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Abstract: Classic models of predictive coding propose that sensory systems use
information retained from prior experience to predict current sensory input. Any
mismatch between predicted and current input (prediction error) is then fed forward up
the hierarchy leading to a revision of the prediction. We tested this hypothesis in the
domain of object vision using a combination of multivariate pattern analysis and time-
resolved electroencephalography. We presented participants with sequences of
images that stepped around fixation in a predictable order. On the majority of
presentations, the images conformed to a consistent pattern of position order and
object category order, however, on a subset of presentations the last image in the
sequence violated the established pattern by either violating the predicted category or
position of the object. Contrary to classic predictive coding when decoding position
and category we found no differences in decoding accuracy between predictable and
violation conditions. However, consistent with recent extensions of predictive coding,
exploratory analyses showed that a greater proportion of predictions was made to the
forthcoming position in the sequence than to either the previous position or the position
behind the previous position suggesting that the visual system actively anticipates

future input as opposed to just inferring current input.

Key words: Object vision, predictive coding, electroencephalography, multivariate

decoding, representation, vision.


https://doi.org/10.1101/2020.04.08.032888
http://creativecommons.org/licenses/by-nc-nd/4.0/

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.032888; this version posted April 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Introduction

The human brain processes the position and category of objects within the visual field
seemingly without effort. The process of recognising objects, although not apparent
via introspection, underpins all of our interactions with the world. Even simple tasks
such as making a cup of coffee rely on our ability to rapidly categorise and locate
objects within the visual field. The temporal evolution of object recognition has been
well characterised experimentally (Carlson, Tovar, Alink & Kriegeskorte, 2013; Cichy,
Pantazis, & Oliva, 2014; Grootswagers, Robinson & Carlson, 2019; Grootswagers,
Robinson, Shatek & Carlson, 2019; Robinson, Grootswagers & Carlson, 2019),
however, the computational architecture underlying this process is a matter of ongoing
investigation. A possible clue comes from the highly predictable structure of the visual
environment. Objects tend to move along predictable trajectories giving rise to eye
movement strategies such as smooth pursuit (Barnes, 2008). And, contextual
knowledge of a scene greatly constrains the category of objects that are likely be to
present (Bar, 2004). Given the exorbitant metabolic demands of neural processing
(Stone, 2018), and the importance of prospective computation for survival (Hopfield,
1994), it would be surprising if the brain did not exploit the inherent redundancy in
visual input (resulting from the structured nature of the environment) in the service of
perception. In fact, for any system responding to an input signal that retains
information from the input (i.e., has a non-zero form of memory), the retention of non-
predictive information is formally equivalent to energetic inefficiency (Still, Sivak, Bell
& Crooks, 2012). The question is, therefore, not whether brains predict but how.

The prospective goal of perception lies at the heart of a family of models in

computational neuroscience collectively referred to as predictive processing models
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76  (Clark, 2016). Predictive processing models, which includes both predictive coding
77  (Bastos et al, 2012; Friston, 2005; Friston & Kiebel, 2009; Rao & Ballard, 1999) and
78 active inference (Friston et al., 2017; Parr, Da Costa & Friston, 2020), have shown
79  great promise in accounting for a wide range of visual phenomena from extra-classical
80 receptive field effects (Rao & Ballard, 1999) and repetition suppression (Auksztulewicz
81 & Friston, 2016), to selective attention (Feldman & Friston, 2010; Mirza, Adams,
82  Friston & Parr, 2019), and even visual awareness (Parr, Corcoran, Friston & Hohwy,
83  2019; Whyte & Smith, 2020). Of the predictive processing models, by far the most
84  popular is the classic predictive coding model proposed by Rao and Ballard (1999)
85 and later built upon by Friston (2005). Unlike feed-forward neural networks, predictive
86  coding depicts perception as a process of top-down model testing aimed at minimising
87 the difference between an internal model of the world and sensory input. The internal
88  model generates cascades of descending predictions that meet bottom-up signals at
89 each level of the visual hierarchy. The mismatch between the prediction and the
90 bottom-up signal (prediction error) is fed forward to the next level in the hierarchy
91 leading to a revision of the prediction. (Bastos et al, 2012; Friston, 2005, 2010; Clark,
92  2016; Hohwy, 2013, Rao & Ballard, 1999). In line with this view, there is now
93  considerable evidence from functional magnetic resonance imaging (fMRI) suggesting
94  that prediction has a silencing effect on neural responses that is orthogonal to other
95 top-down processes such as attention (Kok et al, 2011; Richter, Ekman & de Lange,
96 2018), and that higher levels in the cortical hierarchy send predictions to subordinate
97 levels of the hierarchy (Summerfield et al, 2006).

98 Also in line with predictive processing models, a body of research conducted in
99  magnetoencephalography and electroencephalography (M/EEG) has shown that

100  expectation also has substantial effects in the temporal domain. When stimuli are


https://doi.org/10.1101/2020.04.08.032888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.032888; this version posted April 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

101  expected, stimulus features such as orientation can be decoded even before stimulus
102  onset (Kok, Mostert & De Lange, 2017). Decoding of object position in apparent motion
103  paradigms has a latency advantage when the target stimulus moves along a
104  predictable trajectory (Hogendoorn & Burkitt, 2018), and the violation of the orientation
105 and identity of faces has a dissociable mismatch ERP effect across the dorsal and
106  ventral streams (Robinson et al., 2018).

107 Here we used time-resolved multivariate pattern analysis and EEG (MVPA;
108  Carlson et al, 2013; Cichy et al, 2014; Grootswagers, Wardle & Carlson, 2017) to
109 investigate the temporal effects of prediction and prediction error at different levels of
110  the visual hierarchy. We presented participants with sequences of images that
111  stepped around fixation in a predictable order. On the majority of sequences, the
112 images conformed to the pattern of position and category order, however, on a subset
113 of the sequences the last image in the sequence violated the established pattern by
114  violating either the predicted category (high level) or the predicted position (low level)
115  of the object.

116

117
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119  Figure 1. Experimental design. Stimuli were presented for 50ms with 500ms ISI in sequence around
120 four possible locations that were equidistant from the fixation cross and either repeated or alternated
121 the category of the stimulus (i.e., dog or car). The last image in the sequence either conformed to the
122 pattern (1: fully predicted - purple), or violated the established pattern by violating either the the
123 predicted category (2: category violation - pink), or the predicted position (3: position violation - yellow).

124 This example shows a clockwise repeating object sequence.

125

126 Based upon the classic formulation of predictive coding (Friston, 2005; Rao &
127  Ballard, 1999), and the structure of visual hierarchy (Felleman & Van Essen, 1991),
128  we generated four related hypotheses (see Figure 1). First, we expected that due to
129  prediction error signals, there would be above chance decoding between predicted
130  stimuli, and stimuli that have violated a prediction, for both violations of position and
131  category. Second, since the generation of prediction error is hypothesised to alter the
132 content of representations (c.f., King, Schurger, Naccache & Dehaene, 2014) we
133 expected representations to be less separable when predictions were violated leading
134  to reduced decodability. Third, given the relative independence of the dorsal and

135  ventral streams (Ungerleider & Haxby, 1994) we expected that category violation,
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136 which relies on processing within the ventral stream, would not interact with position

137  representation, which relies on processing within the dorsal stream, and vice versa.
138  Several aspects of this study including hypotheses, design, and analysis choices were
139  pre-registered (https://osf.io/hkedz/).
140
Hypotheses
= Position = Fully predicted = Fully predicted
= Category == Category violation Hypothesis 2 = Category violation Hypothesis 2
Position violation  + Reduced decoding ofa Position violation . Redyced decoding of a
feature (position) when feature (category) when
the prcdicliun. of that the prediction of that
= o0 Hypothesisl = E“ feature was violated. PR feature was violated.
g -E « Above chance decoding :‘E ;'E Hypothesis 3 :«E 'g Hypothesis 3
i § for predicted vs violation. E < * No effect on decoding of E 1 * No effect on decoding of
> A = feature (position) when = feature (category) when
the prediction of a the prediction of a
| Chanee - gifperent feature was [+ Chance different feature was
violated. violated.
Time
141
142 Figure 2. Hypotheses for each condition. Hypothesis 1 — the increase in prediction error on violation
143 trials was expected to lead to above chance decoding between prediction and violation trials for both
144 position and category. Category violation decoding is shifted rightward in the figure because category
145 is extracted at a higher point of the hierarchy than position so the appearance of prediction errors related
146 to category processing is expected to occur later in time. Hypothesis 2 — given that prediction error
147 leads to a revision of the content of representations we expected representations to be less separable
148 when predictions were violated thereby lowering decoding accuracy. Hypothesis 3 — given the relative
149  functional independence of the dorsal and ventral streams we expected that the violation of a feature
150 thatis not the target of decoding would have no effect on decoding accuracy.
151
152
153
154
155

156
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157 Methods

158

159  Stimuli and procedure

160

161  We recruited 34 adult participants (21 female) aged between 18 — 27 years old
162  (average 20.15) from the University of Sydney in exchange for course credit or
163  payment. Participants viewed sequences of dog and car images (obtained from the
164  free image site www.pngimage.com) that appeared in four different positions. Stimuli
165 were presented in sequences of 6 to 10 images that stepped around fixation in a
166  predictable order (50% clockwise, 50% counter clockwise). The stimulus subtended
167  3x3 degrees of visual angle and was presented 4 degrees from fixation. Each stimulus
168  was presented for 50ms with a 500ms inter-stimulus interval. There were two types of
169 predictable sequences: repeating object sequences (50%) and alternating object
170  sequences (50%). During the repeating sequences, the same stimulus (dog or car)
171  was presented throughout the sequence. In the alternating sequences the category of
172 stimulus alternated on each successive presentation in the sequence (e.g., dog, car,
173 dog, car...). There were 490 sequences in total. On the majority of sequences (256
174 out of 448 non target sequences), all stimuli conformed to the pattern of position order
175  (clockwise/counter-clockwise) and object order (repeating/alternating). For the
176  remaining sequences, the last image in the sequence violated the established pattern
177 by either violating the predicted category of the object (category violation; e.g., dog-
178  dog-dog-car or dog-car-dog-dog; 96 sequences) or the predicted location (position
179  violation; 96 sequences). See Figure 1. Importantly, for position violation sequences

180 the position of the last stimulus was a reversal of the established movement (e.g.,
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181  positions 4-1-2-3-2 or 1-4-3-2-3. This ensured that for all conditions, the previous item
182  in the sequence could not be a confound in the decoding analysis.

183 Participants were required to monitor the sequence for inverted stimuli which
184 appeared 8.57% of the time (42 sequences). They were instructed to fixate on the
185  cross in the centre of the monitor, and not to move their eyes. The inversion task kept
186  them alert and attentive without making the predictability of the stimulus task relevant.
187  With the exception of the inversion of the target stimulus, target sequences were
188 identical to predictable non-target sequences. Target sequences (i.e., sequences with
189 inverted stimuli) were excluded from analysis.

190 Participants completed 7 blocks each consisting of 70 sequences. Between
191 each block we presented a ‘pattern localiser’ consisting of a rapid stream of 120 dog
192  and carimages yielding a total of 840 additional presentations (i.e., 12 repeats of each
193 dog and car image at each of the 5 locations). Each image was presented with 50ms
194 ISl and 100ms SOA either centrally (at fixation) or at one of the four experimental
195 locations. The location of the stimulus was shuffled such that there was no statistical
196  regularity in the sequence. The pattern localiser served as an independent source of
197  training data for the decoding analysis.

198

199 EEG Recordings and Pre-processing

200

201  Continuous EEG data was recorded with a BrainVision ActiChamp system with a
202  digitised sampling rate of 1000Hz. The 64 electrode system was arranged according
203  to the 10-10 placement system all referenced to Cz. Pre-processing was conducted in
204 MATLAB using the EEGLAB toolbox (Delorme & Makeig 2004). The data were filtered

205  with a high pass filter of 0.1Hz and a low pass filter of 100Hz and down-sampled to
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206  250Hz. Epochs were created between -200 to 1000ms relative to the onset of the final
207 image in the sequence (448 epochs).

208

209  Decoding Analysis

210

211  We employed an MVPA decoding pipeline to all EEG channels following the
212 recommendations of Grootswagers, Wardle and Carlson (2017) using the
213 CoSMoMVPA toolbox (Oosterhof, Connolly & Haxby, 2016). All decoding was
214  performed within subject using a linear discriminant analysis (LDA) classifier.
215  Statistical analysis was performed at the group level averaging across individual
216  decoding accuracies. To explore the emergence of prediction error signals we
217 compared neural responses of violation trials with neural responses of predictable
218 trials. For violation decoding we used a leave - one block - out cross validation
219  scheme. There were two separate analyses: predictable versus object violation and
220  predictable versus position violation. There were far more predictable sequences, so
221 to ensure balanced data in the test set for every unpredictable trial, we selected a
222  predictable trial that was matched for repeating/alternating sequence,
223 clockwise/counter clockwise sequence, category and position. For position decoding
224  we used a cross decoding scheme by training the classifier on data from the pattern
225 localiser using the four peripheral positions and testing the classifier on data from the
226  experimental sequences. For category decoding we again used a cross decoding
227  scheme training on data from the pattern localiser and testing on data from the
228 response sequences. However, for category decoding we trained the classifier on
229  stimuli presented at all 5 locations of the pattern localiser (4 peripheral positions and

230 central) to get a better estimate of position-invariant image category information.
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231 In total we decoded 8 contrasts; violation split by category and position
232 (contrasts 1-2); position (i.e., location 1-4) split by fully predicted, position violation,
233 and category violation conditions (contrasts 3-5) and category (i.e., dog vs car) fully
234  predicted, position violation, and category violation conditions (contrasts 6-8).

235

236

237

238  Exploratory Analysis of Classification Errors

239

240 At the time point of peak decoding for position we found insufficient evidence to
241 determine if there was more position information in the neural signal for predictable
242  compared with position violation trials (hypothesis 2; Figure 2). In order to investigate
243  this hypothesis further, we examined the predictions made by the classifier. The
244  classifier extracted neural patterns of activation specific to each of the four
245  experimental positions and used these to predict the position of the stimulus on each
246  experimental trial. If there was no position information about the stimulus (e.g., prior
247 to its appearance), the classifier would be expected to predict each of the four
248 locations equally often. If there was position information in the neural signal (e.g.,
249  during retinotopic processing of the stimulus), the classifier would be expected to
250  predict the correct position. However, classification is rarely perfect, and investigating
251 the errors made by the classifier can give insight into other information in the neural
252  signal. For example, in an apparent motion paradigm Blom, Feuerriegel, Johnson,
253  Bode and Hogendoorn (2020) trained a classifier to decode between stimuli presented
254  at the two locations on either side of the target stimulus and then tested the classifier

255 onthe location of the target stimulus. For the first ~70ms the majority of the predictions
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256  made by the classifier were made to the location behind the location of the target but
257  after ~70ms the majority of predictions were made to the location following the target
258  showing that there was anticipatory information in the EEG signal.

259 We examined the average proportion of predictions made by the classifier to
260 each position. We then sorted the predictions made by the classifier to each of the
261 four locations relative to the expected position. Assuming there was only information
262  about the current stimulus in the EEG signal there should have been an equal
263  proportion of predictions made to each of the three incorrect positions. If, however, the
264 EEG signal also contained information about one of the incorrect positions the
265 classifier might predict one of the incorrect positions more often than the others. For
266 example, when the stimulus was presented in an unexpected position, as was the
267 case on violation trials, predictive information in the signal might have increased the
268  proportion of predictions made by the classifier to the predicted position. To statistically
269  evaluate the evidence for differences in the proportion of predictions made by classifier
270  we took the average proportion of predictions made over a 20ms time-window (86-
271  106ms) centred on the point of peak decoding accuracy (96ms) and used Bayes
272  factors (described below) to evaluate the strength of evidence.

273 It is important to note that unlike the analyses listed above, this analysis was
274  not planned a priori and is therefore considered exploratory.

275

276  Statistical Inference

277

278  To calculate the evidence for the null and alternative hypotheses we used JZS

279  Bayes Factors (Rouder et al., 2009). To determine the evidence for the alternative

280  hypothesis of above chance decoding we employed a Cauchy prior with the scale
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281  factor set to 0.707, while the prior for the null hypothesis was a point at chance, 0.25
282  for position decoding and 0.5 for all other decoding tests (Morey & Rouder, 2011). To
283  determine the evidence for a non-zero difference between decoding accuracies, we

284  used a uniform prior with a point null set to zero. This same procedure was also used
285 in the exploratory analysis described above. Using these distributions, we computed
286  Bayes factors (Dienes, 2011; Jeffreys, 1998; Rouder, Speckman, Sun, Morey, &

287  lverson, 2009; Wagenmakers, 2007) which, being a ratio of marginal likelihoods,

288 measures the evidence for the alternative hypothesis relative to the null. For the

289  purpose of plotting the results we thresholded the Bayes factors at BF > 1/3 but < 3
290 asinconclusive evidence either way, BF > 6 for modest evidence for the alternative
291 hypothesis, and BF > 10 for strong evidence for the alternative hypotheses. Because
292  point nulls are biased to the alternative hypothesis as sample size becomes larger
293  (Morey & Rouder, 2011), we took BF < 1/3 as strong evidence in favour of the null.
294

295 Results

296

297  Behaviour

298

299  Participants performed an orthogonal task to detect inverted stimuli. After inspecting
300 the behavioural responses, we excluded one participant who did not respond to any
301 of the targets. After exclusion, mean accuracy was 91.9% (SD = 10.13). We then
302 excluded another two participants from further analysis whose accuracy was lower
303 than 80%, leaving a total of 31 participants whose data was used in the decoding
304 analysis. We used the inclusion criterion of above 80% accuracy because of the

305 extreme simplicity of the task.
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306

307  Violation decoding

308

309  We expected the neural signal to contain information about whether a stimulus violated
310 the expected pattern for both position and object (Hypothesis 1). In support of
311  hypothesis 1 we observed strong evidence that stimuli were processed differently if
312 they appeared in unexpected positions (position violation) relative to expected
313  positions (Figure 3; green line). Position violation decoding was above chance (BF >
314 10) 244ms after stimulus onset with two peaks in accuracy at 258ms and 812ms. Each
315  peak coincided with an increase in evidence for above chance decoding (BF > 10). In
316  contrast, partially contrary to hypothesis 1, we did not observe a difference in
317  processing of stimuli when the category violated the established pattern (category
318 violation) relative to expected category (Figure 3; blue line). In decoding of violation
319 for category we found strong evidence for the null hypothesis across the trial (BF <
320  1/3). Unsurprisingly, when comparing accuracy between the two conditions we found
321 strong evidence (BF > 10) for a difference in decoding accuracy between the two
322  conditions that coincided with peaks in decoding accuracy for position violation

323  decoding.
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Figure 3. Violation decoding. Mean decoding accuracy for predictable versus position violation (green)
and predictable versus category violation (blue). Coloured dotes below the plot indicate the thresholded
Bayes factors (BF) for category and position. For BF > 10 and BF < 1/3 which indicate strong evidence
for either the alternative or null hypothesis are shown represented by filled in circles. BF > 6 and BF <3
which indicate modest or inconclusive evidence either way are represented by open circles. Black dots

indicate the thresholded BF for the difference in decoding accuracy between violation types.

Decoding position

We expected position-related information to be present in the neural signal from an
early stage of processing, and for the amount of information to differ for predictable
positions compared to position violations (Hypothesis 2). We found strong evidence
(BF > 10) for above chance decoding of position (chance = 25%) for fully predicted,
category violation, and position violation from 72ms post stimulus onset with a peak at
96ms (Figure 4a). Interestingly, suggestive of hypothesis 2 concerning the disruptive
effect of prediction error, peak decoding accuracy for position violation was lower than

fully predicted and category violation and was less sustained. However, during the
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342 time period where there was a visible difference between decoding accuracies (~85
343  to 120ms) we found inconclusive evidence for the null and alternative hypothesis (1/3
344 > BF < 3). To investigate this in more detail we examined the proportion of predictions
345 made by the classifier for each location (Figure 5). If hypothesis 2 was correct, we
346  would have expected the neural signal to contain information about the predicted
347  position on both violation and predicted trials, indexed by higher numbers of classifier
348 errors for the expected position than other incorrect positions on position violation
349 trials. However, this is not what we found. Intriguingly, at the point of peak decoding
350 accuracy (~96ms), classification error analysis showed a higher number of predictions
351 for the position that followed the expected position (i.e., expected + 1, the next position
352 in the sequence) across all three conditions making up ~25% of classifier output
353 (green line in Figure 5). To evaluate this statistically we examined the differences
354  between the average proportion of classifier predictions made to each position
355 averaged over a 20ms time-window (86-106ms) centred on the point of peak decoding
356 accuracy (96ms). For the fully predicted and category violation conditions we observed
357 strong evidence BF > 10 that a greater proportion of predictions was made to the next
358 position in the sequence (expected + 1) in comparison to both the previous position
359 (expected — 1) and the position behind the previous position (expected - 2). Similarly,
360 for the position violation condition we found strong evidence (BF > 10) that a greater
361 proportion of predictions was made to the next position in the sequence (expected +
362 1) than to the expected position, and modest evidence (BF > 3) that a greater
363  proportion of predictions was made to the next position than to the previous position
364 (expected — 1). We consider the interpretation and significance of this result in the
365 discussion section. Finally, it is worth highlighting that we could not evaluate

366 hypothesis 3 — which predicted that there would be no difference in decoding accuracy
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367 when the violated feature was not the target of decoding — as it relied on violation

368 having a disruptive effect as predicted by hypothesis 2.
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369

370 Figure 4. Position decoding (chance = 25%) for fully predicted, category violation and position violation
371 conditions. Coloured dots below each plot indicate the thresholded Bayes factors for each time point.
372 Black dots indicate the thresholded Bayes factors for the difference in decoding accuracy between
373  conditions.
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375

376 Figure 5. Analysis of classifier output for position decoding across conditions. Left portion of the figure
377 shows an example of the position of the stimulus for each condition in relation to what was expected
378 given the pattern of the preceding sequence. Colours on plots correspond to the stimulus positions.
379 Middle graphs show the proportion of predictions made by the classifier to each position. Across
380 conditions the actual position of the stimulus had the highest proportion of classifier predictions (~32-
381 34%). The right bar plots show the proportion of classifier predictions made to each position at the peak
382 of decoding (shaded portion of graph). Asterisks* above the plots indicate the Bayes factors for the
383 differences in proportion of predictions for each position. Contrary to hypothesis 2, there was a greater
384 proportion of predictions made to the expected + 1 (next) location than either of the other two incorrect
385 locations across conditions. Crucially, in the position violation condition there was exceptionally strong
386 evidence (BF >100) that there was a greater proportion of predictions made to the expected + 1 location

387 than the expected location suggesting the presence of anticipatory information in the EEG signal.
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389

390 Decoding Object Category

391

392 To assess object category information, we decoded car versus dog for the three
393  predictability conditions (see Figure 6). For the fully predicted condition there were 6
394  time points between 228-260ms that showed modest (BF > 3) to strong evidence (BF
395 > 10) for above chance decoding of category. Similarly, for the category violation
396  condition there were 3 time points between 226-276ms that showed modest (BF > 3)
397 to strong evidence (BF > 10) for above chance decoding, and for the position violation
398 condition, we found strong evidence for the null hypothesis throughout the trial (BF <
399  1/3) with only a few time-points transiently showing evidence for above chance
400 decoding. In terms of differences in decoding accuracy between conditions, with the
401 exception of a few sparsely distributed and isolated time points, we found strong
402  evidence for the null hypothesis that there was no difference in decoding accuracy
403  from stimulus onset until the end of the epoch (BF < 1/3). These results stand in
404  opposition to hypothesis 2 which forecast that violations of predictions would decrease
405 decoding accuracy if the violation was the target of decoding. Again, we could not
406 evaluate hypothesis 3 as it relied on violations having a disruptive effect on decoding
407  accuracy as predicted by hypothesis 2.

408
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Figure 6. Category decoding (chance = 50%) for fully predicted, category violation and position violation
conditions. Coloured dots below each plot indicate the thresholded Bayes factors for each time point.
Black dots indicate the thresholded Bayes factors for the difference in decoding accuracy between

conditions.

Discussion

The aim of this study was to test a set of four hypotheses based on the classic model
of predictive coding (Friston, 2005; Rao & Ballard, 1999), and the structure of the
visual hierarchy (Felleman & Van Essen, 1991), in the domain of basic object vision
using time-resolved EEG. According to the classic model of predictive coding sensory
systems use information from prior experience to predict current incoming sensory
input, or more concisely, they are trying to predict the present (Clark, 2016). Overall,

our results were largely contrary to this idea. The remainder of this paper will discuss
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424  the consequence of our results for each hypothesis and propose an explanation of the
425  findings in terms of generalised predictive coding (Friston & Kiebel, 2009; Friston,
426 Stephan, Li & Daunizeau, 2010) and the temporal realignment hypothesis
427  (Hogendoorn & Burkitt, 2019).

428 According to generalised predictive coding (Friston & Kiebel, 2009; Friston,
429  Stephan, Li & Daunizeau, 2010), instead of just aiming to predict current input,
430 predictions are cast in generalised coordinates of motion meaning that predictive
431  signals also represent the velocity, acceleration, and other higher order derivatives of
432  the predicted input allowing sensory systems to extrapolate. For an accessible
433  introduction to the idea of generalised coordinates of motion see Susskind &
434 Hrabovsky, 2014, and for its role in predictive coding see Buckley, Kim, McGregor &
435  Seth, 2017. Similarly, the temporal realignment hypothesis (Hogendoorn & Burkitt,
436  2019) proposes that the brain overcomes the transmission delays inherent to the
437  visual system by having both predictions and prediction errors extrapolate forward in
438 time. The key feature of both of these models is that they posit the existence of
439  temporal predictive signals that carry information about what will happen and not just
440  what is happening.

441 For prediction vs violation of position, we observed strong evidence for above
442  chance decoding which peaked at 258ms. Prima facie, this result seems in line with
443  hypothesis 1 which predicted that the presence of prediction error signals on the
444  violation trials would lead to above chance violation decoding. However, decoding was
445  far too late to plausibly reflect an error message which by hypothesis would occur at
446 a similar time-point as peak decoding accuracy for position. In fact, the peak in
447  decoding accuracy for violation of position occurred ~150ms later than peak decoding

448  accuracy for position. As such, the time course of the response is more likely due to
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449  an orienting of attention (Carlson, Hogendoorn & Verstraten, 2006; Eimer, 2000).) to
450  the unpredicted position. In favour of this interpretation, for violation of category we
451 found strong evidence for the null hypothesis of no above chance decoding. If
452  violations of predictions generated error signals that were large enough to be detected
453  at the level of the scalp we would have expected to see above chance decoding of
454  violation for category as well as position.

455 Assuming the interpretation put forward above is on track, the lack of a
456  decodable error signal suggests that prediction and prediction error may have a subtler
457  effect than we initially hypothesised. Indeed, considering that the stimulus moved
458 around the screen and did not stay within a consistent set of receptive fields, the short-
459  term changes in synaptic plasticity that are thought to underlie the generation of error
460 related ERPs (Auksztulewicz & Friston, 2016; Garrido, Kilner, Stephan & Friston,
461  2009; Stefanics, Kremlacek & Czigler, 2014) would have been reduced, and as such,
462  the changes in voltage that characterise violation effects in ERP would have been less
463  pronounced.

464 With that said, it is still plausible that the presence of predictive signals could
465 have caused the classifier to make more (erroneous) predictions to the expected
466  position on violation trials. Although again, this is not what we found. When decoding
467  position, all three conditions - fully predicted, category violation, and position violation
468 - displayed above chance decoding accuracy with a peak at 96ms. Importantly, peak
469 decoding accuracy for position violation seemed lower than fully predicted and
470  category violation suggesting that prediction error may have had a disruptive effect on
471  position information as proposed in hypothesis 2. However, we found inconclusive
472  evidence differentiating between the null and alternative hypotheses at this time point.

473  To investigate the effect of position violation on position coding in a different way, we
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474  inspected the classification output for each of the three conditions. If hypothesis 2 was
475  correct we would have expected to see a greater proportion of predictions to be made
476 to the expected location. Instead, the classifier made a greater proportion of
477  predictions to the next position in the sequence (expected + 1) across all three
478  conditions. Against the classic model of predictive coding this suggests that the visual
479  system actively anticipates future input as opposed to just inferring current input.
480  Crucially, however, this finding is predicted by both generalised predictive coding
481  (Friston & Kiebel, 2009; Friston, Stephan, Li & Daunizeau, 2010), and the temporal
482  realignment hypothesis (Hogendoorn & Burkitt, 2019), which propose that predictions
483  extrapolate forward in time. Further, our results mirror those of Blom, Feuerriegel,
484  Johnson, Bode and Hogendoorn (2020), who found that when a stimulus was a part
485  of a predictable sequence information about of the stimulus’ next location was present
486 in the EEG signal 70 - 90ms earlier than would be expected if the evoked response
487  was purely stimulus driven.

488 We modest evidence for above chance classification of category in all three
489  conditions. However, contrary to hypothesis 2, which forecast that violations of
490 predictions would show lower decoding accuracy, we found strong evidence for the
491 null hypothesis that there were no differences between conditions. The lack of effect
492  for category violation has at least two plausible and complementary explanations.
493  First, it may simply be that there was an effect of violation at the neuronal population
494  level but because the cortical representation of objects is weaker in the peripheral
495  parts of the visual field where our stimuli were presented (Levy, Hasson, Avidan,
496 Hendler, & Malach, 2001) the differences could not be seen at the level of the scalp.
497 Indeed, we observed clear category decoding, yet the absolute decoding accuracy

498  was fairly low compared with previous studies using centrally presented objects (e.g.
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499  Grootswagers, Robinson & Carlson, 2019; Grootswagers, Robinson, Shatek &
500 Carlson, 2019; Robinson, Grootswagers & Carlson, 2019). Second, like position, it
501 may be that predictions of category are primarily anticipatory in nature and as such we
502  should expect to see a greater proportion of classification errors made to the category
503  of the next stimulus but not the current stimulus. Unfortunately, however, our paradigm
504 did not allow us to interrogate this hypothesis. Since we only had two stimulus
505 categories and our stimulus was presented in an alternating or repeating pattern, the
506  category of the upcoming stimulus was either the same as the current category or the
507 same as the previous category making classifier output uninformative. Still, this
508 hypothesis will be easy to test in future work by simply increasing the number of
509 stimulus categories and presenting the stimuli in predictable sequences at the centre
510 of the screen where there is a stronger cortical representation of object category (as
511 has been done in fMRI; Richter, Ekman & de Lange, 2018). Relatedly, in terms of
512 hypothesis 3, which forecast that violations of the non-target feature would have no
513 effect on decoding, we cannot evaluate its accuracy as it relied on violations having a
514  disruptive effect on decoding (i.e., hypothesis 2). Unfortunately, if we are correct in
515 arguing that the effect of prediction error is reduced the periphery, this hypothesis will
516  be difficult to test using non-invasive techniques.

517 In sum, our results are largely contrary to the classic model of predictive coding
518  (Friston, 2005; Rao & Ballard, 1999) which proposes that sensory systems use prior
519 experience to predict the present (cf. Clark, 2016). Instead, consistent with
520 generalised predictive coding, and the temporal realignment hypothesis, our
521  exploratory analysis suggests that sensory signals are actively anticipate future input,
522  at least for representations of position. This contrary finding, which was predicted by

523  previous theoretical work, represents an important advance in how we should think
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524  about prediction in sensory systems. We look forward to future work investigating
525  whether the anticipatory nature of prediction generalises to category representation.
526
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