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Normative models of enhancer function

Rok Grah,* Benjamin Zoller,! and Gasper Tkacik™

In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping
from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-
physical measurements. Such concordance has not been achieved for models of enhancer function
in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription
factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium
models, progress is difficult due to an explosion in the number of parameters. Here, we navigate
this complexity by looking for minimal non-equilibrium enhancer models that yield desired regula-
tory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a
single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Medi-
ator components, enables our models to escape equilibrium bounds and access optimal regulatory
phenotypes, while remaining consistent with the reported phenomenology and simple enough to
be inferred from upcoming experiments. We further find that high specificity in non-equilibrium
models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-
observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to
a much smaller subspace that optimally realizes biological function prior to inference from data, our

normative approach holds promise for mathematical models in systems biology.

Keywords: transcriptional regulation | non-equilibrium models | noise in gene expression | enhancer function

| Monod-Wyman-Changeux (MWC) model

An essential step in the control of eukaryotic gene ex- so
pression is the interaction between transcription factors s
(TFs), various necessary co-factors, and TF binding sites sz
(BSs) on the regulatory segments of DNA known as en- s3
hancers [1]. While we are far from having either a com- s
plete parts list for this extraordinarily complex regula- ss
tory machine or an insight into the dynamical interac- ss
tions between its components, experimental observations s
have established a number of constraints on its opera- ss
tion: (i) TFs individually only recognize short, 6-10bp so
long binding site motifs [2]; (%) TF residence times on e
the cognate binding sites can be as short as a few sec- &
onds and only 2-3 orders of magnitude longer than res- e
idence times on non-specific DNA [3-5]; (iii) the order e
of arrival of TFs to their binding sites can affect gene e
activation [4]; (iv) TFs do not activate transcription by es
RNA polymerase directly, but interact first with various
co-activators, essential amongst which is the Mediator ,
complex; (v) binding of multiple TF's is typically required
within the same enhancer for its activation [6], which can
lead to very precise downstream gene expression only in
the presence of a specific combination of TF concentra-
tions [7]; (vi) when activated, gene expression can be .,
highly stochastic and bursty [8-10]; (vii) gene induction .,
curves show varying degrees of steepness, suggesting tun- ,,
able amounts of cooperativity among TFs [11]. Here we
look for biophysical models of enhancer function consis- ,
tent with these observations. .

Mathematical modeling of gene regulation traces its
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origins to the paradigmatic examples of the A bacterio-
phage switch [12] and the lac operon [13]. In prokaryotes,
biophysical models have proven very successful [14-16],
assuming gene expression to be proportional to the frac-
tion of time RNA polymerase is bound to the promoter
in thermodynamic equilibrium; TFs modulate this frac-
tion via steric or energetic interactions with the poly-
merase. Crucially, these models are very compact: they
are fully specified by enumerating all bound configura-
tions and energies of the TFs and the polymerase on the
promoter. While some open questions remain [17-19],
the thermodynamic framework has provided a quanti-
tative explanation for combinatorial regulation, cooper-
ativity, and regulation by DNA looping [20, 21], while
remaining consistent with experiments that also probe
the kinetic rates [22, 23].

No such consensus framework exists for eukaryotic
transcriptional control. Limited specificity of individ-
ual TFs (i) is hard to reconcile with the high speci-
ficity of regulation (v) and the suppression of regula-
tory crosstalk [24], suggesting non-equilibrium kinetic-
proofreading schemes [25]. Likewise, short TF residence
times (%) and the importance of TF arrival ordering (i)
contradict the conceptual picture where stable enhanceo-
somes are assembled in equilibrium [4]. Kinetic schemes
may be required to match the reported characteristics of
bursty gene expression (vi) [26], or realize high cooper-
ativity (vii) [27]. Thermodynamic models undisputedly
have statistical power to predict expression from regula-
tory sequence even in eukaryotes [28], yet this does not
resolve their biophysical inconsistencies or rule out non-
equilibrium models. Unfortunately, mechanistically de-
tailed non-equilibrium models entail an explosion in the
complexity of the corresponding reaction schemes and
the number of associated parameters: on the one hand,
such models are intractable to infer from data, while on
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the other, it is difficult to understand which details areiss
essential for the emergence of regulatory function. 134

To deal with this complexity, we systematically sim-ss
plify the space of enhancer models. We adopt the norma-ss
tive approach, commonly encountered in the applicationsisz
of optimality ideas in neuroscience and elsewhere [29-13s
31]: we theoretically identify those models for which var-1s
ious performance measures of gene regulation, which weuo
call “regulatory phenotypes”, are maximized. Such op-ia
timal model classes are our candidates that could subse-1«
quently be refined for particular biological systems andss
confronted with data. Thus, rather than inferring a sin-s
gle model from experimental data or constructing a com-iss
plex, molecularly-detailed model for some specific en-us
hancer, we find the simplest generalizations of the clas-1s
sic equilibrium regulatory schemes, such as Hill-type [32]us
or Monod-Wyman-Changeux regulation [33-35], to non-s
equilibrium processes, which drastically improves theirso
regulatory performance while leaving the models simpleis:

to analyze, simulate, and fit to data. 152
153

154

RESULTS 155

156

A. Model. 157

158

Multiple lines of evidence suggest that eukaryotic tran-'*

scription is a two-state process which switches between'®
active (ON) and inactive (OFF) states, with rates depen-'*
dent on the transcription factor (TF) concentrations [36-'*
38]. We sought to generalize classic regulatory schemes'®
that can describe the balance between ON and OFF tran-'*
scriptional states in equilibrium: a Hill-like scheme of'®
“thermodynamic models” (discussed in SI Section 1.3),"
and a Monod-Wyman-Changeux-like (MWC) scheme in-"*'
troduced below. 168
Figure 1A shows a schematic of the proposed func-
tional enhancer model (SI Section 1.1, see also Fig S1)..
A complex of transcriptional co-factors that we refer to
as a “Mediator”! can interact with TFs that bind and
unbind from their DNA binding sites with baseline rates'
k+ and k_ (Fig 1B.i). Mediator — and thus the whole en-'"*
hancer — can switch between its functional ON/OFF states'”
with baseline rates x4 and k_ (Fig 1B.ii). Enhancer ON'"
state and TF bound state are both stabilized (by a factor'™
« relative to baseline rates) when a bound TF establishes'™
a “link” with the Mediator (Fig 1B.iii). The molecular'®
identity of such links can remain unspecified: it could, for'”
example, correspond to an enzymatic creation of chem-'"
ical marks (e.g., methylation, phosphorylation) on the'™
TFs or Mediator proteins conditional on their physical*®

181

1 Our nomenclature is simply a shorthand for all co-factors nec-
essary for eukaryotic transcriptional activation at an enhancer,182
which can include proteins not strictly a part of the Mediatorigs

family. 184

proximity or interaction. Crucially, the links can be es-
tablished and removed in processes that can break de-
tailed balance and are thus out of equilibrium. Here, we
consider that a link is established at a rate kj;nx between
a bound TF and the Mediator complex; for simplicity,
we assume that the links break when the TFs dissociate
or upon the switch into OFF state (this assumption can
be relaxed, see Fig S2).

An important thrust of our investigations will con-
cern the role of limited specificity of individual TF's to
recognize their cognate sequences on the DNA. If se-
quence specificity arises primarily through TF binding
— a strong, but relatively unchallenged assumption (that
can also be relaxed within our framework, see Fig S3)
— then we should ask how likely it is for the Mediator
complex to form and activate at specific sites contained
within functional enhancers (with low off-rates character-
istic of strong eukaryotic TF binding sites, &%) versus at
random, non-specific sites on the DNA (with ~ 2 orders-
of-magnitude higher individual TF off-rates, k~°) from
which expression should not occur.

Given the number of TF binding sites (n) and the
various rate parameters (/{:+,kS/NS,H+,m,,a,k1mk) the
full state of the system—i.e., the probability to observe
any number of bound and/or linked TFs jointly with
the ON/OFF state of the enhancer—evolves according to a
Chemical Master Equation (SI Section 1.1) that can be
solved exactly [39-41] or simulated using the Stochastic
Simulation Algorithm [42]. Importantly, we show ana-
lytically that our scheme reduces to the true equilibrium
MWC model in the limit Ay, — oo: in this limit, there
can be no distinction between a bound TF and a TF
that is both bound and linked, and one can define a free
energy F' that governs the probability of enhancer being
ON, which in our model is equal to (a normalized) mean

expression level, F = Poy = (1 + exp(F))_l7 with

14+¢/K

F=nlog — 2 _
nOgl—i—a-C/K

L, (1)

where K = k_/kY, ky = kQc (see also Fig 1 caption),
and L = log(k4+/k—). The kjnkx parameter thus inter-
polates between the equilibrium limit in Eq (1), corre-
sponding to a textbook MWC model, and various non-
equilibrium (kinetic) schemes which we will explore next.
A similar generalization with an equilibrium limit ex-
ists for thermodynamic Hill-type models, where, further-
more, o can be directly identified with cooperativity be-
tween DNA-bound TFs (see SI Section 1.3); we will see
that this qualitative role of a will hold also for the MWC
case.

B. Regulatory phenotypes.

How does the regulatory performance depend on the
enhancer parameters and, in particular, on moving away
from the equilibrium limit? To assess this question sys-
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FIG. 1. A non-equilibrium MWC-like model of en-

hancer function. (A) Schematic representation of tran-

scription factors (TFs; tael circles) interacting with binding®®
sites (BSs, here n = 3 orange slots) and the putative Mediator?”
complex via links (red lines). The Mediator complex can be2s
in two conformational states (OFF or ON), with the ON state en-200
abling productive transcription of the regulated gene. Increas-210
ing TF concentration, ¢, facilitates TF binding and the switch,,,
into ON state (left-to-right). (B) Key reactions and rates of,,,
the non-equilibrium model. TF's can bind with concentration-

dependent on rate (k4 = kY.c) and unbind with basal rate k-,
that is in principle sequence dependent (i). The Mediator

state switches between the conformational states with basal®’
rates x4+ and x_ (ii). Linking and unlinking of TFs to Me-*'°
diator (iii) can move the system out of equilibrium: links?’
are established with rate kjnk, and the link stabilizes both2:8
TF residence and the ON state of the Mediator by a factor 219
per established link. (C) Regulatory phenotypes. Mean TF20
residence time, Trr, on specific sites in functional enhancersy
(black) vs random site on the DNA (gray) increases with con-,,,
centration (top), as does mean expression, E (the fraction of ,,
time the Mediator is ON; induction curve, middle, with sen-
sitivity, H, defined at mid-point expression). Specificity, S,

is defined as the ratio of expression from the specific sites in’®
the enhancer relative to the expression from random piece of*®
DNA. 2

228

213

229

230
tematically, we define a number of “regulatory pheno-2s
types”, enumerated in Table I and illustrated in Fig 1C.23
As a function of TF concentration, we compute: (i)
individual TF residence time, T, on specific sites inzss
functional enhancers, as well as on random, non-specificzss
DNA, because these quantities have been experimen-z:.
tally reported in single-molecule experiments and pro-27
vide strong constraints on enhancer function; (ii) aver-2s
age expression, F, for functional enhancers as well ases
random, non-specific DNA; we require E to be in theao
middle (~ 0.5) of the wide range reported for functionalas
enhancers; (iii) sensitivity of the induction curve at half-a«
maximal induction, H, an observable quantity often in-
terpreted as a signature of cooperativity in equilibrium
models; (iv) specificity, S, as the ratio between expres-
sion F from functional enhancers vs from non-specific
DNA, which should be as high as possible to prevent

3
[Phenotype [Symbol[ Value [  Ref
TF residence time (specific BS) | Trr [~ 1—10s| [3, 43]
Expression (fraction of time ON)| E [ 0.01 — 0.9 |[38, 44, 45]
Sensitivity (apparent Hill coef.) | H 1-10 [11]
Specificity S — —
Noise (std / mean protein exp.)| N ~01-1 [46]

TABLE I. Regulatory phenotypes.

deleterious crosstalk or uncontrolled expression [24]; (v)
expression noise, IV, defined more precisely later, origi-
nating in stochastic enhancer ON/OFF switching.?

C. Specificity, residence time, and expression.

Figure 2A explores the relationship between three reg-
ulatory phenotypes for a MWC-like enhancer scheme of
Fig 1A: the average TF residence time (Trr), specificity
(5), and the average expression (E), at fixed concentra-
tion ¢ of the TFs. Each point in this “phase diagram”
corresponds to a particular enhancer model; points are
accessible by varying « and kjnk (Fig 2B) and fall into a
compact region that is bounded by intuitive, analytically-
derivable limits to specificity and the residence time. As
« tends to large values, S approaches 1, as it must: once
a TF-Mediator complex forms, large o will ensure it
never dissociates and expression E will tend to 1 (see
also Fig 2D) irrespective of whether this occurred on a
functional enhancer or a random piece of DNA — in this
limit, all sequence discrimination ability is lost, yielding
undesirable regulatory phenotypes. In contrast, the equi-
librium (“EQ”) MWC limit as kjnx — oo (Eq 1) is func-
tional and, interestingly, corresponds to a non-monotonic
curve in the phase diagram that lower-bounds the speci-
ficity of non-equilibrium (“NEQ”) models accessible at
finite values of kijjpk-

In a wide intermediate range of TF residence times,
the full space of nonequilibrium MWC-like models—
which we can exhaustively explore—offers large, orders-
of-magnitude improvements in specificity, essentially uti-
lizing a stochastic variant of Hopfield’s proofreading
mechanism [25, 47]. This observation is generic, even
though the precise values of S depend on parameters
that we explore below, and S always remains bounded
from above by k_/ki (in equilibrium, this is related
to stochastic, thermal-fluctuation-driven Mediator tran-
sitions to ON state even in absence of bound TFs). At
the same average TF residence time and TF concentra-
tion, the best non-equilibrium model (II in Fig 2) will
suppress expression from non-cognate DNA by almost
two orders-of-magnitude relative to the best equilibrium
model (I). These findings remain qualitatively unchanged

2 Protein noise levels in Table I are estimated from reported mRNA
noise levels.
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FIG. 2. Accessible space of regulatory phenotypes.:»
(A) Specificity, S, mean TF residence time, Trr (expressedors
in units in inverse off-rate for isolated TFs at their specificy,
sites, To = 1/k%), and average expression, E (color), for,,
MWC:-like models with n = 3 TF binding sites, obtained by, -
varying « and kjnk at fixed TF concentration, co. Equilib—27
rium models fall onto the red line; two models with equal TF
residence times, I (EQ) and II (NEQ), are marked for com-"
parison. Dashed gray lines show analytically-derived bounds.?”
(B) Phase space of regulatory phenotypes is accessed by vary-2%°
ing « at fixed values of kiunk (grayscale; top) or varying kiink2s
at fixed values of « (grayscale; bottom). (C) As in (A), but2s:
the TF concentration at each point in the phase space is ad-2s3
justed to hold average expression fixed at £ = 0.5 (greenss
color). Plotted is a smaller region of phase space of inter-,;
est; nearly vertical thin lines are equi-concentration contours
(Fig S6). (D) All models in the phase diagrams in (A) and
(C) approximately collapse onto nearly one-dimensional man-
ifolds (“fixed ¢”, left axis, for (A); “fixed E”, right axis, for?®
(C)) when plotted as a function of mean TF residence time,
Trr, supporting the choice of this variable as a biologically-,,
relevant observable. Color on the manifold corresponds to,,
mean expression E using the colormap of (A). Vertical scales
are chosen so that models I and II coincide. (E) Induction
curves of equilibrium model I and non-equilibrium model 11%
for expression from functional enhancer that contains specific***
sites (basal TF off-rate k°; black curves) versus expression
from random DNA containing non-specific sites (basal TF293
off-rate kNS = 10%k5 here; gray curves). 294
295

7

8

0

292

296

297
for enhancers with larger number of binding sites (see,,

Fig S4).

A comparison of various enhancer operating regimes isso
perhaps biologically more relevant at fixed mean expres-so
sion, allowing the TF concentration to adjust accord-so
ingly under cells’ own control, as shown in Fig 2C forsos

299

E = 0.5. As TF residence time lengthens with increas-
ing a, TFs and the Mediator establish more stable com-
plexes on the DNA and lower concentrations are needed
for all models to reach the desired expression E (see also
Fig 2D). Nevertheless, the ability of « to increase the
specificity in equilibrium models is limited and saturates
at a value substantially below the specificity reachable
in nonequilibrium models at much smaller TF residence
times. The observations of Figs 2A, C underscore an im-
portant, yet often overlooked, point: the ability to induce
at low TF concentration (that is, high affinity) achieved
through “cooperative interactions” at high « either has a
detrimental, or, at best, a marginally beneficial effect for
the ability to discriminate between cognate and random
DNA sites (that is, high specificity) in equilibrium [24].

Figure 2E shows induction curves for expression
from functional enhancers containing specific sites and
from random DNA sites, for equilibrium (I) and non-
equilibrium (II) models. Both yield essentially indistin-
guishable induction curves for expression from a func-
tional enhancer (which is true generically across our
phase diagram, see Fig S5), suggesting that it would
be difficult to discriminate between the models based
on induction curve measurements. In sharp contrast,
the behavior of the two models is qualitatively different
at non-specific DNA: with sufficiently high TF concen-
tration (e.g., in an over-expression experiment), the EQ
model I will fully induce even from random DNA as its
binding sites get saturated by TFs; on the contrary, the
nonequilibrium (NEQ) model IT will start inducing at
much higher ¢, and will never do so fully due to its proof-
reading capability. Thus, given the relatively weak indi-
vidual TF preference for cognate vs non-cognate DNA,
one should look at the collective response of the gene ex-
pression machinery to mutated or random enhancer se-
quences for signatures of equilibrium vs non-equilibrium
proofreading behavior.

D. Sensitivity.

Intuitively, sensitivity H measures the “steepness” of
the induction curve. More precisely, H is proportional
to the logartihmic derivative of the expression with log
concentration at the point of half-maximal expression,
so that for Hill-like functions, E(c) = ¢"/(c" + K"), it
corresponds exactly to the Hill coefficient, H = h. Fig-
ure 3A shows that H increases monotonically with Trg
(and thus with «, cf. Fig 2B), indicating that more sta-
ble TF-Mediator complexes indeed lead to higher appar-
ent cooperativity, which is always upper-bounded by the
number of TF binding sites in the enhancer, n. The
highly-cooperative “enhanceosome” concept [48] would,
in our framework, correspond to an equilibrium limit
with very high «, and thus H ~ n; yet the analysis
above predicts vanishingly small specificity increases as
this limit is approached. In contrast, we observe that
the point at which the specificity advantage of nonequi-
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FIG. 3. Limits to sensitivity and specificity. (A) Sensi-33
tivity (apparent Hill coefficient) H of enhancer models in the3s
phase diagram of Fig 2C, at fixed mean expression, £ = 0.5.33
All models collapse onto the manifolds shown for differentsss
number of TF binding sites, n. (B) Phase diagram of en-s,
hancer models for three different values of mean expression,,,,
E (columns), shows specificity S and fraction of variance in_,,
enhancer switching propagated to expression noise (see tex‘c).343
Compact blue region for each E shows all MWC-like models
with n = 3 binding sites accessible by varying a and Kiink;**
equilibrium model (“EQ”) with lowest noise is shown as a red3#
dot. Increase in noise is monotonically related to increase ins¢
enhancer correlation time, Ty, marked with dashed verticalssr
lines. Largest specificity increases over EQ models occur atssg
high Tr and thus high noise (upper right corner of the blue,,,
region). (C) Maximal gain in enhancer specificity for non-,
equilibrium vs equilibrium models for different n (legend as
in A), as a function of the intrinsic specificity of individual
TF binding sites, k?/kljs. Expression is fixed to £ = 0.5
and mean TF residence time to Trr/Tp = 10. Typical value®®
kS /kNS = 1072 used in Fig 2 and panels A,B is shown in®*
vertical dashed line. (D) Same as in (C), but with the com-3%
parison at fixed gene expression noise, N2 = 0.5. 356

357

358
librium models is maximized, i.e., where SxgqQ/SEQ 1S
largest, occurs far away from H = n, at much lower H
values (Fig S8). If high specificity is biologically favored,s
we should therefore not expect the “number of knowns,
binding sites” to equal the “measured Hill coefficient ofsg;
the induction curve” for well-functioning eukaryotic tran-,
scriptional schemes, even on theoretical grounds. 165

366

367

E. Noise. 268

369

Lastly, we turn our attention to gene expression noise.smw
All stochastic two-state models have a steady state bino-sn

mial variance of 0% = E(1 — E) in enhancer state, wheresr

E is the probability of the enhancer to be ON. When ON,
transcripts are made and subsequently translated into
protein, which typically has a slow lifetime, T», on the
order of at least a few hours. Random fluctuations in en-
hancer state will cause random steady-state fluctuations
in protein copy number around the average, P; these fluc-
tuations can be quantified by noise, N = op/P. While
there can be other contributions to noise (e.g., birth-
death fluctuations due to protein production and degra-
dation), we focus here solely on the effects of ON/OFF
switching, since only these effects depend on the enhancer
architecture [30].

How is noise in gene expression, N, related to the bi-
nomial variance, cp? Based on simple noise propaga-
tion arguments [49, 50|, fractional variance in protein
should be equal to fractional variance in enhancer state
times the noise filtering that depends on the timescales
of enhancer switching, T, and protein lifetime, Tp (here
we assume Tp = 10 hours), so that N?> = (op/P)? ~
(ocg/E)? - Tg/(Tg + Tp) (see SI Section 1.5 for exact
derivation). Thus, if enhancer switches much faster than
the protein lifetime, Tr < Tp, protein dynamics al-
most entirely averages out the enhancer state fluctua-
tions. Since all enhancer models have the same binomial
variance, the gene expression noise in various models will
be entirely determined by the mean expression, F, and
the correlation time, T, both of which we can compute
analytically for any combination of enhancer model pa-
rameters in the phase diagram of Fig 2.

Figure 3B shows the phase diagram of accessible
MW(C-like regulatory phenotypes for the specificity (.59),
mean expression (E) and fraction of enhancer switching
noise that propagates to gene expression, Tg/(Tg + Tp),
found by varying « and kjuk. As in Fig 2, equilibrium
models (“EQ”) have the lowest specificity S, but also low-
est correlation time T and thus lowest noise, regardless
of the average expression, E. There exist NEQ models
that achieve higher specificity at a small increase in noise,
but the highest specificity increases always come hand-
in-hand with a substantial lengthening of the correlation
times in enhancer state fluctuations, and thus with the
inevitable increase in noise.

To better elucidate the tradeoffs and limits to speci-
ficity in non-equilibrium vs equilibrium models, we next
explore how enhancer specificity gains depend on the
ability of individual TFs to discriminate cognate bind-
ing sites from random DNA in Fig 3C. If individual
TFs permit very strong discrimination (k% /kNS < 1074
prokaryotic TF regime), NEQ models at fixed individual
TF residence times, Trr, do not offer appreciable speci-
ficity increases in the collective enhancer response; in con-
trast, for the range around k° /kNS ~ 1072 typically re-
ported for eukaryotic TF's, the specificity increase ranges
from ten to thousand-fold, with the peak depending on
the number of TF binding sites, n, as well as baseline
Mediator specificity limit, x_ /x4 (as this increases, the
peak specificity gain is higher and moves towards lower
kS /KNS see Fig S9). If, instead of fixing k5 /kNS = 1072
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as we have done until now, we pick this ratio to maxi-ss
mize the specificity gain (Sxeq/Seq) and again exploresas
the noise-specificity tradeoff as in Fig 3B, we find thateo
the extreme specificity gains are only possible when cor-s
relation times, Ty diverge (see Fig S10), implying highas
noise. 433
These observations are summarized in Fig 3D, showingess
the specificity gain of NEQ models relative to EQ models, s
if the comparison is made at fixed noise level rather thanase
at fixed individual TF residence time as in Fig 3C. Speci-43
ficity gains are limited to roughly ten-fold even when, asss
we do here, we systematically search for best NEQ mod-43
els through the complete phase diagram in Fig 2C. Theaso
specificity-noise tradeoff thus appears unavoidable. aa1
442

443

F. Experimentally observable signatures of aat

enhancer function. 445
446

447

To illustrate how the proposed nonequilibrium (NEQ)
MW(C-like scheme could function in practice, we simu-
lated it explicitly and compared it to an equilibrium (EQ)*’
scheme with the same mean TF residence time in Fig 4.*°
The two enhancers, composed of n = 5 TF binding sites,”
respond to a simulated protocol where the TF concen-*
tration is first switched from a minimal value that drives'
essentially no expression to a high value giving rise to®
E = 0.5, and after a long stationary period, the con-*
centration is switched back to the low value. Figure 4A™°
shows the occupancy of the binding sites and the func-"
tional ON/OFF state of the enhancer. Even though the™
two models share the same TF mean residence time and
nearly indistinguishable induction curves (with H ~ 2.7),**
their collective behaviors are markedly different: the EQ"™
scheme appears to have significantly faster TF binding*®
/ unbinding as well as Mediator switching dynamics,"
whereas NEQ scheme undergoes long, “bursty” periods®
of sustained enhancer activation and TF binding that'®
are punctuated by OFF periods. If the typical residence*
time of an isolated TF on its specific site were Ty =1 s,"’
NEQ enhancer could stay active even for hour-long pe-
riods (~ 10% s), just somewhat shorter than the protein
lifetime (~ 4 -10% s). Such enhancer-associated stable
mediator clusters are consistent with recent experimen-
tal reports [51, 52]. 460

The detailed steady-state behavior at high TF concen-so
tration is analyzed in Fig 4B. Consistent with our the-n
oretical expectations, the NEQ scheme enables ten-foldar
higher specificity but at the cost of substantial noise inas
gene expression (N ~ 0.42) due to strong transcriptionalss
bursting. High noise is a direct consequence of the muchas
longer correlation time of enhancer fluctuations, T, forses
the NEQ scheme, seen in Fig 4A. Interestingly, the meanar
residence time of the enhancer ON state, T, is nearlyas
unchanged between the EQ and NEQ scheme at ~ 10049
s: but here, the mean turns to be a highly misleadingaso
statistic, as revealed by an in-depth exploration of thess
full probability density function. The NEQ scheme has ass

448

4

5

7

459

long tail of extended ON events interspersed with an ex-
cess of extremely short OFF events (due to high x_ rate
necessary for high specificity) relative to the EQ scheme
(which, itself, does not deviate strongly from an exponen-
tial density function with a matched mean). The behav-
ior of such an enhancer is highly cooperative even though
the sensitivity (H) is not maximal: when the enhancer
is ON, with very high probability all TFs are bound, and
when OFF, often 4 out of 5 TFs are bound — yet the en-
hancer is not activated. In sum, a well-functioning non-
equilibrium regulatory apparatus with its Mediator com-
plex makes many short-lived attempts to switch ON, but
only commits to a long, productive ON interval rarely and
collectively, after insuring that activation is happening
due to a sequence of valid molecular recognition events
between several TFs and their cognate binding sites in a
functional enhancer.

Transient behavior after a TF concentration change
is analyzed in Fig 4C. The mean response time of the
two models to the concentration change is governed by
the correlation time of the enhancer state, T, and is
thus much slower for NEQ vs EQ models; but since the
protein lifetime is even longer, the mean protein levels
adjust equally quickly in the equilibrium and nonequilib-
rium cases. This suggests that the dynamics of the mean
protein level is unlikely to discriminate between EQ and
NEQ models. In contrast, live imaging of the nascent
mRNA could put constraints on Tx [1]. In that case, the
filtering time scale is the elongation time, typically on
the order of a few minutes, while the reported transcrip-
tional response times—and thus estimates of Tp—would
range from minutes to 1 — 2 hours [9, 26].

Steady-state noise levels at high induction, as reported
already, are considerably higher for the NEQ model due
to transcriptional bursting; an intriguing further sugges-
tion of our analyses is a long transient in the noise levels
upon a high-to-low TF concentration switch, which fi-
nally settles to a high fractional noise level (here, N ~
1.6) even at very low induction, due to sporadic tran-
scriptional bursts.

DISCUSSION

In this paper, we took a normative approach to
address the complexity of eukaryotic gene regulatory
schemes. We proposed a minimal extension to a well-
known Monod-Wyman-Changeux model that can be ap-
plied to the switching between the active and inactive
states of an enhancer. The one-parameter extension is
kinetic and accesses nonequilibrium system behaviors.
We analyzed the parameter space of the resulting model
and visualized the phase diagram of “regulatory phe-
notypes”, quantities that are either experimentally con-
strained (such as mean expression, mean TF residence
time, sensitivity), are likely to be optimized by evolu-
tionary pressures (such as noise and specificity), or both.
This allowed us to recognize and understand biophysical
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FIG. 4. High-specificity non-equilibrium schemes predict bursty gene expression. (A) Stochastic simulation of an
equilibrium (EQ) and a nonequilibrium (NEQ) enhancer model with n = 5 TF binding sites, responding to a TF concentration
step (bottom-most panel). Average TF residence times are the matched between EQ and NEQ models at 2.17Tp, To = 1/k:§ =1
s, and both induction curves (scaled for half-maximal concentration) are identical, with sensitivity H ~ 2.7. When TF
concentration is high, expression is fixed at £ = 0.5. Parameters for NEQ model: a = 127, kiink = 2, ¢max = 0.065; for EQ
model: kjink — 00, @ = 19.8,cmax = 0.037. Rasters show the occupancy of TF binding sites; orange line above shows the
enhancer ON/OFF state; zoom-in for EQ model is necessary due to its fast dynamics. (B) Regulatory phenotypes for EQ and
NEQ models during steady-state epoch (gray in A). Specificity (S) and enhancer state correlation time (Tg) are higher for the
NEQ model; the Mediator mean ON residence time, Ths, is the same between the models, but the probability density function
reveals a long tail in the NEQ scheme, and a nearly exponential distribution for the EQ scheme. Last two panels show the
TF occupancy histogram during high TF concentration interval, conditional on the enhancer being OFF or ON. (C) Transient
behavior of the mean enhancer state (E), mean protein number (P; assuming deterministic production/degradation protein
dynamics given enhancer state), and gene expression noise, N = op/P, for the NEQ and EQ models, upon a TF concentration
low-to-high switch (left column) and high-to-low switch (right column). Traces shown are computed as averages over 1000
stochastic simulation replicates.

limits and trade-offs, and to identify the optimal operat-sos
ing regime of the proposed enhancer model that is con-«s ficity /noise balance at H ~ n/2 (Fig S7,S8); (iv) Medi-
sistent with current observations, as we summarize next..r ator basal rates should maximize k_/k4, i.e., mediator
w8 switches OFF essentially instantaneously if not stabilized

Our analyses suggest the following: (i) individual TFs,, by linked TFs; (v) TF concentrations required to activate
are limited in their ability to discriminate specific froms, the enhancer in this regime are substantially higher than

number of TF binding sites, yielding a reasonable speci-

random sites, k° /kNS ~ 1072, so high specificity must,
be a collective enhancer effect in the proofreading regime,,
where ki ~ k°; (i) mean TF residence times in an en-,,
hancer are not much higher than the typical TF residence,
time at an isolated specific site, Trr/To < 10, enablingg,
rapid turnover of bound TFs on the 1 — 10 s tunescale7506
(iii) typical sensitivities are much lower than the total

expected for the equivalent but highly cooperative en-
hanceosome (at higher «); (vi) optimal nonequilibrium
models achieve order-of-magnitude improvements in S
relative to matched equilibrium models—thereby avoid-
ing crosstalk and spurious gene expression—by suppress-
ing induction from non-cognate (random) DNA, while
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induction curves from functional enhancers bear no clearsss
signatures of non-equilibrium operation; (vii) to permitsss
large increases in specificity S, enhancer state fluctua-sss
tions will develop long timescale correlations, Tg > Trpsso
(but still be bounded by the protein lifetime, Ty < Tp t0ss0
enable noise averaging), leading to substantial observedss
noise levels; (wiii) the enhancer ON residence time dis-se
tribution will be non-exponential, with excess probabil-ses
ity for very long-lived events, during which an enhancersss
could trigger a transcriptional burst following an interac-ses
tion with the promoter; (iz) in our model, long correla-sss
tion time, T, in steady state also implies long (minutesss
to hours) response times when TF concentration change,sss
which would be observable with live imaging on the tran-seo
scriptional, but likely not protein-concentration, level. s

We find it intriguing that a single-parameter exten-"*
sion of a classic equilibrium model led to such richness®
of observed behaviors, and to a suggestion that the opti-°"
mal operating regime is very different from regulation at®™*
equilibrium. Central to this qualitative change is the fact®™®
that long fluctuation and response timescales of enhancer®™
activation appear necessary to achieve high specificity of*”
regulation through proofreading. Such long timescales™
are not inconsistent with our current knowledge. In-*"°
deed, some developmental enhancers form active clus-**
ters (super-enhancers) that are rather long-lived (order®
of minute to hours), perhaps precisely because develop-°*
mental events need to be guided with extraordinary pre-***
cision [52, 53]. sat

585
A strong objection to our model could be that it is,

too simple: after all, we neglected many structural and,,
molecular details, many of which we may not even know,,
yet. This is certainly true and was done, in part, on pur-_,
pose, to permit exhaustive analysis across the complete,,,
parameter space. Such understanding would have been,,,
impossible if we explored much richer models or were con-,,,
cerned with quantitative fitting to a particular dataset.,,,
These are clearly the next steps, to which we contribute,,,
by highlighting the functional importance of breaking the,,
equilibrium link between TF binding and enhancer acti-,,
vation state. Since our model is fully probabilistic, spe-,
cializing it for a particular experimental setup, e.g., live

transcriptional imaging, and doing rigorous inference is

technically tractable, but beyond the scope of this paper.s

Perhaps a key simplification of our model is the link
between enhancer / Mediator ON state and transcrip-se
tional activity. We assumed that expression is propor-ew
tional to the probability of enhancer state to be ON, yeten
the enhancer-promoter interaction itself is a matter of vi-eo

brant current experimentation and modeling [10, 51, 54—
56]. For example, long-lived activated enhancers that we
predict could interact with promoters only intermittently
to trigger transcriptional bursts, as suggested by the
“dynamic kissing model” [52], which could substantially
impact the experimentally-observable quantitative noise
signatures of enhancer function at the transcriptional
level. Whatever the true nature of enhancer-promoter
interactions might be, however, they are unlikely to be
able to remove excess enhancer switching noise, due to
its slow timescale, suggesting that the tradeoffs that we
identify should hold generically.

One could also question whether the importance we as-
cribed to high specificity is really warranted. Evolution-
arily, regulatory crosstalk due to lower specificity helps
networks evolve during transient bouts of adaptation,
even though it could be ultimately selected against [57].
Mechanistically, molecular mechanisms such as chro-
matin modification or the regulated 3D structure of DNA
decrease the number of possible non-cognate targets that
could trigger erroneous gene expression [58, 59], and thus
alleviate the need for the high specificity of the transcrip-
tional control. Empirically, there is ample evidence for
abortive or non-sensical transcriptional activity [60, 61],
whose products could be dealt with downstream or sim-
ply ignored by the cell. Yet it is also clear that regulatory
specificity must be a collective effect, as individual TFs
bind pervasively across DNA even in non-regulatory re-
gions [62], and self-consistent arguments suggest that in
absence of non-equilibrium mechanisms, crosstalk could
be overwhelming in eukaryotes [24]. It is also possible
that real enhancers are very diverse with large variation
along the specificity axis, thereby navigating the noise-
specificity tradeoff as appropriate given the biological
context. Where some erroneous induction can be toler-
ated, expression could be quicker, less noisy, and closer to
equilibrium. In contrast, where tight control is needed,
enhancers could take a substantial amount of time to
commit to expression correctly, perhaps benefitting ad-
ditionally from extra time-averaging that could further
reduce the Berg-Purcell-type noise intrinsic to TF con-
centration sensing [50, 63-65].
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