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In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping3

from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-4

physical measurements. Such concordance has not been achieved for models of enhancer function5

in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription6

factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium7

models, progress is difficult due to an explosion in the number of parameters. Here, we navigate8

this complexity by looking for minimal non-equilibrium enhancer models that yield desired regula-9

tory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a10

single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Medi-11

ator components, enables our models to escape equilibrium bounds and access optimal regulatory12

phenotypes, while remaining consistent with the reported phenomenology and simple enough to13

be inferred from upcoming experiments. We further find that high specificity in non-equilibrium14

models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-15

observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to16

a much smaller subspace that optimally realizes biological function prior to inference from data, our17

normative approach holds promise for mathematical models in systems biology.18
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| Monod-Wyman-Changeux (MWC) model20

An essential step in the control of eukaryotic gene ex-21

pression is the interaction between transcription factors22

(TFs), various necessary co-factors, and TF binding sites23

(BSs) on the regulatory segments of DNA known as en-24

hancers [1]. While we are far from having either a com-25

plete parts list for this extraordinarily complex regula-26

tory machine or an insight into the dynamical interac-27

tions between its components, experimental observations28

have established a number of constraints on its opera-29

tion: (i) TFs individually only recognize short, 6–10bp30

long binding site motifs [2]; (ii) TF residence times on31

the cognate binding sites can be as short as a few sec-32

onds and only 2–3 orders of magnitude longer than res-33

idence times on non-specific DNA [3–5]; (iii) the order34

of arrival of TFs to their binding sites can affect gene35

activation [4]; (iv) TFs do not activate transcription by36

RNA polymerase directly, but interact first with various37

co-activators, essential amongst which is the Mediator38

complex; (v) binding of multiple TFs is typically required39

within the same enhancer for its activation [6], which can40

lead to very precise downstream gene expression only in41

the presence of a specific combination of TF concentra-42

tions [7]; (vi) when activated, gene expression can be43

highly stochastic and bursty [8–10]; (vii) gene induction44

curves show varying degrees of steepness, suggesting tun-45

able amounts of cooperativity among TFs [11]. Here we46

look for biophysical models of enhancer function consis-47

tent with these observations.48

Mathematical modeling of gene regulation traces its49
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origins to the paradigmatic examples of the λ bacterio-50

phage switch [12] and the lac operon [13]. In prokaryotes,51

biophysical models have proven very successful [14–16],52

assuming gene expression to be proportional to the frac-53

tion of time RNA polymerase is bound to the promoter54

in thermodynamic equilibrium; TFs modulate this frac-55

tion via steric or energetic interactions with the poly-56

merase. Crucially, these models are very compact: they57

are fully specified by enumerating all bound configura-58

tions and energies of the TFs and the polymerase on the59

promoter. While some open questions remain [17–19],60

the thermodynamic framework has provided a quanti-61

tative explanation for combinatorial regulation, cooper-62

ativity, and regulation by DNA looping [20, 21], while63

remaining consistent with experiments that also probe64

the kinetic rates [22, 23].65

No such consensus framework exists for eukaryotic66

transcriptional control. Limited specificity of individ-67

ual TFs (i) is hard to reconcile with the high speci-68

ficity of regulation (v) and the suppression of regula-69

tory crosstalk [24], suggesting non-equilibrium kinetic-70

proofreading schemes [25]. Likewise, short TF residence71

times (ii) and the importance of TF arrival ordering (iii)72

contradict the conceptual picture where stable enhanceo-73

somes are assembled in equilibrium [4]. Kinetic schemes74

may be required to match the reported characteristics of75

bursty gene expression (vi) [26], or realize high cooper-76

ativity (vii) [27]. Thermodynamic models undisputedly77

have statistical power to predict expression from regula-78

tory sequence even in eukaryotes [28], yet this does not79

resolve their biophysical inconsistencies or rule out non-80

equilibrium models. Unfortunately, mechanistically de-81

tailed non-equilibrium models entail an explosion in the82

complexity of the corresponding reaction schemes and83

the number of associated parameters: on the one hand,84

such models are intractable to infer from data, while on85
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the other, it is difficult to understand which details are86

essential for the emergence of regulatory function.87

To deal with this complexity, we systematically sim-88

plify the space of enhancer models. We adopt the norma-89

tive approach, commonly encountered in the applications90

of optimality ideas in neuroscience and elsewhere [29–91

31]: we theoretically identify those models for which var-92

ious performance measures of gene regulation, which we93

call “regulatory phenotypes”, are maximized. Such op-94

timal model classes are our candidates that could subse-95

quently be refined for particular biological systems and96

confronted with data. Thus, rather than inferring a sin-97

gle model from experimental data or constructing a com-98

plex, molecularly-detailed model for some specific en-99

hancer, we find the simplest generalizations of the clas-100

sic equilibrium regulatory schemes, such as Hill-type [32]101

or Monod-Wyman-Changeux regulation [33–35], to non-102

equilibrium processes, which drastically improves their103

regulatory performance while leaving the models simple104

to analyze, simulate, and fit to data.105

RESULTS106

A. Model.107

Multiple lines of evidence suggest that eukaryotic tran-108

scription is a two-state process which switches between109

active (ON) and inactive (OFF) states, with rates depen-110

dent on the transcription factor (TF) concentrations [36–111

38]. We sought to generalize classic regulatory schemes112

that can describe the balance between ON and OFF tran-113

scriptional states in equilibrium: a Hill-like scheme of114

“thermodynamic models” (discussed in SI Section 1.3),115

and a Monod-Wyman-Changeux-like (MWC) scheme in-116

troduced below.117

Figure 1A shows a schematic of the proposed func-118

tional enhancer model (SI Section 1.1, see also Fig S1).119

A complex of transcriptional co-factors that we refer to120

as a “Mediator”1 can interact with TFs that bind and121

unbind from their DNA binding sites with baseline rates122

k+ and k− (Fig 1B.i). Mediator – and thus the whole en-123

hancer – can switch between its functional ON/OFF states124

with baseline rates κ+ and κ− (Fig 1B.ii). Enhancer ON125

state and TF bound state are both stabilized (by a factor126

α relative to baseline rates) when a bound TF establishes127

a “link” with the Mediator (Fig 1B.iii). The molecular128

identity of such links can remain unspecified: it could, for129

example, correspond to an enzymatic creation of chem-130

ical marks (e.g., methylation, phosphorylation) on the131

TFs or Mediator proteins conditional on their physical132

1 Our nomenclature is simply a shorthand for all co-factors nec-
essary for eukaryotic transcriptional activation at an enhancer,
which can include proteins not strictly a part of the Mediator
family.

proximity or interaction. Crucially, the links can be es-133

tablished and removed in processes that can break de-134

tailed balance and are thus out of equilibrium. Here, we135

consider that a link is established at a rate klink between136

a bound TF and the Mediator complex; for simplicity,137

we assume that the links break when the TFs dissociate138

or upon the switch into OFF state (this assumption can139

be relaxed, see Fig S2).140

An important thrust of our investigations will con-141

cern the role of limited specificity of individual TFs to142

recognize their cognate sequences on the DNA. If se-143

quence specificity arises primarily through TF binding144

– a strong, but relatively unchallenged assumption (that145

can also be relaxed within our framework, see Fig S3)146

– then we should ask how likely it is for the Mediator147

complex to form and activate at specific sites contained148

within functional enhancers (with low off-rates character-149

istic of strong eukaryotic TF binding sites, kS−) versus at150

random, non-specific sites on the DNA (with ∼ 2 orders-151

of-magnitude higher individual TF off-rates, kNS
− ) from152

which expression should not occur.153

Given the number of TF binding sites (n) and the154

various rate parameters (k+, k
S/NS
− , κ+, κ−, α, klink) the155

full state of the system—i.e., the probability to observe156

any number of bound and/or linked TFs jointly with157

the ON/OFF state of the enhancer—evolves according to a158

Chemical Master Equation (SI Section 1.1) that can be159

solved exactly [39–41] or simulated using the Stochastic160

Simulation Algorithm [42]. Importantly, we show ana-161

lytically that our scheme reduces to the true equilibrium162

MWC model in the limit klink → ∞: in this limit, there163

can be no distinction between a bound TF and a TF164

that is both bound and linked, and one can define a free165

energy F that governs the probability of enhancer being166

ON, which in our model is equal to (a normalized) mean167

expression level, E = PON = (1 + exp(F ))
−1

, with168

F = n log
1 + c/K

1 + α · c/K
− L, (1)169

where K = k−/k
0
+, k+ = k0+c (see also Fig 1 caption),170

and L = log (κ+/κ−). The klink parameter thus inter-171

polates between the equilibrium limit in Eq (1), corre-172

sponding to a textbook MWC model, and various non-173

equilibrium (kinetic) schemes which we will explore next.174

A similar generalization with an equilibrium limit ex-175

ists for thermodynamic Hill-type models, where, further-176

more, α can be directly identified with cooperativity be-177

tween DNA-bound TFs (see SI Section 1.3); we will see178

that this qualitative role of α will hold also for the MWC179

case.180

B. Regulatory phenotypes.181

How does the regulatory performance depend on the182

enhancer parameters and, in particular, on moving away183

from the equilibrium limit? To assess this question sys-184
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Figure 1: normative non-eq model of (enhancer) regulation 
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FIG. 1. A non-equilibrium MWC-like model of en-
hancer function. (A) Schematic representation of tran-
scription factors (TFs; tael circles) interacting with binding
sites (BSs, here n = 3 orange slots) and the putative Mediator
complex via links (red lines). The Mediator complex can be
in two conformational states (OFF or ON), with the ON state en-
abling productive transcription of the regulated gene. Increas-
ing TF concentration, c, facilitates TF binding and the switch
into ON state (left-to-right). (B) Key reactions and rates of
the non-equilibrium model. TFs can bind with concentration-
dependent on rate (k+ = k0+c) and unbind with basal rate k−
that is in principle sequence dependent (i). The Mediator
state switches between the conformational states with basal
rates κ+ and κ− (ii). Linking and unlinking of TFs to Me-
diator (iii) can move the system out of equilibrium: links
are established with rate klink, and the link stabilizes both
TF residence and the ON state of the Mediator by a factor α
per established link. (C) Regulatory phenotypes. Mean TF
residence time, TTF, on specific sites in functional enhancers
(black) vs random site on the DNA (gray) increases with con-
centration (top), as does mean expression, E (the fraction of
time the Mediator is ON; induction curve, middle, with sen-
sitivity, H, defined at mid-point expression). Specificity, S,
is defined as the ratio of expression from the specific sites in
the enhancer relative to the expression from random piece of
DNA.

tematically, we define a number of “regulatory pheno-185

types”, enumerated in Table I and illustrated in Fig 1C.186

As a function of TF concentration, we compute: (i)187

individual TF residence time, TTF, on specific sites in188

functional enhancers, as well as on random, non-specific189

DNA, because these quantities have been experimen-190

tally reported in single-molecule experiments and pro-191

vide strong constraints on enhancer function; (ii) aver-192

age expression, E, for functional enhancers as well as193

random, non-specific DNA; we require E to be in the194

middle (∼ 0.5) of the wide range reported for functional195

enhancers; (iii) sensitivity of the induction curve at half-196

maximal induction, H, an observable quantity often in-197

terpreted as a signature of cooperativity in equilibrium198

models; (iv) specificity, S, as the ratio between expres-199

sion E from functional enhancers vs from non-specific200

DNA, which should be as high as possible to prevent201

Phenotype Symbol Value Ref

TF residence time (specific BS) TTF ∼ 1− 10 s [3, 43]
Expression (fraction of time ON) E 0.01− 0.9 [38, 44, 45]
Sensitivity (apparent Hill coef.) H 1− 10 [11]
Specificity S — —
Noise (std / mean protein exp.) N ∼ 0.1− 1 [46]

TABLE I. Regulatory phenotypes.

deleterious crosstalk or uncontrolled expression [24]; (v)202

expression noise, N , defined more precisely later, origi-203

nating in stochastic enhancer ON/OFF switching.2204

C. Specificity, residence time, and expression.205

Figure 2A explores the relationship between three reg-206

ulatory phenotypes for a MWC-like enhancer scheme of207

Fig 1A: the average TF residence time (TTF), specificity208

(S), and the average expression (E), at fixed concentra-209

tion c0 of the TFs. Each point in this “phase diagram”210

corresponds to a particular enhancer model; points are211

accessible by varying α and klink (Fig 2B) and fall into a212

compact region that is bounded by intuitive, analytically-213

derivable limits to specificity and the residence time. As214

α tends to large values, S approaches 1, as it must: once215

a TF-Mediator complex forms, large α will ensure it216

never dissociates and expression E will tend to 1 (see217

also Fig 2D) irrespective of whether this occurred on a218

functional enhancer or a random piece of DNA – in this219

limit, all sequence discrimination ability is lost, yielding220

undesirable regulatory phenotypes. In contrast, the equi-221

librium (“EQ”) MWC limit as klink →∞ (Eq 1) is func-222

tional and, interestingly, corresponds to a non-monotonic223

curve in the phase diagram that lower-bounds the speci-224

ficity of non-equilibrium (“NEQ”) models accessible at225

finite values of klink.226

In a wide intermediate range of TF residence times,227

the full space of nonequilibrium MWC-like models—228

which we can exhaustively explore—offers large, orders-229

of-magnitude improvements in specificity, essentially uti-230

lizing a stochastic variant of Hopfield’s proofreading231

mechanism [25, 47]. This observation is generic, even232

though the precise values of S depend on parameters233

that we explore below, and S always remains bounded234

from above by κ−/κ+ (in equilibrium, this is related235

to stochastic, thermal-fluctuation-driven Mediator tran-236

sitions to ON state even in absence of bound TFs). At237

the same average TF residence time and TF concentra-238

tion, the best non-equilibrium model (II in Fig 2) will239

suppress expression from non-cognate DNA by almost240

two orders-of-magnitude relative to the best equilibrium241

model (I). These findings remain qualitatively unchanged242

2 Protein noise levels in Table I are estimated from reported mRNA
noise levels.
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Figure 2: Achieving high speci�city without stable TF-DNA complexes
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FIG. 2. Accessible space of regulatory phenotypes.
(A) Specificity, S, mean TF residence time, TTF (expressed
in units in inverse off-rate for isolated TFs at their specific
sites, T0 = 1/kS−), and average expression, E (color), for
MWC-like models with n = 3 TF binding sites, obtained by
varying α and klink at fixed TF concentration, c0. Equilib-
rium models fall onto the red line; two models with equal TF
residence times, I (EQ) and II (NEQ), are marked for com-
parison. Dashed gray lines show analytically-derived bounds.
(B) Phase space of regulatory phenotypes is accessed by vary-
ing α at fixed values of klink (grayscale; top) or varying klink
at fixed values of α (grayscale; bottom). (C) As in (A), but
the TF concentration at each point in the phase space is ad-
justed to hold average expression fixed at E = 0.5 (green
color). Plotted is a smaller region of phase space of inter-
est; nearly vertical thin lines are equi-concentration contours
(Fig S6). (D) All models in the phase diagrams in (A) and
(C) approximately collapse onto nearly one-dimensional man-
ifolds (“fixed c”, left axis, for (A); “fixed E”, right axis, for
(C)) when plotted as a function of mean TF residence time,
TTF, supporting the choice of this variable as a biologically-
relevant observable. Color on the manifold corresponds to
mean expression E using the colormap of (A). Vertical scales
are chosen so that models I and II coincide. (E) Induction
curves of equilibrium model I and non-equilibrium model II
for expression from functional enhancer that contains specific
sites (basal TF off-rate kS−; black curves) versus expression
from random DNA containing non-specific sites (basal TF
off-rate kNS

− = 102kS− here; gray curves).

for enhancers with larger number of binding sites (see243

Fig S4).244

A comparison of various enhancer operating regimes is245

perhaps biologically more relevant at fixed mean expres-246

sion, allowing the TF concentration to adjust accord-247

ingly under cells’ own control, as shown in Fig 2C for248

E = 0.5. As TF residence time lengthens with increas-249

ing α, TFs and the Mediator establish more stable com-250

plexes on the DNA and lower concentrations are needed251

for all models to reach the desired expression E (see also252

Fig 2D). Nevertheless, the ability of α to increase the253

specificity in equilibrium models is limited and saturates254

at a value substantially below the specificity reachable255

in nonequilibrium models at much smaller TF residence256

times. The observations of Figs 2A, C underscore an im-257

portant, yet often overlooked, point: the ability to induce258

at low TF concentration (that is, high affinity) achieved259

through “cooperative interactions” at high α either has a260

detrimental, or, at best, a marginally beneficial effect for261

the ability to discriminate between cognate and random262

DNA sites (that is, high specificity) in equilibrium [24].263

Figure 2E shows induction curves for expression264

from functional enhancers containing specific sites and265

from random DNA sites, for equilibrium (I) and non-266

equilibrium (II) models. Both yield essentially indistin-267

guishable induction curves for expression from a func-268

tional enhancer (which is true generically across our269

phase diagram, see Fig S5), suggesting that it would270

be difficult to discriminate between the models based271

on induction curve measurements. In sharp contrast,272

the behavior of the two models is qualitatively different273

at non-specific DNA: with sufficiently high TF concen-274

tration (e.g., in an over-expression experiment), the EQ275

model I will fully induce even from random DNA as its276

binding sites get saturated by TFs; on the contrary, the277

nonequilibrium (NEQ) model II will start inducing at278

much higher c, and will never do so fully due to its proof-279

reading capability. Thus, given the relatively weak indi-280

vidual TF preference for cognate vs non-cognate DNA,281

one should look at the collective response of the gene ex-282

pression machinery to mutated or random enhancer se-283

quences for signatures of equilibrium vs non-equilibrium284

proofreading behavior.285

D. Sensitivity.286

Intuitively, sensitivity H measures the “steepness” of287

the induction curve. More precisely, H is proportional288

to the logartihmic derivative of the expression with log289

concentration at the point of half-maximal expression,290

so that for Hill-like functions, E(c) = ch/(ch + Kh), it291

corresponds exactly to the Hill coefficient, H = h. Fig-292

ure 3A shows that H increases monotonically with TTF293

(and thus with α, cf. Fig 2B), indicating that more sta-294

ble TF-Mediator complexes indeed lead to higher appar-295

ent cooperativity, which is always upper-bounded by the296

number of TF binding sites in the enhancer, n. The297

highly-cooperative “enhanceosome” concept [48] would,298

in our framework, correspond to an equilibrium limit299

with very high α, and thus H ∼ n; yet the analysis300

above predicts vanishingly small specificity increases as301

this limit is approached. In contrast, we observe that302

the point at which the specificity advantage of nonequi-303
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Figure 3: Tradeo� between number of binding sites n
and single binding site speci�city
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tivity (apparent Hill coefficient) H of enhancer models in the
phase diagram of Fig 2C, at fixed mean expression, E = 0.5.
All models collapse onto the manifolds shown for different
number of TF binding sites, n. (B) Phase diagram of en-
hancer models for three different values of mean expression,
E (columns), shows specificity S and fraction of variance in
enhancer switching propagated to expression noise (see text).
Compact blue region for each E shows all MWC-like models
with n = 3 binding sites accessible by varying α and klink;
equilibrium model (“EQ”) with lowest noise is shown as a red
dot. Increase in noise is monotonically related to increase in
enhancer correlation time, TE , marked with dashed vertical
lines. Largest specificity increases over EQ models occur at
high TE and thus high noise (upper right corner of the blue
region). (C) Maximal gain in enhancer specificity for non-
equilibrium vs equilibrium models for different n (legend as
in A), as a function of the intrinsic specificity of individual
TF binding sites, kS−/k

NS
− . Expression is fixed to E = 0.5

and mean TF residence time to TTF/T0 = 10. Typical value
kS−/k

NS
− = 10−2 used in Fig 2 and panels A,B is shown in

vertical dashed line. (D) Same as in (C), but with the com-
parison at fixed gene expression noise, N2 = 0.5.

librium models is maximized, i.e., where SNEQ/SEQ is304

largest, occurs far away from H = n, at much lower H305

values (Fig S8). If high specificity is biologically favored,306

we should therefore not expect the “number of known307

binding sites” to equal the “measured Hill coefficient of308

the induction curve” for well-functioning eukaryotic tran-309

scriptional schemes, even on theoretical grounds.310

E. Noise.311

Lastly, we turn our attention to gene expression noise.312

All stochastic two-state models have a steady state bino-313

mial variance of σ2
E = E(1−E) in enhancer state, where314

E is the probability of the enhancer to be ON. When ON,315

transcripts are made and subsequently translated into316

protein, which typically has a slow lifetime, TP , on the317

order of at least a few hours. Random fluctuations in en-318

hancer state will cause random steady-state fluctuations319

in protein copy number around the average, P ; these fluc-320

tuations can be quantified by noise, N = σP /P . While321

there can be other contributions to noise (e.g., birth-322

death fluctuations due to protein production and degra-323

dation), we focus here solely on the effects of ON/OFF324

switching, since only these effects depend on the enhancer325

architecture [30].326

How is noise in gene expression, N , related to the bi-327

nomial variance, σE? Based on simple noise propaga-328

tion arguments [49, 50], fractional variance in protein329

should be equal to fractional variance in enhancer state330

times the noise filtering that depends on the timescales331

of enhancer switching, TE , and protein lifetime, TP (here332

we assume TP = 10 hours), so that N2 = (σP /P )2 ∼333

(σE/E)2 · TE/(TE + TP ) (see SI Section 1.5 for exact334

derivation). Thus, if enhancer switches much faster than335

the protein lifetime, TE � TP , protein dynamics al-336

most entirely averages out the enhancer state fluctua-337

tions. Since all enhancer models have the same binomial338

variance, the gene expression noise in various models will339

be entirely determined by the mean expression, E, and340

the correlation time, TE , both of which we can compute341

analytically for any combination of enhancer model pa-342

rameters in the phase diagram of Fig 2.343

Figure 3B shows the phase diagram of accessible344

MWC-like regulatory phenotypes for the specificity (S),345

mean expression (E) and fraction of enhancer switching346

noise that propagates to gene expression, TE/(TE +TP ),347

found by varying α and klink. As in Fig 2, equilibrium348

models (“EQ”) have the lowest specificity S, but also low-349

est correlation time TE and thus lowest noise, regardless350

of the average expression, E. There exist NEQ models351

that achieve higher specificity at a small increase in noise,352

but the highest specificity increases always come hand-353

in-hand with a substantial lengthening of the correlation354

times in enhancer state fluctuations, and thus with the355

inevitable increase in noise.356

To better elucidate the tradeoffs and limits to speci-357

ficity in non-equilibrium vs equilibrium models, we next358

explore how enhancer specificity gains depend on the359

ability of individual TFs to discriminate cognate bind-360

ing sites from random DNA in Fig 3C. If individual361

TFs permit very strong discrimination (kS−/k
NS
− < 10−4;362

prokaryotic TF regime), NEQ models at fixed individual363

TF residence times, TTF, do not offer appreciable speci-364

ficity increases in the collective enhancer response; in con-365

trast, for the range around kS−/k
NS
− ∼ 10−2 typically re-366

ported for eukaryotic TFs, the specificity increase ranges367

from ten to thousand-fold, with the peak depending on368

the number of TF binding sites, n, as well as baseline369

Mediator specificity limit, κ−/κ+ (as this increases, the370

peak specificity gain is higher and moves towards lower371

kS−/k
NS
− , see Fig S9). If, instead of fixing kS−/k

NS
− = 10−2372
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as we have done until now, we pick this ratio to maxi-373

mize the specificity gain (SNEQ/SEQ) and again explore374

the noise-specificity tradeoff as in Fig 3B, we find that375

the extreme specificity gains are only possible when cor-376

relation times, TE diverge (see Fig S10), implying high377

noise.378

These observations are summarized in Fig 3D, showing379

the specificity gain of NEQ models relative to EQ models,380

if the comparison is made at fixed noise level rather than381

at fixed individual TF residence time as in Fig 3C. Speci-382

ficity gains are limited to roughly ten-fold even when, as383

we do here, we systematically search for best NEQ mod-384

els through the complete phase diagram in Fig 2C. The385

specificity-noise tradeoff thus appears unavoidable.386

F. Experimentally observable signatures of387

enhancer function.388

To illustrate how the proposed nonequilibrium (NEQ)389

MWC-like scheme could function in practice, we simu-390

lated it explicitly and compared it to an equilibrium (EQ)391

scheme with the same mean TF residence time in Fig 4.392

The two enhancers, composed of n = 5 TF binding sites,393

respond to a simulated protocol where the TF concen-394

tration is first switched from a minimal value that drives395

essentially no expression to a high value giving rise to396

E = 0.5, and after a long stationary period, the con-397

centration is switched back to the low value. Figure 4A398

shows the occupancy of the binding sites and the func-399

tional ON/OFF state of the enhancer. Even though the400

two models share the same TF mean residence time and401

nearly indistinguishable induction curves (with H ∼ 2.7),402

their collective behaviors are markedly different: the EQ403

scheme appears to have significantly faster TF binding404

/ unbinding as well as Mediator switching dynamics,405

whereas NEQ scheme undergoes long, “bursty” periods406

of sustained enhancer activation and TF binding that407

are punctuated by OFF periods. If the typical residence408

time of an isolated TF on its specific site were T0 = 1 s,409

NEQ enhancer could stay active even for hour-long pe-410

riods (∼ 104 s), just somewhat shorter than the protein411

lifetime (∼ 4 · 104 s). Such enhancer-associated stable412

mediator clusters are consistent with recent experimen-413

tal reports [51, 52].414

The detailed steady-state behavior at high TF concen-415

tration is analyzed in Fig 4B. Consistent with our the-416

oretical expectations, the NEQ scheme enables ten-fold417

higher specificity but at the cost of substantial noise in418

gene expression (N ∼ 0.42) due to strong transcriptional419

bursting. High noise is a direct consequence of the much420

longer correlation time of enhancer fluctuations, TE , for421

the NEQ scheme, seen in Fig 4A. Interestingly, the mean422

residence time of the enhancer ON state, TM , is nearly423

unchanged between the EQ and NEQ scheme at ∼ 100424

s: but here, the mean turns to be a highly misleading425

statistic, as revealed by an in-depth exploration of the426

full probability density function. The NEQ scheme has a427

long tail of extended ON events interspersed with an ex-428

cess of extremely short OFF events (due to high κ− rate429

necessary for high specificity) relative to the EQ scheme430

(which, itself, does not deviate strongly from an exponen-431

tial density function with a matched mean). The behav-432

ior of such an enhancer is highly cooperative even though433

the sensitivity (H) is not maximal: when the enhancer434

is ON, with very high probability all TFs are bound, and435

when OFF, often 4 out of 5 TFs are bound – yet the en-436

hancer is not activated. In sum, a well-functioning non-437

equilibrium regulatory apparatus with its Mediator com-438

plex makes many short-lived attempts to switch ON, but439

only commits to a long, productive ON interval rarely and440

collectively, after insuring that activation is happening441

due to a sequence of valid molecular recognition events442

between several TFs and their cognate binding sites in a443

functional enhancer.444

Transient behavior after a TF concentration change445

is analyzed in Fig 4C. The mean response time of the446

two models to the concentration change is governed by447

the correlation time of the enhancer state, TE , and is448

thus much slower for NEQ vs EQ models; but since the449

protein lifetime is even longer, the mean protein levels450

adjust equally quickly in the equilibrium and nonequilib-451

rium cases. This suggests that the dynamics of the mean452

protein level is unlikely to discriminate between EQ and453

NEQ models. In contrast, live imaging of the nascent454

mRNA could put constraints on TE [1]. In that case, the455

filtering time scale is the elongation time, typically on456

the order of a few minutes, while the reported transcrip-457

tional response times—and thus estimates of TE—would458

range from minutes to 1− 2 hours [9, 26].459

Steady-state noise levels at high induction, as reported460

already, are considerably higher for the NEQ model due461

to transcriptional bursting; an intriguing further sugges-462

tion of our analyses is a long transient in the noise levels463

upon a high-to-low TF concentration switch, which fi-464

nally settles to a high fractional noise level (here, N ∼465

1.6) even at very low induction, due to sporadic tran-466

scriptional bursts.467

DISCUSSION468

In this paper, we took a normative approach to469

address the complexity of eukaryotic gene regulatory470

schemes. We proposed a minimal extension to a well-471

known Monod-Wyman-Changeux model that can be ap-472

plied to the switching between the active and inactive473

states of an enhancer. The one-parameter extension is474

kinetic and accesses nonequilibrium system behaviors.475

We analyzed the parameter space of the resulting model476

and visualized the phase diagram of “regulatory phe-477

notypes”, quantities that are either experimentally con-478

strained (such as mean expression, mean TF residence479

time, sensitivity), are likely to be optimized by evolu-480

tionary pressures (such as noise and specificity), or both.481

This allowed us to recognize and understand biophysical482
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FIG. 4. High-specificity non-equilibrium schemes predict bursty gene expression. (A) Stochastic simulation of an
equilibrium (EQ) and a nonequilibrium (NEQ) enhancer model with n = 5 TF binding sites, responding to a TF concentration
step (bottom-most panel). Average TF residence times are the matched between EQ and NEQ models at 2.1T0, T0 = 1/kS− = 1
s, and both induction curves (scaled for half-maximal concentration) are identical, with sensitivity H ≈ 2.7. When TF
concentration is high, expression is fixed at E = 0.5. Parameters for NEQ model: α = 127, klink = 2, cmax = 0.065; for EQ
model: klink → ∞, α = 19.8,cmax = 0.037. Rasters show the occupancy of TF binding sites; orange line above shows the
enhancer ON/OFF state; zoom-in for EQ model is necessary due to its fast dynamics. (B) Regulatory phenotypes for EQ and
NEQ models during steady-state epoch (gray in A). Specificity (S) and enhancer state correlation time (TE) are higher for the
NEQ model; the Mediator mean ON residence time, TM , is the same between the models, but the probability density function
reveals a long tail in the NEQ scheme, and a nearly exponential distribution for the EQ scheme. Last two panels show the
TF occupancy histogram during high TF concentration interval, conditional on the enhancer being OFF or ON. (C) Transient
behavior of the mean enhancer state (E), mean protein number (P ; assuming deterministic production/degradation protein
dynamics given enhancer state), and gene expression noise, N = σP /P , for the NEQ and EQ models, upon a TF concentration
low-to-high switch (left column) and high-to-low switch (right column). Traces shown are computed as averages over 1000
stochastic simulation replicates.

limits and trade-offs, and to identify the optimal operat-483

ing regime of the proposed enhancer model that is con-484

sistent with current observations, as we summarize next.485

Our analyses suggest the following: (i) individual TFs486

are limited in their ability to discriminate specific from487

random sites, kS−/k
NS
− ∼ 10−2, so high specificity must488

be a collective enhancer effect in the proofreading regime489

where klink ∼ kS−; (ii) mean TF residence times in an en-490

hancer are not much higher than the typical TF residence491

time at an isolated specific site, TTF/T0 . 10, enabling492

rapid turnover of bound TFs on the 1 − 10 s timescale;493

(iii) typical sensitivities are much lower than the total494

number of TF binding sites, yielding a reasonable speci-495

ficity/noise balance at H ∼ n/2 (Fig S7,S8); (iv) Medi-496

ator basal rates should maximize κ−/κ+, i.e., mediator497

switches OFF essentially instantaneously if not stabilized498

by linked TFs; (v) TF concentrations required to activate499

the enhancer in this regime are substantially higher than500

expected for the equivalent but highly cooperative en-501

hanceosome (at higher α); (vi) optimal nonequilibrium502

models achieve order-of-magnitude improvements in S503

relative to matched equilibrium models—thereby avoid-504

ing crosstalk and spurious gene expression—by suppress-505

ing induction from non-cognate (random) DNA, while506
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induction curves from functional enhancers bear no clear507

signatures of non-equilibrium operation; (vii) to permit508

large increases in specificity S, enhancer state fluctua-509

tions will develop long timescale correlations, TE � TTF510

(but still be bounded by the protein lifetime, TE . TP to511

enable noise averaging), leading to substantial observed512

noise levels; (viii) the enhancer ON residence time dis-513

tribution will be non-exponential, with excess probabil-514

ity for very long-lived events, during which an enhancer515

could trigger a transcriptional burst following an interac-516

tion with the promoter; (ix) in our model, long correla-517

tion time, TE , in steady state also implies long (minutes518

to hours) response times when TF concentration change,519

which would be observable with live imaging on the tran-520

scriptional, but likely not protein-concentration, level.521

We find it intriguing that a single-parameter exten-522

sion of a classic equilibrium model led to such richness523

of observed behaviors, and to a suggestion that the opti-524

mal operating regime is very different from regulation at525

equilibrium. Central to this qualitative change is the fact526

that long fluctuation and response timescales of enhancer527

activation appear necessary to achieve high specificity of528

regulation through proofreading. Such long timescales529

are not inconsistent with our current knowledge. In-530

deed, some developmental enhancers form active clus-531

ters (super-enhancers) that are rather long-lived (order532

of minute to hours), perhaps precisely because develop-533

mental events need to be guided with extraordinary pre-534

cision [52, 53].535

A strong objection to our model could be that it is536

too simple: after all, we neglected many structural and537

molecular details, many of which we may not even know538

yet. This is certainly true and was done, in part, on pur-539

pose, to permit exhaustive analysis across the complete540

parameter space. Such understanding would have been541

impossible if we explored much richer models or were con-542

cerned with quantitative fitting to a particular dataset.543

These are clearly the next steps, to which we contribute544

by highlighting the functional importance of breaking the545

equilibrium link between TF binding and enhancer acti-546

vation state. Since our model is fully probabilistic, spe-547

cializing it for a particular experimental setup, e.g., live548

transcriptional imaging, and doing rigorous inference is549

technically tractable, but beyond the scope of this paper.550

Perhaps a key simplification of our model is the link551

between enhancer / Mediator ON state and transcrip-552

tional activity. We assumed that expression is propor-553

tional to the probability of enhancer state to be ON, yet554

the enhancer-promoter interaction itself is a matter of vi-555

brant current experimentation and modeling [10, 51, 54–556

56]. For example, long-lived activated enhancers that we557

predict could interact with promoters only intermittently558

to trigger transcriptional bursts, as suggested by the559

“dynamic kissing model” [52], which could substantially560

impact the experimentally-observable quantitative noise561

signatures of enhancer function at the transcriptional562

level. Whatever the true nature of enhancer-promoter563

interactions might be, however, they are unlikely to be564

able to remove excess enhancer switching noise, due to565

its slow timescale, suggesting that the tradeoffs that we566

identify should hold generically.567

One could also question whether the importance we as-568

cribed to high specificity is really warranted. Evolution-569

arily, regulatory crosstalk due to lower specificity helps570

networks evolve during transient bouts of adaptation,571

even though it could be ultimately selected against [57].572

Mechanistically, molecular mechanisms such as chro-573

matin modification or the regulated 3D structure of DNA574

decrease the number of possible non-cognate targets that575

could trigger erroneous gene expression [58, 59], and thus576

alleviate the need for the high specificity of the transcrip-577

tional control. Empirically, there is ample evidence for578

abortive or non-sensical transcriptional activity [60, 61],579

whose products could be dealt with downstream or sim-580

ply ignored by the cell. Yet it is also clear that regulatory581

specificity must be a collective effect, as individual TFs582

bind pervasively across DNA even in non-regulatory re-583

gions [62], and self-consistent arguments suggest that in584

absence of non-equilibrium mechanisms, crosstalk could585

be overwhelming in eukaryotes [24]. It is also possible586

that real enhancers are very diverse with large variation587

along the specificity axis, thereby navigating the noise-588

specificity tradeoff as appropriate given the biological589

context. Where some erroneous induction can be toler-590

ated, expression could be quicker, less noisy, and closer to591

equilibrium. In contrast, where tight control is needed,592

enhancers could take a substantial amount of time to593

commit to expression correctly, perhaps benefitting ad-594

ditionally from extra time-averaging that could further595

reduce the Berg-Purcell-type noise intrinsic to TF con-596

centration sensing [50, 63–65].597

ACKNOWLEDGMENTS598

GT acknowledges the support of the Human Frontiers599

Science Program RGP0034/2018. RG was supported by600

the Austrian Academy of Sciences DOC fellowship. RG601

thanks S. Avvakumov for helpful discussions.602

[1] Antoine Coulon, Carson C. Chow, Robert H. Singer, and603

Daniel R. Larson. Eukaryotic transcriptional dynam-604

ics: from single molecules to cell populations. Nature605

Reviews Genetics, 14(8):572–584, August 2013. ISSN606

1471-0056, 1471-0064. doi:10.1038/nrg3484. URL http:607

//www.nature.com/articles/nrg3484.608

[2] Zeba Wunderlich and Leonid A Mirny. Different gene reg-609

ulation strategies revealed by analysis of binding motifs.610

Trends in genetics, 25(10):434–440, 2009.611

[3] J Christof M Gebhardt, David M Suter, Rahul Roy,612

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.029405doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.029405
http://creativecommons.org/licenses/by/4.0/


9

Ziqing W Zhao, Alec R Chapman, Srinjan Basu, Tom613

Maniatis, and X Sunney Xie. Single-molecule imaging of614

transcription factor binding to DNA in live mammalian615

cells. Nature Methods, 10(5):421–426, May 2013. ISSN616

1548-7091, 1548-7105. doi:10.1038/nmeth.2411. URL617

http://www.nature.com/articles/nmeth.2411.618

[4] Jiji Chen, Zhengjian Zhang, Li Li, Bi-Chang Chen, An-619

drey Revyakin, Bassam Hajj, Wesley Legant, Maxime620

Dahan, Timothe Lionnet, Eric Betzig, Robert Tjian,621

and Zhe Liu. Single-Molecule Dynamics of Enhanceo-622

some Assembly in Embryonic Stem Cells. Cell, 156623

(6):1274–1285, March 2014. ISSN 00928674. doi:624

10.1016/j.cell.2014.01.062. URL http://linkinghub.625

elsevier.com/retrieve/pii/S0092867414001974.626

[5] Colin Thomas, Yingbiao Ji, Chao Wu, Haily Datz,627

Cody Boyle, Brett MacLeod, Shri Patel, Michelle Am-628

pofo, Michelle Currie, Jonathan Harbin, Kate Pechenk-629

ina, Niraj Lodhi, Sarah J. Johnson, and Alexei V.630

Tulin. Hit and run versus long-term activation of PARP-631

1 by its different domains fine-tunes nuclear processes.632

Proceedings of the National Academy of Sciences, page633

201901183, April 2019. ISSN 0027-8424, 1091-6490. doi:634

10.1073/pnas.1901183116. URL http://www.pnas.org/635

lookup/doi/10.1073/pnas.1901183116.636

[6] Daria Shlyueva, Gerald Stampfel, and Alexander Stark.637

Transcriptional enhancers: from properties to genome-638

wide predictions. Nature Reviews Genetics, 15(4):272,639

2014.640

[7] Mariela D. Petkova, Gaper Tkaik, William Bialek, Eric F.641

Wieschaus, and Thomas Gregor. Optimal Decoding642

of Cellular Identities in a Genetic Network. Cell, 176643

(4):844–855.e15, February 2019. ISSN 00928674. doi:644

10.1016/j.cell.2019.01.007. URL https://linkinghub.645

elsevier.com/retrieve/pii/S0092867419300406.646

[8] Damien Nicolas, Benjamin Zoller, David M. Suter,647

and Felix Naef. Modulation of transcriptional burst648

frequency by histone acetylation. Proceedings of649

the National Academy of Sciences, page 201722330,650

June 2018. ISSN 0027-8424, 1091-6490. doi:651

10.1073/pnas.1722330115. URL http://www.pnas.org/652

lookup/doi/10.1073/pnas.1722330115.653

[9] N. Molina, D. M. Suter, R. Cannavo, B. Zoller, I. Gotic,654

and F. Naef. Stimulus-induced modulation of transcrip-655

tional bursting in a single mammalian gene. Proceed-656

ings of the National Academy of Sciences, 110(51):20563–657

20568, December 2013. ISSN 0027-8424, 1091-6490. doi:658

10.1073/pnas.1312310110. URL http://www.pnas.org/659

cgi/doi/10.1073/pnas.1312310110.660

[10] CarolineR. Bartman, SarahC. Hsu, ChrisC.-S. Hsi-661

ung, Arjun Raj, and GerdA. Blobel. Enhancer Reg-662

ulation of Transcriptional Bursting Parameters Re-663

vealed by Forced Chromatin Looping. Molecular Cell,664

62(2):237–247, April 2016. ISSN 10972765. doi:665

10.1016/j.molcel.2016.03.007. URL http://linkinghub.666

elsevier.com/retrieve/pii/S1097276516001854.667

[11] Jeehae Park, Javier Estrada, Gemma Johnson, Ben J668

Vincent, Chiara Ricci-Tam, Meghan Dj Bragdon, Yeka-669

terina Shulgina, Anna Cha, Zeba Wunderlich, Jeremy670

Gunawardena, and Angela H DePace. Dissecting the671

sharp response of a canonical developmental enhancer672

reveals multiple sources of cooperativity. eLife, 8:2787,673

June 2019.674

[12] Mark Ptashne. A genetic switch: gene control and phage675

[lambda]. Cell Press Cambridge, MA, 1986.676

[13] Thomas Kuhlman, Zhongge Zhang, Milton H Saier, and677

Terence Hwa. Combinatorial transcriptional control of678

the lactose operon of escherichia coli. Proceedings of the679

National Academy of Sciences, 104(14):6043–6048, 2007.680

[14] Otto G Berg and Peter H von Hippel. Selection of681

dna binding sites by regulatory proteins: Statistical-682

mechanical theory and application to operators and pro-683

moters. Journal of molecular biology, 193(4):723–743,684

1987.685

[15] J. B. Kinney, A. Murugan, C. G. Callan, and E. C.686

Cox. Using deep sequencing to characterize the bio-687

physical mechanism of a transcriptional regulatory se-688

quence. Proceedings of the National Academy of Sci-689

ences, 107(20):9158–9163, May 2010. ISSN 0027-8424,690

1091-6490. doi:10.1073/pnas.1004290107. URL http:691

//www.pnas.org/cgi/doi/10.1073/pnas.1004290107.692

[16] Nathan M. Belliveau, Justin B. Kinney, and Rob Phillips.693

Systematic approach for dissecting the moleclar mecha-694

nisms of transcriptional regulation in bacteria. PNAS,695

page 10, May 2018.696

[17] Hernan G Garcia, Alvaro Sanchez, James Q Boedicker,697

Melisa Osborne, Jeff Gelles, Jane Kondev, and Rob698

Phillips. Operator sequence alters gene expression inde-699

pendently of transcription factor occupancy in bacteria.700

Cell reports, 2(1):150–161, 2012.701

[18] Petter Hammar, Mats Walldén, David Fange, Fredrik702
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