

1 **Title:**

2 Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL
3 transcription factors in green plants

4

5

6 **Authors:**

7 Tetsuya Hisanaga^{1,2}, Shota Fujimoto¹, Yihui Cui¹, Katsutoshi Sato¹, Ryosuke Sano¹,
8 Shohei Yamaoka³, Takayuki Kohchi³, Frédéric Berger², and Keiji Nakajima¹

9

10 **Affiliations:**

11 ¹Graduate School of Science and Technology, Nara Institute of Science and Technology,
12 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

13 ²Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter, Dr.
14 Bohr Gasse 3, 1030 Vienna, Austria

15 ³ Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan

16

17 **Corresponding author:**

18 Keiji Nakajima: email, k-nakaji@bs.naist.jp: tel, 81-743-72-5560: fax, 81-743-72-5569

19

20 **Abstract**

21

22 KNOX and BELL transcription factors regulate distinct steps of diploid development in
23 the green lineages. In the green alga *Chlamydomonas reinhardtii*, KNOX and BELL
24 proteins are inherited by gametes of the opposite mating types, and heterodimerize in
25 zygotes to activate diploid development. By contrast, in land plants such as
26 *Physcomitrella* and *Arabidopsis*, KNOX and BELL proteins function in meristem
27 maintenance and organogenesis during the later stages of diploid development. However,
28 whether the contrasting functions of KNOX and BELL were acquired independently in
29 algae and land plants is currently unknown. Here we show that in the basal land plant
30 species *Marchantia polymorpha*, gamete-expressed *KNOX* and *BELL* are required to
31 initiate zygotic development by promoting nuclear fusion in a manner strikingly similar
32 to that of *C. reinhardtii*. Our results indicate that zygote activation is the ancestral role of
33 KNOX/BELL transcription factors, which shifted toward meristem maintenance as land
34 plants evolved.

35

36 **Introduction**

37 The life cycles of eukaryotes alternate between diploid (2n) and haploid (n) phases
38 through meiosis and fertilization (Bowman et al., 2016). In land plants, both the haploid
39 and diploid phases are multicellular, producing gametophytic and sporophytic bodies,
40 respectively. In bryophytes including liverworts, mosses, and hornworts, gametophytes
41 are larger and more morphologically complex than sporophytes, which consist of only a
42 few cell types. During the course of land plant evolution, the life cycle shifted toward a
43 sporophyte-dominant style, presumably to facilitate adaptation to terrestrial environments
44 where it is advantageous to generate large sporophytes that produce many spores.
45 Consequently, the sporophytes of extant flowering plants (angiosperms) exhibit far more
46 complex morphologies than their male and female gametophytes, the pollen grain and
47 embryo sac, respectively, which are composed of only a few cells. This evolutionary
48 transition in life cycle is thought to have been facilitated by the cooption of genes and/or
49 gene regulatory networks that regulate gametophyte development to function in
50 sporophyte development (Bowman, 2019). However, key steps of life cycle progression
51 per se have continued to be driven by conserved regulators during land plant evolution,
52 as recently reported for gametophytic sexual differentiation and gamete formation (Koi
53 et al., 2016, Rövekamp et al., 2016, Higo et al., 2018, Yamaoka et al., 2018, Hisanaga et
54 al., 2019a, Hisanaga et al., 2019b).

55 Homeodomain transcription factors (HD TFs) are developmental regulators that
56 are evolutionarily conserved in eukaryotes. HD TFs are classified into two families,
57 Three-Amino-Acid-Loop-Extension (TALE) and non-TALE, based on amino acid
58 sequence similarity in the HD domain (Bertolino et al., 1995, Derelle et al., 2007). In the

59 fungi *Saccharomyces cerevisiae* and *Coprinopsis cinerea*, TALE and non-TALE HD TFs
60 are expressed in haploid cells of opposite mating types. These proteins heterodimerize in
61 zygotes to regulate the expression of genes promoting the haloid-to-diploid transition
62 (Goutte and Johnson, 1988, Herskowitz, 1989, Kües et al., 1992, Spit et al., 1998). In
63 green plants, TALE HD TFs have diversified into the KNOX (KNOTTED1-LIKE
64 HOMEOBOX) and BELL (BELL-LIKE) subfamilies. In the unicellular green alga *C.*
65 *reinhardtii*, the KNOX protein GAMETE SPECIFIC MINUS1 (GSM1) and the BELL
66 protein GAMETE SPECIFIC PLUS1 (GSP1) accumulate in the cytosol of *minus* and *plus*
67 gametes, respectively. Upon fertilization, the two proteins heterodimerize and translocate
68 to both male and female pronuclei to activate the expression of early zygote-specific
69 genes. Loss-of-function mutations in either *GSP1* or *GSM1* result in pleiotropic
70 phenotypes involving cellular rearrangements in zygotes, such as the loss of nuclear and
71 mitochondrial fusion, lack of selective degradation of *minus*-derived chloroplast DNA
72 and chloroplast membrane fusion, and defects in flagella resorption (Joo et al., 2017,
73 Kariyawasam et al., 2019, Lee et al., 2008, Lopez et al., 2015, Nishimura et al., 2012).

74 In land plants, KNOX proteins are further diversified into class I (KNOX1) and
75 class II (KNOX2) (Kerstetter et al., 1994, Mukherjee et al., 2009). The developmental
76 functions of these proteins have been studied extensively in angiosperms such as maize
77 (*Zea mays*), rice (*Oryza sativa*), and Arabidopsis (*Arabidopsis thaliana*) (reviewed in Hay
78 and Tsiantis, 2010). Based on their expression patterns and the phenotypes of both
79 knockout and overexpression lines, KNOX1 proteins are thought to promote cell
80 proliferation in the meristematic tissues of aerial organs. The biological functions of
81 KNOX2 genes are somewhat elusive, but they are thought to act antagonistically to
82 KNOX1 to promote cell differentiation (Furumizu et al., 2015).

83 The apparent functional dissimilarity of KNOX proteins between *C. reinhardtii*
84 and *Arabidopsis* (zygote activation versus cellular proliferation/differentiation) may
85 reflect the large phylogenetic distance between these two species, as they separated into
86 two major green plant lineages, Chlorophyta and Streptophyta, some 700 million years
87 ago (Becker, 2013). Functional analyses of *KNOX* genes in the moss *Physcomitrella*
88 *patens*, however, pointed to some commonality between the two *KNOX* functions in
89 sporophyte development. The moss genome contains three *KNOX1* and two *KNOX2*
90 genes, which are all primarily expressed in sporophytes, though expression of one
91 *KNOX1* and two *KNOX2* genes is additionally detected in egg cells (Horst et al., 2016,
92 Sakakibara et al., 2013, Sakakibara et al., 2008). A triple loss-of-function mutant of all
93 three *KNOX1* genes was defective in cell division and differentiation in sporophytes, as
94 well as spore formation (Sakakibara et al., 2008). By contrast, simultaneous knockout of
95 the two *KNOX2* genes resulted in ectopic gametophyte formation in sporophyte bodies
96 (Sakakibara et al., 2013). Thus, at least in one bryophyte species, *KNOX1* and *KNOX2*
97 control sporophyte development via two pathways, with one ensuring proper sporophyte
98 development (like *C. reinhardtii* *GSM1*) and the other promoting cell proliferation (like
99 *Arabidopsis* *KNOX1* proteins). While the transition of the role of *KNOX/BELL* from
100 zygote activation to sporophyte morphogenesis likely arose during plant evolution, the
101 point in plant phylogeny at which this transition occurred is unclear.

102 Here, we analyzed the roles of *KNOX1* and *BELL* in the liverwort *Marchantia*
103 *polymorpha*, a model species suitable to study evolution of sexual reproduction in plants
104 (Hisanaga et al., 2019b). We uncovered unexpected conservation of *KNOX/BELL*
105 function between the phylogenetically distant green plants *M. polymorpha* and *C.*
106 *reinhardtii*, but not between the more closely related *M. polymorpha* and *P. patens*. Thus,

107 the functional transition of KNOX/BELL from zygote activation to sporophyte
108 morphogenesis occurred at least once in the land plant lineage independently of the
109 acquisition of multicellular sporophytes. Additionally, we uncovered inverted sex-
110 specific expression patterns of *KNOX* and *BELL* genes between *C. reinhardtii* and *M.*
111 *polymorpha*, suggesting that anisogamy evolved independently of *KNOX/BELL*
112 expression in gametes.

113

114 **Results**

115 **MpKNOX1 is as an egg-specific gene in *M. polymorpha***

116 We previously reported that an RWP-RK TF MpRKD promotes egg cell differentiation
117 in *M. polymorpha*. Loss-of-function *Mprkd* mutant females grow normally and produce
118 archegonia like the wild type, but their egg cells do not mature, instead degenerating after
119 ectopic cell division and vacuolization (Koi et al., 2016). We made use of this egg-specific
120 defect in *Mprkd* to identify genes preferentially expressed in egg cells of *M. polymorpha*.
121 Briefly, we collected ~2,000 archegonia from two independent *Mprkd* female mutant
122 lines (*Mprkd-1* and *Mprkd-3*, Koi et al., 2016), each in two replicates. As a control,
123 ~4,000 archegonia were collected from wild-type females in four replicates. We extracted
124 RNA from each pool and analyzed it by next-generation sequencing. Comparative
125 transcriptome analysis identified 1,583 genes with significantly reduced mRNA levels in
126 *Mprkd* compared to wild-type archegonia (>3-fold and *false discovery rate* < 0.01; Figure
127 1A and Figure1 – figure supplement 1A). Among these, MpKNOX1 (Mp5g01600), the
128 only class I *KNOX* gene in *M. polymorpha* (Bowman et al., 2017, Frangedakis et al.,
129 2017), was strongly downregulated in *Mprkd* vs. the wild type (~500-fold) (Figure 1B).

130 The MpKNOX1 polypeptide contains KNOX I, KNOX II, ELK, and Homeobox domains,
131 as do KNOX proteins from green algae, mosses, ferns and flowering plants (Figure 1C).

132 Previous RNA-sequencing data (Bowman et al., 2017) indicate that *MpKNOX1*
133 is specifically expressed in female plants (Figure 1 – figure supplement 1B). To obtain
134 the detailed expression patterns of *MpKNOX1*, we performed RT-PCR analysis using
135 RNA extracted from vegetative and reproductive organs of male and female
136 gametophytes, as well as three-week-old sporophytes, and confirmed the specific
137 expression of *MpKNOX1* in archegoniophores (Figure 2A). No expression was detected
138 in female or male thalli (leaf-like vegetative organs), antheridiophores (male reproductive
139 branches) or sporophytes (Figure 2A). To visualize the cell- and tissue-specific expression
140 patterns of *MpKNOX1*, we generated a *MpKNOX1* transcriptional reporter line
141 (*MpKNOX1pro:H2B-GFP*). Consistent with the dramatically reduced *MpKNOX1*
142 transcript levels in egg-deficient *Mprkd* archegonia (Figure 1B), reporter expression was
143 specifically detected in egg cells (Figure 2C) and not in developing archegonia before the
144 formation of egg progenitors (Figure 2B). Together, these data indicate that *MpKNOX1*
145 is an egg-specific gene in *M. polymorpha*.

146

147 **Zygote activation of wild-type *M. polymorpha* lags during karyogamy**

148 The egg-specific expression of *MpKNOX1* attracted our attention, as this pattern is in
149 contrast to the previously reported function of KNOX1s in sporophyte morphogenesis in
150 land plants (Furumizu et al., 2015, Sakakibara et al., 2008). Instead, the egg-specific
151 expression of *MpKNOX1* is reminiscent of *GSM1*, a KNOX homolog in *C. reinhardtii*
152 that is expressed in *plus* gametes and activates zygote development after fertilization (Joo

153 et al., 2017, Kariyawasam et al., 2019, Lee et al., 2008, Lopez et al., 2015, Ning et al.,
154 2013, Nishimura et al., 2012). Therefore, we explored whether MpKNOX1 plays a role in
155 zygote activation in *M. polymorpha*.

156 While the processes of gametogenesis and embryo patterning in *M. polymorpha*
157 (Figure 3A) have been characterized histologically (Durand, 1908, Higo et al., 2016, Koi
158 et al., 2016, Shimamura, 2016, Zinsmeister and Carothers, 1974), the subcellular
159 dynamics associated with zygote activation have not been described in detail. To visualize
160 these dynamics, we established a simple *in vitro* fertilization method for *M. polymorpha*.
161 Briefly, several antheridiophores and archegoniophores were co-cultured in a plastic tube
162 containing an aliquot of water for 1 h to allow sperm to be released from the antheridia
163 and enter into the archegonia (Figure 3B). At the end of the co-culture period, sperm
164 nuclei were visible in most eggs (Figure 3C), indicating that fertilization had been
165 completed during the 1 h of co-culturing. Subsequently, sperm-containing archegonia
166 were transferred to a fresh tube containing water and cultured for two weeks (Figure 3B).
167 This experimental regime restricted the timing of sperm entry to the 1-h time window of
168 the co-culture period (whose termination is defined hereafter as the time of fertilization),
169 allowing us to perform a time-course observation of fertilization and embryogenesis
170 (Figure 3D–3I).

171 We observed the cellular dynamics of zygotes and early embryos using
172 optimized cell wall staining and tissue clearing techniques (Miyashima et al., 2019,
173 Kurihara et al., 2015). No cell walls were stained in mature egg cells (Figure 3 - figure
174 supplement 1A), indicating that cell walls are not present in mature eggs, a prerequisite
175 for fusion with sperm cells. A cell wall around the zygote was detected only at 3 days

176 after fertilization (DAF) (Figure 3 - figure supplement 1B–1D), suggesting that zygotic
177 activation occurs slowly, requiring at least two days. The first zygotic division occurred
178 at 4–5 DAF (Figure 3 - figure supplement 1E and 1F), a time point considerably later
179 than that reported for the zygotes of flowering plants (20 hours after fertilization (HAF);
180 Gooh et al., 2015, Uchiumi et al., 2007). At 1 to 3 DAF, a male pronucleus was clearly
181 stained with DAPI, in contrast to the female pronucleus (not visible by DAPI staining),
182 and was typically positioned halfway between the periphery and center of the fertilized
183 egg (Figure 3D and 3E, green arrowhead). At 4 DAF, most zygotes completed the first
184 division (Figure 3F), indicating that karyogamy takes place at 3–4 DAF. After 5 DAF,
185 zygotes and the surrounding archegonial wall cells divided to form sporophytes and the
186 calyptra (a protective gametophyte tissue), respectively (Figure 3G–3I). These cellular
187 rearrangements, including karyogamy and embryogenesis, proceeded at a rate
188 comparable to that in zygotes produced *in planta* (Figure 3 - figure supplement 2),
189 confirming that our *in vitro* fertilization protocol faithfully recapitulated fertilization
190 programs *in planta*.

191

192 **Maternal MpKNOX1 is required for pronuclear fusion in zygotes**

193 To analyze the biological functions of MpKNOX1, we generated loss-of-function mutants
194 of MpKNOX1 using a CRISPR/Cas9 technique optimized for *M. polymorpha* (Sugano et
195 al., 2018). We obtained two independent female mutant lines that harbored nucleotide
196 insertions or deletions resulting in premature stop codons preceding the region encoding
197 the HD (Figure 4 - figure supplement 1A). Both mutants were indistinguishable from
198 wild-type females in terms of both vegetative and reproductive morphology (Figure 4 -

199 figure supplement 2). Mature archegonia and egg cells of the *Mpknox1* mutants were also
200 indistinguishable from those of the wild type (Figure 4A and 4D), indicating that
201 *MpKNOXI* functions are dispensable for both gametophyte development and
202 gametogenesis.

203 We crossed the *Mpknox1* mutant females with wild-type males and observed the
204 resulting zygotes by microscopy. Similar to wild-type zygotes, each *Mpknox1* egg
205 fertilized with wild-type sperm harbored a male pronucleus at 1 DAF (85%, $n = 27$ for
206 wild type and 88%, $n = 17$ for *Mpknox1*, Figure 4B and 4E), indicating that *Mpknox1*
207 eggs are able to fuse with wild-type sperm and support decondensation of sperm nuclei.
208 At 7 DAF, however, male and female pronuclei remained unfused in most fertilized
209 *Mpknox1* eggs (91%, $n = 23$, Figure 4F), in contrast with wild-type fertilized eggs, which
210 were undergoing sporophyte development (96%, $n = 25$) (Figure 4C). The two
211 independent *Mpknox1* mutant lines exhibited indistinguishable defects in karyogamy.
212 Importantly, this defect was rescued in archegonia expressing *MpKNOXI-GFP* driven by
213 the *MpKNOXI* promoter (*gMpKNOXI-GFP*, Figure 4 - figure supplement 3), confirming
214 the notion that *MpKNOXI* is required maternally to complete fertilization.

215 A small fraction of *Mpknox1* eggs that were fertilized with wild-type sperm
216 developed into sporangia that produced functional spores (Figure 4 - figure supplement
217 4), suggesting that redundant genetic pathway(s) can compensate for the loss of
218 *MpKNOXI*, and/or that our *Mpknox1* mutant alleles were not null, though genomic
219 sequences preceding the HD-coding region was disrupted. This slightly leaky penetrance
220 allowed us to obtain male *Mpknox1* gametophytes from the resulting spores. The male
221 *Mpknox1* mutants produced functional sperm capable of producing normal embryos when

222 used to fertilize wild-type eggs (Figure 4 - figure supplement 5), indicating that paternal
223 *MpKNOXI* is dispensable for gametophyte development, fertilization, and
224 embryogenesis. Together, these results indicate that the egg-derived functional
225 *MpKNOXI* allele or its protein products, but not those derived from sperm, are required
226 to activate zygote development, more specifically karyogamy, during *M. polymorpha*
227 fertilization.

228 In both animals and plants, karyogamy occurs via a two-step process: pronuclear
229 migration and nuclear membrane fusion (Fatema et al., 2019). During pronuclear
230 migration, one or both pronuclei migrate to become in close proximity, while during
231 nuclear membrane fusion, the nuclear envelopes of the two pronuclei fuse together to
232 produce a zygotic nucleus with both maternal and paternal genomes. To identify which
233 of these steps is affected by the *Mpknox1* mutation, we visualized the pronuclear envelope
234 by expressing GFP-tagged MpSUN proteins under the control of an egg-specific
235 promoter (*ECpro:MpSUN-GFP*, see Materials and Methods for details). Before
236 fertilization, wild-type and *Mpknox1* egg nuclei were of a similar size (approximately 20
237 μm in diameter) and were surrounded by a mesh-like membranous structure (Figure 4G
238 and 4J). At 3 DAF, *ECpro:MpSUN-GFP* signals were visualized at the surfaces of both
239 female and male pronuclei, suggesting the presence of a nuclear envelope (Figure 4H and
240 4K). In both wild-type- and *Mpknox1*-derived zygotes, female and male pronuclei were
241 tethered to each other by a membranous structure marked by MpSUN-GFP (Figure 4H
242 and 4K). At 5 DAF, however, male and female pronuclei remained separated by an
243 intercalating membranous structure in *Mpknox1*-derived zygotes, while those from wild-
244 type eggs already showed two embryonic nuclei (Figure 4I and 4L). Together, these
245 observations indicate that maternal *MpKNOXI* or its protein product is dispensable for

246 the organization and migration of pronuclei but is required for pronuclear membrane
247 fusion.

248

249 **Both maternal and paternal MpBELL alleles contribute to karyogamy**

250 KNOX proteins heterodimerize with BELL proteins to regulate gene transcription (Hay
251 and Tsiantis, 2010). In *C. reinhardtii*, a *minus* gamete-derived KNOX protein (GSM1)
252 heterodimerizes with a *plus* gamete-derived BELL protein (GSP1) upon fertilization and
253 activates the majority of early zygote-specific genes (Joo et al., 2017, Kariyawasam et al.,
254 2019, Lee et al., 2008, Lopez et al., 2015, Nishimura et al., 2012). Loss of GSM1 and/or
255 GSP1 results in delayed pronuclear fusion, a phenotype similar to that of *Mpknox1*
256 mutants. The phenotypic similarity between *M. polymorpha* *Mpknox1* and *C. reinhardtii*
257 *gsm1* mutants suggests that the role of KNOX and BELL in zygote activation is conserved
258 and that its evolutionary origin can be traced back to a common ancestor of the two
259 species.

260 In support of this hypothesis, publicly available transcriptome data (Bowman et
261 al., 2017) indicate that two of the five *BELL* genes of *M. polymorpha*, *MpBELL3*
262 (*Mp8g02970*) and *MpBELL4* (*Mp8g07680*), are preferentially expressed in the
263 antheridiophores of male plants, whereas *MpBELL1* (*Mp8g18310*) and *MpBELL5*
264 (*Mp5g11060*) are preferentially expressed in sporophytes and archegonia, respectively
265 (Figure 5 - figure supplement 1). RT-PCR analysis confirmed that *MpBELL3* and
266 *MpBELL4* are specifically expressed in antheridiophores containing antheridia (Figure
267 5A).

268 To investigate whether *MpBELL3* and/or *MpBELL4* are required for fertilization,
269 we generated two male and one female mutant lines in which *MpBELL3* and *MpBELL4*
270 were simultaneously disrupted (hereafter referred to as *Mpbell3/4*) using a CRISPR/Cas9
271 nickase system (Figure 4 - figure supplement 1B and 1C). Both female and male
272 *Mpbell3/4* gametophytes grew normally (Figure 4 - figure supplement 2) and produced
273 normal gametangia and gametes capable of fertilization (Figure 5 -figure supplement 2,
274 Figure 5B, D, G, and J). By contrast, approximately one-third of zygotes (37%, $n = 35$)
275 produced by crossing wild-type females and *Mpbell3/4* males did not complete
276 karyogamy by 5 DAF (Figure 5E, 5F and 5L).

277 Somewhat unexpectedly, zygotes obtained from a reciprocal cross (*Mpbell3/4*
278 females with wild-type males) exhibited a low but significant degree of karyogamy arrest
279 (22%, $n = 37$) (Figure 5H, 5I and 5L), despite the lack of detectable *MpBELL3/4*
280 expression in female gametes. Furthermore, a majority of 5-DAF zygotes obtained from
281 a cross between *Mpbell3/4* females and *Mpbell3/4* males (92%, $n = 37$) were arrested at
282 karyogamy (Figure 5K and 5L), as was the case for two independent male *Mpbell3/4*
283 lines. These results suggest that not only paternally inherited *MpBELL3* and/or *MpBELL4*
284 alleles(s) and/or their protein products, but also maternally inherited *MpBELL3* and/or
285 *MpBELL4* allele(s) contribute to karyogamy.

286

287 **MpKNOX1 proteins transiently localize to male and female pronuclei in an**
288 ***MpBELL3/4*-dependent manner**

289 Our genetic analyses indicated that *MpKNOX1* functions after fertilization despite its
290 specific transcription in unfertilized egg cells. This observation suggests that *MpKNOX1*

291 protein produced in unfertilized egg cells functions in zygotes. To test this hypothesis, we
292 analyzed MpKNOX1 protein dynamics during fertilization by examining *gMpKNOX1-*
293 *GFP* plants by confocal microscopy. In mature egg cells, MpKNOX1-GFP was
294 specifically detected in the cytosol (Figure 6A). After crossing with a wild-type male,
295 GFP signals were detected in both male and female pronuclei at 12 HAF (Figure 6B). At
296 24 HAF, the GFP signals were totally excluded from the pronuclei (Figure 6C). These
297 observations suggest that upon fertilization MpKNOX1 translocates from the cytosol to
298 pronuclei.

299 As KNOX proteins function as transcription factors, the transient localization of
300 MpKNOX1 in pronuclei should be critical for its role in regulating karyogamy-promoting
301 genes. In *Arabidopsis*, KNOX proteins are recruited to nuclei through interactions with
302 BELL proteins. To examine whether paternally inherited Mp*BELL3* and/or Mp*BELL4*
303 contribute to the pronuclear localization of MpKNOX1, we crossed *gMpKNOX1-GFP*
304 females with wild-type or Mp*bell3/4* males and analyzed the subcellular localization of
305 MpKNOX1-GFP in zygotes. In contrast to zygotes derived from a cross with wild-type
306 males, where GFP signals were preferentially detected in male and female pronuclei,
307 zygotes derived from a cross with Mp*bell3/4* males retained GFP signals in the cytosol
308 (Figure 6B–6E). Together, these data suggest that paternally inherited Mp*BELL3* and/or
309 Mp*BELL4* contribute to the pronuclear localization of MpKNOX1 after fertilization.

310

311 **Discussion**

312 Here, we demonstrated that MpKNOX1 is an egg-specific gene in *M. polymorpha*.
313 MpKNOX1 is strongly expressed in developing and mature eggs, whereas no expression

314 was detected in gametophytes, sperm or sporophytes. The egg-specific expression of
315 *MpKNOX1* is in sharp contrast with the expression pattern of *KNOX1* genes in another
316 model bryophyte, *P. patens*, where all three *KNOX1* genes are strongly expressed in
317 sporophytes to regulate their development (Sakakibara et al., 2008). Rather, the egg-
318 specific expression pattern of *MpKNOX1* is reminiscent of that of *GSM1*, a *KNOX* gene
319 of the unicellular green alga *C. reinhardtii* specifically expressed in *minus* gametes. Upon
320 fertilization, *GSM1* forms heterodimers with *plus* gamete-derived BELL protein *GSP1* to
321 activate expression of early zygote-specific genes (Joo et al., 2017, Lee et al., 2008,
322 Nishimura et al., 2012). Accordingly, we suspected that *MpKNOX1* might function as a
323 gamete-derived zygote activator in *M. polymorpha*. Indeed, egg cells produced by two
324 independent loss-of-function *Mpknox1* female mutants failed to produce embryos when
325 fertilized with wild-type sperm. By contrast, wild-type eggs fertilized with *Mpknox1*
326 sperm produced normal embryos and spores. These results clearly indicate that maternal
327 *Mpknox1* exclusively contributes to embryogenesis.

328 The parent-of-origin effects of gene alleles can arise at several levels (Luo et al.,
329 2014). In some cases, only one parental allele is transcribed in zygotes due to silencing
330 of the other allele. In other cases, gene products such as proteins and small RNA
331 molecules are synthesized in and/or carried over from gametes of a single sex. Our
332 reporter analysis revealed that *MpKNOX1* is preferentially transcribed in egg cells. By
333 contrast, *MpKNOX1*-GFP accumulated in both unfertilized and fertilized eggs until 12
334 HAF, which mostly diminish at 24 HAF. These observations strongly argue for a
335 mechanism in which *MpKNOX1* produced in unfertilized eggs acts later in zygotes to
336 initiate embryogenesis. This mode-of-action of *MpKNOX1* is strikingly similar to that
337 proposed for *C. reinhardtii* *GSM1* (Lee et al., 2008).

338 How does egg-derived MpKNOX1 promote embryogenesis? We determined that
339 in wild-type *M. polymorpha*, karyogamy is completed only after 3–4 DAF, a time
340 considerably later than that reported for flowering plants (Gooh et al., 2015, Uchiumi et
341 al., 2007). This slow progression of karyogamy is further delayed or arrested when
342 maternal *Mpknox1* is mutated. Observation of nuclear membrane dynamics using an
343 MpSUN-GFP marker revealed that in fertilized *Mpknox1* mutant eggs, karyogamy was
344 arrested at the nuclear membrane fusion step, not the nuclear migration step. Consistent
345 with the predicted role of MpKNOX1 as a transcription factor, MpKNOX1-GFP localized
346 to both male and female pronuclei by 12 HAF, far before the initiation of nuclear
347 membrane fusion. These observations suggest that gamete-derived MpKNOX1 functions
348 in pronuclei to regulate the expression of gene(s) required for nuclear membrane fusion,
349 thereby activating zygote development.

350 In both angiosperms and *C. reinhardtii*, the heterodimerization of KNOX and
351 BELL is required for the nuclear translocation of these proteins, which in turn is required
352 for them to regulate gene transcription (Hay and Tsiantis, 2010, Lee et al., 2008).
353 Consistent with this notion, our genetic and imaging analyses suggested that sperm-
354 derived MpBELLs are required to recruit MpKNOX1 to male and female pronuclei.
355 Among the five *BELL* genes in the *M. polymorpha* genome, Mp*BELL3* and Mp*BELL4*
356 are specifically expressed in male sexual organs. Mp*bell3/4* mutant males could produce
357 motile sperm, but approximately 40% of wild-type eggs fertilized with Mp*bell3/4* sperm
358 did not produce embryos compared to ~10% of those fertilized with wild-type sperm.
359 This partial loss of embryogenic ability was accompanied by severely compromised
360 pronuclear localization of MpKNOX1-GFP. These observations strongly suggest a
361 mechanism in which paternal Mp*BELL3* and/or Mp*BELL4* recruit maternal MpKNOX1

362 to pronuclei.

363 Interestingly, however, our genetic analyses also indicated that not only paternal
364 but also maternal MpBELL3 and/or MpBELL4 are required for karyogamy with full
365 penetrance, even though their expression was not detected in maternal organs or egg cells.
366 A plausible explanation for this observation is that maternally inherited MpBELL3 and/or
367 MpBELL4 alleles become transcriptionally activated in zygotes and that MpBELL3
368 and/or MpBELL4 expression post-fertilization acts to replenish MpBELL proteins to
369 ensure karyogamy with high penetrance.

370 Based on these observations, we propose a two-step model of MpBELL3/4
371 activity (Figure 7A). According to this model, sperm-borne MpBELL3 and MpBELL4
372 proteins heterodimerize with egg-derived MpKNOX1 upon fertilization and activate the
373 transcription of zygote-specific genes as well as maternal MpBELL3 and/or MpBELL4.
374 MpBELL3 and MpBELL4 produced *de novo* further activate the expression of zygote-
375 specific genes, including genes required for karyogamy. Such feed-forward regulation
376 would efficiently compensate for the presumably small amounts of MpBELL proteins
377 inherited from the sperm cytosol. Considering that a recent phenotypic analysis of newly
378 isolated *gsm1* and *gsp1* alleles revealed the biparental contribution of GSM1 to
379 karyogamy in *C. reinhardtii* (Kariyawasam et al., 2019), our findings further emphasize
380 the similarity of KNOX/BELL-mediated zygote activation between *M. polymorpha* and
381 *C. reinhardtii*.

382 While our study revealed the striking conservation of KNOX/BELL functions
383 between *M. polymorpha* and *C. reinhardtii*, this finding is somewhat unexpected from a
384 phylogenetic viewpoint, because KNOX/BELL proteins in the model bryophyte *P. patens*

385 control sporophyte development, as do KNOX/BELL proteins in angiosperms. Outside
386 the plant kingdom, TALE TFs in yeasts and fungi promote the haploid-to-diploid
387 transition (Goutte and Johnson, 1988, Herskowitz, 1989, Kües et al., 1992, Spit et al.,
388 1998). Thus, perhaps the shared zygote-activating functions of KNOX/BELL in *M.*
389 *polymorpha* and *C. reinhardtii* reflect an ancestral state (Bowman et al., 2016).

390 Considering the generally accepted view of bryophyte monophyly (de Sousa et
391 al., 2019, Puttick et al., 2018), our findings suggest that the functional transition of
392 KNOX/BELLS from zygote activation to sporophyte morphogenesis occurred at least
393 twice during land plant evolution, including once in the bryophyte lineage and once in
394 the tracheophyte lineage (Figure 7B). Among the three bryophyte clades, liverworts have
395 simpler sporophyte morphology than mosses and hornworts (Shimamura, 2016). In
396 mosses, the extension of sporangia from gametophore apices depends on the activity of
397 the seta meristem, where KNOX1 proteins play a role in promoting cell division, whereas
398 the seta of *M. polymorpha* elongates exclusively by cell elongation (Ligrone et al., 2012b,
399 Ligrone et al., 2012a, Sakakibara et al., 2008). Thus, the evolutionary innovation of
400 meristematic tissues might have promoted the functional transition of KNOX/BELL from
401 zygote activation to sporophyte morphogenesis.

402 Our study revealed that the zygote-activating function of KNOX/BELL is
403 conserved between *C. reinhardtii* and *M. polymorpha*, which belong to Chlorophyta and
404 Streptophyta, respectively. These two major green plant lineages were separated more
405 than 700 million years ago (Becker, 2013) (Figure 7B). Interestingly, however, the sex-
406 specific expression patterns of KNOX and BELL in *C. reinhardtii* are opposite to those
407 in *M. polymorpha*. In *C. reinhardtii*, KNOX (GSM1) and BELL (GSP1) are expressed in

408 isogamous *minus* and *plus* gametes (Lee et al., 2008), which directly evolved into male
409 and female gametes, respectively, in oogamous (with small motile gametes and large
410 immotile gametes) *Volvox carteri*, primarily by modifying genes acting downstream of
411 the conserved sex-determinant protein MID (Ferris and Goodenough, 1997, Geng et al.,
412 2014, Geng et al., 2018, Nozaki et al., 2006) (Figure 7B). Results from other research
413 groups indicate that the expression specificity of KNOX/BELL is conserved along the
414 *volvocine* lineage (with *minus* and male gametes expressing GSM1; personal
415 communication with Takashi Hamaji (Kyoto University, Japan) and James Umen (Donald
416 Danforth Plant Science Center, MO)). Thus, at least in one Chlorophyta lineage, KNOX
417 and BELL are expressed in male and female gametes, respectively, a situation opposite
418 to that in *M. polymorpha* (*KNOX* for females and *BELL* for males) (Figure 7B).

419 In land plants, oogamy likely evolved once, as key regulators of gametophytic
420 sexual differentiation, such as FGMYBs for females and DUO POLLEN 1 (DUO1) for
421 males, are shared between *M. polymorpha* and *Arabidopsis* (see Hisanaga et al., 2019b
422 for a review) (Figure 7B). Theoretical analyses predicted that anisogamy evolved through
423 disruptive selection, where an increased volume of one type of gamete favors zygote
424 fitness, allowing the other gamete type to increase in number at the expense of volume
425 (Parker et al., 1972). Thus, in ancestral green plants, KNOX/BELL expression specificity
426 did not affect gamete morphology or function. This notion is consistent with our
427 observation that neither MpKNOX1 nor MpBELL3/4 contribute to gamete development
428 or function in extant *M. polymorpha*.

429 In summary, our study revealed a critical role of *KNOX* and *BELL* in zygote
430 activation in the model bryophyte *M. polymorpha*, an early-diverging land plant. This is

431 in stark contrast with a well-recognized role of *KNOX/BELL* in sporophytic meristem
432 maintenance in angiosperms and another model bryophyte *P. patens*. Rather, striking
433 conservation of *KNOX/BELL* functions in the promotion of karyogamy across
434 phylogenetically distant *M. polymorpha* and *C. reinhardtii* suggests that functions of
435 *KNOX/BELL* heterodimers shifted from zygote-activation to sporophyte development as
436 land plant evolved. This view is consistent with a proposed evolutionary scenario of HD
437 proteins in a broader eukaryotic taxa, including fungi and metazoans (Bowman et al.,
438 2016).

439

440 **Materials and methods**

441

442 **Plant materials**

443 *Marchantia polymorpha* L. subsp. *ruderale* accessions Takaragaike 1 (Tak-1) and
444 Takaragaike 2 (Tak-2; (Ishizaki et al., 2016)) were used as the wild-type male and female,
445 respectively. Plants were cultured on half-strength Gamborg's B5 medium solidified with
446 1% (w/v) agar under continuous white light at 22 °C. To induce reproductive development,
447 10-day-old thalli were transferred to a pot containing vermiculite and grown under white
448 light supplemented with far-red illumination generated by LED (VBL-TFL600-IR730;
449 IPROS Co., Tokyo, Japan).

450

451 **Archegonium sampling, RNA extraction and Illumina sequencing**

452 Mature archegonia were manually dissected from wild-type archegoniophores and
453 divided into four pools, each composed of approximately 1,000 archegonia. Mature
454 archegonia of *Mprkd-1* and *Mprkd-3* (Koi et al., 2016) were collected and each divided
455 into two pools of approximately 1,000 archegonia. Total RNA was extracted from the
456 samples with an RNeasy Plant Mini Kit (Qiagen, Venlo, Netherlands) according to the
457 manufacturer's protocol. The quality and quantity of the RNA were evaluated using a
458 Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA) and a RNA6000 Nano Kit
459 (Agilent Technologies, Santa Clara, CA). Sequence libraries were constructed with a
460 TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA) according to the
461 manufacturer's protocol. The quality of each library was examined using a Bioanalyzer
462 with High Sensitivity DNA Kit (Agilent Technologies) and a KAPA Library
463 Quantification Kit for Illumina (Roche diagnostics, Basel, Switzerland). An equal amount
464 of each library was mixed to generate a 2-nM pooled library. Next-generation sequencing
465 was performed using the HiSeq 1500 platform (Illumina, San Diego, CA) to generate
466 126-nt single-end data. Sequence data have been deposited at the DDBJ BioProject and
467 BioSample databases under accession numbers PRJDB9329 and SAMD00205647-
468 SAMD00205654, respectively.

469

470 **Data analysis**

471 Read data were mapped to the genome sequence of *M. polymorpha* v3.1 using TopHat
472 ver. 2.0.14 (Trapnell et al., 2009) with default parameters. FPKM values were calculated
473 using the DESeq2 package in R (Love et al., 2014). Differentially expressed genes
474 (DEGs) were identified using the TCC package in R (Sun et al., 2013) with a criterion of

475 FDR < 0.01. Candidate egg-specific genes were identified by filtering the DEGs with a
476 threshold of *Mprkd*/WT ratio < -3 and FPKM in WT > 1.

477

478 **Semi in vitro culture and genetic crossing**

479 Mature archegoniophores and antheridiophores were separated from thalli and collected
480 into a 5-mL plastic tube containing 3 mL of water. Following co-culture for 1 h under
481 white light at 22 °C, the archegoniophores were transferred to new 5 mL plastic tubes
482 containing 3 mL of water and cultured under white light at 22 °C prior to observation.

483

484 **Microscopy**

485 To observe MpSUN-GFP expression, archegonia were excised under a dissecting
486 microscope and mounted in half-strength Gamborg's B5 liquid medium. To observe
487 pronuclei, archegoniophores were dissected and soaked in PFA fixative solution (4%
488 [w/v] paraformaldehyde, 0.1% [w/v] DAPI, and 0.01% [v/v] Triton X-100 in 1 x PBS
489 buffer). The samples were briefly vacuum-infiltrated four times and incubated for 1 h at
490 room temperature with gentle shaking. The samples were washed twice with 1 x PBS and
491 cleared by incubating in ClearSee solution containing 0.1% (w/v) DAPI for 2–3 days
492 (Kurihara et al., 2015). The cleared samples were observed under a Nikon C2 confocal
493 laser-scanning microscope (Nikon Instech, Tokyo, Japan). Sperm cells were stained with
494 DAPI as described previously (Hisanaga et al., 2019a).

495

496 **RT-PCR**

497 RNA extraction, cDNA synthesis and RT-PCR were performed as described previously
498 (Hisanaga et al., 2019a) using the primer sets listed in Table S2.

499

500 **DNA constructs**

501 The plasmids used in this study were constructed using the GatewayTM cloning system
502 (Ishizaki et al., 2015), the SLiCE method (Motohashi, 2015) or Gibson assembly (Gibson
503 et al., 2009). The primers used for DNA construction are listed in Table S2.

504

505 *pMpGE010_MpKNOX1ge*

506 A DNA fragment producing MpKNOX1-targeting gRNAs was prepared by annealing a
507 pair of synthetic oligonucleotides (MpKNOX1ge01Fw/MpKNOX1ge01Rv). The
508 fragment was inserted into the BsaI site of pMpGE_En03 (Cat. No. 71535, Addgene,
509 Cambridge, MA) to yield pMpGE_En03-MpKNOX1ge, which was transferred into
510 pMpGE010 (Cat. No. 71536, Addgene) (Sugano et al., 2018) using the GatewayTM LR
511 reaction (Thermo Fisher Scientific, Waltham, MA) to generate
512 pMpGE010_MpKNOX1ge.

513

514 *pMpGE017_MpBELL4ge-MpBELL3ge*

515 To construct a plasmid to disrupt MpBELL3 and MpBELL4 simultaneously, four
516 oligonucleotide pairs (MpBELL4-ge1-Fw/MpBELL4-ge1-Rv, MpBELL4-ge2-

517 Fw/MpBELL4-ge2-Rv, MpBELL3-ge3-Fw/MpBELL3-ge3-Rv and MpBELL3-ge4-
518 Fw/MpBELL3-ge4-Rv) were annealed and cloned into pMpGE_En04, pBC-GE12, pBC-
519 GE23 and pBC-GE34 to yield pMpGE_En04-MpBELL4-ge1, pBC-GE12-MpBELL4-
520 ge-2, pBC-GE23-MpBELL3-ge3 and pBC-GE34-MpBELL3-ge4, respectively. These
521 four plasmids were assembled via BglII restriction sites and ligated to yield
522 pMpGE_En04-MpBELL4-ge12-MpBELL3-ge34. The resulting DNA fragment
523 containing four MpU6promoter-gRNA cassettes was transferred into pMpGE017 using
524 the GatewayTM LR reaction to yield pMpGE017_MpBELL4-ge12-MpBELL3-ge34.

525

526 *pMpSL30_MpKNOX1pro-H2B-GFP-3'MpKNOX1*

527 A 6.3-kb genomic fragment spanning the 5.3-kb 5' upstream sequence plus the 1-kb 5'-
528 UTR of MpKNOX1 was amplified from Tak-2 genomic DNA using the primers H-
529 MpKNOX1pro-Fw and SmaI-MpKNOX1pro-Rv. A vector backbone containing the
530 GFP-coding sequence was prepared by digesting pAN19_SphI-35S-lox-IN-lox-NosT-
531 SmaI-GFP-NaeI (a kind gift from Dr. Shunsuke Miyashima) with SphI and SmaI. The
532 two fragments were assembled using the SLiCE reaction to yield
533 pAN19_MpKNOX1pro-SmaI-GFP-NaeI. The Histone H2B-coding sequence from
534 Arabidopsis was amplified from the pBIN41_DUO1pro-H2B-YFP-nos vector (Hisanaga,
535 unpublished) using the primers KNOXp-H2B-Fw and GFP-H2B-Rv. The fragment was
536 inserted into the SmaI site of pAN19_MpKNOX1pro-SmaI-GFP-NaeI by the SLiCE
537 reaction, yielding pAN19_MpKNOX1pro-H2B-GFP-NaeI. A 4-kb fragment containing
538 the 0.5-kb 3'-UTR plus 3.5-kb 3'-flanking sequences of MpKNOX1 was amplified from
539 Tak-2 genomic DNA using the primers G-MpKNOX1ter-Fw and E-MpKNOX1ter-Rv.

540 The fragment was inserted into the NaeI site of pAN19_MpKNOX1pro-H2B-GFP-NaeI
541 by the SLiCE reaction, yielding pAN19_MpKNOX1pro-H2B-GFP-3'MpKNOX1. The
542 MpKNOX1pro-H2B-GFP-3'MpKNOX1 fragment was excised from
543 pAN19_MpKNOX1pro-H2B-GFP-3'MpKNOX1 by digestion with AscI and inserted
544 into pMpSL30 (Hisanaga et al., 2019a) to yield pMpSL30_MpKNOX1pro-H2B-GFP-
545 3'MpKNOX1.

546

547 *gMpKNOX1-GFP*

548 A 3.4-kb genomic fragment spanning the entire exon and intron region of *MpKNOX1* was
549 amplified from Tak-2 genomic DNA using the primers gMpKNOX1-Fw and
550 gMpKNOX1-Rv. The fragment was inserted into the SmaI site of
551 pAN19_MpKNOX1pro-SmaI-GFP-NaeI by the SLiCE reaction to yield
552 pAN19_MpKNOX1pro-MpKNOX1-GFP-NaeI. A 4-kb fragment containing the 0.5-kb
553 3'-UTR and 3.5-kb 3'-flanking sequences of *MpKNOX1* was amplified from Tak-2
554 genomic DNA using the primers G-MpKNOX1ter-Fw and E-MpKNOX1ter-Rv. The
555 fragment was inserted into the NaeI site of pAN19_MpKNOX1pro-MpKNOX1-GFP-
556 NaeI by the SLiCE reaction, yielding pAN19_gMpKNOX1-GFP. The gMpKNOX1-GFP
557 fragment was excised from pAN19_gMpKNOX1-GFP by digestion with AscI and
558 inserted into pMpSL30 to yield pMpSL30_gMpKNOX1-GFP.

559

560 *ECpro:MpSUN-GFP*

561 A 5-kb genomic fragment spanning the 3.4-kb 5' upstream and 1.6-kb 5'-UTR sequences

562 of Mp5g18000 was amplified from Tak-2 genomic DNA using the primers H-ECpro-Fw
563 and G-SpeI-ECpro-Rv. The fragment was inserted into the SpeI site of pAN19_SpeI-
564 GFP-NaeI by the SLiCE reaction, yielding pAN19_ECpro-SpeI-GFP-NaeI. The 1.5-kb
565 MpSUN (Mp5g02400)-coding sequence was amplified from a cDNA library of *M.*
566 *polymorpha* using the primers E-MpSUN-Fw and G-MpSUN-Rv. The fragment was
567 inserted into the SpeI site of pAN19_ECpro-SpeI-GFP-NaeI by the SLiCE reaction,
568 yielding pAN19_ECpro-MpSUN-GFP. The ECpro-MpSUN-GFP fragment was excised
569 from pAN19_ECpro-MpSUN-GFP by digestion with AscI and inserted into pMpSL30 to
570 yield pMpSL30_ECpro-MpSUN-GFP.

571

572 **Generation of transgenic *M. polymorpha***

573 Genome editing constructs were introduced into *M. polymorpha* sporelings as described
574 previously (Ishizaki et al., 2008). Other constructs were introduced into regenerating
575 thalli (Kubota et al., 2013) or gemmae using the G-AgarTrap method (Tsuboyama et al.,
576 2018).

577

578 **Acknowledgments**

579 We thank Masako Kanda for technical assistance and Shunsuke Miyashima for DNA
580 materials. This work was supported by MEXT KAKENHI grants 17J08430 to T.H.,
581 25113007 to K.N., 17H05841 and 18K06285 to S.Y., and 25113009 and 17H07424 to
582 T.K. T.H. was supported by a JSPS Fellowship for Young Scientists and a funding from
583 the European Union's Framework Programme for Research and Innovation Horizon 2020

584 (2014-2020) under the Marie Curie Skłodowska Grant Agreement Nr. 847548.

585

586 **Author contributions**

587 T.H., S.F., Y.C., K.S., and S.Y. performed the experiments. R.S. analyzed RNA-seq data.

588 T.H., T.K., F.B., and K.N. designed the project. T.H. and K.N. wrote the manuscript. All
589 the authors jointly interpreted the data and thoroughly checked the manuscript.

590

591 **Conflict of interest**

592 Authors declare no conflict of interests.

593

594 **References**

595 BECKER, B. 2013. Snow ball earth and the split of Streptophyta and Chlorophyta. *Trends
596 in Plant Science*, 18, 180-183, 10.1016/j.tplants.2012.09.010.

597 BERTOLINO, E., REIMUND, B., WILDT-PERINIC, D. & CLERC, R. G. 1995. A Novel
598 Homeobox Protein Which Recognizes a TGT Core and Functionally Interferes
599 with a Retinoid-responsive Motif. *Journal of Biological Chemistry*, 270, 31178-
600 31188, 10.1074/jbc.270.52.31178.

601 BOWMAN, J. L., BRIGINSHAW, LIAM N., AND FLORENT, STEVIE N. 2019.
602 Evolution and co-option of developmental regulatory networks in early land
603 plants. In: GROSSNIKLAUS, U. (ed.) *Current Topics in Developmental Biology*.
604 London: Academic Press.

605 BOWMAN, J. L., KOHCHI, T., YAMATO, K. T., JENKINS, J., SHU, S., ISHIZAKI, K.,
606 YAMAOKA, S., NISHIHAMA, R., NAKAMURA, Y., BERGER, F., ADAM, C.,
607 AKI, S. S., ALTHOFF, F., ARAKI, T., ARTEAGA-VAZQUEZ, M. A.,
608 BALASUBRAMIANIAN, S., BARRY, K., BAUER, D., BOEHM, C. R.,
609 BRIGINSHAW, L., CABALLERO-PEREZ, J., CATARINO, B., CHEN, F.,

610 CHIYODA, S., CHOVATIA, M., DAVIES, K. M., DELMANS, M., DEMURA,
611 T., DIERSCHKE, T., DOLAN, L., DORANTES-ACOSTA, A. E., EKLUND, D.
612 M., FLORENT, S. N., FLORES-SANDOVAL, E., FUJIYAMA, A., FUKUZAWA,
613 H., GALIK, B., GRIMANELLI, D., GRIMWOOD, J., GROSSNIKLAUS, U.,
614 HAMADA, T., HASELOFF, J., HETHERINGTON, A. J., HIGO, A.,
615 HIRAKAWA, Y., HUNDLEY, H. N., IKEDA, Y., INOUE, K., INOUE, S. I.,
616 ISHIDA, S., JIA, Q., KAKITA, M., KANAZAWA, T., KAWAI, Y.,
617 KAWASHIMA, T., KENNEDY, M., KINOSE, K., KINOSHITA, T., KOHARA,
618 Y., KOIDE, E., KOMATSU, K., KOPISCHKE, S., KUBO, M., KYOZUKA, J.,
619 LAGERCRANTZ, U., LIN, S. S., LINDQUIST, E., LIPZEN, A. M., LU, C. W.,
620 DE LUNA, E., MARTIENSSEN, R. A., MINAMINO, N., MIZUTANI, M.,
621 MOCHIZUKI, N., MONTE, I., MOSHER, R., NAGASAKI, H., NAKAGAMI,
622 H., NARAMOTO, S., NISHITANI, K., OHTANI, M., OKAMOTO, T.,
623 OKUMURA, M., PHILLIPS, J., POLLAK, B., REINDERS, A., R VEKAMP, M.,
624 SANO, R., SAWA, S., SCHMID, M. W., SHIRAKAWA, M., SOLANO, R.,
625 SPUNDE, A., SUETSUGU, N., SUGANO, S., SUGIYAMA, A., SUN, R.,
626 SUZUKI, Y., TAKENAKA, M., TAKEZAWA, D., et al. 2017. Insights into land
627 plant evolution garnered from the *Marchantia polymorpha* genome. *Cell*, 171,
628 287-304.e15, 10.1016/j.cell.2017.09.030.

629 BOWMAN, J. L., SAKAKIBARA, K., FURUMIZU, C. & DIERSCHKE, T. 2016.
630 Evolution in the Cycles of Life. *Annual Review of Genetics*, 50, 133-154,
631 10.1146/annurev-genet-120215-035227.

632 DE SOUSA, F., FOSTER, P. G., DONOGHUE, P. C. J., SCHNEIDER, H. & COX, C. J.
633 2019. Nuclear protein phylogenies support the monophyly of the three bryophyte
634 groups (Bryophyta Schimp.). *New Phytologist*, 222, 565-575, 10.1111/nph.15587.

635 DERELLE, R., LOPEZ, P., GUYADER, H. L. & MANUEL, M. 2007. Homeodomain
636 proteins belong to the ancestral molecular toolkit of eukaryotes. *Evolution &*
637 *Development*, 9, 212-219, 10.1111/j.1525-142X.2007.00153.x.

638 DURAND, E. J. 1908. The development of the sexual organs and sprorogonium of
639 *Marchantia polymorpha*. *The Bulletin of the Torrey Botanical Club* 35, 321-335,
640 10.2307/2485335

641 FATEMA, U., ALI, M. F., HU, Z., CLARK, A. J. & KAWASHIMA, T. 2019. Gamete
642 Nuclear Migration in Animals and Plants. *Frontiers in Plant Science*, 10,
643 10.3389/fpls.2019.00517.

644 FERRIS, P. J. & GOODENOUGH, U. W. 1997. Mating Type in Chlamydomonas Is
645 Specified by mid, the Minus-Dominance Gene. *Genetics*,

646 146, 859.

647 FRANGEDAKIS, E., SAINT-MARCOUX, D., MOODY, L. A., RABBINOWITSCH, E.
648 & LANGDALE, J. A. 2017. Nonreciprocal complementation of KNOX gene
649 function in land plants. *New Phytologist*, 216, 591-604, 10.1111/nph.14318.

650 FURUMIZU, C., ALVAREZ, J. P., SAKAKIBARA, K. & BOWMAN, J. L. 2015.
651 Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant
652 Body Plan Following an Ancient Gene Duplication. *PLOS Genetics*, 11, e1004980,
653 10.1371/journal.pgen.1004980.

654 GENG, S., DE HOFF, P. & UMEN, J. G. 2014. Evolution of Sexes from an Ancestral
655 Mating-Type Specification Pathway. *PLOS Biology*, 12, e1001904,
656 10.1371/journal.pbio.1001904.

657 GENG, S., MIYAGI, A. & UMEN, J. G. 2018. Evolutionary divergence of the sex-
658 determining gene *MID* uncoupled from the transition to anisogamy in volvocine
659 algae. *Development*, 145, dev162537, 10.1242/dev.162537.

660 GIBSON, D. G., YOUNG, L., CHUANG, R. Y., VENTER, J. C., HUTCHISON, C. A.,
661 3RD & SMITH, H. O. 2009. Enzymatic assembly of DNA molecules up to several
662 hundred kilobases. *Nat Methods*, 6, 343-5, 10.1038/nmeth.1318.

663 GOOH, K., UEDA, M., ARUGA, K., PARK, J., ARATA, H., HIGASHIYAMA, T. &
664 KURIHARA, D. 2015. Live-cell imaging and optical manipulation of *Arabidopsis*
665 early embryogenesis. *Dev Cell*, 34, 242-51, 10.1016/j.devcel.2015.06.008.

666 GOUTTE, C. & JOHNSON, A. D. 1988. a1 protein alters the DNA binding specificity of
667 alpha 2 repressor. *Cell*, 52, 875-82, 10.1016/0092-8674(88)90429-1.

668 HAY, A. & TSIANTIS, M. 2010. KNOX genes: versatile regulators of plant development
669 and diversity. *Development*, 137, 3153, 10.1242/dev.030049.

670 HERSKOWITZ, I. 1989. A regulatory hierarchy for cell specialization in yeast. *Nature*,
671 342, 749-57, 10.1038/342749a0.

672 HIGO, A., KAWASHIMA, T., BORG, M., ZHAO, M., L PEZ-VIDRIERO, I.,
673 SAKAYAMA, H., MONTGOMERY, S. A., SEKIMOTO, H., HACKENBERG,
674 D., SHIMAMURA, M., NISHIYAMA, T., SAKAKIBARA, K., TOMITA, Y.,
675 TOGAWA, T., KUNIMOTO, K., OSAKABE, A., SUZUKI, Y., YAMATO, K. T.,
676 ISHIZAKI, K., NISHIHAMA, R., KOHCHI, T., FRANCO-ZORRILLA, J. M.,
677 TWELL, D., BERGER, F. & ARAKI, T. 2018. Transcription factor DUO1
678 generated by neo-functionalization is associated with evolution of sperm
679 differentiation in plants. *Nature Communications*, 9, 5283, 10.1038/s41467-018-
680 07728-3.

681 HIGO, A., NIWA, M., YAMATO, K. T., YAMADA, L., SAWADA, H., SAKAMOTO, T.,

682 KURATA, T., SHIRAKAWA, M., ENDO, M., SHIGENOBU, S., YAMAGUCHI,
683 K., ISHIZAKI, K., NISHIHAMA, R., KOHCHI, T. & ARAKI, T. 2016.
684 Transcriptional framework of male gametogenesis in the liverwort *Marchantia*
685 *polymorpha* L. *Plant Cell Physiol.*, 57, 325-38, 10.1093/pcp/pcw005.

686 HISANAGA, T., OKAHASHI, K., YAMAOKA, S., KAJIWARA, T., NISHIHAMA, R.,
687 SHIMAMURA, M., YAMATO, K. T., BOWMAN, J. L., KOHCHI, T. &
688 NAKAJIMA, K. 2019a. A cis-acting bidirectional transcription switch controls
689 sexual dimorphism in the liverwort. *The EMBO Journal*, 38, e100240,
690 10.15252/embj.2018100240.

691 HISANAGA, T., YAMAOKA, S., KAWASHIMA, T., HIGO, A., NAKAJIMA, K.,
692 ARAKI, T., KOHCHI, T. & BERGER, F. 2019b. Building new insights in plant
693 gametogenesis from an evolutionary perspective. *Nature Plants*, 5, 663-669,
694 10.1038/s41477-019-0466-0.

695 HORST, N. A., KATZ, A., PEREMAN, I., DECKER, E. L., OHAD, N. & RESKI, R.
696 2016. A single homeobox gene triggers phase transition, embryogenesis and
697 asexual reproduction. *Nature Plants*, 2, 15209, 10.1038/nplants.2015.209.

698 ISHIZAKI, K., CHIYODA, S., YAMATO, K. T. & KOHCHI, T. 2008. *Agrobacterium*-
699 mediated transformation of the haploid liverwort *Marchantia polymorpha* L., an
700 emerging model for plant biology. *Plant Cell Physiol.*, 49, 1084-91,
701 10.1093/pcp/pcn085.

702 ISHIZAKI, K., NISHIHAMA, R., UEDA, M., INOUE, K., ISHIDA, S., NISHIMURA,
703 Y., SHIKANAI, T. & KOHCHI, T. 2015. Development of Gateway binary vector
704 series with four different selection markers for the liverwort *Marchantia*
705 *polymorpha*. *PLoS One*, 10, e0138876, 10.1371/journal.pone.0138876.

706 ISHIZAKI, K., NISHIHAMA, R., YAMATO, K. T. & KOHCHI, T. 2016. Molecular
707 Genetic Tools and Techniques for *Marchantia polymorpha* Research. *Plant Cell*
708 *Physiol.*, 57, 262-70, 10.1093/pcp/pcv097.

709 JOO, S., NISHIMURA, Y., CRONMILLER, E., HONG, R. H., KARIYAWASAM, T.,
710 WANG, M. H., SHAO, N. C., EL AKKAD, S.-E.-D., SUZUKI, T.,
711 HIGASHIYAMA, T., JIN, E. & LEE, J.-H. 2017. Gene Regulatory Networks for
712 the Haplloid-to-Diploid Transition of *Chlamydomonas reinhardtii*. *Plant*
713 *Physiology*, 175, 314, 10.1104/pp.17.00731.

714 KES, U., RICHARDSON, W. V., TYMON, A. M., MUTASA, E. S., G TTGENS, B.,
715 GAUBATZ, S., GREGORIADES, A. & CASSELTON, L. A. 1992. The
716 combination of dissimilar alleles of the A alpha and A beta gene complexes, whose
717 proteins contain homeo domain motifs, determines sexual development in the

718 mushroom *Coprinus cinereus*. *Genes & Development*, 6, 568-577.

719 KARIYAWASAM, T., JOO, S., LEE, J., TOOR, D., GAO, A. F., NOH, K.-C. & LEE, J.-
720 H. 2019. TALE homeobox heterodimer GSM1/GSP1 is a molecular switch that
721 prevents unwarranted genetic recombination in *Chlamydomonas*. *The Plant
722 Journal*, 0, 10.1111/tpj.14486.

723 KERSTETTER, R., VOLLBRECHT, E., LOWE, B., VEIT, B., YAMAGUCHI, J. &
724 HAKE, S. 1994. Sequence analysis and expression patterns divide the maize
725 knotted1-like homeobox genes into two classes. *The Plant Cell*, 6, 1877,
726 10.1105/tpc.6.12.1877.

727 KOI, S., HISANAGA, T., SATO, K., SHIMAMURA, M., YAMATO, K. T., ISHIZAKI,
728 K., KOHCHI, T. & NAKAJIMA, K. 2016. An evolutionarily conserved plant
729 RKD factor controls germ cell differentiation. *Curr Biol*, 26, 1775-81,
730 10.1016/j.cub.2016.05.013.

731 KUBOTA, A., ISHIZAKI, K., HOSAKA, M. & KOHCHI, T. 2013. Efficient
732 *Agrobacterium*-mediated transformation of the liverwort *Marchantia polymorpha*
733 using regenerating thalli. *Biosci Biotechnol Biochem*, 77, 167-72,
734 10.1271/bbb.120700.

735 KURIHARA, D., MIZUTA, Y., SATO, Y. & HIGASHIYAMA, T. 2015. ClearSee: a rapid
736 optical clearing reagent for whole-plant fluorescence imaging. *Development*, 142,
737 4168-79, 10.1242/dev.127613.

738 LEE, J.-H., LIN, H., JOO, S. & GOODENOUGH, U. 2008. Early Sexual Origins of
739 Homeoprotein Heterodimerization and Evolution of the Plant KNOX/BELL
740 Family. *Cell*, 133, 829-840, <https://doi.org/10.1016/j.cell.2008.04.028>.

741 LIGRONE, R., DUCKETT, J. G. & RENZAGLIA, K. S. 2012a. Major transitions in the
742 evolution of early land plants: a bryological perspective. *Annals of Botany*, 109,
743 851-871, 10.1093/aob/mcs017.

744 LIGRONE, R., DUCKETT, J. G. & RENZAGLIA, K. S. 2012b. The origin of the
745 sporophyte shoot in land plants: a bryological perspective. *Annals of Botany*, 110,
746 935-941, 10.1093/aob/mcs176.

747 LOPEZ, D., HAMAJI, T., KROPAT, J., DE HOFF, P., MORSELLI, M., RUBBI, L.,
748 FITZ-GIBBON, S., GALLAHER, S. D., MERCHANT, S. S., UMEN, J. &
749 PELLEGRINI, M. 2015. Dynamic Changes in the Transcriptome and Methylome
750 of Chlamydomonas reinhardtii throughout Its Life Cycle.
751 *Plant Physiology*, 169, 2730, 10.1104/pp.15.00861.

752 LOVE, M. I., HUBER, W. & ANDERS, S. 2014. Moderated estimation of fold change
753 and dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15, 550,

754 10.1186/s13059-014-0550-8.

755 LUO, A., SHI, C., ZHANG, L. & SUN, M.-X. 2014. The expression and roles of parent-
756 of-origin genes in early embryogenesis of angiosperms. *Frontiers in Plant Science*,
757 5, 10.3389/fpls.2014.00729.

758 MIYASHIMA, S., ROSZAK, P., SEVILEM, I., TOYOKURA, K., BLOB, B., HEO, J. O.,
759 MELLOR, N., HELP-RINTA-RAHKO, H., OTERO, S., SMET, W.,
760 BOEKSCHEUTEN, M., HOOIVELD, G., HASHIMOTO, K., SMETANA, O.,
761 SILIGATO, R., WALLNER, E. S., MAHONEN, A. P., KONDO, Y., MELNYK,
762 C. W., GREB, T., NAKAJIMA, K., SOZZANI, R., BISHOPP, A., DE RYBEL, B.
763 & HELARIUTTA, Y. 2019. Mobile PEAR transcription factors integrate
764 positional cues to prime cambial growth. *Nature*, 565, 490-494, 10.1038/s41586-
765 018-0839-y.

766 MOTOHASHI, K. 2015. A simple and efficient seamless DNA cloning method using
767 SLiCE from *Escherichia coli* laboratory strains and its application to SLiP site-
768 directed mutagenesis. *BMC Biotechnol*, 15, 47, 10.1186/s12896-015-0162-8.

769 MUKHERJEE, K., BROCCHE, L. & RGLIN, T. R. 2009. A Comprehensive
770 Classification and Evolutionary Analysis of Plant Homeobox Genes. *Molecular
771 Biology and Evolution*, 26, 2775-2794, 10.1093/molbev/msp201.

772 NING, J., OTTO, T. D., PFANDER, C., SCHWACH, F., BROCHET, M., BUSHELL, E.,
773 GOULDING, D., SANDERS, M., LEFEBVRE, P. A., PEI, J., GRISHIN, N. V.,
774 VANDERLAAN, G., BILLKER, O. & SNELL, W. J. 2013. Comparative
775 genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear
776 envelope protein family essential for sexual reproduction in protists, fungi, plants,
777 and vertebrates. *Genes & Development*, 27, 1198-1215.

778 NISHIMURA, Y., SHIKANAI, T., NAKAMURA, S., KAWAI-YAMADA, M. &
779 UCHIMIYA, H. 2012. Gsp1 Triggers the Sexual Developmental Program
780 Including Inheritance of Chloroplast DNA and Mitochondrial DNA in
781 Chlamydomonas reinhardtii. *The Plant Cell*, 24, 2401,
782 10.1105/tpc.112.097865.

783 NOZAKI, H., MORI, T., MISUMI, O., MATSUNAGA, S. & KUROIWA, T. 2006. Males
784 evolved from the dominant isogametic mating type. *Current Biology*, 16, R1018-
785 R1020, 10.1016/j.cub.2006.11.019.

786 PARKER, G. A., BAKER, R. R. & SMITH, V. G. F. 1972. The origin and evolution of
787 gamete dimorphism and the male-female phenomenon. *Journal of Theoretical
788 Biology*, 36, 529-553, [https://doi.org/10.1016/0022-5193\(72\)90007-0](https://doi.org/10.1016/0022-5193(72)90007-0).

789 PUTTICK, M. N., MORRIS, J. L., WILLIAMS, T. A., COX, C. J., EDWARDS, D.,

790 KENRICK, P., PRESSEL, S., WELLMAN, C. H., SCHNEIDER, H., PISANI, D.
791 & DONOGHUE, P. C. J. 2018. The Interrelationships of Land Plants and the
792 Nature of the Ancestral Embryophyte. *Current Biology*, 28, 733-745.e2,
793 10.1016/j.cub.2018.01.063.

794 R VEKAMP, M., BOWMAN, J. L. & GROSSNIKLAUS, U. 2016. *Marchantia* MpRKD
795 regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in
796 the absence of fertilization. *Curr Biol*, 26, 1782-9, 10.1016/j.cub.2016.05.028.

797 SAKAKIBARA, K., ANDO, S., YIP, H. K., TAMADA, Y., HIWATASHI, Y., MURATA,
798 T., DEGUCHI, H., HASEBE, M. & BOWMAN, J. L. 2013. KNOX2 Genes
799 Regulate the Haploid-to-Diploid Morphological Transition in Land Plants.
800 *Science*, 339, 1067, 10.1126/science.1230082.

801 SAKAKIBARA, K., NISHIYAMA, T., DEGUCHI, H. & HASEBE, M. 2008. Class 1
802 KNOX genes are not involved in shoot development in the moss *Physcomitrella*
803 *patens* but do function in sporophyte development. *Evolution & Development*, 10,
804 555-566, 10.1111/j.1525-142X.2008.00271.x.

805 SHIMAMURA, M. 2016. *Marchantia polymorpha*: taxonomy, phylogeny and
806 morphology of a model system. *Plant Cell Physiol*, 57, 230-56,
807 10.1093/pcp/pcv192.

808 SPIT, A., HYLAND, R. H., MELLOR, E. J. C. & CASSELTON, L. A. 1998. A role for
809 heterodimerization in nuclear localization of a homeodomain protein.
810 *Proceedings of the National Academy of Sciences*, 95, 6228,
811 10.1073/pnas.95.11.6228.

812 SUGANO, S. S., NISHIHAMA, R., SHIRAKAWA, M., TAKAGI, J., MATSUDA, Y.,
813 ISHIDA, S., SHIMADA, T., HARA-NISHIMURA, I., OSAKABE, K. &
814 KOHCHI, T. 2018. Efficient CRISPR/Cas9-based genome editing and its
815 application to conditional genetic analysis in *Marchantia polymorpha*. *PLoS One*,
816 13, e0205117, 10.1101/277350.

817 SUN, J., NISHIYAMA, T., SHIMIZU, K. & KADOTA, K. 2013. TCC: an R package for
818 comparing tag count data with robust normalization strategies. *BMC
819 Bioinformatics*, 14, 219, 10.1186/1471-2105-14-219.

820 TRAPNELL, C., PACTER, L. & SALZBERG, S. L. 2009. TopHat: discovering splice
821 junctions with RNA-Seq. *Bioinformatics*, 25, 1105-11,
822 10.1093/bioinformatics/btp120.

823 TSUBOYAMA, S., NONAKA, S., EZURA, H. & KODAMA, Y. 2018. Improved G-
824 AgarTrap: A highly efficient transformation method for intact gemmalings of the
825 liverwort *Marchantia polymorpha*. *Scientific Reports*, 8, 10800, 10.1038/s41598-

826 018-28947-0.

827 UCHIUMI, T., UEMURA, I. & OKAMOTO, T. 2007. Establishment of an in vitro
828 fertilization system in rice (*Oryza sativa* L.). *Planta*, 226, 581-9, 10.1007/s00425-
829 007-0506-2.

830 YAMAOKA, S., NISHIHAMA, R., YOSHITAKE, Y., ISHIDA, S., INOUE, K., SAITO,
831 M., OKAHASHI, K., BAO, H., NISHIDA, H., YAMAGUCHI, K., SHIGENOBU,
832 S., ISHIZAKI, K., YAMATO, K. T. & KOHCHI, T. 2018. Generative cell
833 specification requires transcription factors evolutionarily conserved in land plants.
834 *Curr Biol*, 28, 479-486.e5, 10.1016/j.cub.2017.12.053.

835 ZINSMEISTER, D. D. & CAROTHERS, Z. B. 1974. The fine structure of oogenesis in
836 *Marchantia polymorpha*. *American Journal of Botany*, 61, 499-512,
837 10.1002/j.1537-2197.1974.tb10789.x.

838

839

840 **Figure legends**

841

842 **Figure 1. Comparative transcriptome analysis of wild-type and *Mprkd* archegonia**
843 **and identification of *MpKNOX1* as an egg-specific gene.**

844 **A.** Schematic illustration of RNA-seq analysis comparing the archegonia transcriptomes
845 from wild-type females and egg-deficient *Mprkd* mutant females. About 4,000 and 2,000
846 archegonia were collected from wild-type and each of the two *Mprkd* mutant lines, and
847 randomly allocated into four and two replicates, respectively.

848 **B.** A graph showing *MpKNOX1* read counts in wild-type and *Mprkd* archegonia. Asterisk
849 indicates significant difference ($q = 5.84\text{E-}83$, *exactTest* in *edgeR* package). Note that four
850 data points are overlapping in *Mprkd*.

851 **C.** Comparison of the domain arrangements of *MpKNOX1* vs. representative class I
852 KNOX proteins from *Arabidopsis thaliana* (AtSTM; GenBank accession number
853 AEE33958.1), *Zea mays* (ZmKN1; AAP21616.1), *Ceratopteris richardii* (CerKNOX1,
854 BAB18582.1), *Physcomitrella patens* (PpMKN2; AAK61308.2) and *Chlamydomonas*
855 *reinhardtii* (ChrGSM1; ABJ15867.1).

856

857 **Figure 1 - figure supplement 1. Comparative transcriptome analysis of wild-type**
858 **and *Mprkd* archegonia and identification of *MpKNOX1* as an egg-specific gene in *M.***
859 ***polymorpha*.**

860 **A.** M-A plot of differential expression analysis between wild-type and *Mprkd* archegonia.

861 Differentially expressed genes (DEGs) are plotted in magenta.

862 **B.** Captured Genome Browser image showing the expression levels along the *MpKNOX1*
863 locus in the indicated tissue types (archegoniophore; SRX301555, antheridiophore;
864 SRX301553, sporophyte; SRX301556, sporeling; SRX301559, thallus; SRX301557).
865 *MpKNOX1* is specifically expressed in archegoniophores.

866

867 **Figure 2. *MpKNOX1* is specifically expressed in egg cells.**

868 **A.** RT-PCR analysis of *MpKNOX1*. Lanes are labeled as follows: M, size markers, Th ♂,
869 male thalli, Th ♀, female thalli, Ant, Antheridiophores, Arc, Archegoniophores, Spo,
870 sporophytes of 3-week-old plants. Constitutively expressed *MpEF1α* was used as a
871 control. Red arrow indicates the expected size of PCR products from spliced *MpKNOX1*
872 mRNA. Bands at the top of the gel likely correspond to unspliced *MpKNOX1* transcripts.
873 Shown is a representative result from the experiments using three independently collected
874 plant samples each with two technical replicates (two PCRs from each cDNA pool).

875 **B and C.** Expression of the *MpKNOX1* transcriptional reporter. Magenta, chlorophyll
876 autofluorescence; green, GFP fluorescence. Lower panels are merged photographs of
877 fluorescence and bright-field images. Bars, 10 μm.

878

879 **Figure 3. Time-course observation of subcellular dynamics during *M. polymorpha***
880 **fertilization.**

881 **A.** Schematic representation of sexual reproduction in *M. polymorpha*. Female plants

882 develop umbrella-shaped sexual branches termed archegoniophores that form egg-
883 containing archegonia. Male plants develop disc-shaped sexual branches termed
884 antheridiophores that form antheridia, which produce numerous motile sperm cells. Upon
885 soaking in water, the sperm cells are released from the antheridia and swim to egg cells
886 in the archegonia. After fertilization, each zygote undergoes embryogenesis by dividing
887 and differentiating into a sporophyte body consisting of a capsule containing haploid spores
888 and a short supportive stalk called the seta.

889 **B.** Illustration of the in vitro fertilization method used in this study. Excised
890 archegoniophores and antheridiophores were co-cultured in water for 1 h to allow
891 fertilization to take place. The archegoniophores were transferred to a fresh tube
892 containing water for further culturing. The tube lids were left open to allow gas exchange
893 to occur. Archegoniophores containing sporophytes were cultured for up to 2 weeks.

894 **C.** A DAPI-stained zygote after 1 h of co-culture. Most zygotes contained sperm nuclei
895 at this time (green arrowhead).

896 **D–I.** DAPI-stained zygotes and sporophytes at the indicated days after fertilization (DAF).
897 Male pronuclei (green arrowheads) were visible at 1–3 DAF (D and E) in wild-type
898 fertilized eggs. In most zygotes, karyogamy was completed, and cells were cleaved at 4
899 DAF (F). Sporophyte cells continued to divide at 5 to 14 DAF (G–I), as visualized by the
900 presence of multiple nuclei (blue arrowheads; not all nuclei are labeled in H and I). Ca,
901 calyptra. Bars, 10 μ m.

902

903 **Figure 3 - figure supplement 1. Cell wall regeneration during zygote development.**

904 Confocal images of archegonia hosting an egg cell, zygotes or embryos. Cell walls stained
905 with SCRI Renaissance 2200 were detected only after embryogenesis (arrowheads), but
906 not in mature eggs or zygotes at 3 DAF or earlier. Bars, 10 μ m.

907

908 **Figure 3 - figure supplement 2. Cellular dynamics of zygotes and embryos generated**
909 **by *in planta* crossing.**

910 DAPI-stained zygotes and embryos derived from *in planta* crosses at the indicated stages,
911 showing that the timing of subcellular dynamics was equivalent to that generated by the
912 *in vitro* fertilization method shown in Figure 3. Bars, 10 μ m.

913

914 **Figure 4. Maternally inherited *MpKNOX1* is required for nuclear fusion.**

915 **A and D.** Bright-field images of wild-type (A) and *Mpknox1-1^{ge}* (D) archegonia.

916 **B, C, E, F.** 1-DAF (B, E) and 7-DAF (C, F) zygotes from a cross between wild-type
917 female and male plants (B, C), and a cross between *Mpknox1-1^{ge}* female and wild-type
918 male plants (E, F), indicating that maternal *MpKNOX1* is dispensable for fertilization (B,
919 E) but is required for embryogenesis (C, F).

920 **G–L.** Egg cells of *MpSUN-GFP* marker lines in the wild type (G) or *Mpknox1-2^{ge}* (J)
921 female background were crossed with wild-type males. At 3 DAF, male and female
922 pronuclei were in contact with each other in both wild-type (H) and *Mpknox1* (K) eggs.
923 At 5 DAF, zygotes derived from a wild-type egg started to divide (I), while those from an
924 *Mpknox1* female (L) were arrested without nuclear membrane fusion.

925 Green arrowhead, male pronucleus; orange arrowhead, female pronucleus; blue
926 arrowhead, embryo nucleus. Bars, 10 μ m.

927

928 **Figure 4 - figure supplement 1. Generation of loss-of-function mutant lines by**
929 **CRISPR/Cas9.**

930 Gene organization and the locations of CRISPR/Cas9-introduced mutations in
931 MpKNOX1 (A), MpBELL3 (B) and MpBELL4 (C) are indicated by the following
932 symbols; gray line, 5'- and 3'-flanking sequences; gray box, 5'- and 3'-UTR; black box,
933 coding regions; arrowhead, mutation positions; black arrow, transcriptional direction;
934 dotted line, splice pattern; gray arrow; primers used in RT-PCR shown in Figure 2A and
935 5A. Sequence alignments of wild-type and mutant alleles are shown below each gene
936 model. Mismatched nucleotides and gaps are shown in red.

937

938 **Figure 4 - figure supplement 2. MpKNOX1 and MpBELL3/4 are dispensable for**
939 **gametophyte development.**

940 Three samples of vegetative thalli and gametangiophores from wild-type (WT), Mpknox1
941 and Mpbell3/4 mutant lines are shown. Bars, 5 mm.

942

943 **Figure 4 - figure supplement 3. Expression of MpKNOX1-GFP driven by the**
944 **MpKNOX1 promoter complements the karyogamy defects of Mpknox1 mutants.**

945 5-DAF zygotes obtained by crossing the indicated female lines with wild-type males.

946 Green and blue arrowheads indicate a male pronucleus and embryo nuclei, respectively.

947 Bars, 10 μ m.

948

949 **Figure 4 - figure supplement 4. Sporangium and spore formation in wild-type and**
950 ***Mpknox1* plants.**

951 **A, B.** Archegoniophores of wild-type (A) and *Mpknox1-1^{ge}* (B) female plants 4 weeks
952 after crossing with wild-type males. Blue arrowheads indicate sporangia harboring
953 expanded capsules.

954 **C-F.** Capsule (C, D) and spores (E, F) in wild-type (C, E) and *Mpknox1-1^{ge}* (D, F) female
955 plants crossed with wild-type males.

956 **G.** Bar graph showing the number of sporangia per archegoniophore in wild-type and
957 *Mpknox1-2^{ge}* female plants crossed with wild-type males. Error bars indicate standard
958 deviation. Three gametangiophores were analyzed for each genotype.

959 Bars, 5 mm (A, B), 0.5 mm (C, D), 50 μ m (E, F).

960

961 **Figure 4 - figure supplement 5. *MpKNOXI* is dispensable for sperm differentiation**
962 **and embryogenesis.**

963 **A-C.** DAPI-stained sperm cells from wild-type (A) and *Mpknox1* male plants (B, C) show
964 indistinguishable morphology.

965 **D, E.** 5-DAF sporophytes in wild-type female plants crossed with wild-type (C) or
966 *Mpknox1-1^{ge}* (D) males. Blue arrowheads indicate nuclei of embryo cells.

967 **F.** Proportion of developed vs. arrested zygotes in wild-type female plants crossed with
968 wild-type or *Mpknox1-1^{ge}* males. Numbers of observed zygotes are indicated above each
969 bar.

970 Bars, 5 μ m (A-C), 10 μ m (D, E).

971

972 **Figure 5. Both paternally and maternally inherited MpBELL genes are required for**
973 **karyogamy.**

974 **A.** RT-PCR analysis indicating that *MpBELL3* and *MpBELL4* are specifically expressed
975 in antheridiophores. The lanes are labeled as in Figure 2A. Shown is a representative
976 result from the experiments using three independently collected samples each with two
977 technical replicates.

978 **B–K.** Zygotes at 1 DAF (B, D, G, J) and 5 DAF (C, E, F, H, I, K) from crosses between
979 a wild-type female and wild-type male (B, C) or *Mpbell3/4-2^{ge}* male (D–F) and a
980 *Mpbell3/4-2^{ge}* female and a wild-type male (G–I) or *Mpbell3/4-2^{ge}* male (J, K). The
981 presence of male pronuclei (green arrowheads) in zygotes of all genotypes at 1 DAF (B,
982 D, G, J) indicates that *MpBELL3* and *MpBELL4* are dispensable for plasmogamy. Note
983 that zygotes produced from both or one *Mpbell3/4* parent exhibit a variable degree of
984 karyogamy arrest, as visualized by the retention of male pronuclei (green arrowheads)
985 among those starting embryonic division (nuclei labeled with blue arrowheads). Bars, 10
986 μ m.

987 **L.** Bar graph showing the ratios of zygotes with karyogamy arrest from the indicated
988 crosses shown in B–K. Numbers of observed zygotes are shown above each bar.

989

990 **Figure 5 - figure supplement 1. *MpBELL3* and *MpBELL4* are preferentially**
991 **expressed in antheridiophores.**

992 **A, B.** Bar graphs showing the expression levels of *MpBELL* genes in the indicated organs,
993 constructed from publicly available transcriptome data (Bowman et al., 2017) (A) and the
994 RNA-seq data obtained in this study (B).

995 **C.** Snapshots of Genome Browser views of the *MpBELL3* and *MpBELL4* loci displaying
996 their preferential expression in antheridiophores.

997

998 **Figure 5 - figure supplement 2. *MpBELL3* and *MpBELL4* are dispensable for**
999 **gamete differentiation.**

1000 **A-C.** DAPI-stained sperm cells from wild-type (A), *Mpbell3/4-1^{ge}* (B) and *Mpbell3/4-2^{ge}*
1001 (C) male plants.

1002 **D-F.** DIC images of archegonia in wild-type (D), *Mpbell3/4-1^{ge}* (E) and *Mpbell3/4-2^{ge}*
1003 (F) female plants.

1004 Bar, 5 μ m (A-C), 10 μ m (D-F).

1005

1006 **Figure 6. *MpKNOX1* transiently localizes to female and male pronuclei prior to**
1007 **karyogamy.**

1008 **A-E.** GFP (upper panels) and DAPI (lower panels) signals from *gMpKNOX1-*

1009 *GFP/Mpknox1-1^{ge}* eggs (A) and zygotes obtained by crossing a *gMpKNOX1-*
1010 *GFP/Mpknox1-1^{ge}* female with a wild-type (B, C) or *Mpbell3/4-2^{ge}* (D, E) male. Note
1011 that before fertilization, MpKNOX1-GFP was exclusively localized to the cytosol (A). At
1012 12 HAF, MpKNOX1-GFP signals were enriched in female (orange arrowhead) and male
1013 (green arrowhead) pronuclei in the wild-type background (B). In the absence of paternally
1014 inherited *MpBELL3* and *MpBELL4*, MpKNOX1-GFP remained mostly cytosolic (D),
1015 although weak GFP signals were detected in male and female pronuclei at 12 HAF (D).
1016 At 24 HAF, weak GFP signals were exclusively detected in the cytosol of both genotypes
1017 (C, E). Bars, 10 μ m.

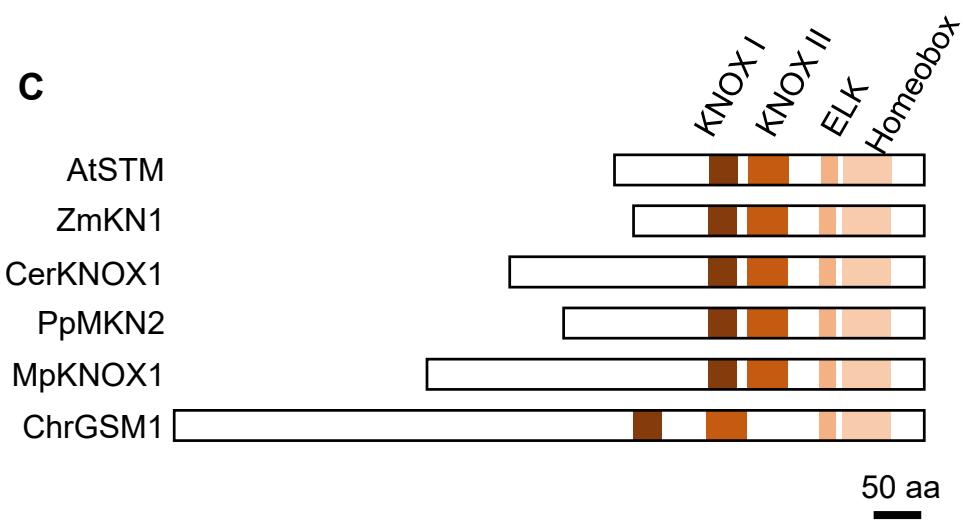
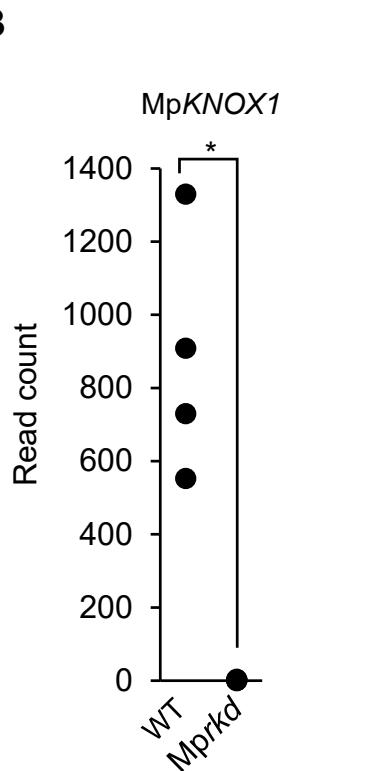
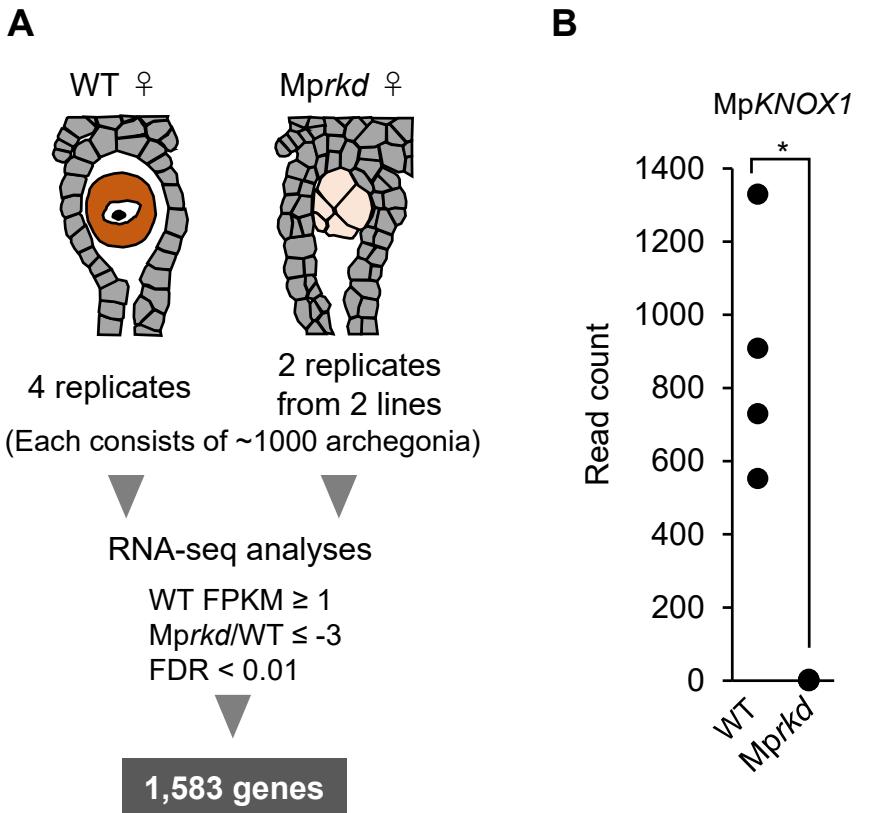
1018

1019 **Figure 7. Functions and expression patterns of KNOX/BELL transcription factors**
1020 **in green plants.**

1021 **A.** Expression patterns of KNOX and BELL proteins and their predicted role in zygote
1022 activation in *M. polymorpha*. "K" and "B" represent MpKNOX1 and MpBELL protein
1023 subunits, respectively. Orange, green and blue circles represent female pronuclei, male
1024 pronuclei and nuclei of embryo cells, respectively. Purple curved arrows indicate auto-
1025 amplification of BELL levels by KNOX/BELL-mediated transcriptional control. X
1026 indicates unknown karyogamy-promoting factor(s) whose expression and/or functions
1027 are activated by KNOX/BELL-mediated transcription.

1028 **B.** Predicted evolutionary trajectory of KNOX/BELL expression patterns along the green
1029 plant lineages. Orange/green circles and blue rectangles represent gametes and
1030 sporophyte bodies, respectively. "K" and "B" indicate the expression of KNOX and BELL
1031 proteins, respectively. Purple stars indicate the predicted positions at which the functional

1032 transition of KNOX/BELL from zygote activation to sporophyte morphogenesis occurred.




1033 Also indicated are the expression patterns of evolutionarily conserved regulators of sexual

1034 differentiation; a male-determinant factor MID of volvocine algae, and female- and male-

1035 differentiation factors, FGMYB and DUO1, respectively, of land plants. Note that the

1036 KNOX/BELL expression patterns in ancestral plants at the bottom of the tree is an

1037 inference.

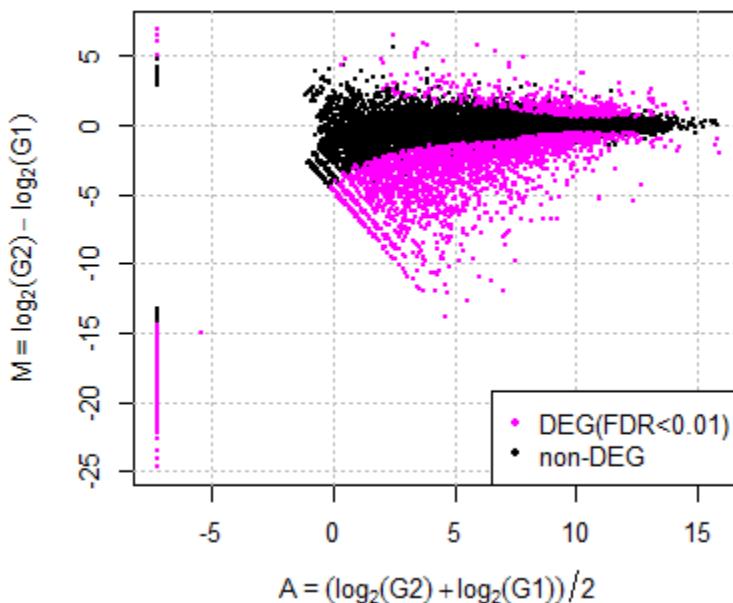
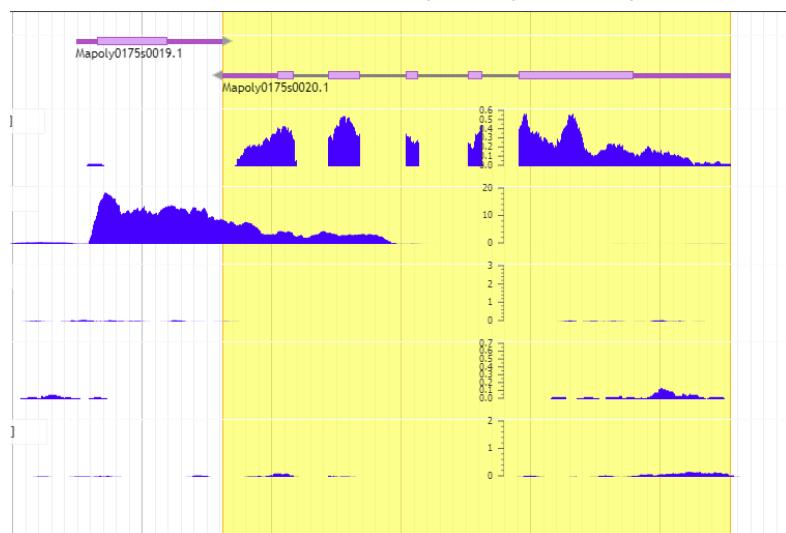
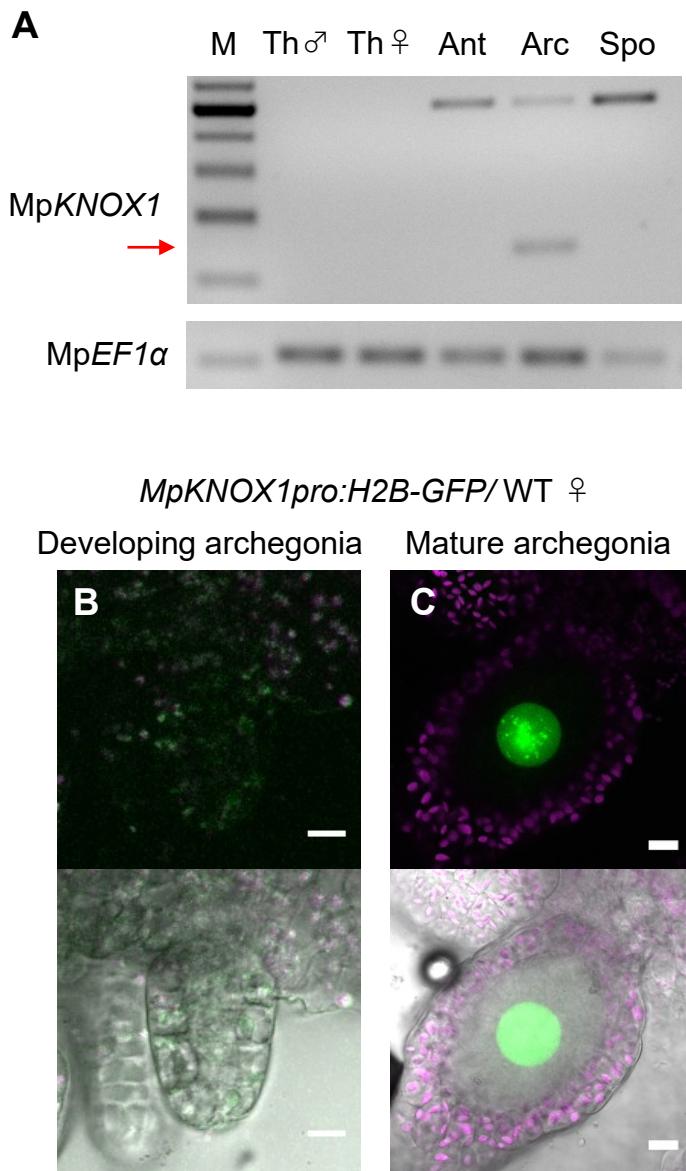


Figure 1. Comparative transcriptome analysis of wild-type and Mprkd archegonia and identification of MpKNOX1 as an egg-specific gene.


A. Schematic illustration of RNA-seq analysis comparing the archegonia transcriptomes from wild-type females and egg-deficient Mprkd mutant females. About 4,000 and 2,000 archegonia were collected from wild-type and each of the two Mprkd mutant lines, and randomly allocated into four and two replicates, respectively.

B. A graph showing MpKNOX1 read counts in wild-type and Mprkd archegonia. Asterisk indicates significant difference ($q = 5.84E-83$, *exactTest* in *edgeR* package). Note that four data points are overlapping in Mprkd.

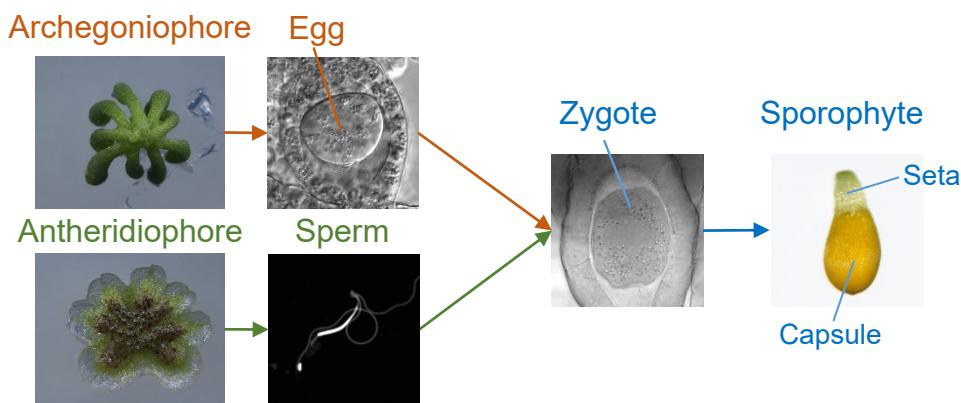
C. Comparison of the domain arrangements of MpKNOX1 vs. representative class I KNOX proteins from *Arabidopsis thaliana* (AtSTM; GenBank accession number AEE33958.1), *Zea mays* (ZmKN1; AAP21616.1), *Ceratopteris richardii* (CerKNOX1, BAB18582.1), *Physcomitrella patens* (PpMKN2; AAK61308.2) and *Chlamydomonas reinhardtii* (ChrGSM1; ABJ15867.1).

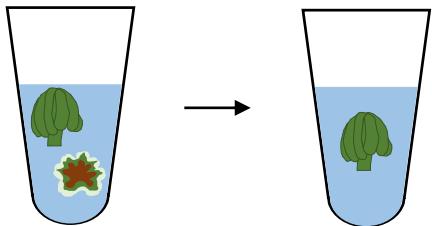
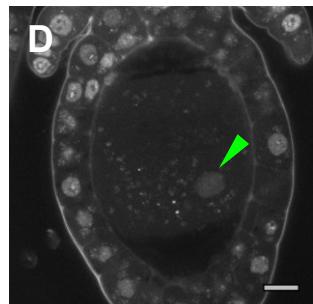
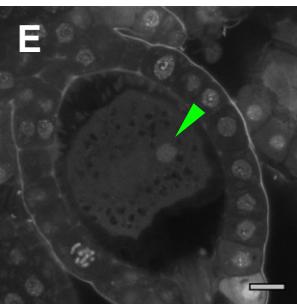
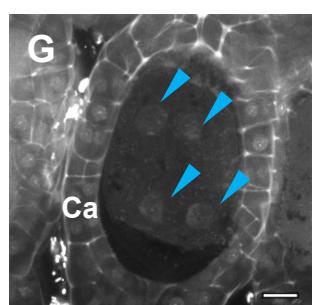
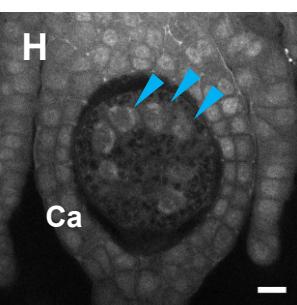
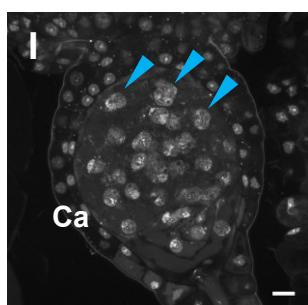

A**MA plot****B****MpKNOX1**
(Mp5g01600)

Archegoniophore
Antheridiophore
Sporophyte
Sporeling
Thallus

Figure 1 - figure supplement 1. Comparative transcriptome analysis of wild-type and Mprkd archegonia and identification of MpKNOX1 as an egg-specific gene in *M. polymorpha*.

A. M-A plot of differential expression analysis between wild-type and Mprkd archegonia. Differentially expressed genes (DEGs) are plotted in magenta.


B. Captured Genome Browser image showing the expression levels along the MpKNOX1 locus in the indicated tissue types (archegoniophore; SRX301555, antheridiophore; SRX301553, sporophyte; SRX301556, sporeling; SRX301559, thallus; SRX301557). MpKNOX1 is specifically expressed in archegoniophores.








Figure 2. MpKNOX1 is specifically expressed in egg cells.

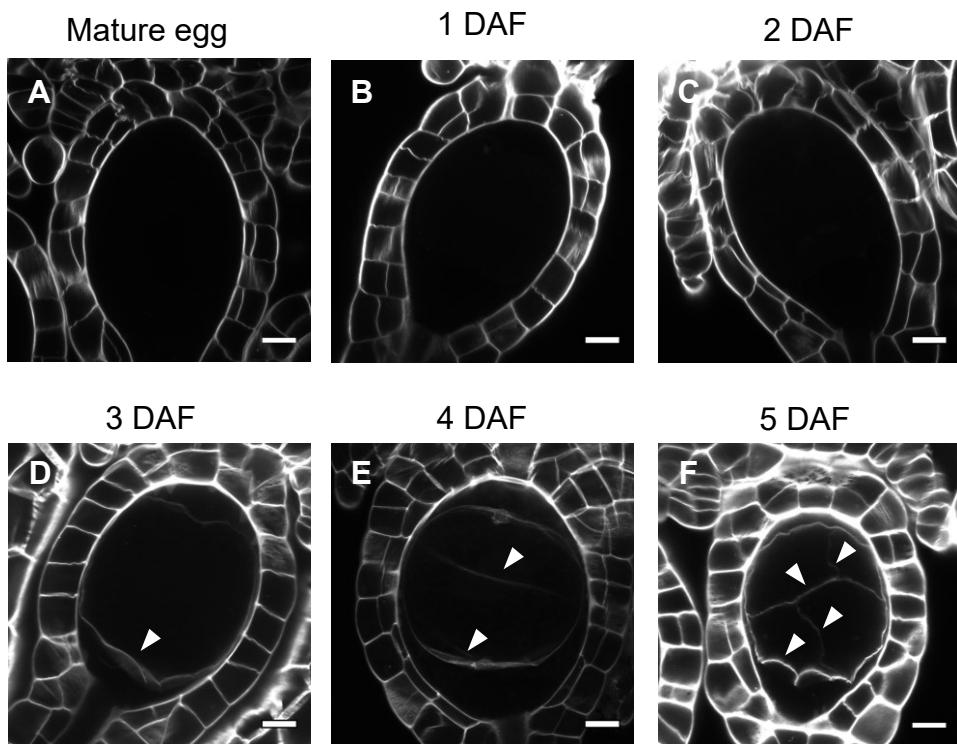
A. RT-PCR analysis of MpKNOX1. Lanes are labeled as follows: M, size markers, Th♂, male thalli, Th♀, female thalli, Ant, Antheridiophores, Arc, Archegoniophores, Spo, sporophytes of 3-week-old plants. Constitutively expressed MpEF1 α was used as a control. Red arrow indicates the expected size of PCR products from spliced MpKNOX1 mRNA. Bands at the top of the gel likely correspond to unspliced MpKNOX1 transcripts. Shown is a representative result from the experiments using three independently collected plant samples each with two technical replicates (two PCRs from each cDNA pool).

B and C. Expression of the MpKNOX1 transcriptional reporter. Magenta, chlorophyll autofluorescence; green, GFP fluorescence. Lower panels are merged photographs of fluorescence and bright-field images. Bars, 10 μ m.

A**B**

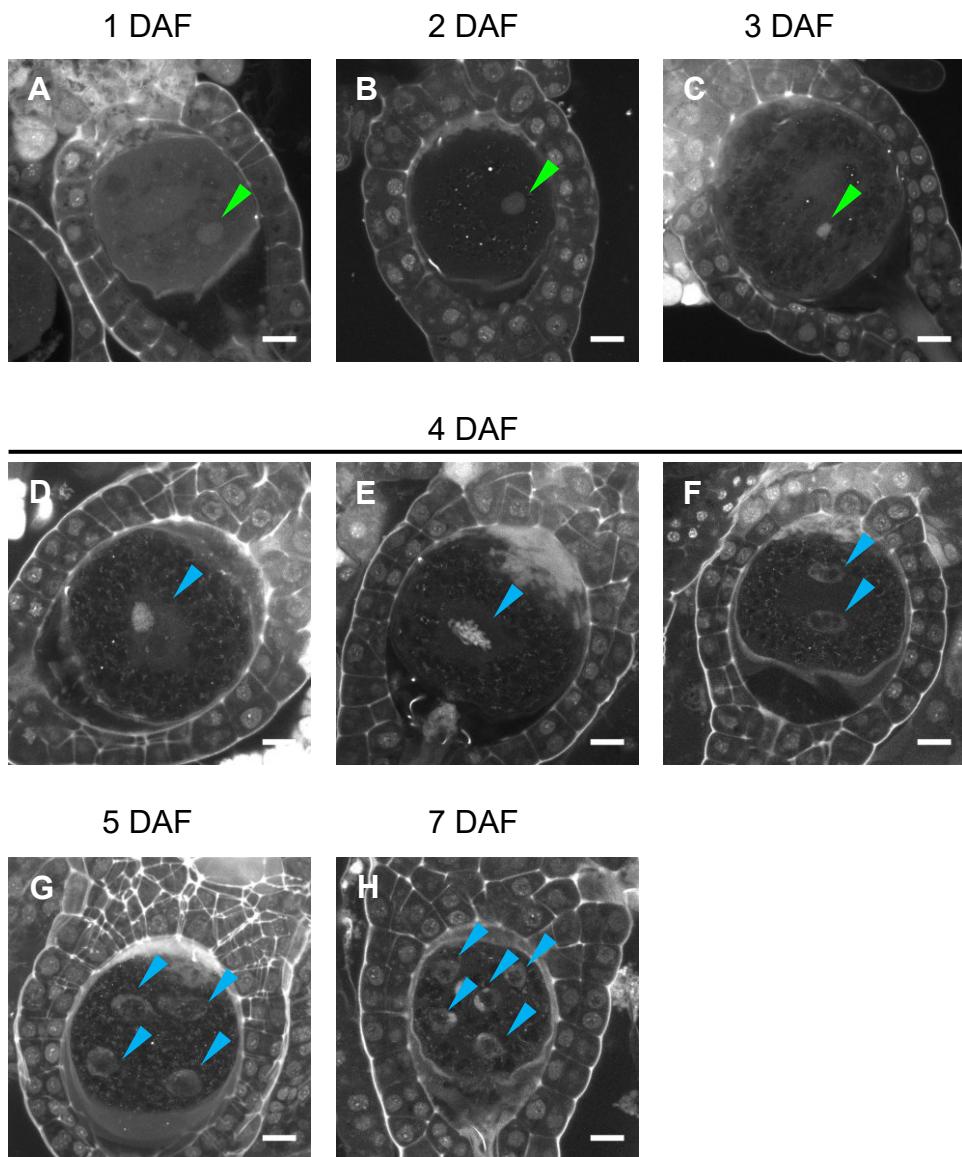
1-h co-culture Culture up to 2 weeks

1 DAF**3 DAF****4 DAF****5 DAF****7 DAF****14 DAF****Fig. 3**

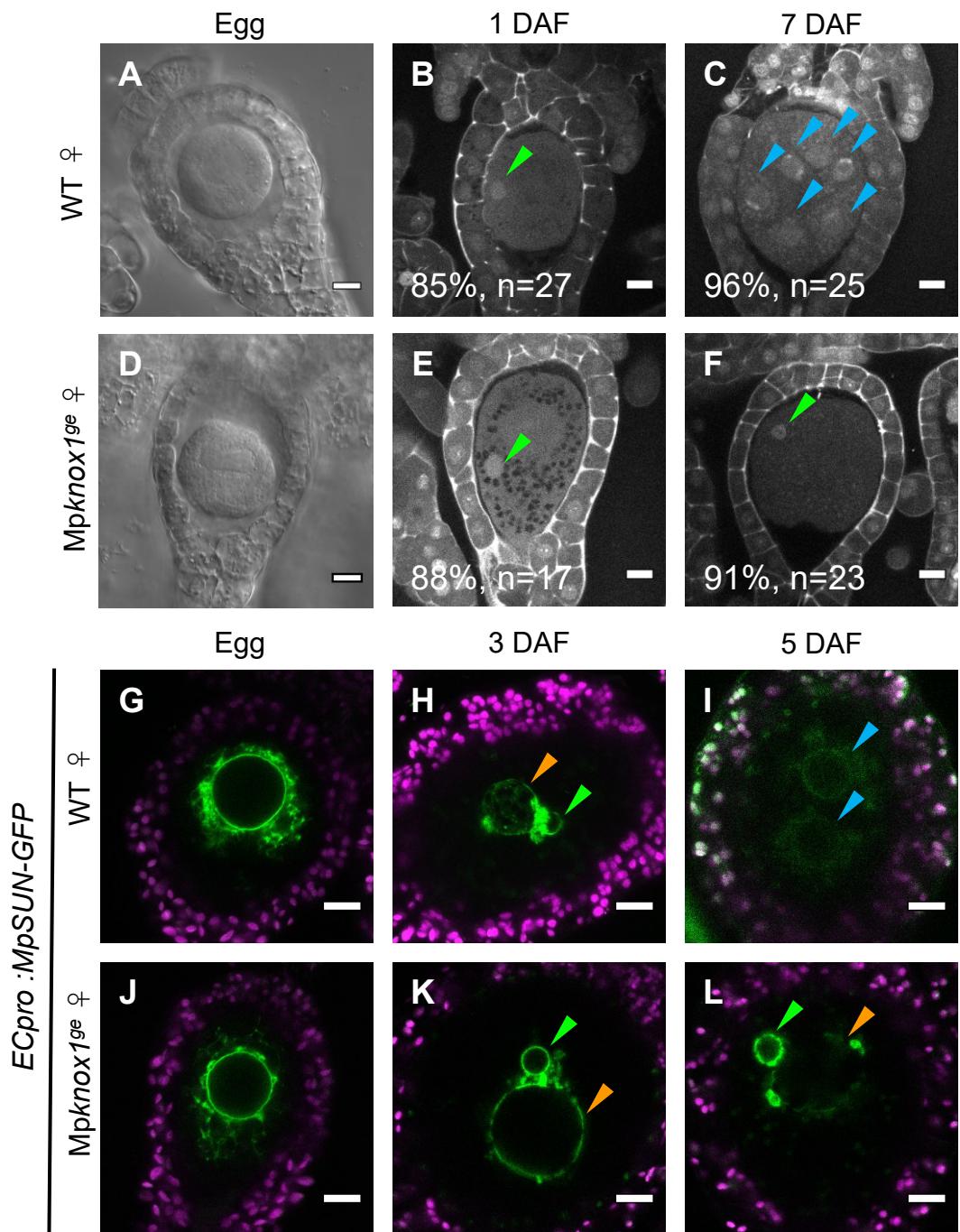

Figure 3. Time-course observation of subcellular dynamics during *M. polymorpha* fertilization.

A. Schematic representation of sexual reproduction in *M. polymorpha*. Female plants develop umbrella-shaped sexual branches termed archegoniophores that form egg-containing archegonia. Male plants develop disc-shaped sexual branches termed antheridiophores that form antheridia, which produce numerous motile sperm cells. Upon soaking in water, the sperm cells are released from the antheridia and swim to egg cells in the archegonia. After fertilization, each zygote undergoes embryogenesis by dividing and differentiating into a sporophyte body consisting of a capsule containing haploid spores and a short supportive stalk called the seta.

B. Illustration of the in vitro fertilization method used in this study. Excised archegoniophores and antheridiophores were co-cultured in water for 1 h to allow fertilization to take place. The archegoniophores were transferred to a fresh tube containing water for further culturing. The tube lids were left open to allow gas exchange to occur. Archegoniophores containing sporophytes were cultured for up to 2 weeks.


C. A DAPI-stained zygote after 1 h of co-culture. Most zygotes contained sperm nuclei at this time (green arrowhead).

D–I. DAPI-stained zygotes and sporophytes at the indicated days after fertilization (DAF). Male pronuclei (green arrowheads) were visible at 1–3 DAF (D and E) in wild-type fertilized eggs. In most zygotes, karyogamy was completed, and cells were cleaved at 4 DAF (F). Sporophyte cells continued to divide at 5 to 14 DAF (G–I), as visualized by the presence of multiple nuclei (blue arrowheads; not all nuclei are labeled in H and I). Ca, calyptra. Bars, 10 μ m.


Figure 3 - figure supplement 1. Cell wall regeneration during zygote development.

Confocal images of archegonia hosting an egg cell, zygotes or embryos. Cell walls stained with SCRI Renaissance 2200 were detected only after embryogenesis (arrowheads), but not in mature eggs or zygotes at 3 DAF or earlier. Bars, 10 μ m.

Figure 3 - figure supplement 2. Cellular dynamics of zygotes and embryos generated by *in planta* crossing.

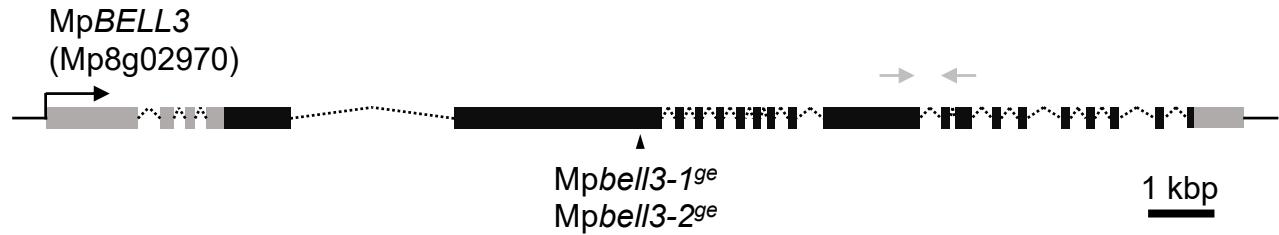
DAPI-stained zygotes and embryos derived from *in planta* crosses at the indicated stages, showing that the timing of subcellular dynamics was equivalent to that generated by the *in vitro* fertilization method shown in Figure 3. Bars, 10 μ m.

Figure 4. Maternally inherited *MpKNOX1* is required for nuclear fusion.

A and D. Bright-field images of wild-type (A) and *Mpknox1-1ge* (D) archegonia.

B, C, E, F. 1-DAF (B, E) and 7-DAF (C, F) zygotes from a cross between wild-type female and male plants (B, C), and a cross between *Mpknox1-1ge* female and wild-type male plants (E, F), indicating that maternal *MpKNOX1* is dispensable for fertilization (B, E) but is required for embryogenesis (C, F).

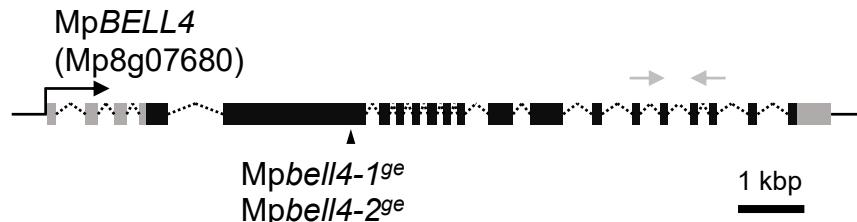
G-L. Egg cells of *MpSUN-GFP* marker lines in the wild type (G) or *Mpknox1-2ge* (J) female background were crossed with wild-type males. At 3 DAF, male and female pronuclei were in contact with each other in both wild-type (H) and *Mpknox1* (K) eggs. At 5 DAF, zygotes derived from a wild-type egg started to divide (I), while those from an *Mpknox1* female (L) were arrested without nuclear membrane fusion.


Green arrowhead, male pronucleus; orange arrowhead, female pronucleus; blue arrowhead, embryo nucleus. Bars, 10 μ m.

A**Mp*knox1*-1^{ge} : +17 nt**

WT: TCAC TTGAAGCTCTAAAAGATC-----TTGGGATTTTATGTT
 mut: TCAC TTGAAGCTCTAAAAGATCTTTTATGTTGGAGAATTGGGATTTTATGTT █

Mp*knox1*-2^{ge} : -2 nt


WT: TCAC TTGAAGCTCTAAAAGATCTTGGGATTTTATGTT
 mut: TCAC TTGAAGCTCTAAAAGAT--TGGGATTTTATGTT

B**Mp*bell3*-1^{ge} : +88 nt**

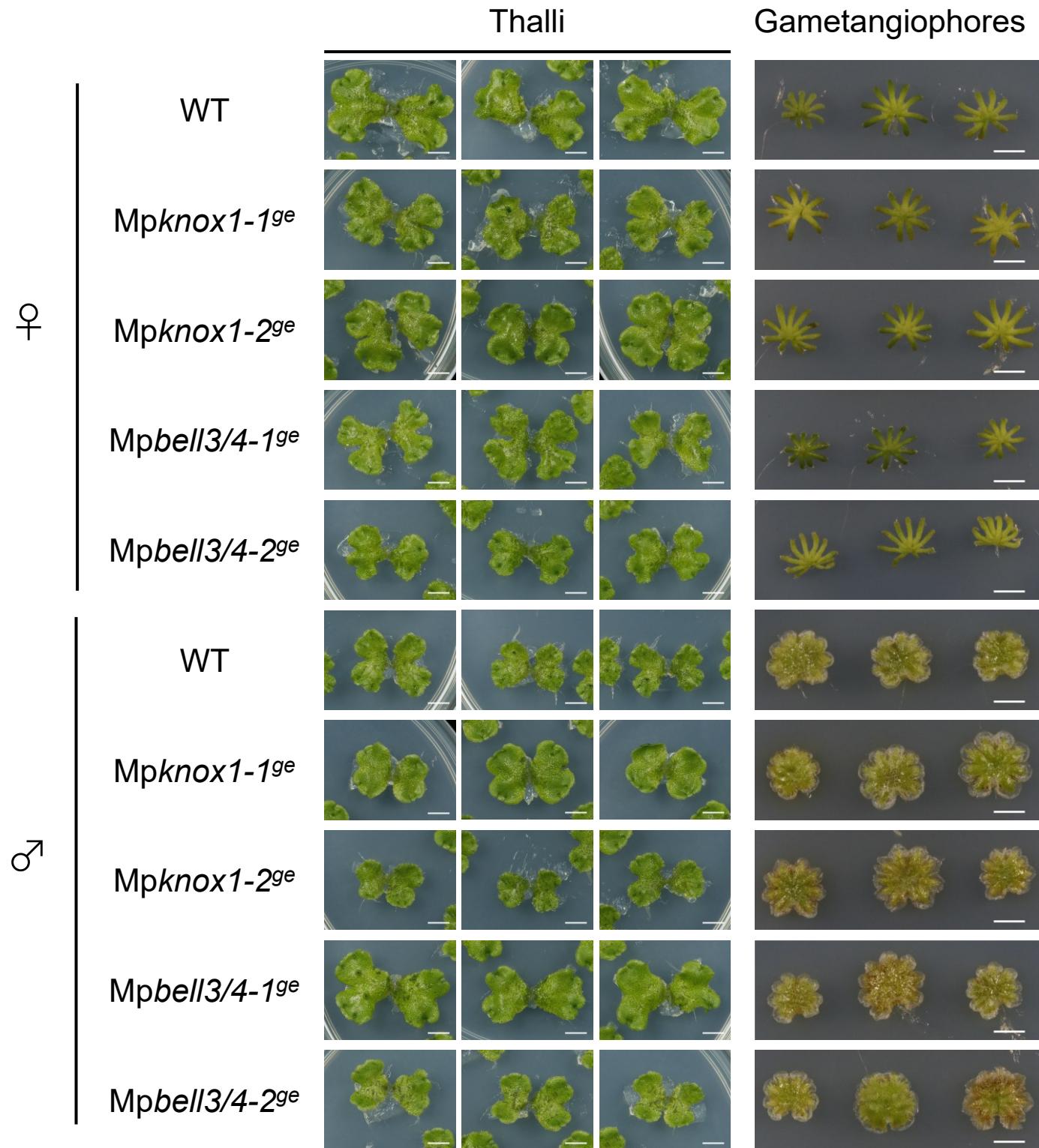
WT: CTGAAAGAGTTGAA-----AGATTGCAACTGGAG
 mut: CTGAAAGAGTTGAAGATTGAAGCTCAATA ... CTGAAAGAGTTGAAAGAGATTGCAACTGGAG

Mp*bell3*-2^{ge} : -10 nt

WT: CAATATCTGCCAAGCTCTGACCGATGAAGCTCAATACCATG
 mut: CAATATCTGCCAAGGA-----AATATCAATACCATG

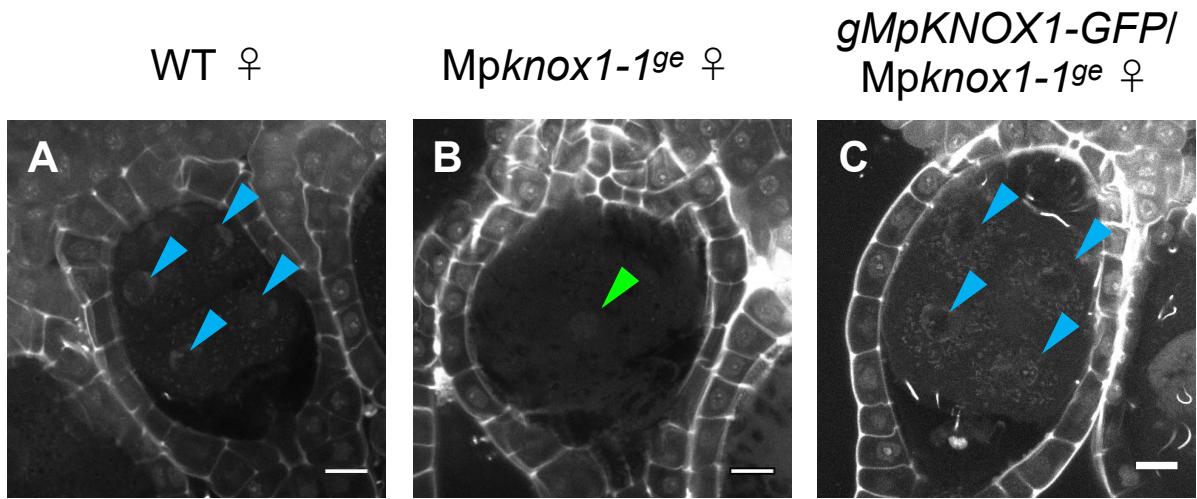
C**Mp*bell4*-1^{ge} : -10 nt**

WT: ATGGAGGTCCGCCAGTCGTCGCCAGCCGATT CGCAGTCCG
 mut: ATGGAGGTCCGCCAG-----CCGATT CGCAGTCCG


Mp*bell4*-2^{ge} : +13 nt

WT: GTCCGCCAGTCGTCG-----CCAGCCGATT CGCAGTCCG-----AGTCGGACGGACCGC
 mut: GTCCGCCAGTCGTCGGACCTCCAGT CGC-----TCGGAAGTCGGACGGACCGC

Figure 4 – figure supplement 1


Figure 4 - figure supplement 1. Generation of loss-of-function mutant lines by CRISPR/Cas9.

Gene organization and the locations of CRISPR/Cas9-introduced mutations in *MpKNOX1* (A), *MpBELL3* (B) and *MpBELL4* (C) are indicated by the following symbols; gray line, 5'- and 3'-flanking sequences; gray box, 5'- and 3'-UTR; black box, coding regions; arrowhead, mutation positions; black arrow, transcriptional direction; dotted line, splice pattern; gray arrow; primers used in RT-PCR shown in Figure 2A and 5A. Sequence alignments of wild-type and mutant alleles are shown below each gene model. Mismatched nucleotides and gaps are shown in red.

Figure 4 - figure supplement 2. *MpKNOX1* and *MpBELL3/4* are dispensable for gametophyte development.

Three samples of vegetative thalli and gametangiophores from wild-type (WT), *Mpknox1* and *Mpbell3/4* mutant lines are shown. Bars, 5 mm.

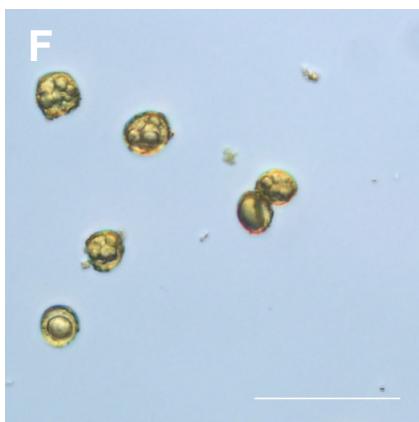
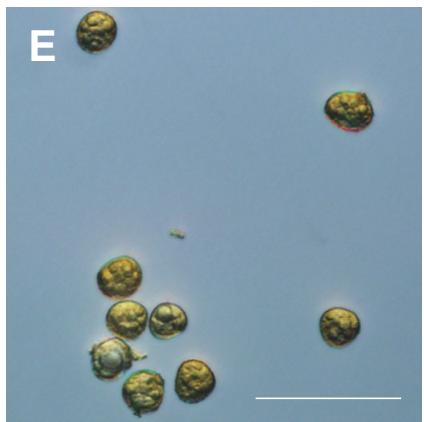
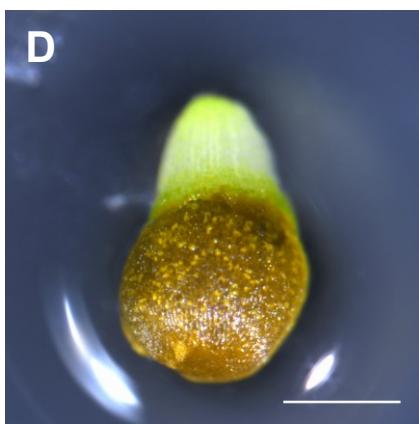
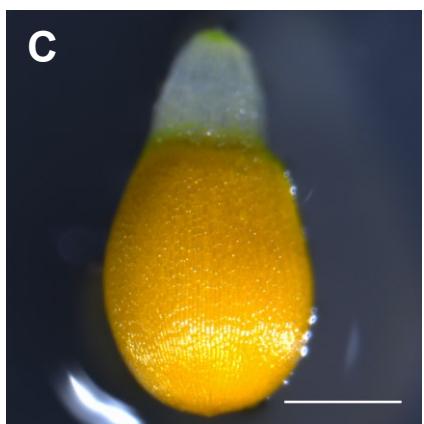
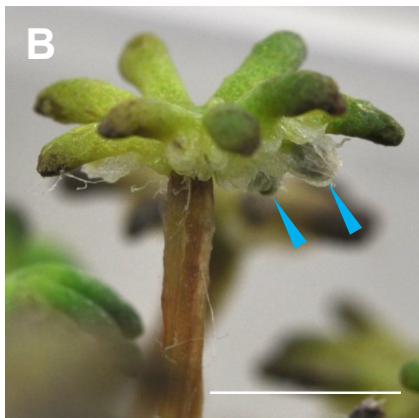
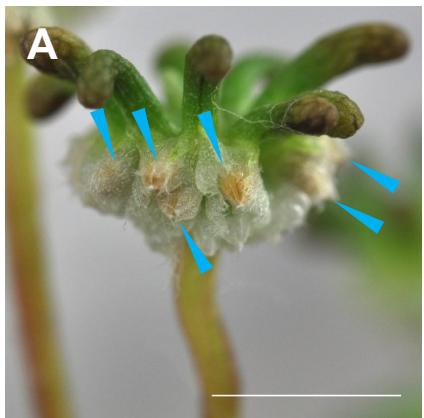
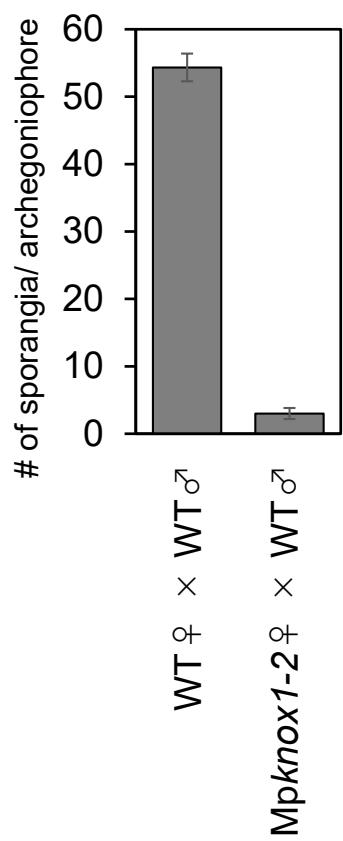







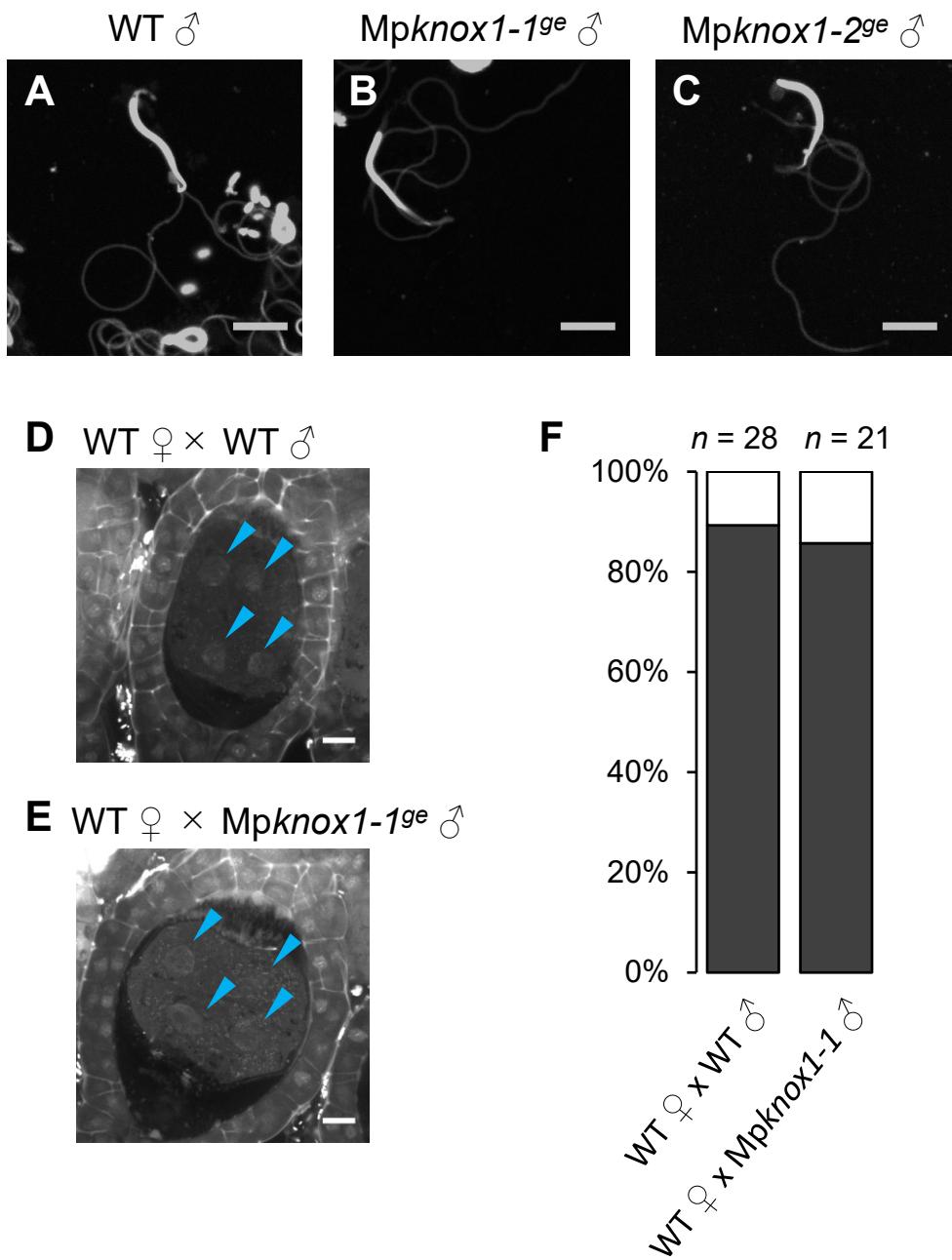
Figure 4 - figure supplement 3. Expression of MpKNOX1-GFP driven by the MpKNOX1 promoter complements the karyogamy defects of *Mpknox1* mutants.


5-DAF zygotes obtained by crossing the indicated female lines with wild-type males. Green and blue arrowheads indicate a male pronucleus and embryo nuclei, respectively. Bars, 10 μ m.

WT ♀ × WT ♂

Mpknox1-1 ♀ × WT ♂

G


Figure 4 - figure supplement 4. Sporangium and spore formation in wild-type and *Mpknox1* plants.

A, B. Archegoniophores of wild-type (A) and *Mpknox1-1^{ge}* (B) female plants 4 weeks after crossing with wild-type males. Blue arrowheads indicate sporangia harboring expanded capsules.

C-F. Capsule (C, D) and spores (E, F) in wild-type (C, E) and *Mpknox1-1^{ge}* (D, F) female plants crossed with wild-type males.

G. Bar graph showing the number of sporangia per archegoniophore in wild-type and *Mpknox1-2^{ge}* female plants crossed with wild-type males. Error bars indicate standard deviation. Three gametangiophores were analyzed for each genotype.

Bars, 5 mm (A, B), 0.5 mm (C, D), 50 μ m (E, F).

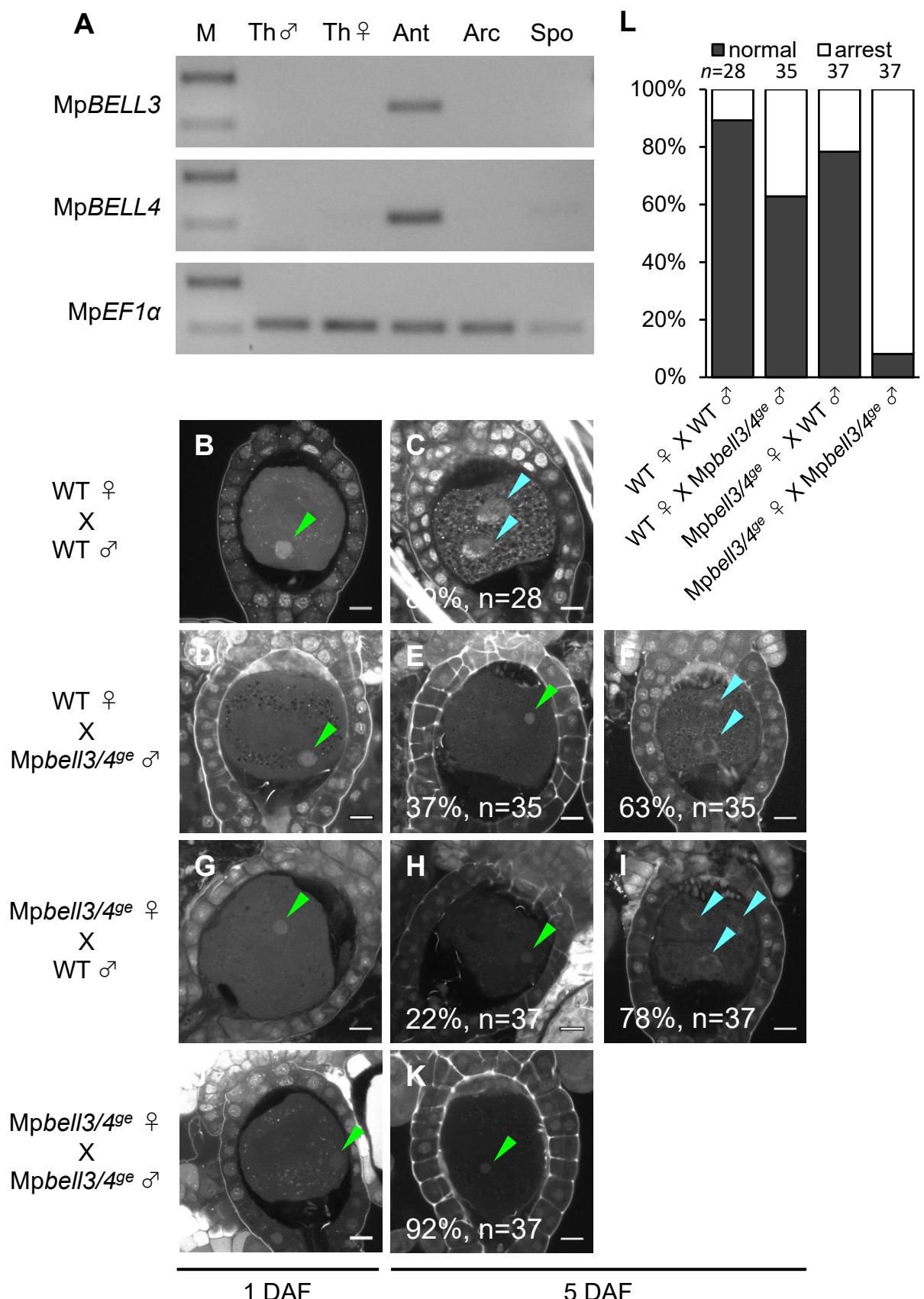
Figure 4 - figure supplement 5. *MpKNOX1* is dispensable for sperm differentiation and embryogenesis.

A-C. DAPI-stained sperm cells from wild-type (A) and *Mpknox1* male plants (B, C) show indistinguishable morphology.

D, E. 5-DAF sporophytes in wild-type female plants crossed with wild-type (C) or *Mpknox1-1^{ge}* (D) males. Blue arrowheads indicate nuclei of embryo cells.

F. Proportion of developed vs. arrested zygotes in wild-type female plants crossed with wild-type or *Mpknox1-1^{ge}* males. Numbers of observed zygotes are indicated above each bar.

Bars, 5 μ m (A-C), 10 μ m (D, E).



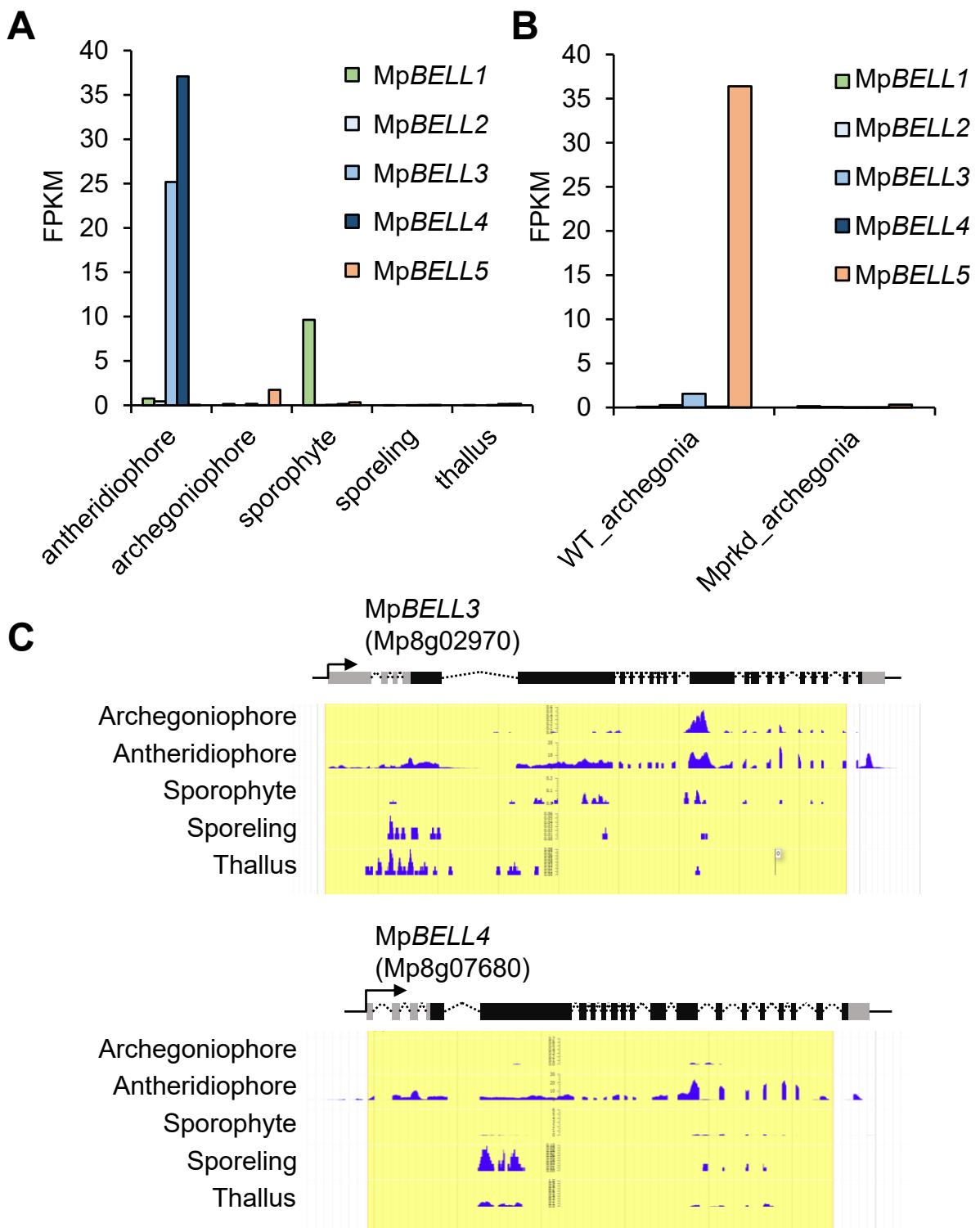

Fig. 5

Figure 5. Both paternally and maternally inherited MpBELL genes are required for karyogamy.

A. RT-PCR analysis indicating that *MpBELL3* and *MpBELL4* are specifically expressed in antheridiophores. The lanes are labeled as in Figure 2A. Shown is a representative result from the experiments using three independently collected samples each with two technical replicates.

B–K. Zygotes at 1 DAF (B, D, G, J) and 5 DAF (C, E, F, H, I, K) from crosses between a wild-type female and wild-type male (B, C) or *Mpbell3/4-2^{ge}* male (D–F) and a *Mpbell3/4-2^{ge}* female and a wild-type male (G–I) or *Mpbell3/4-2^{ge}* male (J, K). The presence of male pronuclei (green arrowheads) in zygotes of all genotypes at 1 DAF (B, D, G, J) indicates that *MpBELL3* and *MpBELL4* are dispensable for plasmogamy. Note that zygotes produced from both or one *Mpbell3/4* parent exhibit a variable degree of karyogamy arrest, as visualized by the retention of male pronuclei (green arrowheads) among those starting embryonic division (nuclei labeled with blue arrowheads). Bars, 10 μ m.

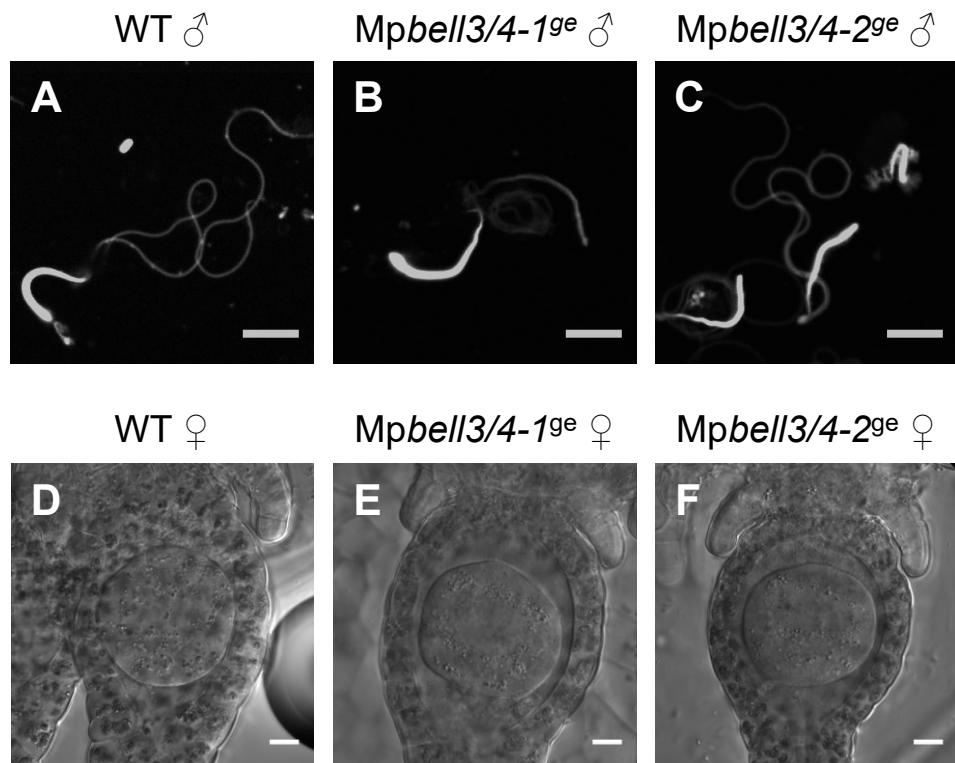

L. Bar graph showing the ratios of zygotes with karyogamy arrest from the indicated crosses shown in B–K. Numbers of observed zygotes are shown above each bar.

Figure 5 – figure supplement 1. MpBELL3 and MpBELL4 are preferentially expressed in antheridiophores.

A, B. Bar graphs showing the expression levels of MpBELL genes in the indicated organs, constructed from publicly available transcriptome data (Bowman et al., 2017) (A) and the RNA-seq data obtained in this study (B).

C. Snapshots of genome browser views of the MpBELL3 and MpBELL4 loci displaying their preferential expression in antheridiophores.

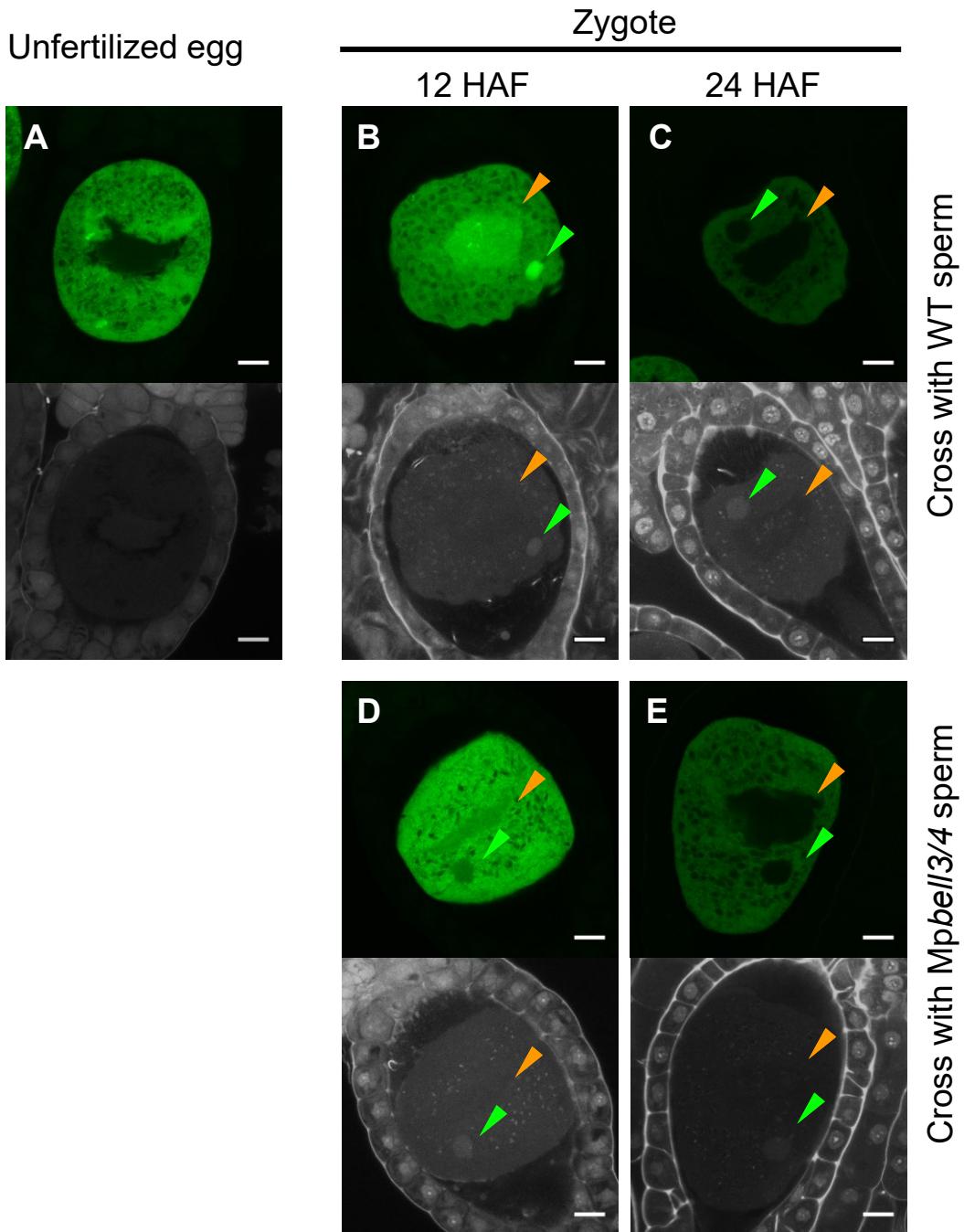
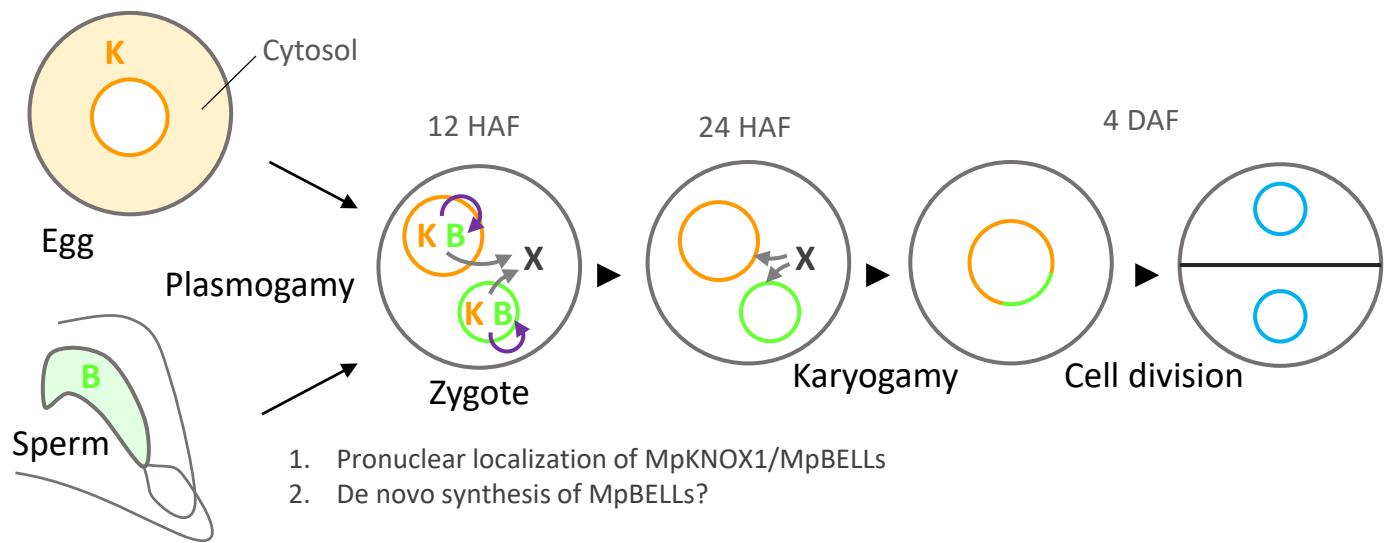
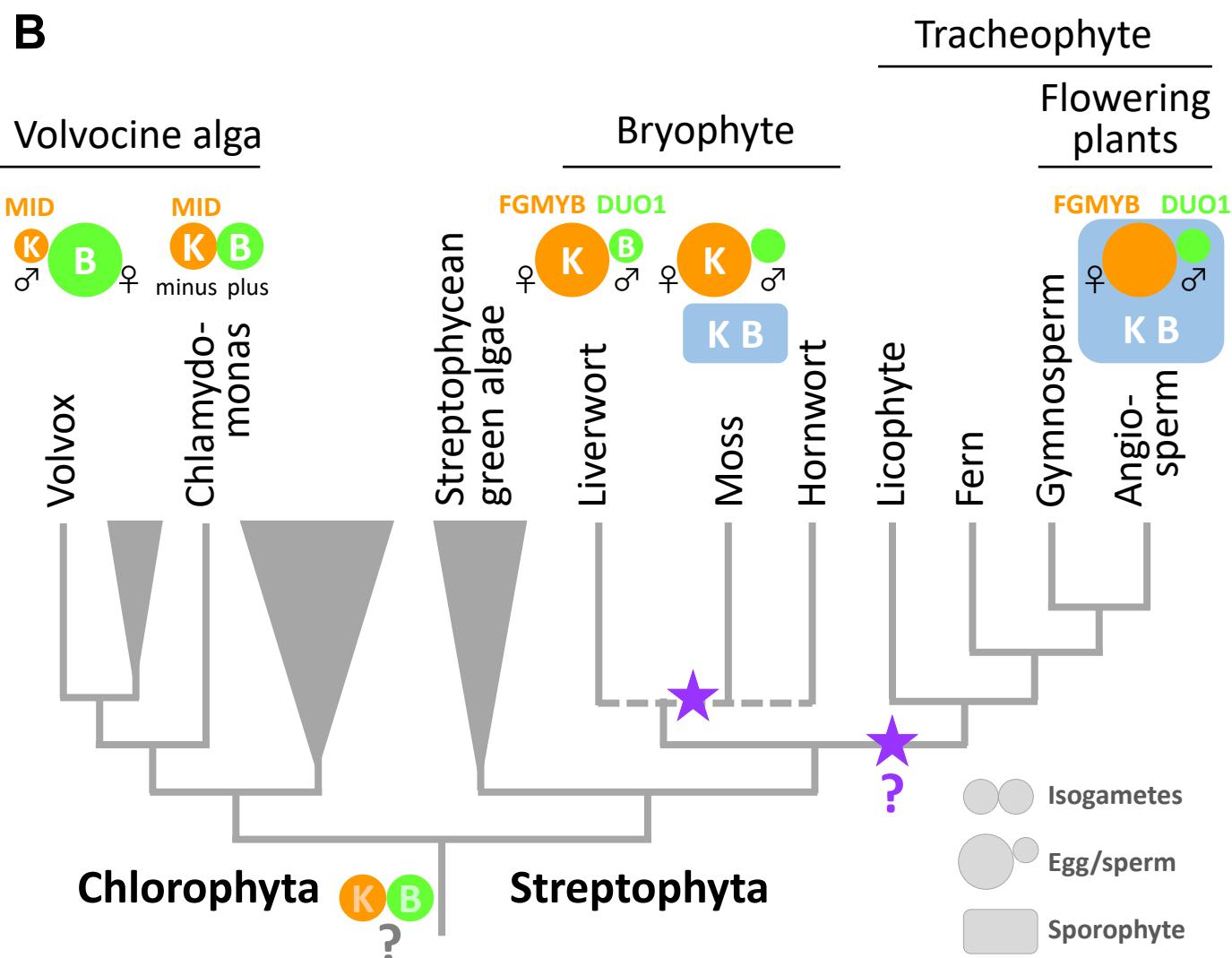


Figure 5 - figure supplement 2. *MpBELL3* and *MpBELL4* are dispensable for gamete differentiation.

A-C. DAPI-stained sperm cells from wild-type (A), *Mpbell3/4-1^{ge}* (B) and *Mpbell3/4-2^{ge}* (C) male plants.



D-F. DIC images of archegonia in wild-type (D), *Mpbell3/4-1^{ge}* (E) and *Mpbell3/4-2^{ge}* (F) female plants.

Bar, 5 μ m (A-C), 10 μ m (D-F).

Figure 6. *MpKNOX1* transiently localizes to female and male pronuclei prior to karyogamy.

A–E. GFP (upper panels) and DAPI (lower panels) signals from *gMpKNOX1-GFP/Mpknox1-1^{ge}* eggs (A) and zygotes obtained by crossing a *gMpKNOX1-GFP/Mpknox1-1^{ge}* female with a wild-type (B, C) or *Mpbell3/4-2^{ge}* (D, E) male. Note that before fertilization, *MpKNOX1-GFP* was exclusively localized to the cytosol (A). At 12 HAF, *MpKNOX1-GFP* signals were enriched in female (orange arrowhead) and male (green arrowhead) pronuclei in the wild-type background (B). In the absence of paternally inherited *MpBELL3* and *MpBELL4*, *MpKNOX1-GFP* remained mostly cytosolic (D), although weak GFP signals were detected in male and female pronuclei at 12 HAF (D). At 24 HAF, weak GFP signals were exclusively detected in the cytosol of both genotypes (C, E). Bars, 10 μ m.

A**B****Fig. 7.**

Figure 7. Functions and expression patterns of KNOX/BELL transcription factors in green plants.

A. Expression patterns of KNOX and BELL proteins and their predicted role in zygote activation in *M. polymorpha*. "K" and "B" represent MpKNOX1 and MpBELL protein subunits, respectively. Orange, green and blue circles represent female pronuclei, male pronuclei and nuclei of embryo cells, respectively. Purple curved arrows indicate auto-amplification of BELL levels by KNOX/BELL-mediated transcriptional control. X indicates unknown karyogamy-promoting factor(s) whose expression and/or functions are activated by KNOX/BELL-mediated transcription.

B. Predicted evolutionary trajectory of KNOX/BELL expression patterns along the green plant lineages. Orange/green circles and blue rectangles represent gametes and sporophyte bodies, respectively. "K" and "B" indicate the expression of KNOX and BELL proteins, respectively. Purple stars indicate the predicted positions at which the functional transition of KNOX/BELL from zygote activation to sporophyte morphogenesis occurred. Also indicated are the expression patterns of evolutionarily conserved regulators of sexual differentiation; a male-determinant factor MID of volvocine algae, and female- and male-differentiation factors, FGMYB and DUO1, respectively, of land plants. Note that the KNOX/BELL expression patterns in ancestral plants at the bottom of the tree is an inference.