

1      **Last-come, best served? Mosquito biting order and**  
2      ***Plasmodium* transmission**

3                    J. ISAÏA<sup>1</sup>, A. RIVERO<sup>2,3</sup>, O. GLAIZOT<sup>1,4</sup>, P. CHRISTE<sup>1</sup> & R. PIGEAULT<sup>1\*</sup>

4      <sup>1</sup> Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland

5      <sup>2</sup> MIVEGEC (UMR CNRS 5290), Montpellier, France

6      <sup>3</sup> CREES (Centre de Recherche en Ecologie et Evolution de la Santé), Montpellier, France

7      <sup>4</sup> Musée Cantonal de Zoologie, Lausanne, Switzerland

8

9      \*Corresponding author: [romain.pigeault@unil.ch](mailto:romain.pigeault@unil.ch)

## 10 Abstract

11 A pervasive characteristic of malaria parasite infection in mosquito vector populations is their  
12 tendency to be overdispersed. Understanding the mechanisms underlying the overdispersed  
13 distribution of parasites is of key importance as it may drastically impact the transmission  
14 dynamics of the pathogen. The small fraction of heavily infected individuals might serve as  
15 superspreaders and cause a disproportionate number of subsequent infections. Although  
16 multiple factors ranging from environmental stochasticity to inter-individual heterogeneity may  
17 explain parasite overdispersion, *Plasmodium* infection has also been observed to be highly  
18 overdispersed in inbred mosquito population maintained under standardized laboratory  
19 conditions, suggesting that other mechanisms may be at play. Here, we show that the  
20 aggregated distribution of *Plasmodium* within mosquito vectors is partially explained by a  
21 temporal heterogeneity in parasite infectivity triggered by the bites of blood-feeding  
22 mosquitoes. Several experimental blocks carried out with three different *Plasmodium* isolates  
23 have consistently shown that the transmission of the parasite increases progressively with the  
24 order of mosquito bites. Surprisingly the increase in transmission is not associated with an  
25 increase in *Plasmodium* replication rate or higher investment in the production of the  
26 transmissible stage (gametocyte). Adjustment of the physiological state of the gametocytes  
27 could be, however, an adaptive strategy to respond promptly to mosquito bites. Overall our  
28 data show that malaria parasite appears to be able to respond to the bites of mosquitoes to  
29 increase its own transmission at a much faster pace than initially thought (hours rather than  
30 days). Further work needs to be carried out to elucidate whether these two strategies are  
31 complementary and, particularly, what are their respective underlying mechanisms.  
32 Understanding the processes underlying the temporal fluctuations in *Plasmodium* infectivity

33 throughout vertebrate host-to-mosquito transmission is essential and could lead to the  
34 development of new approaches to control malaria transmission.

35 **Author summary**

36 *Plasmodium* parasites are known for being the etiological agents of malaria and for the  
37 devastating effects they cause on human populations. A pervasive characteristic of *Plasmodium*  
38 infection is their tendency to be overdispersed in mosquito vector populations: the majority of  
39 mosquitoes tend to harbour few or no parasites while a few individuals harbor the vast majority  
40 of the parasite population. Understanding the mechanisms underlying *Plasmodium*  
41 overdispersed distribution is of key importance as it may drastically impact the transmission  
42 dynamics of the pathogen. Here, we show that the aggregated distribution of *Plasmodium*  
43 parasites within mosquito vectors is partially explained by a temporal heterogeneity in  
44 *Plasmodium* infectivity triggered by the bites of blood-feeding mosquitoes. In other words,  
45 mosquitoes that bite at the beginning of a 3h feeding session have significantly fewer parasites  
46 than those that bite towards the end. Malaria parasite is therefore capable of responding to  
47 the bites of mosquitoes to increase its own transmission at a much faster pace than thought  
48 (hours rather than days). Understanding the processes underlying the temporal fluctuations in  
49 *Plasmodium* infectivity throughout vertebrate host-to-mosquito transmission is essential and  
50 could lead to the development of new approaches to control malaria transmission.

51  
52 **Keywords:** *Plasmodium*, mosquito bites, transmission, overdispersion, aggregation, temporal  
53 heterogeneity, avian malaria

## 54 Introduction

55 An ubiquitous feature of parasite infections is their tendency to be overdispersed or  
56 aggregated [1–4]. In other words, in a natural population of hosts, the majority of individuals  
57 tend to harbour few or no parasites while a few hosts harbour the vast majority of the parasite  
58 population. This pattern has been observed in a wide range of diseases ranging from viruses  
59 and fungal parasites of plants [5,6] to protozoan and metazoan parasites of humans [7,8].

60 Previous work has shown that the overdispersed pattern of parasites among hosts can  
61 have strong repercussions for disease dynamics [9,10]. Overdispersion reduces the deleterious  
62 effects of parasites on host populations but also increases the intensity of density-dependent  
63 suppression of parasite population growth (e.g. mating probability, intra- and inter-specific  
64 competition [11,12]). Another property emerging from parasite overdispersion is the effect on  
65 infectious disease epidemiology and parasite transmission. The small fraction of heavily  
66 infected individuals may serve as super-spreaders and therefore play a large role in disease  
67 transmission [13–15]. In many host–parasite systems, 20% of hosts are responsible for 80% of  
68 new infections [16,17]. In vector-borne diseases, parasite overdispersion has been observed  
69 both in the vertebrate host and in the vector populations [18–22]. Despite this, studies to date  
70 have mainly focused on the epidemiological consequences of parasite overdispersion in  
71 vertebrate host rather than vectors [17,23,24]. Yet, for many of these diseases, key traits  
72 determining the transmission dynamics of the pathogen such as the lifespan and feeding  
73 behaviour of vectors as well as the length of the parasite's extrinsic incubation period may  
74 depend on the intensity of parasite infection in the vector [25–29].

75 Anderson and Gordon (1982) identified environmental stochasticity as the prime cause  
76 of overdispersion in parasite populations [30]. This included not only the physical parameters  
77 of the environment, but also the differences in host susceptibility to the infection induced by

78 behavioural differences, genetic factors or varying past experiences of infection. The  
79 mechanisms underlying the aggregated distribution of parasites in vector populations remains  
80 however rarely explored and little understood.

81 *Plasmodium* parasites are known for being the etiological agents of malaria and for the  
82 devastating effects they cause on human populations in the African continent. These vector-  
83 borne parasites are however also found infecting many other terrestrial vertebrate species,  
84 including other mammals, reptiles and birds. The life cycle of the parasite is the same in all  
85 hosts, irrespective of their taxa. When the mosquito vectors take a blood meal on an infected  
86 host, they ingest the parasite's transmissible stages (female and male gametocytes). After the  
87 sexual reproduction of the parasite, the motile zygotes penetrate the wall of the midgut and  
88 start developing into oocysts, which in turn produce the transmissible sporozoites in the  
89 mosquito's salivary glands. There is abundant evidence showing that the distribution of oocysts,  
90 the most commonly quantified parasite stage in mosquitoes, is highly overdispersed [7,31–34].  
91 The most straightforward explanation for this aggregated distribution of oocysts is that it is  
92 driven by heterogeneity in vector susceptibility to *Plasmodium* infection associated to their  
93 genetic background or to their physiological status [7,35,36]. Polymorphism in mosquito  
94 immune genes is strongly associated with natural resistance to *Plasmodium* [35,37] and aging  
95 also tends to decrease the susceptibility of vectors to *Plasmodium* infection [36]. Puzzlingly,  
96 however, oocyst overdispersion is also extremely common under controlled laboratory  
97 conditions in highly inbred, and therefore physiologically and genetically homogeneous,  
98 mosquito populations [7,31,33,34]. This suggests that genetic or physiological heterogeneities  
99 between mosquitoes may only be part of the explanation, and that the causes of the aggregated  
100 distribution of oocysts in vectors may also lie elsewhere.

101 One possible explanation is the existence of *spatial* aggregation of gametocytes in the  
102 vertebrate blood. Recent work has shown that gametocyte densities in humans can vary in as  
103 much as 45% in blood collected from different parts of the body (Pigeault et al *in prep*).  
104 Although the direct connection between spatial heterogeneity in blood and overdispersion in  
105 mosquitoes has never been made, it has been reported that *Plasmodium* gametocytes show an  
106 aggregated distribution within mosquitoes which recently fed on human host [38].

107 Alternatively, the aggregated distribution of *Plasmodium* parasites within mosquitoes  
108 could be due to a within-host *temporal* variation in parasite densities and/or infectivity. Under  
109 this scenario, mosquitoes feeding during the high parasite density/infectivity phase would be  
110 more heavily infected than those feeding during the low density/infectivity phase. *Plasmodium*  
111 parasite density and/or infectivity in the vertebrate host can indeed vary within relatively short  
112 temporal intervals. A recent study found that rodent malaria *P. chabaudi* gametocytes are twice  
113 as infective at night despite being less numerous in the blood [39]. A periodic late afternoon  
114 increase in parasitemia is also observed in the avian malaria system [40]. Such temporal  
115 variations may respond to changes in the physiological, nutritional or immunological condition  
116 of the host [41–43]. They may, however, also be an adaptive strategy of the parasite aimed at  
117 maximizing its own transmission [40,44]. Recent work has shown that host parasitaemia  
118 increases a few days after a mosquito blood feeding bout, suggesting that *Plasmodium* may be  
119 capable of adjusting its transmission strategy by responding plastically to the temporal  
120 fluctuations in vector availability [40,44]. These results, however, are not able to explain the  
121 aggregated distribution of parasites among mosquitoes feeding within a short feeding bout  
122 typically lasting a handful of hours.

123 Here, we test whether the *Plasmodium* is able to respond plastically to the bites of  
124 mosquitoes at a much more rapid pace than initially thought. More specifically, we test whether

125 there is a pattern in the oocyst load of mosquitoes feeding within a short (3-hour) time interval:  
126 do the first mosquitoes to bite the host increase the infectivity of the parasite so that  
127 mosquitoes biting last end up with significantly increased oocystaemias? To test this hypothesis,  
128 we use the avian malaria experimental system, the only currently available animal experimental  
129 system that allows working with a parasite recently isolated from the wild (*Plasmodium*  
130 *relictum*), with its natural mosquito vector (the mosquito *Culex pipiens*). Specifically, we carry  
131 out a series of experiments designed to answer the following two main questions: 1) Is  
132 oocystaemia correlated with mosquito biting order? In other words, do mosquitoes biting first  
133 have a lower intensity of infection than those biting later on? and 2) Is this due to a temporal  
134 increase in the parasitaemia/gametocytaemia of birds as a result of mosquito bites?

135

## 136 **Results**

137 To investigate the impact of mosquito bite-driven plasticity on *Plasmodium* transmission  
138 we used the avian malaria biological system [45]. Birds (*Serinus canaria*) infected by  
139 *Plasmodium relictum*, the causative agent of the most prevalent form of avian malaria in  
140 Europe, were exposed to a wild-caught lineage of *Culex pipiens* mosquitoes for 3 hours (6 – 9  
141 p.m.). Mosquitoes were sampled at regular intervals thereafter (different protocols for the  
142 three experiments, see below) and dissected one week later to count the number of oocysts in  
143 the midgut. To investigate the impact of vector bites on parasite population growth, the  
144 parasitaemia (number of parasites in the blood) and gametocytaemia (number of gametocytes  
145 in the blood) of vertebrate hosts exposed or not (control) to mosquitoes were measured just  
146 before and just after the mosquito exposure period (6 – 9 p.m.).

### 147 **Experiment 1: Oocyst burden and mosquito biting order: batch experiment**

148 In the first experiment, birds were exposed to four successive batches of  $25 \pm 3$   
149 uninfected mosquitoes. Each mosquito batch was kept in the cage for 45 minutes before being  
150 replaced with a new batch (batch 1 ( $T_{0\text{min}}$ ), batch 2 ( $T_{45\text{min}}$ ), batch 3 ( $T_{90\text{min}}$ ) and batch 4  
151 ( $T_{135\text{min}}$ )). At the end of each exposure period, all mosquitoes were removed from the cages  
152 and were immediately replaced by a new batch. The blood meal rate (*i.e.* proportion of blood-  
153 fed mosquitoes) and the haematin quantity, a proxy for blood meal size, were similar for all  
154 batches (model 1:  $\chi^2 = 5.90$ ,  $p = 0.116$ , model 2:  $\chi^2 = 3.55$ ,  $p = 0.314$  respectively, statistical  
155 models are described in **Table S1**). Although mosquitoes from batches 3 and 4 tend to have a  
156 higher infection prevalence (proportion of mosquitoes containing at least 1 oocyst in the  
157 midgut; mean  $\pm$  SE: batch 3:  $64.4\% \pm 11.9$ , batch 4:  $78.2\% \pm 8.6$ ) than those from batches 1 and  
158 2 (batch 1:  $56.7\% \pm 15$ , batch 2:  $56.7\% \pm 19.4$ ) the difference in prevalence between the  
159 different batches was not statistically significant (model 3:  $\chi^2 = 2.74$ ,  $p = 0.433$ ). The overall  
160 distribution of oocyst burden across batches was highly overdispersed (**Figure 1A**, mean  $\pm$  se  
161 Variance-to-Mean Ratio =  $11.48 \pm 3.37$ ). Oocyst burden increased with mosquito batch  
162 (geometric mean: batch 1:  $3.41 \pm 3.04$ , batch 2:  $3.99 \pm 3.25$ , batch 3:  $6.13 \pm 3.36$  and batch 4:  
163  $11.84 \pm 3.53$ , model 4:  $\chi^2 = 35.283$ ,  $p < 0.0001$ , **Figure 1A**). Females from batch 4 had almost  
164 twice as many oocysts as those from batch 3 (contrast analyses: batch4/batch3:  $\chi^2 = 11.02$ ,  $p <$   
165  $0.001$ ) and three times more than females from batches 1 and 2 (batch4/batch2:  $\chi^2 = 17.95$ ,  $p$   
166  $< 0.001$ , batch4/batch1:  $\chi^2 = 19.31$ ,  $p < 0.0001$ , **Figure 1A**). No significant difference was however  
167 observed between mosquitoes from batches 1 and 2 (contrast analyses: batch1/batch2:  $\chi^2 =$   
168  $0.15$ ,  $p = 0.697$ ) or between mosquitoes from batches 2 and 3 (batch2/batch3:  $\chi^2 = 2.29$ ,  $p =$   
169  $0.129$ , **Figure 1A**). Haematin quantity had no effect on the oocyst burden (model 4:  $\chi^2 = 0.02$ ,  $p$   
170 =  $0.875$ ).

171 The increase in *Plasmodium* oocyst burden with mosquito batch was not explained by  
172 an increase in total parasite or gametocyte burden in the birds' peripheral blood. The  
173 parasitaemia and gametocytaemia of exposed birds remained roughly constant between the  
174 beginning and the end of the experiment (parasitaemia= model 5:  $\chi^2 = 0.39$ ,  $p = 0.529$ ,  
175 gametocytaemia = model 6:  $\chi^2 = 0.02$ ,  $p = 0.877$  respectively) and were similar between exposed  
176 and control (unexposed) birds (parasitaemia = model 5:  $\chi^2 = 0.29$ ,  $p = 0.5907$ , gametocytaemia  
177 = model 6:  $\chi^2 = 0.60$ ,  $p = 0.4364$ ).

178 To test the repeatability of our results, a second experimental block, with a new  
179 *Plasmodium relictum* strain freshly collected in the field from an infected House sparrow (*Passer*  
180 *domesticus*), was performed. The results of block 2 fully confirmed those of the first block. The  
181 blood meal rate and the quantity of haematin excreted by mosquitoes was similar for all  
182 batches (model 7:  $\chi^2 = 1.77$   $p = 0.621$ , model 8:  $\chi^2 = 1.13$ ,  $p = 0.770$ ). The difference in infection  
183 prevalence between the different batches was not statistically significant (model 9:  $\chi^2 = 5.70$ ,  $p$   
184 = 0.127) although mosquitoes from batches 2, 3 and 4 tend to have a higher prevalence (mean  
185  $\pm$  SE, batch 2: 73.1 %  $\pm$  7.0, batch 3: 69.4%  $\pm$  7.8 and batch 4: 70.3%  $\pm$  7.6 %) than those from  
186 batch 1 (mean  $\pm$  SE, batch 1: 51.1%  $\pm$  7.5). The distribution of oocyst burden in mosquitoes was  
187 overdispersed (**Figure 1B**, mean  $\pm$  se VMR = 11.40  $\pm$  5.66) and we observed a significant increase  
188 in oocyst burden with mosquito batches order (model 10:  $\chi^2 = 30.73$ ,  $p < 0.0001$ , geometric  
189 mean: batch 1: 3.47  $\pm$  2.69, batch 2: 3.52  $\pm$  2.95, batch 3: 6.06  $\pm$  2.85 and batch 4: 10.38  $\pm$  2.76,  
190 all contrast analyses were significant, **Figure 1B**). A significant positive correlation between  
191 haematin and oocyst burden was found (model 10:  $\chi^2 = 4.46$ ,  $p = 0.03$ ). As in the previous  
192 experimental block, the vertebrate host parasitaemia and gametocytaemia remained constant  
193 between the beginning and the end of the experiment (parasitaemia = model 11:  $\chi^2 = 1.29$ ,  $p =$   
194 0.256, gametocytaemia = model 12:  $\chi^2 = 0.88$ ,  $p = 0.349$  respectively) and were similar between

195 exposed and control (unexposed) birds (parasitaemia= model 11:  $\chi^2 = 2.44$ ,  $p = 0.118$ ,  
196 gametocytaemia = model 12:  $\chi^2 = 2.45$ ,  $p = 0.117$  respectively).

197 **Figure 1: Experiment 1: Impact of mosquito batch order on *Plasmodium* transmission.**

198 Number of oocysts in the midgut of *Plasmodium*-infected mosquitoes according to mosquito  
199 batches. Each mosquito batch was left for 45 minutes in contact with birds (batch 1 ( $T0_{min}$ )),  
200 batch 2 ( $T45_{min}$ ), batch 3 ( $T90_{min}$ ) and batch 4 ( $T135_{min}$ )). Birds were either infected by a  
201 *Plasmodium relictum* lab strain (experimental block 1, panel **A**) or by a *Plasmodium relictum*  
202 strain freshly collected in the field (experimental block 2, panel **B**). Black horizontal lines  
203 represent medians and black diamond represent geometric means. Levels not connected by  
204 same letter are significantly different. Histograms in each panel show the distribution of oocyst  
205 burden in mosquitoes in the experimental blocks **1 (A)** and **2 (B)**, the colors represent the  
206 mosquito batches (from 1 to 4).

207 **Experiment 2: Oocyst burden and mosquito biting order: individual monitoring**

208 A second experiment, with another *Plasmodium relictum* strain freshly collected in the  
209 field from an infected Great tit (*Parus major*), was carried out to obtain a finer measurement of  
210 the impact of mosquito biting order on their oocyst burden. Here, infected individuals were  
211 exposed to 100 mosquitoes for 3h (6.00 pm – 9.00 pm). Cages were continuously observed and  
212 mosquitoes were individually removed from the cages immediately after their blood feeding  
213 bout. The order of biting of each individual female was recorded.

214 Haematin quantity and infection prevalence were independent of the mosquito biting  
215 order (model 13:  $\chi^2 = 2.44$ ,  $p = 0.118$ , model 14:  $\chi^2 = 0.83$ ,  $p = 0.363$ , respectively). The  
216 distribution of oocyst burdens across all mosquitoes was highly overdispersed (mean  $\pm$  SE. VMR  
217 =  $90.26 \pm 41.53$ , **Figure 2A**). Biting order was a significant explanatory factor of oocyst burden:

218 mosquitoes that bit later showed higher oocyst burden than mosquitoes that bit first (model  
219 15:  $\chi^2 = 8.28$  p = 0.004, **Figure 2A**). A significant positive correlation between haematin quantity  
220 and oocyst burden was found (model 15:  $\chi^2 = 19.151$ , p <0.001). As for the first experiment,  
221 vertebrate host parasitaemia and gametocytaemia remained constant between the beginning  
222 and the end of the experiment (parasitaemia = model 16:  $\chi^2 = 2.03$ , p = 0.154, gametocytaemia  
223 = model 17:  $\chi^2 = 0.13$ , p = 0.718 respectively) and were similar between exposed and unexposed  
224 (control) birds (parasitaemia = model 16:  $\chi^2 = 0.98$ , p = 0.321, gametocytaemia = model 17:  $\chi^2 =$   
225 0.12, p = 0.731 respectively).

226 **Figure 2: Effect of individual mosquito blood feeding order on the number of parasites**  
227 **ingested and on the intensity of infection. (A)** Relationship between oocyst burden and  
228 mosquito biting order (experiment 2). **(B)** Relationship between the number of parasites  
229 ingested (Log(RQ+1), in red), or the oocyst burden (in black), and the mosquito biting order  
230 (experiment 3). Each point represents one blood-fed mosquito. Shaded areas on either side of  
231 the regression line represent 95% confidence intervals. Histogram in each panel show the  
232 distribution of oocyst burden in mosquitoes in the experiment 2 **(A)** and 3 **(B)**.

233 **Experiment 3: Number of parasites ingested and mosquito biting order**

234 The first two experiments showed an increase in the oocyst burden with the order of  
235 mosquito bites without, however, showing an increase of the parasite density in the peripheral  
236 blood of vertebrate hosts (measured from blood samples). We carried out a third experiment  
237 to determine whether the total number of parasites in the blood meal, immediately after the  
238 blood feeding, fluctuated during the feeding bout. As for the experiment 2, birds were exposed  
239 to 100 mosquitoes for 3h (6.00 pm – 9.00 pm) and mosquitoes were individually removed from  
240 the cages immediately after blood feeding. Every second mosquito collected was either

241 immersed immediately in liquid nitrogen or stored in plastic tubes and dissected one week later  
242 to count the number of oocysts in the midgut. Frozen blood-fed mosquitoes were used to  
243 quantify the number of parasites ingested by qPCR.

244 The amount of parasite ingested by the mosquitoes remained roughly constant  
245 throughout the exposure period (model 18:  $\chi^2 = 1.54$ ,  $p = 0.215$  **Figure 2B**). The hematin quantity  
246 and the infection prevalence (oocyst stage) were also independent of the mosquito biting order  
247 (model 19:  $\chi^2 = 1.89$ ,  $p = 0.169$ , and model 20:  $\chi^2 = 0.37$ ,  $p = 0.545$  respectively). In contrast, the  
248 distribution of oocyst burden across all mosquitoes was still overdispersed (mean  $\pm$  SE. VMR =  
249  $15.03 \pm 1.86$ , **Figure 2B**) and was significantly explained by the mosquito biting order (model  
250 21:  $\chi^2 = 6.45$ ,  $p = 0.011$ , **Figure 2B**). As in the experiment 2, mosquitoes that bit later showed  
251 higher oocyst burden than mosquitoes that bit first (**Figure 2B**).

252 **Discussion**

253 Overdispersed distribution of vector-borne parasite within vertebrate and invertebrate  
254 host populations has profound consequences on parasite transmission and disease control  
255 strategies [16,28,46]. Parasite overdispersion is driven by multiple factors ranging from  
256 population processes to inter-individual heterogeneity in susceptibility and parasite exposure  
257 [11,47–49]. Here, using three different isolates of *Plasmodium relictum*, we provide evidence  
258 that the aggregated distribution of malaria parasites within mosquito vectors may also be  
259 explained by the mosquito biting order: mosquitoes that bite first have a lower intensity of  
260 infection than those that bite later on. This fluctuation in *Plasmodium* infectivity may reflect an  
261 adaptive strategy of parasites selected to optimize transmission.

262 The abundance of invertebrate vectors fluctuates at time scales ranging from daily to  
263 annual [40,50–52]. Previous studies have shown that malaria parasites have evolved two  
264 different and complementary transmission strategies to cope with both short (circadian) and

265 long (seasonal) term fluctuations in mosquito activity. *Plasmodium* adopts an unconditional  
266 strategy whereby within-host parasitaemia and/or gametocyte infectivity increases daily when  
267 its vector is most active [39,40] but also a plastic strategy allowing parasite growth to increase  
268 after exposure to mosquito bites [40,44,53]. This plastic strategy allows the parasite to react to  
269 daily and seasonal fluctuations in mosquito abundance [40,44].

270 In this study we demonstrate that *Plasmodium* plastic response is much faster than  
271 initially thought [40,44]. When vertebrate hosts were exposed to mosquito bites during a short  
272 period of time (3 hours), parasite transmission increased gradually with the biting order of  
273 mosquitoes. *Plasmodium* transmission was tripled between the first and the last blood fed  
274 mosquito. Although the biting order of the mosquito cannot be decoupled from the biting time  
275 (these two parameters are obviously highly correlated), the increase in transmission in such a  
276 short period of time suggests that the effect observed here cannot be explained solely by  
277 circadian fluctuation in parasite density in vertebrate blood. Many mosquito species exhibit a  
278 circadian rhythm in the host-biting activity [40,50] but stochastic environmental factors such as  
279 variations in temperature, wind or humidity impact drastically the abundance of mosquitoes  
280 from one day to another [54–56]. Therefore, the association between an unconditional strategy  
281 (circadian fluctuation) and a quick plastic response to mosquito bites may allow malaria  
282 parasites to fine-tune investment in transmission according to the presence of mosquitoes.

283 Interestingly, this adaptive hypothesis involving an active parasite response to mosquito  
284 bites is not mediated by an increase in either parasite replication rate or gametocyte  
285 production: parasitaemia and gametocytaemia of birds exposed to mosquitoes were not  
286 different before and after mosquito probing. This result was confirmed by monitoring the  
287 number of parasites ingested by the mosquitoes immediately after the blood meal, throughout  
288 the exposure period. These results contrast with those obtained in recent studies [40,44] where

289 the increase in oocyst burden observed in mosquitoes fed on a host a few days after the host  
290 was exposed to vector bites was correlated with an increase in parasitaemia and  
291 gametocythemia. Our study suggests that malaria parasite have evolved an alternative strategy  
292 acting at a shorter term. This strategy could be to adjust the physiological state of the  
293 gametocytes to respond promptly to mosquito bites. It has been suggested as early as 1966  
294 [57] that malaria parasite infectivity is not only due to the number of gametocytes in the blood  
295 but also to their physiological state. This prediction was recently experimentally confirmed by  
296 a study carried out on rodent malaria parasite: *P. chabaudi* gametocytes were twice as infective  
297 at night despite being less numerous in the blood [39]. Mechanisms underlying gametogenesis  
298 remains poorly understood. Although we know that gametocytes go through several stages of  
299 development before reaching the so-called "mature" stage, from 1 to 8 stages depending on  
300 the species of *Plasmodium* [58], we do not know whether mature stage is systematically  
301 infectious. The ability of malaria parasites to accelerate the rate of maturation and/or infectivity  
302 of gametocytes in response to mosquito bites should be explored.

303 Alternatively, the response of the vertebrate host to mosquito bites could also enhance  
304 parasite transmission from the vertebrate host to the invertebrate vector by two non-exclusive  
305 mechanisms: (i) increased infectivity and/or survival of parasites in vector midgut and (ii)  
306 modified susceptibility of mosquitoes to infection. *Plasmodium* abundance experiences strong  
307 fluctuations during its journey within the mosquito, which are partly intertwined with the  
308 kinetics of blood digestion [32]. Within seconds of ingestion into the mosquito blood meal, the  
309 drop in temperature and the rise in pH, associated to the presence of xanthurenic acid, triggers  
310 gametocyte activation and differentiation into gametes [59–61]. Studies on ookinete  
311 production have revealed that not only mosquito-derived xanthurenic acid but also undefined  
312 blood-derived factors ingested by mosquito are significant sources of gametocyte activating

313 factor [62,63]. Indeed, numerous host blood-derived compounds remain or become active  
314 through the mosquito blood digestion, especially since the parasite is no longer protected by  
315 the red blood cell membrane. For instance, complement components, vertebrate antibodies or  
316 regulator factor H, may impact gametocytes-to-zygote and zygote-to-ookinetes stages  
317 transition and survival [64–66]. Several studies also showed that ingested vertebrate-derived  
318 factors negatively impact mosquito microbiota (e.g. complement cascade [67,68]) and their  
319 peritrophic matrix (e.g. chitinase [66,69]) both known to play a key role in the mosquito  
320 refractoriness to *Plasmodium* infection [70,71]. The concentration of these vertebrate-derived  
321 compounds in the ingested blood and, ultimately, their impact on parasite infectivity and/or  
322 vector susceptibility, might vary progressively as the number of bites increases and thus explain  
323 the increase in oocyst density with mosquito biting order.

324 In summary, we provide evidence that the overdispersion of parasite burden observed  
325 in mosquitoes fed on a same infected host is partly explained by a temporal heterogeneity in  
326 *Plasmodium* infectivity resulting from the biting order of mosquitoes. These results show that  
327 the parasite is either directly or indirectly capable of responding to the bites of mosquitoes to  
328 increase its own transmission at a much shorter time scales than initially thought (hours rather  
329 than days [40,44]). Further work needs to be carried out to elucidate whether these two  
330 strategies are complementary and, particularly, what are their respective underlying  
331 mechanisms. According to estimates by the World Health Organization, 228 million cases of  
332 human malaria occurred in 2018, with 405 000 resulting in death. Despite recent progress  
333 towards disease control, the number of malaria cases has increased in several countries. The  
334 efficacy of control strategies is continually challenged and threatened by the evolution of  
335 insecticide [72] and drug [73] resistances. To overcome these issues, the development of  
336 innovative therapeutic approaches is necessary and urgent. Understanding the mechanisms

337 allowing *Plasmodium* to increase transmission in response to mosquito bites could lead to the  
338 development of new pharmaceutical approaches to control malaria transmission.

## 339 **Materials and Methods**

### 340 **Malaria parasites and mosquito vector**

341 *Plasmodium relictum* (lineage SGS1) is the most prevalent form of avian malaria in  
342 Europe [74]. The parasite strain used in the first block of the first experiment was isolated from  
343 an infected Great tit (*Parus major*) in 2015. The parasite used in the second experiment was  
344 isolated from an infected Great tit (*Parus major*) in April 2018. The parasite strain used in the  
345 second block of the first experiment and in the third experiment was isolated in January 2019  
346 from an infected House sparrow (*Passer domesticus*). All strains were maintained by carrying  
347 out regular passages across our stock canaries (*Serinus canaria*) through intraperitoneal  
348 injections (i.p) until the beginning of the experiment.

349 All the experiments were conducted with a lineage of *Culex pipiens* mosquitoes, the  
350 main vector of *Plasmodium relictum* in Europe, collected in Lausanne (Switzerland) and  
351 maintained in insectary since August 2017. Mosquitoes were reared using standard protocols  
352 [75]. We used females 7-13 days after emergence that had no prior access to blood. Mosquitoes  
353 were maintained on glucose solution (10%) since their emergence and were starved (but  
354 provided with water to prevent dehydration) for 24h before the experiment.

### 355 **Experimental design**

356 Prior to the experiments, a small amount (ca.3-5 µL) of blood was collected from the  
357 medial metatarsal vein of each canary to ensure that they were free from any previous  
358 haemosporidian infections [76]. Birds were inoculated by intraperitoneal injection of 100µL of

359 an infected blood pool (day 0). The blood pool was made with a 1:1 mixture of PBS and blood  
360 sampled from 2-4 canaries infected with the parasite three weeks before the experiment.

361 ***Experiment 1***

362 The two experimental blocks of the first experiment were carried out with 14 and 5  
363 infected birds respectively. Day 11-13 post-infection, corresponding to the acute phase of  
364 infection, blood was sampled from each bird at 5:45 p.m. Straight afterwards blood sampling,  
365 birds were placed individually in an experimental cage (L40 x W40 x H40 cm). At 6:00 p.m., 8  
366 and 3 haphazardly chosen birds, for block 1 and 2 respectively, were exposed to mosquito bites  
367 following the protocols described below.

368 Birds from the exposed treatment were exposed to four successive batches of  $25 \pm 3$   
369 uninfected females' mosquitoes. Each mosquito batch was left in the cage for 45 minutes  
370 before being taken out and replaced by a new batch (i.e. batch 1 ( $T_{0\text{min}}$ )), batch 2 ( $T_{45\text{min}}$ )), batch  
371 3 ( $T_{90\text{min}}$ ) and batch 4 ( $T_{135\text{min}}$ )). Blood fed mosquitoes in each batch were counted and  
372 individually placed in numbered plastic tubes (30 ml) covered with a mesh with a cotton pad  
373 soaked in a 10% glucose solution. At the end of the last mosquito exposure session (9:00 p. m.)  
374 a second blood sample was taken from each bird. A red lamp was used to capture blood fed  
375 mosquitoes without disturbing the birds and the mosquitoes. Unexposed birds (control) were  
376 placed in the same experimental condition but without mosquitoes.

377 Tubes containing the blood fed mosquitoes were kept in standard insectary conditions  
378 to obtain an estimate of the blood meal size and the success of the infection (infection  
379 prevalence and oocyst burden). For this purpose, 7-8 days post blood meal, the females were  
380 taken out of the tubes and the amount of haematin excreted at the bottom of each tube was  
381 quantified as an estimate of the blood meal size [75]. Females were then dissected and the

382 number of *Plasmodium* oocysts in their midgut counted with the aid of a binocular microscope  
383 [75].

384 **Experiment 2**

385 The same protocol as described above was used for the second experiment, except that  
386 birds exposed to mosquitoes (4 of the 8 infected birds) were exposed to a single batch of 100  
387 uninfected mosquitoes for 3h (6:00-9:00 p.m.). Female mosquitoes were continuously observed  
388 and individually removed from the cages immediately after blood feeding in order to record the  
389 order of biting of each female.

390 **Experiment 3**

391 Two infected birds were exposed to a single batch of 100 mosquitoes for 3h (6.00 pm –  
392 9.00 pm) and mosquitoes were removed from the cages immediately after blood feeding. The  
393 order of biting of each female was recorded and every second mosquito collected was either  
394 immersed immediately in liquid nitrogen to quantify the number of parasites ingested by qPCR  
395 or stored in plastic tubes and dissected one week later to count the number of oocysts in the  
396 midgut.

397 **Vertebrate host infection**

398 The parasitaemia (total proportion of red blood cells infected) and gametocytaemia  
399 (proportion of red blood cells infected by mature gametocytes, the sexual stages of the  
400 parasite) of vertebrate hosts exposed or not (control) to mosquitoes were measured just before  
401 and just after the mosquito exposure period (6 – 9 p.m.) using blood smears [74].

402 **Molecular analyses**

403 The quantification of parasites contained within the blood meal was carried out using a  
404 quantitative PCR (qPCR) with a protocol adapted from Cornet et al. (2013). Briefly, DNA was  
405 extracted from blood-fed females using standard protocols (Qiagen DNeasy 96 blood and tissue

406 kit). For each individual, we conducted two qPCRs: one targeting the nuclear 18s rDNA gene  
407 of *Plasmodium* (Primers 18sPlasm7 5'-AGCCTGAGAAATAGCTACCACATCTA-3', 18sPlasm8  
408 5'-TGTTATTCTTGTCACTACCTCTTCTT-3') and the other targeting the 18s rDNA gene of the  
409 bird (Primers 18sAv7 5'-GAAACTCGCAATGGCTCATTAAATC-3', 18sAv8  
410 5'-TATTAGCTCTAGAATTACCACAGTTATCCA-3'). All samples were run in triplicate (Bio-Rad  
411 CFX96™ Real-Time System) and the mean of the two closest samples was used to calculate the  
412 threshold Ct value using the Bio-Rad CFX Maestro v1.1 software. Samples with a threshold Ct  
413 value higher than 35 were considered uninfected. The number of parasites were calculated as  
414 relative quantification values (RQ). RQ can be interpreted as the fold-amount of target gene  
415 (*Plasmodium* 18s rDNA) with respect to the amount of the reference gene (Bird18s rDNA) and  
416 are calculated as  $2^{-(Ct_{18s\ Plasmodium} - Ct_{18s\ Bird})}$ . For convenience, RQ values were standardized by  
417  $\times 10^4$  factor and log-transformed.

## 418 **Statistical analyses**

419 Analyses were carried out using the R statistical package (v. 3.4.1). Data were analysed  
420 separately for each experiment and each experimental block.

421 Blood meal rate, blood meal size, infection prevalence, oocyst burden (where only  
422 individuals that developed  $\geq 1$  oocyst were included), quantity of parasites contained within the  
423 blood meal, which may depend on which bird mosquitoes fed on, were analysed fitting bird as  
424 a random factor into the models using *lmer*, *glmer* or *glmer.nb* (package: *lme4*, [77]) according  
425 to whether the errors were normally (haematin quantity, oocyst burden, quantity of parasites  
426 contained within the blood meal), binomially (blood meal rate, infection prevalence) or  
427 negative binomially distributed (oocyst burden). Mosquito batches (experience 1), mosquito  
428 biting order (experiment 2 and 3) and blood meal size (when it was not a response variable)  
429 were used as fixed factors. Parasitaemia and gametocytaemia of birds were analysed using *lmer*

430 with bird fitted as a random factor into the models to account for temporal pseudo-replication.  
431 Times of day (5:45 and 9:00 p.m.) and bird group (exposed to mosquito bites or control) were  
432 used as fixed factors.

433 The different statistical models (maximal and minimal models) built to analyse the data  
434 are described in the supplementary material (**Table S1**). Maximal models, including all higher-  
435 order interactions, were simplified by sequentially eliminating non-significant terms and  
436 interactions to establish a minimal model [78]. The significance of the explanatory variables was  
437 established using a likelihood ratio test [79]. The significant Chi-square given in the text are for  
438 the minimal model, whereas non-significant values correspond to those obtained before the  
439 deletion of the variable from the model. *A posteriori* contrasts were carried out by aggregating  
440 factor levels together and by testing the fit of the simplified model using an LRT [78].

#### 441 **Ethics statements**

442 This study was approved by the Ethical Committee of the Vaud Canton veterinary authority,  
443 authorization number 1730.4.

#### 444 **Data Accessibility**

445 All data supporting the conclusions of this paper will be available on the Dryad website after  
446 acceptance.

## 447 **References**

- 448 1. Shaw DJ, Dobson AP. Patterns of macroparasite abundance and aggregation in wildlife  
449 populations: a quantitative review. *Parasitology*. 1995;111: S111–S133.  
450 doi:10.1017/S0031182000075855
- 451 2. Shaw DJ, Grenfell BT, Dobson AP. Patterns of macroparasite aggregation in wildlife host  
452 populations. *Parasitology*. 1998;117: 597–610. doi:10.1017/S0031182098003448

453 3. Lord CC, Barnard B, Day K, Hargrove JW, McNamara JJ, Paul RE, et al. Aggregation and  
454 distribution of strains in microparasites. *Philos Trans R Soc B Biol Sci.* 1999;354: 799–807.

455 4. Poulin R. Explaining variability in parasite aggregation levels among host samples.  
456 *Parasitology.* 2013;140: 541–546. doi:10.1017/S0031182012002053

457 5. Ruiz L, Janssen D, Martín G, Velasco L, Segundo E, Cuadrado IM. Analysis of the temporal  
458 and spatial disease progress of *Bemisia tabaci*-transmitted Cucurbit yellow stunting  
459 disorder virus and Cucumber vein yellowing virus in cucumber. *Plant Pathol.* 2006;55:  
460 264–275. doi:10.1111/j.1365-3059.2006.01316.x

461 6. Grogan LF, Phillott AD, Scheele BC, Berger L, Cashins SD, Bell SC, et al. Endemicity of  
462 chytridiomycosis features pathogen overdispersion. *J Anim Ecol.* 2016;85: 806–816.  
463 doi:10.1111/1365-2656.12500

464 7. Medley GF, Sinden RE, Fleck S, Billingsley PF, Tirawanchai N, Rodriguez MH.  
465 Heterogeneity in patterns of malarial oocyst infections in the mosquito vector.  
466 *Parasitology.* 1993;106 ( Pt 5): 441–449.

467 8. Bundy D a. P, Anderson RM, Thresh JM. Population ecology of intestinal helminth  
468 infections in human communities. *Philos Trans R Soc Lond B Biol Sci.* 1988;321: 405–420.  
469 doi:10.1098/rstb.1988.0100

470 9. Anderson RM, May RM. Regulation and stability of host-parasite population interactions:  
471 I. regulatory processes. *J Anim Ecol.* 1978;47: 219–247. doi:10.2307/3933

472 10. May RM, Anderson RM. Regulation and stability of host-parasite population interactions:  
473 II. destabilizing processes. *J Anim Ecol.* 1978;47: 249–267. doi:10.2307/3934

474 11. Anderson RM. The regulation of host population growth by parasitic species.  
475 *Parasitology.* 1978;76: 119–157. doi:10.1017/S0031182000047739

476 12. Jaenike J. Population-level consequences of parasite aggregation. *Oikos.* 1996;76: 155–  
477 160. doi:10.2307/3545757

478 13. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of  
479 individual variation on disease emergence. *Nature*. 2005;438: 355–359.  
480 doi:10.1038/nature04153

481 14. Martin LB, Addison B, Bean AGD, Buchanan KL, Crino OL, Eastwood JR, et al. Extreme  
482 competence: Keystone hosts of infections. *Trends Ecol Evol*. 2019;34: 303–314.  
483 doi:10.1016/j.tree.2018.12.009

484 15. Poulin R. The disparity between observed and uniform distributions: A new look at  
485 parasite aggregation. *Int J Parasitol*. 1993;23: 937–944. doi:10.1016/0020-  
486 7519(93)90060-C

487 16. Woolhouse MEJ, Dye C, Etard J-F, Smith T, Charlwood JD, Garnett GP, et al.  
488 Heterogeneities in the transmission of infectious agents: Implications for the design of  
489 control programs. *Proc Natl Acad Sci*. 1997;94: 338–342. doi:10.1073/pnas.94.1.338

490 17. Cooper L, Kang SY, Bisanzio D, Maxwell K, Rodriguez-Barraquer I, Greenhouse B, et al.  
491 Pareto rules for malaria super-spreaders and super-spreading. *Nat Commun*. 2019;10: 1–  
492 9. doi:10.1038/s41467-019-11861-y

493 18. Das PK, Subramanian S, Manoharan A, Ramaiah KD, Vanamail P, Grenfell BT, et al.  
494 Frequency distribution of *Wuchereria bancrofti* infection in the vector host in relation to  
495 human host: evidence for density dependence. *Acta Trop*. 1995;60: 159–165.

496 19. Churcher TS, Ferguson NM, Basáñez M-G. Density dependence and overdispersion in the  
497 transmission of helminth parasites. *Parasitology*. 2005;131: 121–132.  
498 doi:10.1017/S0031182005007341

499 20. Wetten S, Collins RC, Vieira JC, Marshall C, Shelley AJ, Basáñez M-G. Vector competence  
500 for *Onchocerca volvulus* in the *Simulium (Notolepria) exiguum* complex: Cytoforms or  
501 density-dependence? *Acta Trop*. 2007;103: 58–68.  
502 doi:10.1016/j.actatropica.2007.05.009

503 21. Paul REL, Bonnet S, Boudin C, Tchuinkam T, Robert V. Aggregation in malaria parasites  
504 places limits on mosquito infection rates. *Infect Genet Evol.* 2007;7: 577–586.  
505 doi:10.1016/j.meegid.2007.04.004

506 22. Churcher TS, Bousema T, Walker M, Drakeley C, Schneider P, Ouédraogo AL, et al. Predicting mosquito infection from *Plasmodium falciparum* gametocyte density and  
507 estimating the reservoir of infection. *eLife.* 2013;2: e00626. doi:10.7554/eLife.00626

508 23. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting  
509 hotspots: Spatial targeting of malaria for control and elimination. *PLOS Med.* 2012;9:  
510 e1001165. doi:10.1371/journal.pmed.1001165

511 24. Paull SH, Song S, McClure KM, Sackett LC, Kilpatrick AM, Johnson PT. From  
512 superspreaders to disease hotspots: linking transmission across hosts and space. *Front  
513 Ecol Environ.* 2012;10: 75–82. doi:10.1890/110111

514 25. Basáñez MG, Townson H, Williams JR, Frontado H, Villamizar NJ, Anderson RM. Density-  
515 dependent processes in the transmission of human onchocerciasis: relationship between  
516 microfilarial intake and mortality of the simuliid vector. *Parasitology.* 1996;113: 331–355.  
517 doi:10.1017/S003118200006649X

518 26. Dawes EJ, Zhuang S, Sinden RE, Basáñez M-G. The temporal dynamics of *Plasmodium*  
519 density through the sporogonic cycle within *Anopheles* mosquitoes. *Trans R Soc Trop  
520 Med Hyg.* 2009;103: 1197–1198. doi:10.1016/j.trstmh.2009.03.009

521 27. Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez M-G. Anopheles mortality is both  
522 age- and *Plasmodium*-density dependent: implications for malaria transmission. *Malar J.*  
523 2009;8: 228. doi:10.1186/1475-2875-8-228

524 28. Courtenay O, Peters NC, Rogers ME, Bern C. Combining epidemiology with basic biology  
525 of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and  
526 control. *PLOS Pathog.* 2017;13: e1006571. doi:10.1371/journal.ppat.1006571

527

528 29. Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, Yan J, Soriguer R, Figuerola J.  
529       Experimental reduction of host *Plasmodium* infection load affects mosquito survival. Sci  
530       Rep. 2019;9. doi:10.1038/s41598-019-45143-w

531 30. Anderson RM, Gordon DM. Processes influencing the distribution of parasite numbers  
532       within host populations with special emphasis on parasite-induced host mortalities.  
533       Parasitology. 1982;85: 373–398. doi:10.1017/S0031182000055347

534 31. Sinden RE, Dawes EJ, Alavi Y, Waldock J, Finney O, Mendoza J, et al. Progression of  
535       *Plasmodium berghei* through *Anopheles stephensi* is density-dependent. PLoS Pathog.  
536       2007;3. doi:10.1371/journal.ppat.0030195

537 32. Vaughan JA. Population dynamics of *Plasmodium* sporogony. Trends Parasitol. 2007;23:  
538       63–70. doi:10.1016/j.pt.2006.12.009

539 33. Zélé F, Nicot A, Berthomieu A, Weill M, Duron O, Rivero A. *Wolbachia* increases  
540       susceptibility to *Plasmodium* infection in a natural system. Proc R Soc Lond B Biol Sci.  
541       2014;281: 20132837. doi:10.1098/rspb.2013.2837

542 34. Pigeault R, Vézilier J, Nicot A, Gandon S, Rivero A. Transgenerational effect of infection in  
543       *Plasmodium*-infected mosquitoes. Biol Lett. 2015;11: 20141025.  
544       doi:10.1098/rsbl.2014.1025

545 35. Harris C, Lambrechts L, Rousset F, Abate L, Nsango SE, Fontenille D, et al. Polymorphisms  
546       in *Anopheles gambiae* immune genes associated with natural resistance to *Plasmodium*  
547       *falciparum*. PLoS Pathog. 2010;6: e1001112. doi:10.1371/journal.ppat.1001112

548 36. Pigeault R, Nicot A, Gandon S, Rivero A. Mosquito age and avian malaria infection. Malar  
549       J. 2015;14: 383. doi:10.1186/s12936-015-0912-z

550 37. Riehle MM, Markianos K, Niaré O, Xu J, Li J, Touré AM, et al. Natural malaria infection in  
551       *Anopheles gambiae* is regulated by a single genomic control region. Science. 2006;312:  
552       577–579. doi:10.1126/science.1124153

553 38. Pichon G, Awono-Ambene HP, Robert V. High heterogeneity in the number of  
554 *Plasmodium falciparum* gametocytes in the bloodmeal of mosquitoes fed on the same  
555 host. *Parasitology*. 2000;121 ( Pt 2): 115–120.

556 39. Schneider P, Rund SSC, Smith NL, Prior KF, O'Donnell AJ, Reece SE. Adaptive periodicity in  
557 the infectivity of malaria gametocytes to mosquitoes. *Proc Biol Sci*. 2018;285.  
558 doi:10.1098/rspb.2018.1876

559 40. Pigeault R, Caudron Q, Nicot A, Rivero A, Gandon S. Timing malaria transmission with  
560 mosquito fluctuations. *Evol Lett*. 2018. doi:10.1002/evl3.61

561 41. Mideo N, Reece SE, Smith AL, Metcalf CJE. The Cinderella syndrome: why do malaria-  
562 infected cells burst at midnight? *Trends Parasitol*. 2013;29: 10–16.  
563 doi:10.1016/j.pt.2012.10.006

564 42. Prior KF, Veen DR van der, O'Donnell AJ, Curnock K, Schneider D, Pain A, et al. Timing of  
565 host feeding drives rhythms in parasite replication. *PLOS Pathog*. 2018;14: e1006900.  
566 doi:10.1371/journal.ppat.1006900

567 43. Prior KF, Rijo-Ferreira F, Assis PA, Hirako IC, Weaver DR, Gazzinelli RT, et al. Periodic  
568 parasites and daily host rhythms. *Cell Host Microbe*. 2020;27: 176–187.  
569 doi:10.1016/j.chom.2020.01.005

570 44. Cornet S, Nicot A, Rivero A, Gandon S. Evolution of plastic transmission strategies in  
571 avian malaria. *PLoS Pathog*. 2014;10: e1004308. doi:10.1371/journal.ppat.1004308

572 45. Rivero A, Gandon S. Evolutionary ecology of avian malaria: Past to present. *Trends  
573 Parasitol*. 2018. doi:10.1016/j.pt.2018.06.002

574 46. Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, et al.  
575 Probability of transmission of malaria from mosquito to human is regulated by mosquito  
576 parasite density in naïve and vaccinated hosts. *PLOS Pathog*. 2017;13: e1006108.  
577 doi:10.1371/journal.ppat.1006108

578 47. Wassom DL, Dick TA, Arnason N, Strickland D, Grundmann AW. Host genetics: A key  
579 factor in regulating the distribution of parasites in natural host populations. *J Parasitol.*  
580 1986;72: 334–337. doi:10.2307/3281615

581 48. Hansen F, Jeltsch F, Tackmann K, Staubach C, Thulke H-H. Processes leading to a spatial  
582 aggregation of *Echinococcus multilocularis* in its natural intermediate host *Microtus*  
583 *arvalis*. *Int J Parasitol.* 2004;34: 37–44.

584 49. Rosà R, Pugliese A. Aggregation, stability, and oscillations in different models for host-  
585 macroparasite interactions. *Theor Popul Biol.* 2002;61: 319–334.  
586 doi:10.1006/tpbi.2002.1575

587 50. Barrozo RB, Schilman PE, Minoli SA, Lazzari CR. Daily rhythms in disease-vector insects.  
588 *Biol Rhythm Res.* 2004;35: 79–92. doi:10.1080/09291010412331313250

589 51. Lalubin F, Delédevant A, Glaizot O, Christe P. Temporal changes in mosquito abundance  
590 (*Culex pipiens*), avian malaria prevalence and lineage composition. *Parasit Vectors.*  
591 2013;6: 307. doi:10.1186/1756-3305-6-307

592 52. Duffield GE, Acri DJ, George GF, Sheppard AD, Beebe NW, Ritchie SA, et al. Diel flight  
593 activity of wild-caught *Anopheles farauti* (s.s.) and *An. hinesorum* malaria mosquitoes  
594 from northern Queensland, Australia. *Parasit Vectors.* 2019;12: 48. doi:10.1186/s13071-  
595 018-3271-0

596 53. Billingsley PF, Snook LS, Johnston VJ. Malaria parasite growth is stimulated by mosquito  
597 probing. *Biol Lett.* 2005;1: 185–189. doi:10.1098/rsbl.2004.0260

598 54. Chao S, Zhu D, Dixon D, Khater E, Xue R-D. Diel activity patterns of adult female  
599 mosquitoes (Diptera: Culicidae) determined by a novel rotated trap in northeastern  
600 Florida, U.S.A. *J Vector Ecol.* 2019;44: 149–153. doi:10.1111/jvec.12339

601 55. Ngowo HS, Kaindoa EW, Matthiopoulos J, Ferguson HM, Okumu FO. Variations in  
602 household microclimate affect outdoor-biting behaviour of malaria vectors. *Wellcome*  
603 *Open Res.* 2017;2. doi:10.12688/wellcomeopenres.12928.1

604 56. Sallam MF, Pereira RM, Batich C, Koehler P. Factors affecting short-range host-seeking  
605 for the yellow fever mosquito (*Diptera: Culicidae*). *J Med Entomol.* 2019;56: 609–616.  
606 doi:10.1093/jme/tjy230

607 57. Hawking F, Worms MJ, Gammie K, Goddard PA. The biological purpose of the blood-  
608 cycle of the malaria parasite *Plasmodium cynomolgi*. *The Lancet.* 1966;288: 422–424.  
609 doi:10.1016/S0140-6736(66)92722-X

610 58. Gautret P, Motard A. Periodic infectivity of *Plasmodium* gametocytes to the vector. A  
611 review. *Parasite Paris Fr.* 1999;6: 103–111.

612 59. Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, et al. Identification of  
613 xanthurenic acid as the putative inducer of malaria development in the mosquito.  
614 *Nature.* 1998;392: 289–292. doi:10.1038/32667

615 60. Billker O, Miller AJ, Sinden RE. Determination of mosquito bloodmeal pH in situ by ion-  
616 selective microelectrode measurement: implications for the regulation of malarial  
617 gametogenesis. *Parasitology.* 2000;120 ( Pt 6): 547–551.  
618 doi:10.1017/s0031182099005946

619 61. Angrisano F, Tan Y-H, Sturm A, McFadden GI, Baum J. Malaria parasite colonisation of the  
620 mosquito midgut – Placing the *Plasmodium* ookinete centre stage. *Int J Parasitol.*  
621 2012;42: 519–527. doi:10.1016/j.ijpara.2012.02.004

622 62. Sinden RE, Butcher GA, Billker O, Fleck SL. Regulation of Infectivity of *Plasmodium* to the  
623 mosquito vector. *Adv Parasitol.* 1996;38: 53–117. doi:10.1016/S0065-308X(08)60033-0

624 63. Arai M, Billker O, Morris HR, Panico M, Delcroix M, Dixon D, et al. Both mosquito-derived  
625 xanthurenic acid and a host blood-derived factor regulate gametogenesis of *Plasmodium*  
626 in the midgut of the mosquito. *Mol Biochem Parasitol.* 2001;116: 17–24.  
627 doi:10.1016/S0166-6851(01)00299-7

628 64. Margos G, Navarette S, Butcher G, Davies A, Willers C, Sinden RE, et al. Interaction  
629 between host complement and mosquito-midgut-stage *Plasmodium berghei*. *Infect*  
630 *Immun.* 2001;69: 5064–5071. doi:10.1128/IAI.69.8.5064-5071.2001

631 65. Simon N, Lasonder E, Scheuermayer M, Kuehn A, Tews S, Fischer R, et al. Malaria  
632 parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito  
633 midgut. *Cell Host Microbe*. 2013;13: 29–41. doi:10.1016/j.chom.2012.11.013

634 66. Pakpour N, Riehle MA, Luckhart S. Effects of ingested vertebrate-derived factors on  
635 insect immune responses. *Curr Opin Insect Sci*. 2014;3: 1–5.  
636 doi:10.1016/j.cois.2014.07.001

637 67. Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history  
638 of the malaria mosquito *Anopheles gambiae* in Kenya. *PLoS One*. 2011;6: e24767.  
639 doi:10.1371/journal.pone.0024767

640 68. Khattab A, Barroso M, Miettinen T, Meri S. Anopheles midgut epithelium evades human  
641 complement activity by capturing factor H from the blood meal. *PLoS Negl Trop Dis*.  
642 2015;9. doi:10.1371/journal.pntd.0003513

643 69. Di Luca M, Romi R, Severini F, Toma L, Musumeci M, Fausto AM, et al. High levels of  
644 human chitotriosidase hinder the formation of peritrophic membrane in anopheline  
645 vectors. *Parasitol Res*. 2007;100: 1033–1039. doi:10.1007/s00436-006-0372-z

646 70. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al.  
647 Natural microbe-mediated refractoriness to *Plasmodium* infection in *Anopheles gambiae*.  
648 *Science*. 2011;332: 855–858. doi:10.1126/science.1201618

649 71. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, et al. Midgut microbiota  
650 of the malaria mosquito vector *Anopheles gambiae* and interactions with *Plasmodium*  
651 *falciparum* infection. *PLoS Pathog*. 2012;8: e1002742. doi:10.1371/journal.ppat.1002742

652 72. Ranson H, Lissenden N. Insecticide resistance in african *Anopheles* mosquitoes: A  
653 worsening stuation that needs urgent action to maintain malaria control. *Trends  
654 Parasitol*. 2016;32: 187–196. doi:10.1016/j.pt.2015.11.010

655 73. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular  
656 marker of artemisinin-resistant *Plasmodium falciparum* malaria. *Nature*. 2014;505: 50–  
657 55. doi:10.1038/nature12876

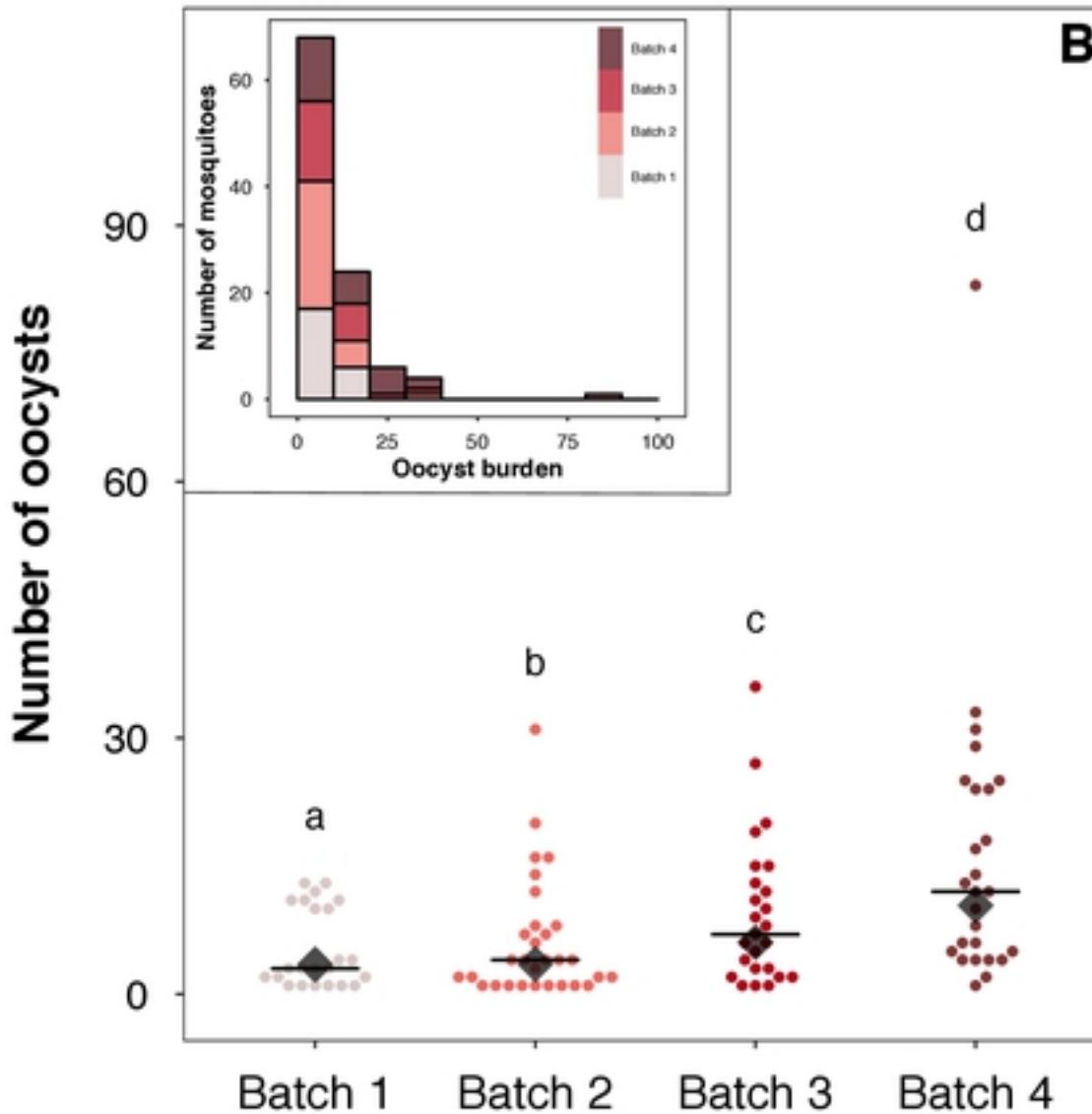
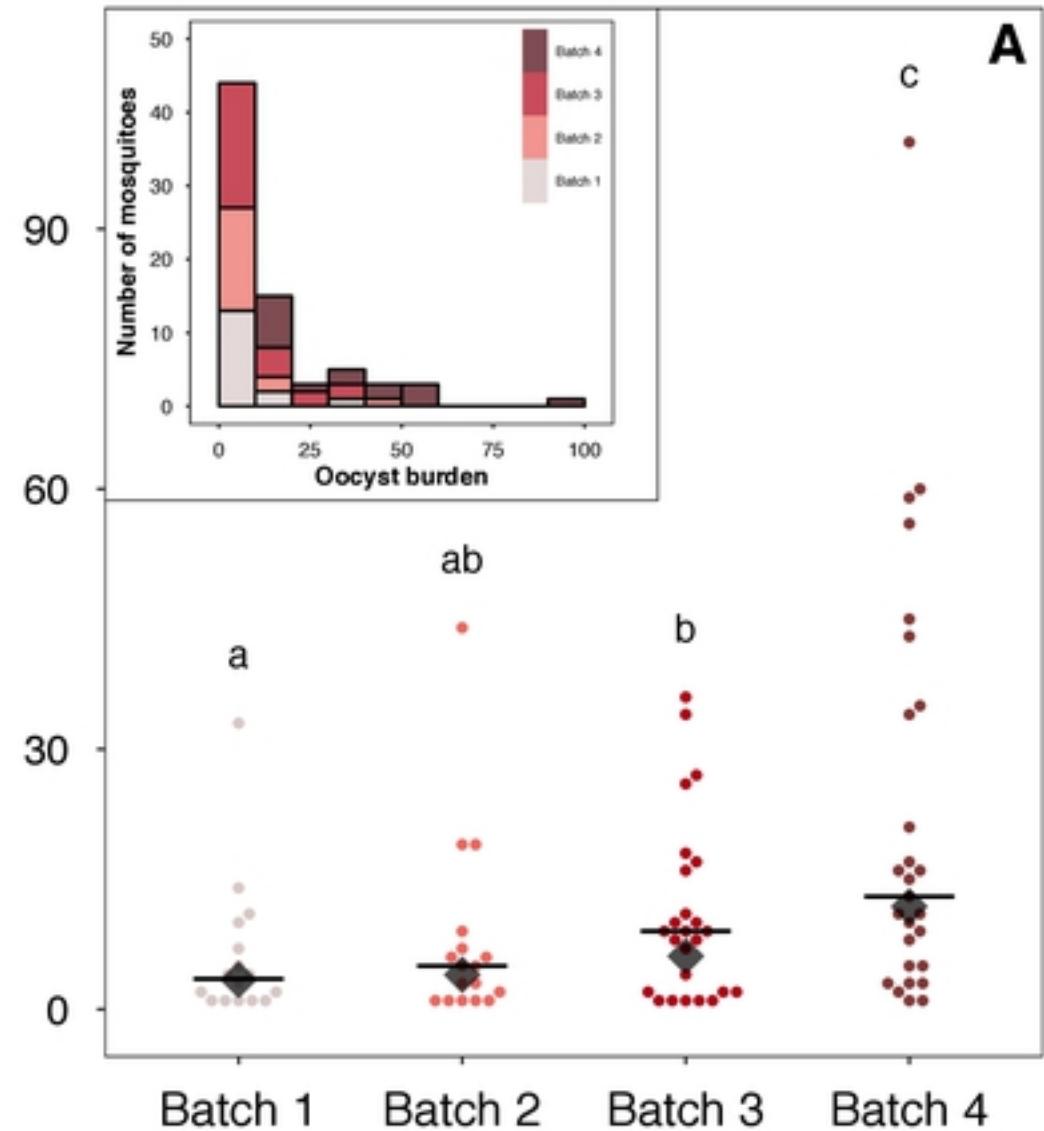
658 74. Valkiunas G. Avian malaria parasites and other Haemosporidia. CRC Press; 2004.

659 75. Vézilier J, Nicot A, Gandon S, Rivero A. Insecticide resistance and malaria transmission:  
660 infection rate and oocyst burden in *Culex pipiens* mosquitoes infected with *Plasmodium*  
661 *relictum*. Malar J. 2010;9: 379. doi:10.1186/1475-2875-9-379

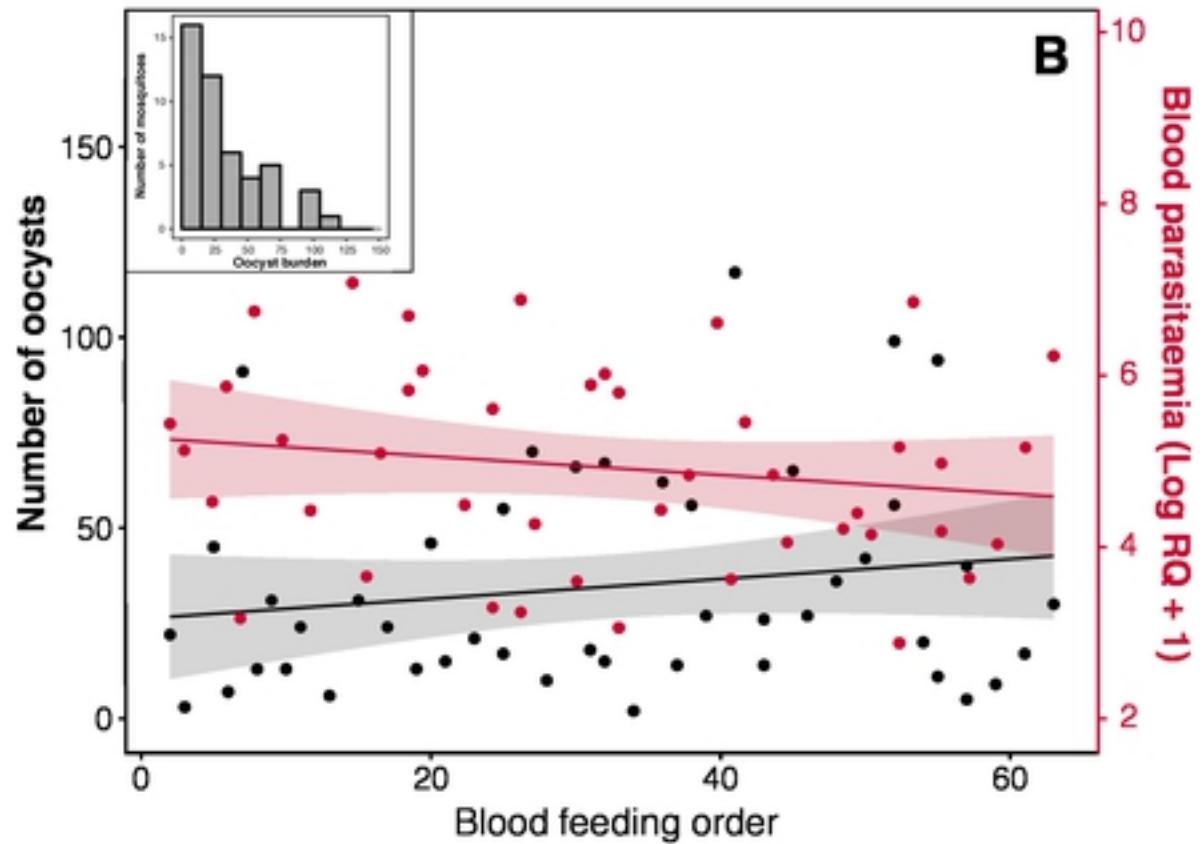
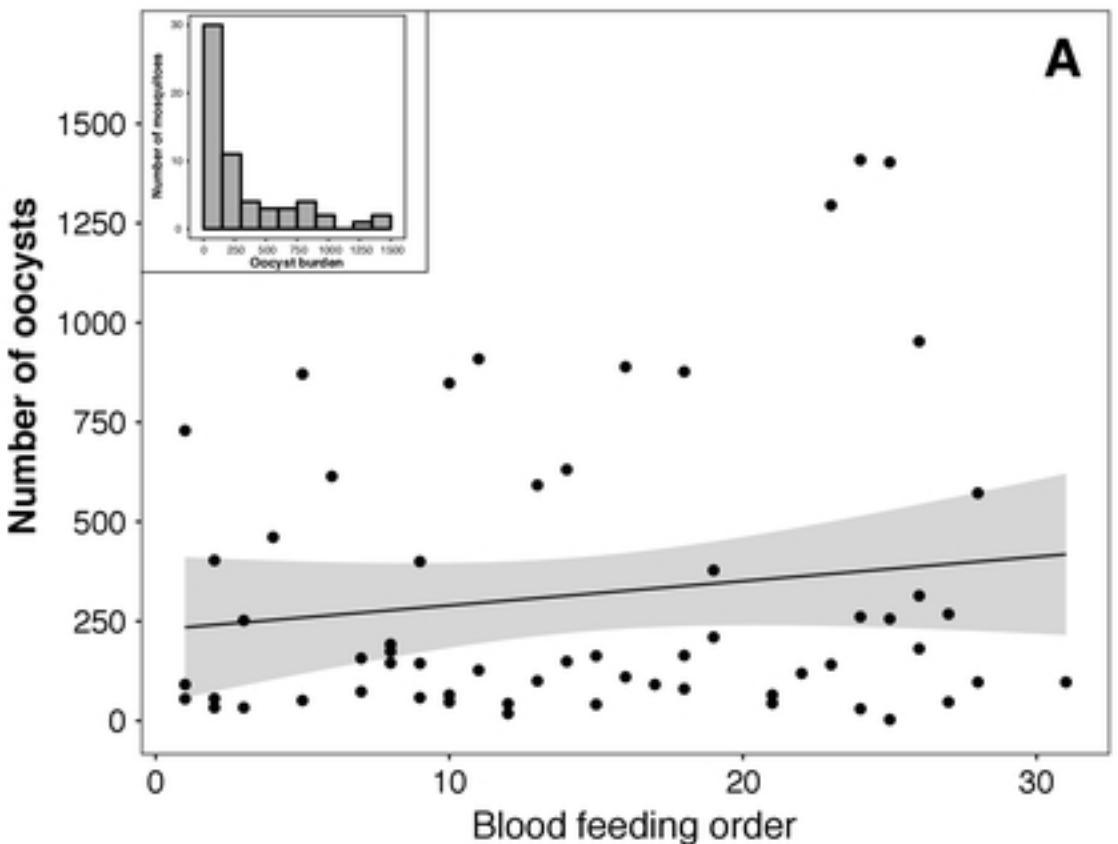
662 76. Waldenström J, Bensch S, Hasselquist D, Ostman O. A new nested polymerase chain  
663 reaction method very efficient in detecting *Plasmodium* and *Haemoproteus* infections  
664 from avian blood. J Parasitol. 2004;90: 191–194. doi:10.1645/GE-3221RN

665 77. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4.  
666 J Stat Softw. 2015;067. Available: <https://ideas.repec.org/a/jss/jstsof/v067i01.html>

667 78. Crawley MJ. The R Book. John Wiley & Sons; 2012.



668 79. Bolker BM. Ecological Models and Data in R. Princeton University Press; 2008.

669



## 670 **Supporting information captions**

671 **Table S1: Description of statistical models presented in the main text.** “N” gives the number  
672 of mosquitoes or birds included in each analysis. “Maximal Model” includes the complete set  
673 of explanatory variables. “Minimal model” gives the model containing only the significant  
674 variables and their interactions. Square brackets indicate variables fitted as random factors.  
675 Curly brackets indicate the error structure used (n: normal errors, b: binomial errors, nb:  
676 negative binomial errors).

Number of oocysts



Figure\_1



Figure\_2