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Abstract: Classic models of predictive coding propose that sensory systems use 26 

information retained from prior experience to predict current sensory input. Any 27 

mismatch between predicted and current input (prediction error) is then fed forward up 28 

the hierarchy leading to a revision of the prediction. We tested this hypothesis in the 29 

domain of object vision using a combination of multivariate pattern analysis and time-30 

resolved electroencephalography. We presented participants with sequences of 31 

images that stepped around fixation in a predictable order. On the majority of 32 

presentations, the images conformed to a consistent pattern of position order and 33 

object category order, however, on a subset of presentations the last image in the 34 

sequence violated the established pattern by either violating the predicted category or 35 

position of the object. Contrary to classic predictive coding when decoding position 36 

and category we found no differences in decoding accuracy between predictable and 37 

violation conditions. However, consistent with recent extensions of predictive coding, 38 

exploratory analyses showed that a greater proportion of predictions was made to the 39 

forthcoming position in the sequence than to either the previous position or the position 40 

behind the previous position suggesting that the visual system actively anticipates 41 

future input as opposed to just inferring current input.   42 

 43 

 44 

 45 

 46 

 47 

 48 

Key words: Object vision, predictive coding, electroencephalography, multivariate 49 
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Introduction 51 

 52 

The human brain processes the position and category of objects within the visual field 53 

seemingly without effort. The process of recognising objects, although not apparent 54 

via introspection, underpins all of our interactions with the world. Even simple tasks 55 

such as making a cup of coffee rely on our ability to rapidly categorise and locate 56 

objects within the visual field. The temporal evolution of object recognition has been 57 

well characterised experimentally (Carlson, Tovar, Alink & Kriegeskorte, 2013; Cichy, 58 

Pantazis, & Oliva, 2014; Grootswagers, Robinson & Carlson, 2019; Grootswagers, 59 

Robinson, Shatek & Carlson, 2019; Robinson, Grootswagers & Carlson, 2019), 60 

however, the computational architecture underlying this process is a matter of ongoing 61 

investigation. A possible clue comes from the highly predictable structure of the visual 62 

environment. Objects tend to move along predictable trajectories giving rise to eye 63 

movement strategies such as smooth pursuit (Barnes, 2008). And, contextual 64 

knowledge of a scene greatly constrains the category of objects that are likely be to 65 

present (Bar, 2004). Given the exorbitant metabolic demands of neural processing 66 

(Stone, 2018), and the importance of prospective computation for survival (Hopfield, 67 

1994), it would be surprising if the brain did not exploit the inherent redundancy in 68 

visual input (resulting from the structured nature of the environment) in the service of 69 

perception. In fact, for any system responding to an input signal that retains 70 

information from the input (i.e., has a non-zero form of memory), the retention of non-71 

predictive information is formally equivalent to energetic inefficiency (Still, Sivak, Bell 72 

& Crooks, 2012). The question is, therefore, not whether brains predict but how.  73 

 The prospective goal of perception lies at the heart of a family of models in 74 

computational neuroscience collectively referred to as predictive processing models 75 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032888
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Clark, 2016). Predictive processing models, which includes both predictive coding 76 

(Bastos et al, 2012; Friston, 2005; Friston & Kiebel, 2009; Rao & Ballard, 1999) and 77 

active inference (Friston et al., 2017; Parr, Da Costa & Friston, 2020), have shown 78 

great promise in accounting for a wide range of visual phenomena from extra-classical 79 

receptive field effects (Rao & Ballard, 1999) and repetition suppression (Auksztulewicz 80 

& Friston, 2016), to selective attention (Feldman & Friston, 2010; Mirza, Adams, 81 

Friston & Parr, 2019), and even visual awareness (Parr, Corcoran, Friston & Hohwy, 82 

2019; Whyte & Smith, 2020). Of the predictive processing models, by far the most 83 

popular is the classic predictive coding model proposed by Rao and Ballard (1999) 84 

and later built upon by Friston (2005). Unlike feed-forward neural networks, predictive 85 

coding depicts perception as a process of top-down model testing aimed at minimising 86 

the difference between an internal model of the world and sensory input. The internal 87 

model generates cascades of descending predictions that meet bottom-up signals at 88 

each level of the visual hierarchy. The mismatch between the prediction and the 89 

bottom-up signal (prediction error) is fed forward to the next level in the hierarchy 90 

leading to a revision of the prediction. (Bastos et al, 2012; Friston, 2005, 2010; Clark, 91 

2016; Hohwy, 2013, Rao & Ballard, 1999). In line with this view, there is now 92 

considerable evidence from functional magnetic resonance imaging (fMRI) suggesting 93 

that prediction has a silencing effect on neural responses that is orthogonal to other 94 

top-down processes such as attention (Kok et al, 2011; Richter, Ekman & de Lange, 95 

2018), and that higher levels in the cortical hierarchy send predictions to subordinate 96 

levels of the hierarchy (Summerfield et al, 2006).  97 

 Also in line with predictive processing models, a body of research conducted in 98 

magnetoencephalography and electroencephalography (M/EEG) has shown that 99 

expectation also has substantial effects in the temporal domain. When stimuli are 100 
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expected, stimulus features such as orientation can be decoded even before stimulus 101 

onset (Kok, Mostert & De Lange, 2017). Decoding of object position in apparent motion 102 

paradigms has a latency advantage when the target stimulus moves along a 103 

predictable trajectory (Hogendoorn & Burkitt, 2018), and the violation of the orientation 104 

and identity of faces has a dissociable mismatch ERP effect across the dorsal and 105 

ventral streams (Robinson et al., 2018).  106 

 Here we used time-resolved multivariate pattern analysis and EEG (MVPA; 107 

Carlson et al, 2013; Cichy et al, 2014; Grootswagers, Wardle & Carlson, 2017) to 108 

investigate the temporal effects of prediction and prediction error at different levels of 109 

the visual hierarchy. We presented participants with sequences of images that 110 

stepped around fixation in a predictable order. On the majority of sequences, the 111 

images conformed to the pattern of position and category order, however, on a subset 112 

of the sequences the last image in the sequence violated the established pattern by 113 

violating either the predicted category (high level) or the predicted position (low level) 114 

of the object.  115 

 116 

 117 
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 118 

Figure 1. Experimental design. Stimuli were presented for 50ms with 500ms ISI in sequence around 119 

four possible locations that were equidistant from the fixation cross and either repeated or alternated 120 

the category of the stimulus (i.e., dog or car). The last image in the sequence either conformed to the 121 

pattern (1: fully predicted - purple), or violated the established pattern by violating either the the 122 

predicted category (2: category violation - pink), or the predicted position (3: position violation - yellow). 123 

This example shows a clockwise repeating object sequence. 124 

 125 

 Based upon the classic formulation of predictive coding (Friston, 2005; Rao & 126 

Ballard, 1999), and the structure of visual hierarchy (Felleman & Van Essen, 1991), 127 

we generated four related hypotheses (see Figure 1). First, we expected that due to 128 

prediction error signals, there would be above chance decoding between predicted 129 

stimuli, and stimuli that have violated a prediction, for both violations of position and 130 

category. Second, since the generation of prediction error is hypothesised to alter the 131 

content of representations (c.f., King, Schurger, Naccache & Dehaene, 2014) we 132 

expected representations to be less separable when predictions were violated leading 133 

to reduced decodability. Third, given the relative independence of the dorsal and 134 

ventral streams (Ungerleider & Haxby, 1994) we expected that category violation, 135 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032888
http://creativecommons.org/licenses/by-nc-nd/4.0/


which relies on processing within the ventral stream, would not interact with position 136 

representation, which relies on processing within the dorsal stream, and vice versa. 137 

Several aspects of this study including hypotheses, design, and analysis choices were 138 

pre-registered (https://osf.io/hkedz/).  139 

 140 

 141 

Figure 2. Hypotheses for each condition. Hypothesis 1 – the increase in prediction error on violation 142 

trials was expected to lead to above chance decoding between prediction and violation trials for both 143 

position and category. Category violation decoding is shifted rightward in the figure because category 144 

is extracted at a higher point of the hierarchy than position so the appearance of prediction errors related 145 

to category processing is expected to occur later in time. Hypothesis 2 – given that prediction error 146 

leads to a revision of the content of representations we expected  representations to be less separable 147 

when predictions were violated thereby lowering decoding accuracy. Hypothesis 3 – given the relative 148 

functional independence of the dorsal and ventral streams we expected that the violation of a feature 149 

that is not the target of decoding would have no effect on decoding accuracy.  150 

 151 

 152 

 153 

 154 

 155 

 156 
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Methods 157 

 158 

Stimuli and procedure 159 

 160 

We recruited 34 adult participants (21 female) aged between 18 – 27 years old 161 

(average 20.15) from the University of Sydney in exchange for course credit or 162 

payment. Participants viewed sequences of dog and car images (obtained from the 163 

free image site www.pngimage.com) that appeared in four different positions. Stimuli 164 

were presented in sequences of 6 to 10 images that stepped around fixation in a 165 

predictable order (50% clockwise, 50% counter clockwise). The stimulus subtended 166 

3x3 degrees of visual angle and was presented 4 degrees from fixation. Each stimulus 167 

was presented for 50ms with a 500ms inter-stimulus interval. There were two types of 168 

predictable sequences: repeating object sequences (50%) and alternating object 169 

sequences (50%). During the repeating sequences, the same stimulus (dog or car) 170 

was presented throughout the sequence. In the alternating sequences the category of 171 

stimulus alternated on each successive presentation in the sequence (e.g., dog, car, 172 

dog, car…). There were 490 sequences in total. On the majority of sequences (256 173 

out of 448 non target sequences), all stimuli conformed to the pattern of position order 174 

(clockwise/counter-clockwise) and object order (repeating/alternating). For the 175 

remaining sequences, the last image in the sequence violated the established pattern 176 

by either violating the predicted category of the object (category violation; e.g., dog-177 

dog-dog-car or dog-car-dog-dog; 96 sequences) or the predicted location (position 178 

violation; 96 sequences). See Figure 1. Importantly, for position violation sequences 179 

the position of the last stimulus was a reversal of the established movement (e.g., 180 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032888
http://creativecommons.org/licenses/by-nc-nd/4.0/


positions 4-1-2-3-2 or 1-4-3-2-3. This ensured that for all conditions, the previous item 181 

in the sequence could not be a confound in the decoding analysis.  182 

 Participants were required to monitor the sequence for inverted stimuli which 183 

appeared 8.57% of the time (42 sequences). They were instructed to fixate on the 184 

cross in the centre of the monitor, and not to move their eyes. The inversion task kept 185 

them alert and attentive without making the predictability of the stimulus task relevant. 186 

With the exception of the inversion of the target stimulus, target sequences were 187 

identical to predictable non-target sequences. Target sequences (i.e., sequences with 188 

inverted stimuli) were excluded from analysis. 189 

 Participants completed 7 blocks each consisting of 70 sequences. Between 190 

each block we presented a ‘pattern localiser’ consisting of a rapid stream of 120 dog 191 

and car images yielding a total of 840 additional presentations (i.e., 12 repeats of each 192 

dog and car image at each of the 5 locations). Each image was presented with 50ms 193 

ISI and 100ms SOA either centrally (at fixation) or at one of the four experimental 194 

locations. The location of the stimulus was shuffled such that there was no statistical 195 

regularity in the sequence. The pattern localiser served as an independent source of 196 

training data for the decoding analysis.  197 

 198 

EEG Recordings and Pre-processing 199 

 200 

Continuous EEG data was recorded with a BrainVision ActiChamp system with a 201 

digitised sampling rate of 1000Hz. The 64 electrode system was arranged according 202 

to the 10-10 placement system all referenced to Cz. Pre-processing was conducted in 203 

MATLAB using the EEGLAB toolbox (Delorme & Makeig 2004). The data were filtered 204 

with a high pass filter of 0.1Hz and a low pass filter of 100Hz and down-sampled to 205 
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250Hz. Epochs were created between -200 to 1000ms relative to the onset of the final 206 

image in the sequence (448 epochs).  207 

 208 

Decoding Analysis 209 

 210 

We employed an MVPA decoding pipeline to all EEG channels following the 211 

recommendations of Grootswagers, Wardle and Carlson (2017) using the 212 

CoSMoMVPA toolbox (Oosterhof, Connolly & Haxby, 2016). All decoding was 213 

performed within subject using a linear discriminant analysis (LDA) classifier.  214 

Statistical analysis was performed at the group level averaging across individual 215 

decoding accuracies. To explore the emergence of prediction error signals we 216 

compared neural responses of violation trials with neural responses of predictable 217 

trials. For violation decoding we used a leave - one block - out cross validation 218 

scheme. There were two separate analyses: predictable versus object violation and 219 

predictable versus position violation. There were far more predictable sequences, so 220 

to ensure balanced data in the test set for every unpredictable trial, we selected a 221 

predictable trial that was matched for repeating/alternating sequence, 222 

clockwise/counter clockwise sequence, category and position. For position decoding 223 

we used a cross decoding scheme by training the classifier on data from the pattern 224 

localiser using the four peripheral positions and testing the classifier on data from the 225 

experimental sequences. For category decoding we again used a cross decoding 226 

scheme training on data from the pattern localiser and testing on data from the 227 

response sequences. However, for category decoding we trained the classifier on 228 

stimuli presented at all 5 locations of the pattern localiser (4 peripheral positions and 229 

central) to get a better estimate of position-invariant image category information. 230 
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 In total we decoded 8 contrasts; violation split by category and position 231 

(contrasts 1-2); position (i.e., location 1-4) split by fully predicted, position violation, 232 

and category violation conditions (contrasts 3-5) and category (i.e., dog vs car) fully 233 

predicted, position violation, and category violation conditions (contrasts 6-8). 234 

 235 

 236 

 237 

Exploratory Analysis of Classification Errors 238 

 239 

At the time point of peak decoding for position we found insufficient evidence to 240 

determine if there was more position information in the neural signal for predictable 241 

compared with position violation trials (hypothesis 2; Figure 2). In order to investigate 242 

this hypothesis further, we examined the predictions made by the classifier. The 243 

classifier extracted neural patterns of activation specific to each of the four 244 

experimental positions and used these to predict the position of the stimulus on each 245 

experimental trial. If there was no position information about the stimulus (e.g., prior 246 

to its appearance), the classifier would be expected to predict each of the four 247 

locations equally often. If there was position information in the neural signal (e.g., 248 

during retinotopic processing of the stimulus), the classifier would be expected to 249 

predict the correct position. However, classification is rarely perfect, and investigating 250 

the errors made by the classifier can give insight into other information in the neural 251 

signal. For example, in an apparent motion paradigm Blom, Feuerriegel, Johnson, 252 

Bode and Hogendoorn (2020) trained a classifier to decode between stimuli presented 253 

at the two locations on either side of the target stimulus and then tested the classifier 254 

on the location of the target stimulus. For the first ~70ms the majority of the predictions 255 
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made by the classifier were made to the location behind the location of the target but 256 

after ~70ms the majority of predictions were made to the location following the target 257 

showing that there was anticipatory information in the EEG signal.  258 

 We examined the average proportion of predictions made by the classifier to 259 

each position. We then sorted the predictions made by the classifier to each of the 260 

four locations relative to the expected position. Assuming there was only information 261 

about the current stimulus in the EEG signal there should have been an equal 262 

proportion of predictions made to each of the three incorrect positions. If, however, the 263 

EEG signal also contained information about one of the incorrect positions the 264 

classifier might predict one of the incorrect positions more often than the others. For 265 

example, when the stimulus was presented in an unexpected position, as was the 266 

case on violation trials, predictive information in the signal might have increased the 267 

proportion of predictions made by the classifier to the predicted position. To statistically 268 

evaluate the evidence for differences in the proportion of predictions made by classifier 269 

we took the average proportion of predictions made over a 20ms time-window (86-270 

106ms) centred on the point of peak decoding accuracy (96ms) and used Bayes 271 

factors (described below) to evaluate the strength of evidence.  272 

 It is important to note that unlike the analyses listed above, this analysis was 273 

not planned a priori and is therefore considered exploratory.  274 

 275 

Statistical Inference  276 

 277 

To calculate the evidence for the null and alternative hypotheses we used JZS 278 

Bayes Factors (Rouder et al., 2009). To determine the evidence for the alternative 279 

hypothesis of above chance decoding we employed a Cauchy prior with the scale 280 
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factor set to 0.707, while the prior for the null hypothesis was a point at chance, 0.25 281 

for position decoding and 0.5 for all other decoding tests (Morey & Rouder, 2011). To 282 

determine the evidence for a non-zero difference between decoding accuracies, we 283 

used a uniform prior with a point null set to zero. This same procedure was also used 284 

in the exploratory analysis described above. Using these distributions, we computed 285 

Bayes factors (Dienes, 2011; Jeffreys, 1998; Rouder, Speckman, Sun, Morey, & 286 

Iverson, 2009; Wagenmakers, 2007) which, being a ratio of marginal likelihoods, 287 

measures the evidence for the alternative hypothesis relative to the null. For the 288 

purpose of plotting the results we thresholded the Bayes factors at BF > 1/3 but < 3 289 

as inconclusive evidence either way, BF > 6 for modest evidence for the alternative 290 

hypothesis, and BF > 10 for strong evidence for the alternative hypotheses. Because 291 

point nulls are biased to the alternative hypothesis as sample size becomes larger 292 

(Morey & Rouder, 2011), we took BF < 1/3 as strong evidence in favour of the null.  293 

 294 

Results 295 

 296 

Behaviour 297 

 298 

Participants performed an orthogonal task to detect inverted stimuli. After inspecting 299 

the behavioural responses, we excluded one participant who did not respond to any 300 

of the targets. After exclusion, mean accuracy was 91.9% (SD = 10.13). We then 301 

excluded another two participants from further analysis whose accuracy was lower 302 

than 80%, leaving a total of 31 participants whose data was used in the decoding 303 

analysis. We used the inclusion criterion of above 80% accuracy because of the 304 

extreme simplicity of the task.  305 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 306 

Violation decoding 307 

 308 

We expected the neural signal to contain information about whether a stimulus violated 309 

the expected pattern for both position and object (Hypothesis 1). In support of 310 

hypothesis 1 we observed strong evidence that stimuli were processed differently if 311 

they appeared in unexpected positions (position violation) relative to expected 312 

positions (Figure 3; green line). Position violation decoding was above chance (BF > 313 

10) 244ms after stimulus onset with two peaks in accuracy at 258ms and 812ms. Each 314 

peak coincided with an increase in evidence for above chance decoding (BF > 10). In 315 

contrast, partially contrary to hypothesis 1, we did not observe a difference in 316 

processing of stimuli when the category violated the established pattern (category 317 

violation) relative to expected category (Figure 3; blue line). In decoding of violation 318 

for category we found strong evidence for the null hypothesis across the trial (BF < 319 

1/3). Unsurprisingly, when comparing accuracy between the two conditions we found 320 

strong evidence (BF > 10) for a difference in decoding accuracy between the two 321 

conditions that coincided with peaks in decoding accuracy for position violation 322 

decoding.  323 
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 324 

Figure 3. Violation decoding. Mean decoding accuracy for predictable versus position violation (green) 325 

and predictable versus category violation (blue). Coloured dotes below the plot indicate the thresholded 326 

Bayes factors (BF) for category and position. For BF > 10 and BF < 1/3 which indicate strong evidence 327 

for either the alternative or null hypothesis are shown represented by filled in circles. BF > 6 and BF <3 328 

which indicate modest or inconclusive evidence either way are represented by open circles. Black dots 329 

indicate the thresholded BF for the difference in decoding accuracy between violation types. 330 

 331 

Decoding position 332 

 333 

We expected position-related information to be present in the neural signal from an 334 

early stage of processing, and for the amount of information to differ for predictable 335 

positions compared to position violations (Hypothesis 2). We found strong evidence 336 

(BF > 10) for above chance decoding of position (chance = 25%) for fully predicted, 337 

category violation, and position violation from 72ms post stimulus onset with a peak at 338 

96ms (Figure 4a). Interestingly, suggestive of hypothesis 2 concerning the disruptive 339 

effect of prediction error, peak decoding accuracy for position violation was lower than 340 

fully predicted and category violation and was less sustained. However, during the 341 
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time period where there was a visible difference between decoding accuracies (~85 342 

to 120ms) we found inconclusive evidence for the null and alternative hypothesis (1/3 343 

> BF < 3). To investigate this in more detail we examined the proportion of predictions 344 

made by the classifier for each location (Figure 5). If hypothesis 2 was correct, we 345 

would have expected the neural signal to contain information about the predicted 346 

position on both violation and predicted trials, indexed by higher numbers of classifier 347 

errors for the expected position than other incorrect positions on position violation 348 

trials. However, this is not what we found. Intriguingly, at the point of peak decoding 349 

accuracy (~96ms), classification error analysis showed a higher number of predictions 350 

for the position that followed the expected position (i.e., expected + 1, the next position 351 

in the sequence) across all three conditions making up ~25% of classifier output 352 

(green line in Figure 5). To evaluate this statistically we examined the differences 353 

between the average proportion of classifier predictions made to each position 354 

averaged over a 20ms time-window (86-106ms) centred on the point of peak decoding 355 

accuracy (96ms). For the fully predicted and category violation conditions we observed 356 

strong evidence BF > 10 that a greater proportion of predictions was made to the next 357 

position in the sequence (expected + 1) in comparison to both the previous position 358 

(expected – 1) and the position behind the previous position (expected - 2). Similarly, 359 

for the position violation condition we found strong evidence (BF > 10) that a greater 360 

proportion of predictions was made to the next position in the sequence (expected + 361 

1) than to the expected position, and modest evidence (BF > 3) that a greater 362 

proportion of predictions was made to the next position than to the previous position 363 

(expected – 1). We consider the interpretation and significance of this result in the 364 

discussion section. Finally, it is worth highlighting that we could not evaluate 365 

hypothesis 3 – which predicted that there would be no difference in decoding accuracy 366 
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when the violated feature was not the target of decoding – as it relied on violation 367 

having a disruptive effect as predicted by hypothesis 2.  368 

 369 

Figure 4. Position decoding (chance = 25%) for fully predicted, category violation and position violation 370 

conditions. Coloured dots below each plot indicate the thresholded Bayes factors for each time point. 371 

Black dots indicate the thresholded Bayes factors for the difference in decoding accuracy between 372 

conditions. 373 

 374 
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 375 
Figure 5. Analysis of classifier output for position decoding across conditions. Left portion of the figure 376 

shows an example of the position of the stimulus for each condition in relation to what was expected 377 

given the pattern of the preceding sequence. Colours on plots correspond to the stimulus positions. 378 

Middle graphs show the proportion of predictions made by the classifier to each position. Across 379 

conditions the actual position of the stimulus had the highest proportion of classifier predictions (~32-380 

34%). The right bar plots show the proportion of classifier predictions made to each position at the peak 381 

of decoding (shaded portion of graph). Asterisks* above the plots indicate the Bayes factors for the 382 

differences in proportion of predictions for each position. Contrary to hypothesis 2, there was a greater 383 

proportion of predictions made to the expected + 1 (next) location than either of the other two incorrect 384 

locations across conditions. Crucially, in the position violation condition there was exceptionally strong 385 

evidence (BF >100) that there was a greater proportion of predictions made to the expected + 1 location 386 

than the expected location suggesting the presence of anticipatory information in the EEG signal. 387 

 388 
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 389 

Decoding Object Category 390 

 391 

To assess object category information, we decoded car versus dog for the three 392 

predictability conditions (see Figure 6). For the fully predicted condition there were 6 393 

time points between 228-260ms that showed modest (BF > 3) to strong evidence (BF 394 

> 10) for above chance decoding of category. Similarly, for the category violation 395 

condition there were 3 time points between 226-276ms that showed modest (BF > 3) 396 

to strong evidence (BF > 10) for above chance decoding, and for the position violation 397 

condition, we found strong evidence for the null hypothesis throughout the trial (BF < 398 

1/3) with only a few time-points transiently showing evidence for above chance 399 

decoding. In terms of differences in decoding accuracy between conditions, with the 400 

exception of a few sparsely distributed and isolated time points, we found strong 401 

evidence for the null hypothesis that there was no difference in decoding accuracy 402 

from stimulus onset until the end of the epoch (BF < 1/3). These results stand in 403 

opposition to hypothesis 2 which forecast that violations of predictions would decrease 404 

decoding accuracy if the violation was the target of decoding. Again, we could not 405 

evaluate hypothesis 3 as it relied on violations having a disruptive effect on decoding 406 

accuracy as predicted by hypothesis 2.  407 

 408 
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 409 

Figure 6. Category decoding (chance = 50%) for fully predicted, category violation and position violation 410 

conditions. Coloured dots below each plot indicate the thresholded Bayes factors for each time point. 411 

Black dots indicate the thresholded Bayes factors for the difference in decoding accuracy between 412 

conditions. 413 

 414 

Discussion 415 

 416 

The aim of this study was to test a set of four hypotheses based on the classic model 417 

of predictive coding (Friston, 2005; Rao & Ballard, 1999), and the structure of the 418 

visual hierarchy (Felleman & Van Essen, 1991), in the domain of basic object vision 419 

using time-resolved EEG. According to the classic model of predictive coding sensory 420 

systems use information from prior experience to predict current incoming sensory 421 

input, or more concisely, they are trying to predict the present (Clark, 2016). Overall, 422 

our results were largely contrary to this idea. The remainder of this paper will discuss 423 
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the consequence of our results for each hypothesis and propose an explanation of the 424 

findings in terms of generalised predictive coding (Friston & Kiebel, 2009; Friston, 425 

Stephan, Li & Daunizeau, 2010) and the temporal realignment hypothesis 426 

(Hogendoorn & Burkitt, 2019).  427 

 According to generalised predictive coding (Friston & Kiebel, 2009; Friston, 428 

Stephan, Li & Daunizeau, 2010), instead of just aiming to predict current input, 429 

predictions are cast in generalised coordinates of motion meaning that predictive 430 

signals also represent the velocity, acceleration, and other higher order derivatives of 431 

the predicted input allowing sensory systems to extrapolate. For an accessible 432 

introduction to the idea of generalised coordinates of motion see Susskind & 433 

Hrabovsky, 2014, and for its role in predictive coding see Buckley, Kim, McGregor & 434 

Seth, 2017. Similarly, the temporal realignment hypothesis (Hogendoorn & Burkitt, 435 

2019) proposes that the brain overcomes the transmission delays inherent to the 436 

visual system by having both predictions and prediction errors extrapolate forward in 437 

time. The key feature of both of these models is that they posit the existence of 438 

temporal predictive signals that carry information about what will happen and not just 439 

what is happening.  440 

 For prediction vs violation of position, we observed strong evidence for above 441 

chance decoding which peaked at 258ms. Prima facie, this result seems in line with 442 

hypothesis 1 which predicted that the presence of prediction error signals on the 443 

violation trials would lead to above chance violation decoding. However, decoding was 444 

far too late to plausibly reflect an error message which by hypothesis would occur at 445 

a similar time-point as peak decoding accuracy for position. In fact, the peak in 446 

decoding accuracy for violation of position occurred ~150ms later than peak decoding 447 

accuracy for position. As such, the time course of the response is more likely due to 448 
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an orienting of attention (Carlson, Hogendoorn & Verstraten, 2006; Eimer, 2000).) to 449 

the unpredicted position. In favour of this interpretation, for violation of category we 450 

found strong evidence for the null hypothesis of no above chance decoding. If 451 

violations of predictions generated error signals that were large enough to be detected 452 

at the level of the scalp we would have expected to see above chance decoding of 453 

violation for category as well as position.  454 

 Assuming the interpretation put forward above is on track, the lack of a 455 

decodable error signal suggests that prediction and prediction error may have a subtler 456 

effect than we initially hypothesised. Indeed, considering that the stimulus moved 457 

around the screen and did not stay within a consistent set of receptive fields, the short-458 

term changes in synaptic plasticity that are thought to underlie the generation of error 459 

related ERPs (Auksztulewicz & Friston, 2016; Garrido, Kilner, Stephan & Friston, 460 

2009; Stefanics, Kremláček & Czigler, 2014) would have been reduced, and as such, 461 

the changes in voltage that characterise violation effects in ERP would have been less 462 

pronounced.   463 

 With that said, it is still plausible that the presence of predictive signals could 464 

have caused the classifier to make more (erroneous) predictions to the expected 465 

position on violation trials. Although again, this is not what we found. When decoding 466 

position, all three conditions - fully predicted, category violation, and position violation 467 

- displayed above chance decoding accuracy with a peak at 96ms. Importantly, peak 468 

decoding accuracy for position violation seemed lower than fully predicted and 469 

category violation suggesting that prediction error may have had a disruptive effect on 470 

position information as proposed in hypothesis 2. However, we found inconclusive 471 

evidence differentiating between the null and alternative hypotheses at this time point. 472 

To investigate the effect of position violation on position coding in a different way, we 473 
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inspected the classification output for each of the three conditions. If hypothesis 2 was 474 

correct we would have expected to see a greater proportion of predictions to be made 475 

to the expected location. Instead, the classifier made a greater proportion of 476 

predictions to the next position in the sequence (expected + 1) across all three 477 

conditions. Against the classic model of predictive coding this suggests that the visual 478 

system actively anticipates future input as opposed to just inferring current input. 479 

Crucially, however, this finding is predicted by both generalised predictive coding 480 

(Friston & Kiebel, 2009; Friston, Stephan, Li & Daunizeau, 2010), and the temporal 481 

realignment hypothesis (Hogendoorn & Burkitt, 2019), which propose that predictions 482 

extrapolate forward in time. Further, our results mirror those of Blom, Feuerriegel, 483 

Johnson, Bode and Hogendoorn (2020), who found that when a stimulus was a part 484 

of a predictable sequence information about of the stimulus’ next location was present 485 

in the EEG signal 70 - 90ms earlier than would be expected if the evoked response 486 

was purely stimulus driven.  487 

 We modest evidence for above chance classification of category in all three 488 

conditions. However, contrary to hypothesis 2, which forecast that violations of 489 

predictions would show lower decoding accuracy, we found strong evidence for the 490 

null hypothesis that there were no differences between conditions. The lack of effect 491 

for category violation has at least two plausible and complementary explanations. 492 

First, it may simply be that there was an effect of violation at the neuronal population 493 

level but because the cortical representation of objects is weaker in the peripheral 494 

parts of the visual field where our stimuli were presented (Levy, Hasson, Avidan, 495 

Hendler, & Malach, 2001) the differences could not be seen at the level of the scalp. 496 

Indeed, we observed clear category decoding, yet the absolute decoding accuracy 497 

was fairly low compared with previous studies using centrally presented objects (e.g. 498 
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Grootswagers, Robinson & Carlson, 2019; Grootswagers, Robinson, Shatek & 499 

Carlson, 2019; Robinson, Grootswagers & Carlson, 2019). Second, like position, it 500 

may be that predictions of category are primarily anticipatory in nature and as such we 501 

should expect to see a greater proportion of classification errors made to the category 502 

of the next stimulus but not the current stimulus. Unfortunately, however, our paradigm 503 

did not allow us to interrogate this hypothesis. Since we only had two stimulus 504 

categories and our stimulus was presented in an alternating or repeating pattern, the 505 

category of the upcoming stimulus was either the same as the current category or the 506 

same as the previous category making classifier output uninformative. Still, this 507 

hypothesis will be easy to test in future work by simply increasing the number of 508 

stimulus categories and presenting the stimuli in predictable sequences at the centre 509 

of the screen where there is a stronger cortical representation of object category (as 510 

has been done in fMRI; Richter, Ekman & de Lange, 2018). Relatedly, in terms of 511 

hypothesis 3, which forecast that violations of the non-target feature would have no 512 

effect on decoding, we cannot evaluate its accuracy as it relied on violations having a 513 

disruptive effect on decoding (i.e., hypothesis 2). Unfortunately, if we are correct in 514 

arguing that the effect of prediction error is reduced the periphery, this hypothesis will 515 

be difficult to test using non-invasive techniques.  516 

 In sum, our results are largely contrary to the classic model of predictive coding 517 

(Friston, 2005; Rao & Ballard, 1999) which proposes that sensory systems use prior 518 

experience to predict the present (cf. Clark, 2016). Instead, consistent with 519 

generalised predictive coding, and the temporal realignment hypothesis, our 520 

exploratory analysis suggests that sensory signals are actively anticipate future input, 521 

at least for representations of position. This contrary finding, which was predicted by 522 

previous theoretical work, represents an important advance in how we should think 523 
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about prediction in sensory systems. We look forward to future work investigating 524 

whether the anticipatory nature of prediction generalises to category representation.  525 

 526 
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