substrates oscillates during the cell cycle (39). We 137 

cross-referenced the KEN-motif containing proteins against a set of 651 proteins whose mRNAs 138 

scored in at last two cell cycle mRNA profiling studies (40–43). Overlapping the 2,206 KEN-motif 139 

containing proteins with 651 transcriptionally controlled genes produced a set of 145 proteins, 140 

which represent known and putative APC/C substrates (Fig. 1A, Table S2).  141 

We compared our in silico analysis with two previously curated datasets, one containing 142 

53 known APC/C targets (34), and a second containing 33 specifically KEN-dependent APC/C 143 

substrates (16). When compared to these lists of 53 and 33 substrates, our dataset captured 26 and 144 

22 of them, respectively, the latter representing an enrichment of more than 140-fold, compared to 145 

what would be expected by chance (Fig. 1B). We also compared our data to other studies that 146 

identified APC/C substrates, interactors, proteins degraded at mitotic exit, or proteins ubiquitylated 147 
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in mitosis (Table S3) (34,44–49). Our in silico analysis identified the most KEN-dependent 148 

substrates relative to these studies (Figure 1C; Table S3). When compared to the set of 53 149 

substrates, which includes both D- and KEN-box dependent substrates, our dataset captured 26 out 150 

of 53 known substrates, despite not focusing on D-box substrates. Combining the in silico 151 

predictions with our Cdh1-pulldown proteomics data, we captured 31 out of 53 substrates.  152 

Among the 145 computationally identified known and potential substrates, gene ontology 153 

(GO) analysis showed a strong enrichment for processes linked to various aspects of cell division 154 

(Fig. 1D). Manual curation demonstrated that nearly half of the proteins we identified (70 of 145) 155 

have well-established roles in cell cycle. These were sub-classified into the sub-categories 156 

cytoskeleton and motors, centromere-kinetochore, APC/C and spindle checkpoint, cytokinesis, 157 

mitotic entry, cell cycle transcription, cohesion and condensation, and DNA replication (Fig. 1E). 158 

Among these 70, 50% have literature evidence for regulation by APC/C, highlighting our 159 

enrichment for APC/C substrates (Fig. 1E; shown in magenta). All 145 proteins, their known 160 

function, sub-category, KEN-box sequence motif with flanking sequence, aliases, and citations 161 

describing regulation by APC/C are detailed in Table S2.  162 

 163 

Regulated degradation of chromatin factors 164 

Unexpectedly, our dataset revealed several proteins involved in chromatin regulation (Fig. 165 

2A) and an enrichment for GO processes related to chromatin (Fig. 2B). The dataset includes 166 

readers and writers of histone post-translational modifications, including the lysine 167 

acetyltransferases, PCAF/KAT2B and NCOA3/KAT13B, the lysine methyl-transferase 168 

MLL2/KMT2D, the chromatin reader and histone Ub ligase UHRF1, and the mitotic histone H3 169 

kinase Aurora B (Fig. 2A and 1E). We identified proteins involved in chromatin assembly and 170 

structure, including: CHAF1B, a component of the CAF-1 nucleosome assembly complex; TTF2, 171 

a Swi2/Snf2 family member and DNA-dependent ATPase; KI-67, which prevents chromosome 172 

aggregation in mitosis and regulates histone post-translational modifications; and proteins 173 
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associated with cohesion and condensation, including SMC4 and NIPBL (Fig. 1E). We also 174 

identified proteins involved in DNA damage repair.  175 

To validate potential substrates, we developed an in vivo APC/C activation assay that is 176 

amenable to analysis of endogenous or exogenously expressed proteins, and which is similar to 177 

approaches described elsewhere (50). U2OS cells were synchronized in mitosis with the 178 

microtubule poison nocodazole. After harvesting cells by mitotic shake-off, CDK1 was inactivated 179 

with either the CDK1-specific inhibitor RO-3306 or pan-CDK inhibitor Roscovitine, driving cells 180 

out of mitosis and triggering APC/C activation and destruction of substrates, including FoxM1, 181 

NUSAP1, and Cyclin B (Fig. 2C, Fig. S1) (51).  182 

Using a combination of exogenous expression and endogenous protein analysis, we 183 

examined the levels of chromatin related proteins not previously shown to be APC/C substrates. 184 

Using this assay, there was a decrease in the levels of several writers of histone modifications, 185 

including UHRF1, PCAF, TTF2, and NCOA3 (Fig. 2C, S1A, S1B). We observed a decrease in 186 

the levels of the chromatin assembly factors NASP and CHAF1B as well as the RNA processing 187 

proteins LARP1 and LARP7 (Fig. 2C, S1A, S1B). All of these have been previously identified as 188 

ubiquitylated in proteomics studies by an unknown E3 ligase (52–56).  189 

Since the role of APC/C in chromatin regulation is not well established, we focused our 190 

attention on the potential regulation of chromatin proteins by APC/C. We determined the ability 191 

of a subset to bind Cdh1 by coIP. CHAF1B, PCAF, NCOA3, and TTF2 interact with Cdh1 by 192 

coIP in 293T cells (Fig. 2D-2G). Accordingly, the levels of endogenous CHAF1B, TTF2, and 193 

NCOA3 oscillate during the cell cycle in U2OS, analyzed following a nocodazole-induced block 194 

in mitosis and then release into the cell cycle (Fig. 2H). PCAF levels did not decrease at mitotic 195 

exit in U2OS (Fig. S1C) but do decrease at mitotic exit in HeLa cells (Fig. S1C), suggesting a 196 

potentially complex regulation. Finally, we purified recombinant TTF2 and found that APC/C 197 

could trigger its ubiquitylation in vitro (Fig. S2). A table of all proteins tested in these assays and 198 

their validation is shown in Table S4. Taken together, this analysis uncovered new APC/C 199 

substrates and a role for APC/C in controlling chromatin regulators.  200 
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 201 

UHRF1 regulation by APC/CCdh1  202 

To further understand the function of APC/C in chromatin biology, we pursued UHRF1, a 203 

key chromatin regulator that reads and writes histone modifications. UHRF1 associates with the 204 

DNA methyltransferase DNMT1 and is required for DNA methylation (26). UHRF1 has also been 205 

implicated in replisome assembly (57,58) and its phosphorylation oscillates during the cell cycle 206 

(59).  207 

We examined UHRF1 protein levels following a mitotic block and release. 208 

Immunoblotting for UHRF1 and other cell cycle markers showed that UHRF1 protein levels 209 

decrease during mitotic exit in HeLa S3, HeLa, and U2OS cell lines (Fig. 3A, S3A-B). In each cell 210 

line, UHRF1 levels remain low in G1 and then re-accumulate starting around G1/S, based on the 211 

expression of other cell cycle markers, including cyclin E and cyclin A, and then further increasing 212 

throughout the subsequent G2/M phase.  213 

We performed several assays to assess whether UHRF1 is regulated by APC/C. We 214 

analyzed UHRF1 in the aforementioned in vivo APC/C activation assay. U2OS cells were arrested 215 

in mitosis and then treated with RO-3306. We observed a decrease in UHRF1 that was partially 216 

mitigated by the proteasome inhibitor, MG-132, indicating that the reduction is dependent on the 217 

proteasome (Fig. 3B). In addition, transient siRNA depletion of Cdh1 (Fzr1 mRNA transcript) 218 

augmented UHRF1 protein levels (Fig. 3C). Conversely, ectopic expression of increasing 219 

concentrations of FLAG-Cdh1 led to a dose-dependent decrease in both exogenous and 220 

endogenous UHRF1 protein levels (Fig. 3D). We examined UHRF1 levels in cells that were first 221 

synchronized in G1 by a mitotic block and release, and then treated with the pharmacological 222 

APC/C inhibitor proTAME for 90 minutes (Fig. S3C). This led to an increase in UHRF1 levels. 223 

Together, these data suggest that APC/C controls UHRF1 in vivo.  224 

 225 
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UHRF1 ubiquitylation by APC/CCdh1 226 

UHRF1 is a multi-domain protein (Fig. 4A) that exhibits multivalent binding with 227 

chromatin through histone and DNA binding domains  (24,60,61). Additionally, UHRF1 is a RING 228 

domain E3 that ubiquitylates histone H3 (22,23,25). To determine whether UHRF1 is a direct 229 

APC/CCdh1 substrate, we tested its binding to Cdh1 by expressing HA-Cdh1 and Myc-UHRF1 in 230 

293T cells. Cells were treated with the proteasome inhibitor MG-132 prior to harvesting to prevent 231 

UHRF1 degradation. Myc-UHRF1 was enriched in the HA-Cdh1 pull-down, and HA-Cdh1 was 232 

enriched in the Myc-UHRF1 pull-down (Fig. 4B, 4C).  233 

Next, we purified and fluorescently labeled recombinant, bacterially expressed, full-length 234 

(FL) UHRF1 (FL-UHRF1*, where the * denotes fluorescently labelled protein). We found that 235 

FL-UHRF1* was ubiquitylated in an APC/C- and Cdh1-dependent manner using an entirely in 236 

vitro recombinant system (Fig. 4D). Multiple, high molecular weight ubiquitylated forms are 237 

observed using either wild-type Ub or methylated-Ub, the latter of which cannot form poly-Ub 238 

chains. This indicates that APC/C ubiquitylates multiple lysines in UHRF1 (Fig. 4D, S4A-B).  239 

Since UHRF1 can auto-ubiquitylate itself through its RING domain, we confirmed that its 240 

ubiquitylation is APC/C dependent. First, we purified a version of APC/C selectively missing the 241 

APC2 WHB domain and the APC11 RING domain, which are required to recruit its initiating E2 242 

UBE2C (designated ∆RING∆WHB) (62,63). This version of APC/C was unable to ubiquitylate 243 

UHRF1 (Fig. 4E).  244 

Next, we purified and fluorescently labeled a truncated version of UHRF1 that contains the 245 

Linker, PHD, and SRA domains (termed LPS), spanning amino acids 287-715 (Fig. 4A). The LPS 246 

fragment omits three potential APC/C D-box degron motifs, as well as the RING domain, 247 

precluding auto-ubiquitylation. A D-box motif remains in the highly structured SRA domain but 248 

is unlikely to be accessible as a degron motif (64).  249 

Significantly, LPS-UHRF1* is more robustly ubiquitylated in an APC/C- and Cdh1- 250 

dependent manner compared to FL-UHRF1* (Fig. 4D-E). Moreover, UHRF1 ubiquitylation is 251 

fully inhibited by the APC/C inhibitor Emi1 (Fig. 4F). Ubiquitylation of UHRF1 is initiated by 252 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.09.033621doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.033621
http://creativecommons.org/licenses/by-nc/4.0/


Page 13 of 53 
 

APC/CCdh1-UBE2C while APC/CCdh1-UBE2S elongates Ub chains, indicating that UHRF1 253 

ubiquitylation is similar to that of other substrates tested in this in vitro system (Fig. 4F). We 254 

conclude that UHRF1 is a bona fide APC/C substrate.  255 

The ubiquitylation of truncated LPS-UHRF1* (Fig. 4D, 4E, 4F) strongly suggests the 256 

importance of the KEN-motif, located in an unstructured region at amino acids 622-624 (Fig. 4A). 257 

Alanine substitutions were introduced into the KEN sequence (UHRF1KEN:AAA). The KEN mutant 258 

version (Myc-UHRF1KEN:AAA) showed reduced, although not completely abolished, binding to 259 

HA-Cdh1 by coIP, compared to Myc-UHRF1WT (Fig 4G). Additionally, the KEN mutant versions 260 

of FL-UHRF1* and LPS-UHRF1* were completely resistant to ubiquitylation by APC/C (Fig. 261 

4H). We conclude that UHRF1 ubiquitylation by APC/CCdh1 is dependent on its KEN-box motif. 262 

APC/C substrates are recruited by Cdc20 and Cdh1, and many substrates can be controlled 263 

by both. To test if UHRF1 is controlled by APC/CCdc20, in addition to APC/CCdh1, we used a 264 

phosphomimetic version of APC/C (termed pE-APC/C) that can utilize either Cdc20 or Cdh1, 265 

since Cdc20 cannot bind to unphosphorylated APC/C (62). Surprisingly, unlike other, well-266 

established APC/C substrates, including Cyclin B (CycBNTD, amino acids 1-95) and Securin, the 267 

FL-UHRF1* and LPS-UHRF1* were ubiquitylated by APC/CCdh1 but not by APC/CCdc20 (Fig. 4I, 268 

S4C).  269 

 We transiently expressed FLAG-Cdh1 in HEK-293T cells in combination with either Myc-270 

UHRF1WT or mutant versions harboring alanine mutations in either the KEN-box (Myc-271 

UHRF1KEN:AAA) or the fourth D-box motif (Myc-UHRF1D4). Ectopic FLAG-Cdh1 overexpression 272 

triggers the degradation of Myc-UHRF1WT and Myc-UHRF1D4, whereas Myc-UHRF1KEN is 273 

resistant to degradation (Fig. 5A), further supporting the importance of the KEN-motif in UHRF1 274 

degradation.  275 

Next, we generated cell lines constitutively expressing GFP-tagged UHRF1WT or 276 

UHRF1KEN:AAA using lentiviral transduction and examined UHRF1 stability upon mitotic exit. 277 

Exogenous UHRF1 levels were only moderately overexpressed compared to endogenous levels 278 

(Fig. 5B). Following synchronization with nocodazole, GFP-UHRF1WT levels decrease at mitotic 279 
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exit. Conversely, GFP-UHRF1KEN:AAA levels remain stable through mitotic exit and G1 phase (Fig. 280 

5B). Cells expressing GFP-UHRF1KEN:AAA exit mitosis normally based on immunoblotting for the 281 

APC/C substrates cyclin A, cyclin B, cyclin F and Aurora A, which are degraded with normal 282 

kinetics (Fig. 5B). Thus, the KEN box regulates UHRF1 ubiquitylation in vitro and degradation in 283 

vivo. In addition, the mild over-expression of UHRF1 in these cells does not affect overall APC/C 284 

activity.  285 

 286 

UHRF1 degradation and cell cycle progression 287 

Since many APC/C substrates are linked to proliferative control, we examined the 288 

contribution of UHRF1, and its degradation by APC/C, to cell cycle. Consistent with prior reports, 289 

UHRF1 depletion increased the fraction of cells in G1-phase ((65); data not shown). To further 290 

investigate the role of UHRF1 in cell cycle, we examined mitotic cells following UHRF1 291 

depletion. We observed an approximately three-fold increase in cells with mis-aligned 292 

chromosomes in metaphase and anaphase in UHRF1 depleted cells using two independent siRNA 293 

oligonucleotides (Fig. S5A). Surprisingly, there was no statistically significant difference in the 294 

overall percent of mitotic cells.  295 

To determine the role of UHRF1 degradation in cell cycle, we examined cell cycle markers 296 

in cells expressing UHRF1WT or UHRF1KEN:AAA. In Hela cells traversing the cell cycle after 297 

synchronization at G1/S, following a double thymidine block and release, we found that the GFP-298 

UHRF1KEN:AAA cells contain more of the G1/S regulator cyclin E (Fig. S6A). This was also evident 299 

in cells that had been synchronized in mitosis and released into G1 (Fig. 5B). This suggested that 300 

an inability to degrade UHRF1 in G1 alters cyclin E expression, a key driver of S-phase entry.  301 

 These data suggested that UHRF1 might promote progression into S-phase and that a 302 

failure to degrade UHRF1 could shorten the duration of G1. To better address this possibility, we 303 

depleted endogenous UHRF1 with an shRNA targeting the UHRF1 3’UTR  (66). Cells expressing 304 

GFP-UHRF1WT or GFP-UHRF1KEN:AAA were synchronized in mitosis, released into the cell cycle, 305 
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and analyzed by immunoblot. Several markers of S-phase entry accumulate early in cells 306 

expressing GFP-UHRF1KEN:AAA compared to GFP-UHRF1WT. Both cyclin E and the G1/S 307 

transcription factor E2F1 are elevated at early time points following release from mitosis (Fig. 308 

6A). Elevated levels of cyclin E and E2F1 are evident in asynchronous RPE1-hTRET cells, and to 309 

a lesser extent in asynchronous HeLa S3 cells, where cell cycle transcription is perturbed due to 310 

HPV oncoproteins (Fig. S6B, S6C).  311 

To analyze G1 duration, cells were release from a mitotic block and pulsed with EdU prior 312 

to harvesting for flow cytometry, to determine the percent of cells that were in S-phase. GFP-313 

UHRF1KEN:AAA expressing cells begin S-phase earlier than control cells (Fig. 6B). Six hours after 314 

release into the cell cycle, 3.6% of control cells had entered S-phase, whereas 9.6% of GFP-315 

UHRF1KEN:AAA expressing cells had started S-phase. Thus, a failure to degrade UHRF1 accelerates 316 

G1, indicating a key role for UHRF1 destruction in determining timing between the end of mitosis 317 

and start of DNA synthesis.  318 

 319 

UHRF1 degradation and DNA methylation homeostasis 320 

UHRF1 is required for DNA methylation maintenance (26). To determine if stabilizing 321 

UHRF1 in G1 affects DNA methylation, we performed base-resolution DNA methylation analysis 322 

at approximately 850,000 unique human CpG loci spanning all genomic annotations and 323 

regulatory regions using the Infinium MethylationEPIC BeadChip (EPIC arrays) (67,68). We 324 

compared parental U2OS cells and those expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA. 325 

Considering all probes, DNA methylation changes between parental, GFP-UHRF1WT, and GFP-326 

UHRF1KEN:AAA were insignificant (Fig. 7A). However, multidimensional scaling (MDS) of the top 327 

50,000 variable CpG probes among all samples/replicates (agnostic of sample group) clustered 328 

experimental conditions (Fig. 7B), indicating a unique and reproducible profile of methylation 329 

patterning. 330 
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We queried the GFP-UHRF1WT and GFP- UHRF1KEN:AAA samples for differentially 331 

methylated CpGs relative to the parental controls. Consistent with a previous report (29), 332 

expression of GFP-UHRF1WT and GFP-UHRF1KEN:AAA  induced a comparable number of 333 

hypomethylation events (Fig. 7C). Altrenatively, GFP-UHRF1KEN:AAA induced approximately 334 

two-fold more hypermethylated CpGs compared to GFP-UHRF1WT (Fig. 7C). Analysis of 335 

differentially methylated CpG probes between GFP-UHRF1WT and GFP-UHRF1KEN:AAA revealed 336 

a 32% overlap in hypomethylated probes and a 17% overlap in hypermethylated probes (Fig. 7D). 337 

Significantly, hypermethylated CpG probes in the GFP-UHRF1KEN:AAA expressing cells were 2.5-338 

fold more abundant compared to GFP-UHRF1WT, despite no significant change in hypomethylated 339 

CpG probes. Thus, the non-degradable form of UHRF1 induces site-specific DNA 340 

hypermethylation (Fig. 7D).  341 

The CpGs that were hypermethylated in GFP-UHRF1KEN:AAA -expressing cells started with 342 

a higher methylation level than other categories and gained methylation due to expression of non-343 

degradable mutant (Fig. 7E). Enrichment analysis of the differentially methylated CpGs revealed 344 

that gene body annotations, including exons, introns, and transcription termination sites (TTS), 345 

were positively enriched for hypermethylation in GFP-UHRF1KEN:AAA -expressing cells (Fig. 7F, 346 

left panel). We next queried enrichment of differential methylation events in regions of early and 347 

late replication (69). Hypermethylation events in GFP-UHRF1KEN:AAA, but not GFP-UHRF1WT, 348 

were positively enriched in early replicating regions of the genome, while hypomethylation events 349 

by both GFP-UHRF1WT and GFP-UHRF1KEN:AAA (alone or shared in common) were enriched in 350 

late replicating DNA (Fig. 7F). The enrichment of these hypermethylated features was consistent 351 

with known DNA methylation patterns that occur across gene bodies and early replicating DNA 352 

(Fig. 7E), as CpG loci in these regions typically demonstrate high levels of methylation (70,71) . 353 

Taken together, these results demonstrate that expression of non-degradable UHRF1 enhances 354 

methylation at gene-rich, early replicating regions of the genome. 355 
  356 
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Discussion 357 

Identification of new E3 ligase substrates 358 

APC/C is a core component of the cell cycle oscillator and mounting evidence points to its 359 

dysfunction in cancer and neurological disease. Here we provide a comprehensive, unencumbered, 360 

annotated list of known and candidate APC/C substrates. Our data highlights the importance of 361 

APC/C in various aspects of proliferative control and points to its potentially broader impact on 362 

unanticipated cellular processes, including chromatin organization.  363 

Identifying E3 substrates remains technically challenging. Since E3-substrate interactions 364 

exhibit low stoichiometry, mapping substrates by defining interactors is difficult. In addition, Ub 365 

ligase substrates are often in low abundance. APC/C is inhibited throughout the cell cycle by 366 

myriad mechanisms (72) and the time when it binds substrates coincides with when targets are 367 

being degraded and their abundance is lowest. This complicates many proteomics-based 368 

approaches. Alternative techniques for identifying E3 ligase substrates, including Global Protein 369 

Stability Profiling (GPS) and in vitro expression cloning, circumvent these challenges by 370 

measuring changes in substrate stability using fluorescent reporters or metabolic labeling with 371 

radioisotopes. These represent powerful tools for mapping E3 substrates (56,73). However, both 372 

approaches are laborious and time intensive, require significant technical expertise, and depend on 373 

gene expression libraries, which are neither complete nor available to most laboratories.  374 

We bypass these challenges using a simple in silico approach based on publicly available 375 

information, which is simple, inexpensive, and easily repeated with different variables. While our 376 

approach shares some similarities with previous approaches, it improves upon those in its 377 

simplicity, expanded use of multiple cell cycle mRNA datasets, and inclusion of a degron motif in 378 

the search criteria (35,39,74). Its success stems from the use of orthogonal filtering criteria, that 379 

is, unlinked features between mRNA and proteins. We predict that similar uses of unrelated 380 

properties could be leveraged for mapping targets of other enzymes, such as kinases, where 381 

defining substrates has proven similarly challenging. It is notable that degron sequences remain 382 
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unknown for most Ub ligases, highlighting the importance of mechanistic studies in enabling 383 

systems-level discoveries. 384 

 385 

Involvement of APC/C in chromatin regulation 386 

Determining the enzymes and substrates in kinase signaling cascades has been instrumental 387 

in determining proliferative controls in normal cells, their responses to stress and damage, and 388 

disease phenotypes and treatments. Relatedly, decoding Ub signaling pathways involved in 389 

proliferation is likely to provide insight into enzyme function in normal cell physiology as well as 390 

in disease.  391 

A major finding of this work is that numerous chromatin regulators are controlled 392 

temporally during proliferation by APC/C. Impairing the degradation of one such substrate, 393 

UHRF1, altered the timing of cell cycle events and changed global patterns of DNA methylation. 394 

Since numerous chromatin regulators are controlled by APC/C, we anticipate widespread, 395 

pleiotropic effects on chromatin in cells where APC/C activity is impaired, either physiologically 396 

or pathologically.  397 

Our observations raise the possibility that dysregulation of the cell cycle machinery, as is 398 

seen in diseases such as cancer, could alter the chromatin environment. The discovery that many 399 

chromatin regulators are mutated in cancer, a disease of uncontrolled proliferation, together with 400 

our data, imply a bidirectional relationship between the chromatin landscape and the cell cycle 401 

oscillator. Consistent with the notion that dysregulation of APC/C controlled proteins could play 402 

important roles in determining the chromatin environment in disease, the mRNA expression of our 403 

145 known and putative substrates strongly predict breast cancer aneuploidies and copy number 404 

variations (Fig. S7). This observation is not due solely to the selection of specific breast cancer 405 

subtypes, since our gene signature is elevated in multiple breast cancer subtypes. Interestingly, the 406 

expression of this signature correlates with the CIN70 signature, which was previously developed 407 

based on gene expression in chromosomally unstable cancers (75). We observed an extraordinary 408 

correlation between the CIN70 and our 145 gene signature in breast cancer (Fig. S7). This is 409 
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remarkable since our signature was generated completely independent of gene expression in cancer 410 

and was instead derived, in part, by short sequence motifs on proteins.  411 

APC/CCdh1, but not APC/CCdc20, ubiquitylates UHRF1. This is notable because the Cdh1-412 

bound form of APC/C is active both G1 and quiescent cells and is critical for restraining S-phase 413 

entry. Our findings suggest that impaired UHRF1 degradation promotes a premature G1/S 414 

transition. We propose that the proper degradation of UHRF1, and other chromatin regulators, 415 

serves to integrate growth factor dependent proliferative decisions with the chromatin regulatory 416 

environment. This could help explain the complex chromatin rearrangements observed in 417 

quiescent cells, where APC/CCdh1 is active (32,33,76). Further, APC/C controls key cell cycle 418 

transcriptional regulators, including the G2/M transcription factor FoxM1 and the repressor E2F 419 

proteins, E2F7 and E2F8 (77,78). Thus, our data point to a higher order role regulatory role for 420 

APC/C in gene regulation, by controlling transcription factors (i.e. FoxM1), transcriptional 421 

repressors (i.e. E2F7, E2F8,) and chromatin modifiers.  422 

Aberrant DNA methylation is a hallmark of cancer (79). UHRF1 promotes DNA 423 

methylation maintenance, and too much or too little  UHRF1 expression is detrimental to 424 

methylation stasis (26,29). It is interesting to speculate that the redistribution of DNA methylation 425 

in disease could be caused, in part, by the aberrant stabilization of UHRF1, resulting from 426 

APC/CCdh1 inactivation. It will be important, in the future, to determine if oncogene activation acts 427 

through the APC/C to re-organize the chromatin landscape. Furthermore, determining ubiquitin 428 

ligase substrates, like UHRF1, that might be dysregulated in pathological settings via altered 429 

degradative mechanisms could suggest therapeutic strategies to reverse their effects.   430 
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Materials and Methods 431 

Computational identification of putative APC/C substrates 432 
 Human proteins containing a KEN-box sequence (amino acid sequence K-E-N) were 433 

identified using the “Find a Sequence Match” feature on the Scansite web search platform 434 

(currently https://scansite4.mit.edu/4.0/#home). Proteins with cell cycle regulated mRNA were 435 

curated from four independent cell cycle transcriptional studies (42,43,80,81). The genes which 436 

scored in two or more of these screens was previously compiled in the supplemental data of Grant 437 

et al., 2013. Gene and protein name conversions were performed using the DAVID online tool 438 

(https://david.ncifcrf.gov/conversion.jsp). The overlapping set 145 proteins, which contain a KEN 439 

sequence and exhibit oscillating cell cycle regulated mRNA expression, were identified. For all 440 

145 proteins, we manually curated information on their alias, function, sequence flanking the KEN 441 

motif, and evidence for regulation by APC/C from various online databases and repositories, 442 

including UNIPROT, Pubmed, and Genecards.  443 

 The set of 33 well-validated, KEN-containing, human APC/C substrates was derived from 444 

(16). Our own FLAG-Cdh1 IPs were compared to other APC/C substrate discovery efforts (47,82). 445 

Singh et al. identified “clusters” of proteins whose levels changed at mitotic exit. For each cluster, 446 

they reported a top percentile, and for the clusters that most accurately revealed APC/C substrates 447 

(1, 2, and 3), we compile their data in Supplemental Table 3 in terms of which KEN-dependent 448 

substrates were identified. Their data from Cluster 1, which identified the most KEN-containing 449 

APC/C substrates, is shown in Figure 1C. Lafranchi et al. rank ordered proteins based on the degree 450 

of change from mitosis to G1, analyzed by proteomics. We curated their data to identify the cut-451 

off point where the last KEN-dependent APC/C substrate was identified among their rank ordered 452 

list. Since they provided no cut-off point, the data comparison in Figure 1C represents the best 453 

estimate of their ability to capture APC/C substrates.  454 

 455 
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Cell Culture 456 

HeLa, HeLa S3, U2OS, RPE-1, and HCT116 cells were grown in 10% FBS with high 457 

glucose DMEM without antibiotics. Cell culturing utilized standard laboratory practices whereby  458 

cells were grown and incubated at 37°C containing 5% CO2. Frozen cell stocks were stored under 459 

liquid nitrogen in 10% DMSO/90% FBS.  460 

GFP-UHRF1WT and GFP-UHRF1KEN:AAA stable overexpression cells were generated by 461 

transducing HeLa S3, U2OS, and RPE-1-hTERT cell lines with pHAGE-GFP lentivirus that had 462 

been produced in HEK293T cells. Infections were performed in the presence of 8µg/mL polybrene 463 

for 48 hours prior to antibiotic selection. Cells were selected for 5-7 days with 8ug/mL (HeLa S3 464 

and U2OS) or 10ug/mL (RPE-1) Blasticidin. Lentiviral particles were produced by transfecting 465 

HEK293T cells with Tet, VSVg, Gag/pol, and Rev viral packaging vectors together with the 466 

pHAGE-GFP lentiviral vectors using TransIT® MIRUS. Viral particles were collected 48 and 72 467 

hours after transfection and stored at -80°C prior to transduction. 468 

To generate the rescue cell lines, the U2OS and HeLa S3 stable GFP-UHRF1WT and GFP-469 

UHRF1KEN:AAA expression cell lines were transduced with previously described and validated 470 

pLKO.1 lentiviral vectors encoding either shControl or 3’UTR targeting shUHRF1 (66), using 471 

8ug/mL polybrene to aid infection. After 48 hours, cells were selected with 2µg/mL Puromycin 472 

for 3-5 days. Viral particles were produced by transfecting HEK293T cells with the pLKO.1 473 

constructs and psPAX2 and pMD2.G packaging vectors using TransIT® MIRUS (cat no. MIR 474 

2700), collecting after 48 and 72 hours as mentioned previously. 475 

Mitotic block was induced by treating 25% confluent HeLa S3 cells with 2mM thymidine 476 

for 24 hours. After washing the plates three-four times with warm media and incubating in drug-477 

free media for 3-4 hours, cells were treated with 100 ng/mL nocodazole for 10-11 hours prior to 478 

harvesting by mitotic shake-off. Samples were washed three or four times with warm media, 479 

counted, and re-plated for indicated timepoints.  480 

To synchronize cells in G1/S, HeLa S3 were plated at 20% confluency prior to addition of 481 

2mM thymidine. After 16 hours, cells were washed three times with warm media and left to 482 
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incubate for 8 hours before the second block in 2mM thymidine for another 16 hours. Cells were 483 

washed three times in warm media and collected at specific timepoints as they progress through 484 

the cell cycle.  485 

To transiently inactivate the APC/C, HCT116 or U2OS cells were treated with 15µM 486 

proTAME (Thermo Fisher cat no. I-440-01M), a pan-APC/C inhibitor (83), for 90 minutes prior 487 

to harvest and immunoblotting. Cells had been released from nocodazole-induced mitotic block 488 

for 90 minutes in drug-free media prior to addition of drug. 489 

 490 

In vivo APC/C Activation assay 491 

70-80% confluent U2OS cells were transfected with the indicated plasmids for 24 hours 492 

and then exchanged into fresh media. Alternatively, untransfected cells were used to analyze 493 

endogenous proteins. After an eight-hour incubation in fresh media following transfection, cells 494 

were treated with 250ng/mL nocodazole for 16 hours. Mitotic cells were isolated by shake-off, 495 

washed once in pre-warmed media, counted, and divided equally among 15mL conical tubes. Cells 496 

in suspension were treated with DMSO, RO-3306 (10 µM), Roscovitine (10 µM), or MG-132 497 

(20µM) for the indicated amount of time at 37ºC. Identical volumes of cells were removed from 498 

cell suspensions by pipetting, isolated by centrifugation, and frozen at -20°C prior to processing 499 

for immunoblot.  500 

 501 

Molecular Biology 502 

Plasmid transfection of HEK293T, U2OS, and HCT116 was performed with either MIRUS 503 

or PolyJet (cat no. SL100688) at 1:3 or 1:4 DNA:plasmid ratio on cells with 50-60% confluency. 504 

After 24 hours, the media was changed, and cells were expanded to larger dishes as needed. 505 

Samples were collected 24-48 hours after siRNA transfection was performed using a 1:3 ratio of 506 

RNAi oligonucleotide to RNAiMAX (cat no. 13778-030). UHRF1 was cloned into the indicated 507 

lentiviral vectors mentioned previously using standard gateway recombination cloning. Other 508 

APC/C substrates tested for binding to Cdh1 or degradation in the APC/C activation assay were 509 
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obtained from either the ORFeome collection and cloned into the indicated vectors using gateway 510 

recombination cloning or from addgene (see supplemental table) (84).  511 

 512 

Cell lysis and immunoblotting 513 

Cells were lysed on ice for 20 minutes in Phosphatase Lysis buffer (50 mM NaH2PO4, 150 514 

mM NaCl, 1% Tween-20, 5% Glycerol, pH 8.0, filtered) or NETN (20 mM Tris pH 8.0, 100 mM 515 

NaCl, 0.5 mM EDTA, 0.5% NP40) supplemented with 10µg/mL each of aprotonin, pepstatin A, 516 

and leupeptin, 1mM sodium orthovanadate, 1mM NaF, and 1mM AEBSF. Following incubation 517 

on ice, cell lysates were centrifuged at (20,000 x g) in a benchtop microcentrifuge at 4°C for 20 518 

minutes. Protein concentration was estimated by BCA assay (Thermofisher cat no. PI-23227) 519 

according to manufacturer’s protocol. Cell extracts were diluted with SDS-PAGE Gel Loading 520 

Buffer (Laemmli Buffer) prior to analysis by SDS-PAGE. Typically, 20-40 µg of protein were 521 

loaded on SDS gels (either BioRad 4-12% Bis-Tris or homemade SDS-PAGE gels) and separated 522 

at 140-200V for approximately 1 hour. Proteins were transferred by wet-transfer methods onto 523 

nitrocellulose membrane, typically at 100V for 1 hour or 10-17V overnight at 4°C. Nitrocellulose 524 

membranes were then incubated with TBST (137mM NaCl, 2.7mM KCl, 25mM Tris pH 7.4, 0.5% 525 

Tween-20) supplemented with either 5% bovine serum albumin or non-fat dry milk for at least one 526 

hour or overnight at 4°C. Blocked membranes were incubated overnight with primary antibodies 527 

at 4°C, washed in TBST, incubated in appropriate secondary antibodies for 1 hour at room 528 

temperature, and then developed by chemiluminescence using Pierce ECL (ThermoFisher) or 529 

Clarity ECL (Bio-Rad). See reagent list in supplement for detailed primary and secondary antibody 530 

information. 531 

 532 

Immunoprecipitation 533 
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For co-immunoprecipitation (coIP) experiments, cells were lysed in NETN for 20 minutes 534 

on ice and then centrifuged in a benchtop centrifuge on maximum speed (20,000 x g) for 20 535 

minutes at 4°C, prior to determining protein concentration by either Bradford or BCA assay.  536 

A master mix of 1-2 mg/mL protein concentration was calculated, 10% of which was 537 

retained as input while the remaining 90% was used for coIP. Prior to coIP, antibody coated beads 538 

were prewashed with 1X TBST three times prior to incubation with lysis buffer. Cell lysates were 539 

also pre-cleared by incubation with the same volume of empty Protein A/G agarose beads. 540 

Clarified cell lysates were immunoprecipitated for 2-4 hr at 4°C with 25-50uL of EzView M2- or 541 

Myc-antibody beads (F2426-1ML or E6654-1ML). After coIP, beads were pelleted at low speed 542 

centrifugation, washed twice with wash buffer, and one time with lysis buffer to remove unbound 543 

proteins. Buffers were removed from beads using a 27 gauge needle to avoid the aspiration of 544 

beads between washes. Washed beads were resuspended in 2X SDS-PAGE Gel Loading Buffer 545 

(Laemmli Buffer) and boiled 5-10 minutes at 95°C. Samples were removed from the beads using 546 

a 27-gauge needle to avoid the aspiration of beads after boiling. Typically, 20µL of coIP was 547 

loaded alongside 1% of the input volume. Samples were analyzed by immunoblotting as described.  548 

 549 

Protein Purification 550 

Substrates for in vitro ubiquitylation assays were expressed as N-terminal GST-TEV-551 

fusion (TTF2) or His-MBP-TEV-fusions (FL-UHRF1WT, LPS-UHRF1WT, FL-UHRF1KEN:AAA, 552 

LPS-UHRF1KEN:AAA) in BL21 (DE3) codon plus RIL cells. TTF2 was purified by glutathione-553 

affinity chromatography, treated with TEV protease to liberate GST, and further purified by ion 554 

exchange chromatography. UHRF1 wild-type and variants were purified by amylose-affinity 555 

chromatography, treated with TEV, and followed by ion exchange chromatography. Fluorescently 556 

labeled substrates were generated by incubating 1 µM Sortase, 20x 5-carboxyfluorescein (5-557 

FAM)-PEG-LPETGG peptide, and substrates in 10 mM HEPES pH 8, 50 mM NaCl, and 10 mM 558 

CaCl2. After 2 hours of incubation at 4°C, reactions were stopped by removing the His6-tagged 559 
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Sortase by nickel affinity chromatography. Then, excess 5-FAM-LPETGG was removed by size 560 

exclusion chromatography.  561 

Expression and purification of UBA1, UBE2C, UBE2S, recombinant APC/C and pE-562 

APC/C, Cdh1, Cdc20, Emi1, ubiquitin, and methylated ubiquitin were performed as described 563 

previously in Brown et al. 2016 (85–89). 564 

 565 

APC/C Ubiquitylation assays 566 

Qualitative assays to monitor APC/C-dependent ubiquitylation were performed as 567 

previously described (89). In brief, reactions were mixed on ice, equilibrated to room temperature 568 

before the reactions are initiated with Ub or meUb, and quenched at the indicated time points with 569 

SDS. TTF2 ubiquitylation was monitored by mixing 100 nM APC/C, 1 µM Cdh1, 5 µM UBE2C, 570 

5 µM UBE2S (when indicated), 1 µM UBA1, 5 µM TTF2, 5 mM Mg-ATP, and 150 µM Ub or 571 

meUb (Fig. S2). Ubiquitylation of UHRF1 wild-type or its variants by APC/C were performed 572 

with 100 nM APC/C or pE-APC/C, 1 µM Cdh1 or Cdc20, 0.4 µM UBE2C, 0.4 µM UBE2S (when 573 

indicated), 1 µM UBA1, 0.4 µM UHRF1, 5 mM Mg-ATP, and Ub or meUb (Fig. 4 and Fig. S4). 574 

Following SDS-PAGE, ubiquitylation products of the fluorescently labeled substrates were 575 

resolved by SDS-PAGE and imaged with the Amersham Typhoon 5.  576 

 577 

Flow cytometry cell cycle analysis 578 

HeLa S3 GFP-UHRF1WT and GFP-UHRF1KEN:AAA (shUHRF1) cells were synchronized in 579 

mitosis by sequential thymidine-nocodazole treatment as described above, using 2mM thymidine 580 

and 100ng/mL nocodazole. After release, cells were pulsed with 10µM EdU thirty minutes prior 581 

to collection at specific timepoints. After counting the cells, 2 million cells were retained for 582 

Western blotting (WB) analysis and 1 million cells were fixed for flow cytometry. For WB, cells 583 

we pelleted and washed once with cold PBS prior to freezing at -20°C. For flow cytometry, cells 584 

were fixed in 4% formaldehyde/PBS for 15 minutes at room temperature. Cells were pelleted and 585 

resuspended in 1% BSA/PBS and stored overnight at 4°C. The next day, cells were pelleted and 586 
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resuspended in 1% BSA/PBS/0.5% Triton X-100 for 15 minutes at room temperature. Cells were 587 

pelleted, resuspended with labelling solution (100mM ascorbic acid, 1mM CuSO4, 2µM Alexa 588 

Fluor 488 azide in PBS), and incubated for thirty minutes in the dark at room temperature. After 589 

addition of 1% BSA/PBS/0.5% Triton X-100, cells were pelleted and stained with 1µg/mL DAPI 590 

in 1% BSA/PBS/0.5% Triton X-100 for one hour in the dark at room temperature. Flow cytometry 591 

was performed on an AttuneTM Nxt Flow Cytometer (Thermo Fisher Scientific). Channel BL1 was 592 

used for Azide 488 dye. Channel VL1 was used for DAPI dye. Following acquisition, data were 593 

analyzed using FlowJo software. 594 

 595 

Immunofluorescence imaging 596 

HeLa cells were plated on poly-L-lysine-coated #1.5 coverslips. Next day, cells were 597 

treated with siRNA (control siFF and siUHRF1) and RNAi Max according to manufacturer’s 598 

protocol (Invitrogen). After 48 hours of siRNA treatments, cells were fixed in 3% 599 

paraformaldehyde in PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2, 600 

pH 7.0) for 15 minutes at 37 °C. Then, cells were washed with PHEM buffer and permeabilized 601 

using 0.5% of Nonidet P-40 in PHEM buffer for 15 minutes at room temperature. Cells were 602 

washed and then blocked with 5% BSA in PHEM. Primary antibodies used were: α-CENP-C 603 

(MBL:1:1000) as a kinetochore marker and α-tubulin (Sigma: 1:500). Samples were incubated in 604 

primary antibody solution for 1 hour at 37 °C. All fluorescently labeled secondary antibodies (anti-605 

mouse Alexa 488, anti-guinea pig 564) were diluted 1:200 dilution, and cells were incubated for 1 606 

hour at 37 °C. DNA was counterstained with DAPI for 15 minutes at room temperature after 607 

washing out secondary antibodies. All samples were mounted onto glass slides in Prolong Gold 608 

antifade (Invitrogen). For image acquisition, three-dimensional stacked images were obtained 609 

sequentially at 200 nm steps along the z axis through the cell using MetaMorph 7.8 software 610 

(Molecular Devices) and a Nikon Ti-inverted microscope equipped with the spinning disc confocal 611 

head (Yokogawa),  the Orca-ER cooled CCD camera (Nikon), and an ×100/1.4 NA PlanApo 612 

objective (Nikon). 613 
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 614 

Genomic DNA isolation for methylation analysis 615 

Genomic DNA was isolated from Parental U2OS cells and U2OS cells overexpressing 616 

either GFP-UHRF1WT or GFP-UHRF1KEN:AAA. All samples groups were processed in biological 617 

triplicates. Briefly, cells were lysed overnight at 37°C in 2 mL of TE-SDS buffer (10 mM Tris-618 

HCl pH 8.0, 0.1 mM EDTA, 0.5% SDS), supplemented with 100 μl of 20 mg/ml proteinase K. 619 

DNA was purified by phenol:chloroform extraction in three phases: (1) 100% phenol, (2) 620 

phenol:chloroform:isoamyl alcohol (25:24:1), and (3) chloroform:isoamyl alcohol (24:1). For each 621 

phase, the aqueous layer was combined with the organic layer in a 1:1 ratio. Samples were quickly 622 

shaken, allowed to sit on ice for approximately 5 minutes, and then separated by centrifugation at 623 

1,693 RCF for 5 minutes at 4°C. The top aqueous layer was then transferred to a new tube for the 624 

next organic phase. Following extraction, DNA was precipitated with 1/10 volume 3M sodium 625 

acetate pH 4.8 and 2.5 volumes 100% ethanol and stored overnight at -20°C. Precipitated DNA 626 

was pelleted by centrifugation at 17,090 RCF for 30 minutes at 4°C. The pelleted DNA was 627 

washed twice with 70% ethanol, allowed to dry for 15 minutes, and resuspended in TE buffer (10 628 

mM Tris-HCl pH 8.0, 0.1 mM EDTA). Samples were then treated with 1 mg/ml RNAse A at 37°C 629 

for 30 minutes and then re-purified by ethanol precipitation as described above.  630 

 631 

Infinium Methylation EPIC BeadChip (EPIC array) 632 

Genomic DNA was quantified by High Sensitivity Qubit Fluorometric Quantification 633 

(Invitrogen), and 1.5 ug of genomic DNA was submitted to the Van Andel Institute Genomics 634 

Core for quality control analysis, bisulfite conversion, and DNA methylation quantification using 635 

the Infinium Methylation EPIC BeadChIP (Illumina) processed on an Illumina iScan system 636 

following the manufacturer’s standard protocol (67,68).  637 

 638 

EPIC array data processing 639 
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All analyses were conducted in the R statistical software (Version 3.6.1) (R Core Team). 640 

R script for data processing and analysis is available in Supplemental Code File 1. 641 

Raw IDAT files for each sample were processed using the Bioconductor package 642 

“SeSAMe” (Version 1.2.0) for extraction of probe signal intensity values, normalization of probe 643 

signal intensity values, and calculation of β-values from the normalized probe signal intensity 644 

values (90–92). The β-value is the measure of DNA methylation for each individual CpG probe, 645 

where a minimum value of 0 indicates a fully unmethylated CpG and a maximum value of 1 646 

indicates a fully methylated CpG in the population. CpG probes with a detection p-value > 0.05 in 647 

any one sample were excluded from the analysis.  648 

 649 

Genomic and Replication Timing annotation 650 

CpG probes were mapped to their genomic coordinate (hg38) and were then annotated to 651 

their genomic annotation relationship (promoter-TSS, exon, etc.) using HOMER (Version 4.10.3) 652 

(93). 653 

Repli-seq data for U2OS cells used for determining CpG probe localization relative to 654 

replication timing was generated by Dr. David Gilbert’s lab (Florida State University) as part of 655 

the 4D Nucleome project (Experiment #4DNEXWNB33S2)(69). Genomic regions were 656 

considered early-replicating if the replication timing value was > 0 and late-replicating if < 0. CpG 657 

probes were annotated for replication timing domains by intersecting the Repli-seq genomic 658 

coordinates with CpG probe coordinates using BEDTools (Version 2.16.2) (94). 659 

 660 

Identification of differentially methylated CpG probes 661 

The Bioconductor package “limma” (Version 3.40.6) was used to determine differential 662 

methylation among sample groups and perform multidimensional scaling (MDS) analysis (95–97). 663 

For statistical testing of significance, β-values were logit transformed to M-values: 𝑀𝑀 =664 

𝑙𝑙𝑙𝑙𝑙𝑙2 �
β

1−β
�. M-values were then used for standard limma workflow contrasts to determine 665 

differential methylation of U2OS GFP-UHRF1WT or GFP-UHRF1KEN:AAA overexpression to 666 
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Parental U2OS cells (98,99). CpG probes with an adjusted p-value ≤ 0.05 were considered 667 

significant, and log fold-change of M-value was used to determine hypermethylation (logFC > 0) 668 

or hypomethylation (logFC < 0) relative to U2OS parental cells.  669 

 670 

Enrichment Bias Calculation and Hypergeometic Distribution Testing 671 

Enrichment Bias Calculations were done by first determining the following values for each 672 

feature (e.g. Genomic Annotation, Replication Timing):  673 

q = Number of CpGs that are differentially methylated in feature (e.g. exon) 674 

m = Total number of CpGs on the EPIC array that match feature (e.g. exon) 675 

n = Total number CpGs on the EPIC array that do not match feature (e.g. everything that 676 

is not an exon) 677 

k = Total number of all differentially methylated CpGs 678 

 679 

Next, the expected number of CpGs that would be differentially methylated in that feature 680 

by random chance was determined with the following equation:  681 

𝑒𝑒 =  �
𝑚𝑚

𝑚𝑚 + 𝑛𝑛
� 𝑘𝑘 682 

 683 

Finally, percent enrichment bias was calculated with the following equation: 684 

% 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  �
𝑞𝑞 − 𝑒𝑒
𝑘𝑘

� × 100 685 

Where positive or negative enrichment values indicate more or less enrichment for a feature 686 

than would be expected by random chance, respectively. 687 

Hypergeometric distribution testing for determining significance of enrichment bias was 688 

performed using the phyper() function in R with the following values: q,m,n,k. 689 

 690 

Data access 691 

EPIC array data can be found under GEO Accession # GSE137913. 692 

To review GEO accession GSE137913: 693 
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Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137913 694 

The following secure token has been created to allow review of record GSE137913 while it 695 

remains in private status: eletaomyfnqrlun 696 

 697 

Signature evaluation in TCGA BRCA samples 698 

Upper quartile normalized RSEM gene expression data for TCGA BRCA (n=1201) was 699 

downloaded from the GDC legacy archive (https://portal.gdc.cancer.gov). The data was log2 700 

transformed and median centered. To determine the per sample UB signature score, the samples 701 

were ranked by the median expression of the 145 UB gene signature. Sample were then divided at 702 

the median and grouped as high or low based on rank. Copy number burden, aneuploidy, and 703 

homologous recombination deficiency data were extracted from Thorsoon et. al. (100) and plotted 704 

by UB signature group and PAM50 subtype (101). Significance was calculated by t-test. The 705 

CIN70 score was determined as previously described in Fan et. al. (102). The CIN70 was plotted 706 

against the UB, colored by PAM50 subtype, and r2 and Pearson correlation were calculated. All 707 

analysis were performed in R (v3.5.2).  708 

 709 

Cdh1 pulldown for analysis of interactors by mass spectrometry 710 

FLAG-tagged Cdh1 was expressed in HEK293T cells for 24 hours by transient 711 

transfection. Transfections were performed on 150 mm dishes (8 per condition) using Mirus 712 

TransIT®-LT1 Transfection Reagent (Mirus Bio) and Lipofectamine 2000 (Life Technologies). 713 

Cells were treated with MG-132 (10 μM for 4 hours) in culture prior to lysis, dislodged by 714 

trypsinization, washed with PBS, and lysed in NETN supplemented with 2 μg/ml pepstatin, 715 

2 μg/ml apoprotinin, 10 μg/ml leupeptin, 1 mM AEBSF (4-[2 Aminoethyl] benzenesulfonyl 716 

fluoride), 1 mM Na3VO4, and 1 mM NaF on ice for 20 minutes. Cell lysates were then clarified by 717 

centrifugation at 15,000 rpm for 15 minutes. 718 

Anti-FLAG M2 agarose (Sigma, catalog no. F2426) was used for precipitation (6 hours at 719 

4°C). The beads were washed with NETN three times and eluted twice with 150 µl of 0.1 M 720 
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Glycine-HCl, pH 2.3 and then neutralized with Tris 1M (pH 10.0). The total eluted protein was 721 

reduced (5 mM DTT) and alkylated using iodoacetamide (1.25 mM) for 30 minutes in the dark. 722 

The resultant protein was then digested overnight with sequencing grade trypsin (Promega). The 723 

trypsin: protein ratio was maintained at 1:100. Total peptides were purified on Pierce C18 spin 724 

columns (Cat 89870) using the manufacturer’s protocol. Peptides were eluted using 70% 725 

acetonitrile and 0.1% TFA solution in 50 μl volumes twice, dried on a SpeedVac at room 726 

temperature, and processed by mass spectrometry proteomic analysis.  727 

 728 

Mass Spectrometry 729 

Peptides were separated by reversed-phase nano-high-performance liquid chromatography 730 

using a nanoAquity UPLC system (Waters Corp.). Peptides were first trapped in a 2 cm trapping 731 

column (Acclaim® PepMap 100, C18 beads of 3.0 μm particle size, 100 Å pore size) and a 25 cm 732 

EASY-spray analytical column (75 μm inner diameter, C18 beads of 2.0 μm particle size, 100 Å 733 

pore size) at 35°C. The flow rate was 250 nL/minute over a gradient of 1% buffer B (0.1% formic 734 

acid in acetonitrile) to 30% buffer B in 150 minutes, and an in-line Orbitrap Elite mass 735 

spectrometer (Thermo Scientific) performed mass spectral analysis. The ion source was operated 736 

at 2.6 kV with the ion transfer tube temperature set at 300°C. A full MS scan (300–2000 m/z) was 737 

acquired in Orbitrap with a 120,000 resolution setting, and data-dependent MS2 spectra were 738 

acquired in the linear ion trap by collision-induced dissociation using a 2.0 m/z wide isolation 739 

window on the 15 most intense ions. Precursor ions were selected based on charge states (+2, +3) 740 

and intensity thresholds (above 1e5) from the full scan; dynamic exclusion (one repeat during 30 741 

seconds, a 60 seconds exclusion time window) was also used. The polysiloxane lock mass of 742 

445.120030 was used throughout spectral acquisition. 743 

Raw mass spectrometry data files were searched using SorcererTM-SEQUEST® (build 744 

5.0.1, Sage N Research), the Transproteomic Pipeline (TPP v4.7.1), and Scaffold (v4.4.1.1) with 745 

the UniProtKB/Swiss-Prot human canonical sequence database (20,263 entries; release 07/2013). 746 

The search parameters used were a precursor mass between 400 and 4500 amu, zero missed 747 
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cleavages, a precursor ion tolerance of 3 amu, accurate mass binning within PeptideProphet, fully 748 

tryptic digestion, a static carbamidomethyl cysteine modification (+57.021465), variable 749 

methionine oxidation (+15.99492), and variable serine, threonine and tyrosine (STY) 750 

phosphorylation (79.966331). A 1% protein-level FDR was determined by Scaffold.  751 

 752 
  753 
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Main Figure Legends 1141 

Fig. 1. In silico analysis reveals a high confidence set of APC/C substrates involved in mitosis.  1142 

(A) KEN-box containing human proteins were identified and cross-referenced against a set 1143 
of 651 genes whose expression is cell cycle regulated based on multiple, independent 1144 
studies. This revealed a set of 145 KEN-box containing proteins whose mRNA 1145 
expression is cell cycle regulated.   1146 

(B) Analysis of the enrichment of bona fide KEN-dependent substrates among these three 1147 
datasets (blue- KEN box only set (2206); black- cell cycle regulated mRNAs (651); red-1148 
the overlapping set of 145 proteins) compared against a curated set of bona fide, KEN-1149 
dependent APC/C substrates (Davey and Morgan, Mol Cell, 2016). Enrichment was 1150 
calculated based on the expected number of substrates which would be captured by 1151 
chance based on the size of the dataset.  1152 

(C) Analysis of putative substrates recovered in the indicated studies.    1153 
(D) Gene ontology (GO) analysis for indicated studies (blue- KEN box only set (2206); 1154 

black- cell cycle regulated mRNAs (651); red-the overlapping set of 145 proteins).  1155 
(E) The set of 145 putative substrates was manually curated and analyzed for roles in various 1156 

aspects of cell cycle progression. Seventy proteins, involved in cell cycle activities, are 1157 
shown. The ones labelled in magenta signify that there is evidence in the literature of 1158 
their regulation by APC/C. (Note that AURORA B, a mitotic kinase that phosphorylates 1159 
histone H3, is listed here and in Figure 2A) 1160 

 1161 

Fig. 2. Putative APC/C substrates are enriched for roles in chromatin regulation.  1162 

(A) The set of 145 known and putative APC/C substrates is enriched for proteins involved in 1163 
various chromatin related process. This includes chromatin readers and writers, 1164 
chaperones, RNA regulation and processing, DNA damage repair, and others. (Note that 1165 
AURORA B, a mitotic kinase that phosphorylates histone H3, is listed here and in Figure 1166 
1E) 1167 

(B)    Gene ontology (GO) analysis of the overlapping KEN-box containing cell cycle regulated 1168 
transcripts. This set is enriched for the indicated biological process, including DNA 1169 
metabolism, protein-DNA complex assembly, DNA packaging, and DNA conformation.   1170 

(C)   APC/C activation assay to monitor substrate degradation. Following synchronization in 1171 
mitosis, cells were washed one time and treated with CDK inhibitors to remove inhibitory 1172 
phosphorylation marks that hinder the formation of APC/CCdh1 needed for the M/G1 1173 
phase transition. Protein degradation was monitored by immunoblot. CHAF1B and 1174 
PCAF are putative APC/C substrates, and FoxM1 and Cyclin B are known targets. 1175 

(D)   coIP of HA-Cdh1 with Myc-CHAF1B in transiently transfected 293T cells treated with 1176 
proteasome inhibitors prior to harvesting. The underline indicates which protein or tag 1177 
was blotted for in a particular panel (here and below). . Input equal to 1% of IP, here and 1178 
below.  1179 
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 (E)   coIP of HA-Cdh1 with FLAG-PCAF in transiently transfected 293T cells treated with 1180 
proteasome inhibitors prior to harvesting. 1181 

(F)  coIP of HA-Cdh1 with FLAG-NCOA3 in transiently transfected 293T cells treated with 1182 
proteasome inhibitors prior to harvesting 1183 

(G)  coIP of HA-Cdh1 with FLAG-TTF2 in transiently transfected 293T cells treated with 1184 
proteasome inhibitors prior to harvesting.  1185 

(H)  Mitotic shake-off of synchronized U2OS cells collected after release at the indicated 1186 
timepoints. Immunoblotting for select endogenous proteins that are putative APC/C 1187 
substrates or the positive control Cyclin B. 1188 

 1189 

Fig. 3. UHRF1 levels are controlled by APC/CCdh1. 1190 

(A) HeLa S3 cells were synchronized in mitosis and released into the cell cycle. Timepoints 1191 
were taken at the indicated time points and analyzed by immunoblot.  1192 

(B) U2OS cells were synchronized in prometaphase with 250ng/mL nocodazole for 16hr 1193 
prior to mitotic shake-off. Cells were released into fresh media containing 10µM RO-1194 
3306 CDK inhibitor (used as described in Fig. 2C) with or without addition of 20µM of 1195 
proteasomal inhibitor MG-132 and harvested 1hr later. Cyclin B is a positive control for 1196 
a known APC/C substrate that is degraded at mitotic exit. 1197 

(C) HCT116 cells were transfected with siRNA targeting Cdh1 (Fzr1 mRNA) or firefly 1198 
luciferase as a control and harvested after 24 hr for immunoblotting. 1199 

(D) Myc-UHRF1 was transiently expressed in 293T cells with increasing concentrations of 1200 
FLAG-Cdh1 for 24hr before analysis by immunoblot. 1201 

 1202 

Fig. 4. UHRF1 binding and ubiquitylation by APC/CCdh1 depends on KEN degron. 1203 

(A)  Schematic of UHRF1 domain structure with location of KEN degron in both full-length 1204 

(FL) and truncated LPS UHRF1. 1205 
(B) coIP of HA-Cdh1 with Myc-UHRF1 in transiently transfected 293T cells treated with 1206 

proteasome inhibitors prior to harvesting and α-Myc IP. Input equal to 1% of IP, here 1207 
and below.  1208 

(C) coIP of Myc-UHRF1 with HA-Cdh1 in transiently transfected 293T cells treated with 1209 
proteasome inhibitors prior to harvesting and α-HA IP.  1210 

(D) Ubiquitylation reactions with APC/CCdh1, UBE2C, FL UHRF1* or LPS UHRF1*, and 1211 
wild-type ubiquitin. UHRF1 was detected by fluorescence scanning (* indicates 1212 
fluorescently labeled protein). 1213 

(E) Ubiquitylation reactions similar as in (D) but using two variants of APC/C: WT and 1214 
catalytically dead APC/C∆RING∆WHB, a version of APC/C that can neither recruit nor 1215 
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activate its E2, UBE2C. UHRF1 was detected by fluorescence scanning. Samples were 1216 
collected at 30 min.  1217 

(F) Representative in vitro ubiquitylation reactions showing UBE2S-dependent chain 1218 
elongation reactions of LPS UHRF1*. Titration of UBE2S: 0 µM, 0.1 µM (+), 0.5 µM 1219 
(++). The addition of Emi1 completely inhibited the reaction.  UHRF1 was detected by 1220 
fluorescence scanning. Samples were collected at 30 min. 1221 

(G) coIP of HA-Cdh1 with Myc-UHRF1WT or Myc-UHRF1KEN:AAA in transiently transfected 1222 
293T cells treated with proteasome inhibitors prior to harvesting and α-Myc IP.  1223 

(H) Polyubiquitylation reactions of FL-UHRF1* and LPS-UHRF1* by APC/CCdh1, UBE2C, 1224 
and UBE2S. UHRF1 ubiquitylation by APC/CCdh1 is dependent on the KEN degron motif 1225 
(lane 4 in both gels). UHRF1 was detected by fluorescence scanning. Samples were 1226 
collected at 30 min.  1227 

(I) Dependence of UHRF1 ubiquitylation on phosphorylation state of the APC/C (referred 1228 
to as pE-APC/C) and subsequent coactivator recruitment. The well-established APC/C 1229 
substrates, CycBNTD* and Securin*, are ubiquitylated by either APC/CCdc20 or 1230 
APC/CCdh1, whereas UHRF1 is only ubiquitylated by APC/CCdh1. Reactions were run in 1231 
parallel. Collections taken at 1hr (for FL and LPS UHRF1*) and 30 min (for CycBNTD* 1232 
and Securin*). Ubiquitylated proteins were detected by fluorescence scanning. 1233 

 1234 
Fig. 5. UHRF1 non-degradable mutant protein is stable at mitotic exit. 1235 

(A) Myc-UHRF1WT or mutant versions harboring alanine substitutions in either its KEN-box 1236 
(KEN) or the fourth putative D-box motif (D4) (see Fig 4A for location of sequences) 1237 
were transiently expressed in 293T cells with or without FLAG-Cdh1 for 24hr before 1238 
analysis by immunoblot. 1239 

(B) HeLa S3 stably expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA were synchronized 1240 
in mitosis, released into the cell cycle, and collected for immunoblot analysis at the 1241 
indicated timepoints.  1242 

 1243 
Fig. 6. UHRF1 degradation restrains S-phase entry.  1244 

(A)  HeLa S3 stably expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA along with 3’UTR 1245 
targeting shUHRF1 were synchronized in mitosis as described previously, released into 1246 
the cell cycle, and collected for immunoblot analysis at the indicated timepoints, probing 1247 
for cell cycle proteins as shown.  1248 

(B) HeLa S3 stably expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA along with 3’UTR 1249 
targeting shUHRF1 were synchronized in mitosis, released into the cell cycle, and pulsed 1250 
with 10µM EdU for thirty minutes prior to harvest and analysis by flow cytometry. A 1251 
representative experiment (n=3) is shown.  1252 

Fig. 7. A non-degradable form of UHRF1 induces DNA hypermethylation of gene bodies and 1253 
early replicating regions of the genome. 1254 

(A) Global DNA methylation analysis for Parental U2OS and U2OS cells overexpressing 1255 
GFP-UHRF1WT or GFP-UHRF1KEN:AAA with the Infinium MethylationEPIC BeadChip 1256 
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(Illumina) platform. Each sample group is represented in biological triplicate. All CpG 1257 
probes that passed quality control analysis (n = 724,622 CpGs) are plotted as β-values 1258 
population averages from 0 (fully unmethylated) to 1 (fully methylated). The midlines of 1259 
each box plot represent the median DNA methylation value for all CpG probes in a 1260 
sample. 1261 

(B) Multidimensional scaling (MDS) of the top 50,000 variable CpG probes among samples. 1262 
(C) Number of CpG probes that were differentially hypermethylated or hypomethylated in 1263 

the GFP-UHRF1WT and GFP-UHRF1KEN:AAA groups relative to the Parental samples 1264 
adjusted p-value ≤ 0.05).  1265 

(D) Overlap analysis of significantly hypermethylated (left) or hypomethylated (right) CpG 1266 
probes between GFP-UHRF1WT and GFP-UHRF1KEN:AAA sample groups. 1267 

(E) DNA methylation levels of significantly hypermethylated (left) or hypomethylated 1268 
(right) probes from (D) that are common between GFP-UHRF1WT and GFP-1269 
UHRF1KEN:AAA sample groups, unique to GFP-UHRF1KEN:AAA  (KEN only), or unique to 1270 
GFP-UHRF1WT (WT only). Color code from Fig. 7A applies. Outliers removed to 1271 
simplify visualization. 1272 

(F) Enrichment bias analysis of significantly hypermethylated (left) or hypomethylated 1273 
(right) CpG probes among genomic annotations and U2OS replication timing data. *p-1274 
value ≤ 1E-300 for positive enrichment of the feature by hypergeometric testing. 1275 

 1276 
  1277 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.09.033621doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.033621
http://creativecommons.org/licenses/by-nc/4.0/


Page 52 of 53 
 

Supplemental Figure Legends 1278 

 1279 
Fig. S1. Analysis of putative APC/C substrates.  1280 

(A) U2OS cells were arrested in mitosis with nocodazole, collected by shake-off, treated with 1281 
the CDK1 inhibitor RO-3306, and harvested for immunoblot at the indicated timepoints. 1282 
Cyclin B and NUSAP1 serve as positive APC/C controls. 1283 

(B) U2OS cells were transiently transfected with the indicated plasmids, arrested in mitosis 1284 
with nocodazole, collected by shake-off, treated with the CDK1 inhibitor RO-3306, and 1285 
harvested for immunoblot after 2 hr. FoxM1 serves as a positive control for APC/C 1286 
activation. 1287 

(C) HeLa and U2OS cells were synchronized in mitosis by nocodazole and released by 1288 
mitotic shake-off. Timepoints were collected as shown and analyzed by immunoblot. 1289 
FoxM1 serves as positive APC/C control that is degraded at M/G1 phases. 1290 

 1291 
Fig. S2. TTF2 is ubiquitylated by APC/C in vitro.  1292 

(A) Ubiquitylation reactions of TTF2* by UBE2C using methylated Ub or wild-type Ub 1293 
(lanes 1-6) in combination with APC/CCdh1, APC/C alone, or Cdh1 alone. Ubiquitylation 1294 
reactions of TTF2* by both E2s, UBE2C and UBE2S, (lanes 7-9) in combination with 1295 
APC/CCdh1, APC/C alone, or Cdh1 alone. Ubiquitylation was detected by fluorescence 1296 
scanning at 60 minute timepoints. 1297 

 1298 

Fig. S3. UHRF1 protein levels are cell cycle regulated and sensitive to APC/C inhibition with 1299 
the small-molecule inhibitor proTAME.  1300 

(A) HeLa cells were synchronized in mitosis, collected by shake-off, released into the cell 1301 
cycle, and analyzed by immunoblot at the indicated timepoints.  1302 

(B) U2OS cells were synchronized in mitosis, collected by shake-off, released into the cell 1303 
cycle, and analyzed by immunoblot at the indicated timepoints. Line indicates samples 1304 
that were run on separate gels, with appropriate corresponding loading controls for each 1305 
gel.  1306 

(C) HCT116 and U2OS cells were released into G1 from a mitotic block for 1.5hr and then 1307 
were subsequently treated with proTAME for 1.5 hr. Endogenous UHRF1 and Cdh1 were 1308 
analyzed by immunoblot.  1309 

 1310 
Fig. S4. UHRF1 ubiquitylation by APC/C.  1311 

(A) Ubiquitylation reactions of FL-UHRF1* by UBE2C with either methylated Ub or wild-1312 
type Ub. Reactions were performed using UHRF1WT or a variant harboring alanine 1313 
substitution in the KEN-box (KEN:AAA ). KEN degron motif mutants in UHRF1 are 1314 
shown in lanes 4 and 8. Ubiquitylation was detected by fluorescence scanning at 30 1315 
minute timepoints. 1316 
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(B) Ubiquitylation reactions of LPS-UHRF1* by UBE2C with either methylated Ub or 1317 
wild-type Ub. Reactions were performed using UHRF1WT or a variant harboring 1318 
alanine substitution in the KEN-box (KEN:AAA ). KEN degron motif mutants in 1319 
UHRF1 are shown in lanes 4 and 8. Ubiquitylation was detected by fluorescence 1320 
scanning at 30 minute timepoints. 1321 

(C) Ubiquitylation reactions of FL-UHRF1* and LPS-UHRF1* are exclusive to Cdh1 as 1322 
the coactivator. Ubiquitylation reactions were performed using wild-type APC/CCdh1 1323 
which can only utilize Cdh1, but not Cdc20, as well as pE-APC/CCdh1, which mimics 1324 
the APC/C phosphorylated state and can therefore use either Cdc20 or Cdh1. In 1325 
parallel, we analyzed ubiquitylation of CycBNTD* and Securin*, which can be 1326 
ubiquitylated by both APC/CCdc20 and APC/CCdh1. 1327 

 1328 

Fig. S5. UHRF1 depletion impairs chromosome alignment.  1329 

(A) HCT116 cells were depleted of UHRF1 using two independent siRNA 1330 
oligonucleotides. Cells were fixed and stained with antibodies to the kinetochore protein 1331 
CENP-C and microtubules.  1332 

 1333 
Fig. S6. Progression through S/G2 phases in cells expressing non-degradable UHRF1.  1334 

(A) HeLa S3 cells stably expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA were 1335 
synchronized at G1/S by double thymidine block, released in the cell cycle, and analyzed 1336 
by immunoblot at the indicated time points. Cells progressed through S/G2 phases with 1337 
minimal differences except for an increase in cyclin E levels.  1338 

(B) Asynchronous RPE-1 cells stably expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA 1339 
were harvested for immunoblotting for cell cycle markers as shown. 1340 

(C) Asynchronous HeLa S3 cells stably expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA 1341 
along with 3’UTR targeting shUHRF1 were harvested for immunoblotting for cell 1342 
cycle markers as shown. 1343 

 1344 

Fig. S7. A 145 gene signature derived from KEN-containing proteins which have cell cycle 1345 
dependent gene transcription is associated with makers of chromosome instability in breast 1346 
cancer.  1347 
 1348 

(A) TCGA BRCA samples (n=1201) were assigned to High or Low based on the ranked 1349 
median value of the 145 gene signature score. Samples were then plotted for the given 1350 
genomic feature based on Thorsson et. al. by both gene signature group and PAM50 1351 
subtype. Significant was determined by t-test or ANOVA where appropriate. The median 1352 
145 gene signature score was plotted against the chromosome instability score (CIN70) 1353 
(r2=0.72, Pearson correlation p<0.001). Colors indicate PAM50 subtypes. 1354 

  1355 
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