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Abstract: To thrive in dynamic environments, animals can generate flexible behavior
and rapidly adapt responses to a changing context and internal state. Examples of be-
havioral flexibility include faster stimulus responses when attentive and slower responses
when distracted. Contextual modulations may occur early in the cortical hierarchy and
may be implemented via afferent projections from top-down pathways or neuromodulation
onto sensory cortex. However, the computational mechanisms mediating the effects of such
projections are not known. Here, we investigate the effects of afferent projections on the
information processing speed of cortical circuits. Using a biologically plausible model based
on recurrent networks of excitatory and inhibitory neurons arranged in cluster, we classify
the effects of cell-type specific perturbations on the circuit’s stimulus-processing capability.
We found that perturbations differentially controlled processing speed, leading to counter-
intuitive effects such as improved performance with increased input variance. Our theory
explains the effects of all perturbations in terms of gain modulation, which controls the
timescale of the circuit dynamics. We tested our model using large-scale electrophysio-
logical recordings from the visual hierarchy in freely running mice, where a decrease in
single-cell gain during locomotion explained the observed acceleration of visual process-
ing speed. Our results establish a novel theory of cell-type specific perturbations linking
connectivity, dynamics, and information processing via gain modulations.
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1 Introduction

Animals respond to the same stimulus with different reaction times depending on the con-
text or the behavioral state. Faster responses may be elicited by expected stimuli or when
the animal is aroused and attentive [1]. Slower responses may occur in the presence of
distractors or when the animal is disengaged from the task [2–4]. Experimental evidence
suggests that neural correlates of these contextual modulations occur early in the cortical
hierarchy, already at the level of the primary sensory cortex [5, 6]. During the waking
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state, levels of arousal, attention, and task engagement vary continuously and are associ-
ated with ongoing and large changes in the activity of neuromodulatory systems [7–9] as
well as cortico-cortical feedback pathways [10–14]. Activation of these pathways modulate
the patterns of activity generated by cortical circuits and may affect their information-
processing capabilities. However, the precise computational mechanism underlying these
flexible reorganizations of cortical dynamics remains elusive.

Variations in behavioral and brain state, such as arousal, engagement and body move-
ments may act on a variety of timescales, both slow (minutes, hours) and rapid (seconds
or subsecond), and spatial scales, both global (pupil diameter, orofacial movements) and
brain subregion-specific; and they can be recapitulated by artificial perturbations. These
variations have been associated with a large variety of seemingly unrelated mechanisms
operating both at the single cell and at the population level. At the population level, these
mechanisms include modulations of low and high frequency rhythmic cortical activities
[15]; changes in noise correlations [16, 17]; and increased information flow between cortical
and subcortical networks [15]. On a cellular level, these variations have been associated
with modulations of single-cell responsiveness and reliability [17]; and cell-type specific
gain modulation [15]. These rapid, trial-by-trial modulations of neural activity may be
mediated by neuromodulatory pathways, such as cholinergic and noradrenergic systems [7–
9, 18], or more precise cortico-cortical projections from prefrontal areas towards primary
sensory areas [10–14]. The effects of these cortico-cortical projections can be recapitulated
by optogenetic activation of glutamatergic feedback pathways [19]. In the face of this wide
variety of physiological pathways, is there a common computational principle underlying
the effects they elicit on sensory cortical circuits?

A natural way to model the effect of activating a specific pathway on a downstream cir-
cuit is in the form of a perturbation to the downstream circuit’s afferent inputs or recurrent
couplings [20, 21]. Here, we will present a theory explaining how these perturbations con-
trol the information-processing speed of a downstream cortical circuit. Our theory shows
that the effects of perturbations that change the statistics of the afferents or the recurrent
couplings can all be captured by a single mechanism of action: intrinsic gain modulation.
Our theory is based on a biologically plausible model of cortical circuits using clustered
spiking network [22]. This class of models capture complex physiological properties of cor-
tical dynamics such as state-dependent changes in neural activity, variability [23–27] and
information-processing speed [20]. Our theory predicts that gain modulation controls the
temporal dynamics of the cortical circuit and thus its information processing speed, such
that decreasing the intrinsic single-cell gain leads to faster stimulus coding.

We tested our theory by examining the effect of locomotion on visual processing in the
visual hierarchy. We found that locomotion decreased the intrinsic gain of neurons in the
absence of stimuli in freely running mice. The theory thus predicted a faster encoding of vi-
sual stimuli during running compared to rest, which we confirmed to be the most prominent
effect of locomotion on visual processing. Our theoretical framework links gain modulation
to information-processing speed, providing guidance for the design and interpretation of
future manipulation experiments by unifying the changes in brain state due to behavior,
optogenetic, or pharmacological perturbations, under the same shared mechanism.
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2 Results

2.1 Controlling information processing speed with perturbations

To elucidate the effect of perturbations on cortical networks, we modeled the local circuit
as a network of recurrently connected excitatory (E) and inhibitory (I) spiking neurons.
Both E and I populations were arranged in clusters[20, 22, 23, 25, 28], where synaptic
couplings between neurons in the same cluster were potentiated compared to neurons in
different clusters, reflecting the empirical observation of cortical assemblies of functionally
correlated neurons (Fig. 1a-b, [29–32]). In the absence of external stimulation (ongoing
activity), clustered networks generate rich temporal dynamics characterized by metastable
activity operating in the inhibition stabilized regime (Fig. S1), with lognormal distributions
of firing rates (Fig. 1c). Network activity was characterized by the emergence of the
slow timescale of cluster transient activation with average activation lifetime of 106±35 ms
(hereby referred to as “cluster timescale"), much larger than single neuron time constant
(20ms) [23, 25].

To investigate the effect of afferent perturbations, we compared the network’s information-
processing speed by presenting stimuli in an unperturbed and a perturbed condition. In
unperturbed trials (Fig. 2a), we presented one of four sensory stimuli, modeled as depo-
larizing currents targeting a subset of stimulus-selective E neurons. Stimulus selectivities
were mixed and random, clusters having equal probability of being stimulus-selective. In
perturbed trials, in addition to the same sensory stimuli, we included a perturbation, which
was turned on before the stimulus and was active until the end of stimulus presentation. We
investigated and classified the effect of several perturbations. The first type of perturbations
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Figure 1. Biological plausible model of cortical circuit. a) Schematics of the network architecture.
A recurrent network of E (black triangles) and I (red circles) spiking neurons arranged in clusters
(inset: membrane potential trace from representative E neuron) is presented sensory stimuli tar-
geting subsets of E clusters, in different conditions defined by perturbations. b) Synaptic couplings
Jij for a representative clustered network, highlighting the block diagonal structure of potentiated
intra-cluster synaptic weights for both E and I clusters, and the background E and I populations
(bgr). Cluster size was heterogeneous (inset). c) Representative ongoing trial; tick marks represent
spike times of E (black) or I (red) neurons. Inset: The cumulative distributions of single-cell firing
rates (c) in the representative network are lognormal (blue: empirical data; orange: lognormal fit).
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δmean(E) or δmean(I) affected the mean of the afferent currents to either E (Fig. 2b) or I
populations, respectively. In the second type of perturbation δvar(E) or δvar(I), we chose
a cell-type specific population (either E or I, respectively), then for each neuron in that
population we sampled its external current from a normal distribution with zero mean and
fixed variance. This perturbation thus introduced a spatial variance in the cell-type specific
afferent currents. In the third type of perturbations δAMPA or δGABA, we changed the
average GABAergic or glutamatergic (AMPA) recurrent synaptic weights. Perturbations
were identical in all trials of the perturbed condition; namely, they did not convey any
information about the stimuli. We chose the range of external perturbations such that the
network still retained non-trivial metastable dynamics within the whole range. Namely, we
avoided extreme perturbations as unphysiological, where the network activity completely
shut down or saturated loosing metastability.

We assessed how much information about the stimuli was encoded in the population
spike trains at each moment using a multiclass classifier (with four class labels corresponding
to the four presented stimuli, Fig. 2c). In the unperturbed condition, the time course of the
cross-validated decoding accuracy, averaged across stimuli, was significantly above chance
after 0.21 + / − 0.02 seconds (mean±s.e.m. across 10 simulated networks, black curve in
Fig. 2c) and reached perfect accuracy after a second. In the perturbed condition, stimulus
identity was decoded at chance level in the period after the onset of the perturbation but
before stimulus presentation (Fig. 2c), consistent with the fact that the perturbation did not
convey information about the stimuli. We found that perturbations significantly modulated
the network information processing speed. We quantified this modulation as the average
latency to reach a decoding accuracy between 40% and 80% (Fig. 2c, yellow area), and
found that perturbations differentially affected processing speed.

Perturbations had opposite effects depending on which cell-type specific populations
they targeted. Increasing δmean(E) monotonically improved network performance (Fig. 2d,
left panel): in particular, positive perturbations induced an anticipation of stimulus-coding
(shorter latency), while negative ones led to longer latency and slower coding. The opposite
effect was achieved when increasing δmean(I), which slowed down processing speed (Fig.
2d, right panel). Perturbations that changed the spatial variance of the afferent currents
had counterintuitive effects (Fig. 2e). We measured the strength of these perturbations via
their coefficient of variability CV (α) = σα/µα, for α = E, I, where σ and µ are the standard
deviation and mean of the across-neuron distribution of afferent currents. Perturbations
δvar(E) that increased CV (E) led to faster processing speed. The opposite effect was
achieved with perturbations δvar(I) inducing a spatial variance across afferents to I neurons,
which slowed down stimulus-processing speed (Fig. 2g). Perturbations δAMPA which
increased the glutamatergic synaptic weights improved performance proportionally to the
perturbation. The opposite effect was achieved by perturbations δGABA that increased
the GABAergic synaptic weights, which monotonically decreased network processing speed
(Fig. 2g). We thus concluded that afferent current perturbations differentially modulated
the speed at which network activity encoded information about incoming sensory inputs.
Such modulations exhibited a rich dynamical repertoire.
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Figure 2. Perturbations control stimulus-processing speed in the clustered network. a-b) Repre-
sentative trials in the unperturbed (a) and perturbed (b) conditions; the representative perturbation
is an increase in the spatial variance δvar(E) across E neurons (corresponding to the green decoding
curve in c and the green star in e). After a stimulus is presented at t = 0 (black vertical line over-
laid on raster plot represent stimulus onset; the black curve in the top panel represent the stimulus
time course), stimulus-selective E-clusters (brown tick marks represent their spiking activity) are
activated at a certain latency (brown vertical line). In the perturbed condition (b), a perturba-
tion is turned on before stimulus onset (gray-dashed vertical line overlaid on raster plot represent
perturbation onset; the same line in the top panel represent the perturbation time course). The
activation latency of stimulus-selective clusters is shorter in the perturbed compared to the unper-
turbed condition. c) Left: schematic of stimulus-decoding analysis. Left: A multi-class classifier
was trained to discriminate between the four stimuli from single-trial population activity vectors
in a given time bin (left: (curves represent the time course of population activity in single trials,
color-coded for 4 stimuli; the purple circle highlights a given time bin along the trajectories), yield-
ing a cross-validated confusion matrix for the decoding accuracy at that bin (central panel). Right:
Average stimulus-decoding accuracy in each bin in the unperturbed (black curve) and perturbed
(green curve) conditions (horizontal green bar: significant different between conditions, p < 0.05

with multiple bin correction). d-g: Difference in stimulus decoding latency in the perturbed mi-
nus the unperturbed conditions (average difference between rise time of decoding accuracy in c,
mean±S.D. across 10 networks) for six perturbations (see Methods and main text for details; green
star represent the perturbation in b-c).

2.2 Single-cell responses cannot explain the effects of perturbations

What is the neural mechanism underlying the observed modulations of processing speed in-
duced by perturbations? We investigated whether the effect of perturbations on processing
speed could be captured by changes in single-cell responses. We first characterized single-cell
responses to perturbations alone, in the absence of sensory stimuli (Fig. 3a). We found that
perturbations differentially affected neuronal responses in a cell-type specific way. Pertur-
bations changed the average population firing rates, and led to complex patterns of response
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across E and I populations (Fig. 3b). Specifically, perturbations increasing δmean(E) in-
duced higher firing rates and induced proportionally excited (inhibited) responses in both
E and I populations. On the other hand, perturbations that increased δmean(I) led to a
decrease in both E and I average firing rates (Fig. 3b). This paradoxical effect [33] re-
vealed that the network operates in the inhibition stabilized regime. When increasing the
inhibitory current beyond δmean(I)=50%, the network reached a reversal point where the
E population activity became silent and the I population rebounded, starting to increase
their firing rates again (Fig. S1).

Perturbations increasing the variance δvar(E) and δvar(I) led to surprising effects (Fig.
3b, S2a). Increasing δvar(E) induced higher firing rates in both E and I populations, despite
leaving the mean afferents unchanged; moreover, it led to mixed responses at the single cell
level, with a prevalence of excited responses in both E and I populations. We will see
below that this set of responses is consistent with locomotion-induced effects in the visual
cortical hierarchy. Increasing δvar(I) left I firing rates unchanged but led to a decrease of E
firing rates. This perturbation also induced mixed responses at the single cell level, with a
prevalence of inhibited responses in both populations. Finally, perturbations δAMPA and
δGABA led to responses similar to those found when driving the mean E- or I-afferents,
respectively.

We then hypothesized that, if the response increase were larger for stimulus-selective
compared to nonselective neurons (i.e., if ∆PSTH(sel)>∆PSTH(nonsel)), then a perturba-
tion increasing single-cell stimulus-responses could lead to faster stimulus-processing speed.
We found that perturbations strongly affected the peak of single-cell responses to stim-
uli compared to baseline; in particular, they affected stimulus-selective and non-selective
neurons differentially (Fig. 3b, S2). We then examined changes in single-cell selectivity,
measured by the d’ of their responses across stimuli. We found that perturbations strongly
affected single-cell selectivities with significant changes in their d’ (Fig. 3c, S3).

We then tested whether perturbation-induced changes in stimulus responses or dis-
criminability could consistently explain the entirety of the observed changes in stimulus-
processing speed, namely be the mechanism mediating that effect. Changes in selectivity
and responsiveness were consistent with modulation of processing speed in the case of per-
turbations targeting I populations, namely δmean(I), δvar(I), and δGABA, but they were
inconsistent with modulations in processing speed when perturbation targeted E popula-
tions (Fig. S2c-d, S2b-c). In the case of the perturbation δvar(E), network performance
increased with larger perturbations even though single-cell responses and selectivity in-
creasingly degraded. In the case of the perturbation δmean(E) and δAMPA, network per-
formance likewise increased but single-cell metrics where non-monotonic in the value of
the perturbation. Across all different perturbations, changes in single-cell properties were
overall inconsistent and accounted for a small fraction of the variance in modulations of
processing speed (Fig. 3c-d). In conclusion, since changes in single-cell stimulus-responses
across all perturbations were overall inconsistent with the observed changes in processing
speed, we conclude that they could not represent the mechanism underlying the observed
effects of perturbations.
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Figure 3. Single-cell responses to stimuli and perturbations. a) Representative single cell response
to the perturbation δvar(E)=10% in the absence of stimuli (top: dashed line, time course of pertur-
bation; bottom: dashed line, perturbation onset; red curve, response PSTH, mean±S.D. across 20
trials; horizontal red bar, significant response, p < 0.05 with multiple bin correction. b) Firing rate
responses induced by the perturbations. Top: Average change in firing rate across E (full) and I
(dashed) populations (mean±S.D. across 10 simulated networks). Histograms: Average fractions of
E (top) and I (bottom) neurons with excited (positive bars) and inhibited (negative bars) responses
to the perturbations (t-test, p < 0.05). c) Single-cell changes in firing rate response to stimuli
due to the perturbations (∆ =peak response-baseline in each perturbed or unperturbed condition)
are uncorrelated to changes in stimulus-decoding latencies (same as in Fig. 2d-f). Color-coded
markers represent different perturbations, each point is the mean±s.e.m. across 10 networks for a
specific value of the perturbation; linear regression, R2 = 0.02. d) Single-cell changes in stimulus
selectivity due to the perturbations (d’) are uncorrelated to changes in stimulus-decoding latencies
(same notation as in c; linear regression, R2 = 0.003).

2.3 Modulations of the cluster timescale explain changes in stimulus-processing
speed

A crucial feature of neural activity in clustered networks is metastable attractor dynamics,
characterized by the emergence of a long timescale of cluster activation (Fig. 1c). We rea-
soned that, if the perturbations affected the intrinsic timescale of metastable dynamics, this
could lead to changes in stimulus-processing speed. We first tested whether perturbations
modulated the network’s attractor dynamics. To isolate the effects of perturbations on the
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attractor landscape, we considered a stimulation protocol where perturbations occurred in
the absence of sensory stimuli (“ongoing activity”). We found that perturbations strongly
modulated the attractor landscape, changing the repertoire of attractors the network ac-
tivity visited during its itinerant dynamics (Fig. 4a-b).

Changes in attractor landscape were perturbation-specific. Perturbations increasing
δmean(E) (δmean(I)) induced a consistent shift in the repertoire of attractors: larger per-
turbations led to larger (smaller) numbers of co-active clusters. Surprisingly, perturbations
that increased δvar(E) (δvar(I)), led to network configurations with larger (smaller) sets
of co-activated clusters. This effect occurred despite the fact that such perturbations did
not change the mean afferent input to the network. Perturbations affecting δAMPA and
δGABA had similar effects to δmean(E) and δmean(I), respectively.

We then tested whether perturbations modulated the network’s intrinsic timescale of
cluster activation. Indeed, we found that perturbations differentially modulated the average
cluster activation timescale τ during ongoing periods, in the absence of stimuli (Fig. 4c).
In particular, increasing δmean(E), δvar(E), or δAMPA led to a proportional acceleration
of the network metastable activity and shorter τ ; while increasing δmean(I), δvar(I) or
δGABA induced the opposite effect with longer τ . Changes in τ were congruent with
changes in the duration of intervals between consecutive activations of the same cluster
(cluster inter-activation intervals, Fig. S3).

In all conditions, the perturbation-induced changes of the cluster timescale τ , estimated
during ongoing periods, predicted the effect of the perturbation on stimulus-processing la-
tency (Fig. 4c-d). Specifically, perturbations that induced an acceleration of τ in turn
accelerated stimulus coding, and vice versa. This led us to formulate the following hypoth-
esis for the computational mechanism underlying the modulation of the stimulus-processing
speed. After stimulus presentation, network activity encodes stimulus-related information
by activating the stimulus-selective clusters. If perturbations alter the onset latency of
stimulus-selective clusters, they would control the latency at which the network activity
starts encoding the stimulus. We can visualize this hypothesis in representative trials where
the same stimulus was presented in the absence (Fig. 2a) or in the presence (Fig. 2b) of
the perturbation δmean(E)= 10%. Stimulus-selective clusters (highlighted in brown) had a
faster activation latency in response to the stimulus in the perturbed condition compared
to the unperturbed one. A systematic analysis confirmed this hypothesis revealing that, for
all perturbations, the activation latency of stimulus-selective clusters was the best predictor
of the change in decoding latency (Fig. 4e, R2 = 0.93).

These results demonstrate that the effect of perturbations on stimulus-processing speed
originates in their modulations of the metastable dynamics of cluster activation. In par-
ticular, we found the remarkable result that the effect of perturbations on ongoing activity
predicted the way perturbations affected stimulus-evoked responses.

2.4 Changes in cluster timescale are mediated by gain modulation

What is the computational mechanism mediating the changes in cluster timescale induced
by the perturbation? We argue that this phenomenon is driven by gain modulation. Using
mean field theory, we can represent network attractors, defined by sets of co-activated
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Figure 4. Perturbations modulate the cluster timescale. a) Top: The clustered network activity
during a representative ongoing trial hops among different metastable attractors (grey box: attractor
with 3 co-active clusters). Bottom: Number of co-active clusters at each time bin (right: frequency
of occurrence of attractors with 2-6 co-active clusters in the representative trial). b) Perturbations
strongly modulate the attractor landscape (color-coded curves: frequency of occurrence of network
attractors for each value of the perturbation, mean occcurrence across 5 sessions). c): Perturbation
induced changes in the cluster timescale during spontaneous periods (pink curve, mean±s.e.m.
across 5 sessions) explain the changes in stimulus-decoding latency (orange curve, same as in Fig.
2d; panel d: linear regression, R2 = 0.75). e) Onset latency of stimulus-selective clusters (cfr.
brown vertical line in Fig. 2a-b) is modulated by the perturbation and explains the change in
stimulus-decoding latency (linear regression, R2 = 0.93.

clusters, as potential wells in an attractor landscape [20, 23, 25, 34, 35]. Let us illustrate
this in a simplified network with two clusters (Fig. 5a and S4). Here, the attractor landscape
consists of two potential wells, each well corresponding to an attractor where one cluster
is active and the other is inactive. When the network activity dwells in the attractor
represented by the left potential well, it may escape to the right potential well due to
internally generated variability. This process will occur with a probability determined by
the height ∆ of the barrier separating the two wells: the higher the barrier, the less likely the
transition [20, 23, 35, 36]. We found that perturbations differentially control the height of
the barrier ∆ separating the two attractors (Fig. S4). A mean field theory analysis showed
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that the potential energy can be directly obtained from an effective transfer function for a
single population (see Fig. S4, Methods and [20, 34] for details), thus establishing a direct
relationship between the slope of the transfer function during ongoing periods (hereby
referred to as “gain") and the barrier height ∆ (Fig. 5a, S4). Because the barrier height
controls the cluster activation lifetime, we thus inherited a direct relationship between gain
modulation, induced by the perturbations, and changes in cluster activation timescale. In
particular, perturbations inducing steeper gain will cause deeper wells and thus increase
the cluster timescale, and vice versa. Using mean field theory, we demonstrated a complete
classification of the differential effect of all perturbations on barrier heights and gain (Fig.
S4).

We first proceed to verify these theoretical predictions, obtained in a simplified two-
cluster network, in the high dimensional case of large networks with several clusters using
simulations. While barrier heights and the network’s attractor landscape can be exactly
calculated in the simplified two-cluster network, this task is infeasible in large networks with
a large number of clusters where the number of attractors is exponential in the number
of clusters. On the other hand, the mean field analysis revealed that changes in barrier
heights ∆ are equivalent to changes in gain, and the latter can be easily estimated from
spiking activity [37, 38] (Fig. 5-S4). We thus tested whether the relation between gain
and timescale held in the high-dimensional case of a network with many clusters. We
estimated single-cell transfer functions from their spiking activity during ongoing periods,
in the absence of sensory stimuli but in the presence of different perturbations (Fig. 5b,
[37, 38]). We found that perturbations strongly modulated single-cell gain in the absence
of stimuli, verifying mean field theory predictions in all cases (Fig. 5c and Fig. S4). In
particular, we confirmed the direct relationship between gain and cluster timescale τ , such
that perturbations that decreased (increased) the gain also decreased (increased) cluster
timescale (Fig. 5c, R2 = 0.96, and Fig. S4). For all perturbations, gain modulations
explained the observed changes in cluster timescale.

We then tested whether perturbation-induced gain modulations explained the changes
in stimulus-processing speed during evoked periods, and found that the theoretical pre-
dictions (Fig. S4) were borne out in the simulations in all cases (Fig. 5d-e). Let us
summarize the conclusion of our theoretical analyses. Motivated by mean field theory link-
ing gain modulation to changes in transition rates between attractors (i.e., potential barrier
heights), we found that gain modulation controls the cluster timescale during ongoing pe-
riods. We then observed that changes in cluster timescale determine changes in the onset
latency of stimulus-selective clusters upon stimulus presentation. Changes in onset latency
of stimulus-selective clusters explained changes in stimulus-coding latency. We thus linked
gain modulation to changes in stimulus-processing speed (Fig. 5d-e).

2.5 Locomotion decreases single-cell gain and accelerates visual processing
speed

Our theory predicts a link between gain modulations measured during ongoing periods and
changes in stimulus-processing speed. We sought to experimentally test this prediction in
freely running mice using electrophysiological recordings from primary visual cortex (V1)

– 10 –

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.07.030700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030700
http://creativecommons.org/licenses/by-nc/4.0/


Unperturbed

Tr
an

sf
er

 fu
nc

tio
n

Po
te

nt
ia

l
en

er
gy

E = dr [r −Φ (r)]Potential energy:

BA BA

A

B

C

C

Δ
C

Gain modulation

a

Firing rate

Attractors
BA BA

b cTransfer function Gain and timescale

d
Clust. 1
Clust. 2

Φ (r)

r r

rr

gain

A

B

C

0 40
0

200

C
ou

nt

0

40

0 1Quantile
-5

5

In
pu

t

-5 0 5
Input current (a.u.)

0R
at

e 
[H

z]

Firing rate [spks/s]

40

Ra
te

Transfer fct.

-30 0 30-10 0 300 500 20-0.2 0 0.2-10 0 20
-0.2

0.3

-0.1

0

0.2

-0.1

0

-0.1

0.4

-0.1

0.3

Δ
La

te
nc

y 
[s

]

-0.1

0.2

fast

slow

e

gentle

steep

Δ
G

ain [spks/s]

-2

4

-2

0

4

-3

0

0

20

-5
0

20

0 20

-2
0

8

steepergentler
ΔGain [spks/s]

R2=0.71

R2=0.96

Δ
La

te
nc

y(
de

c.
) [

s]

faster

slower

-0.2

0.4

C
lu

st
er

 ti
m

es
ca

le
 [s

]

fast

slow

0

1.5

0 20
ΔGain [spks/s]

Gain and processing speed

Mean field theory

δmean(E)
δmean(I)
δvar(E)
δvar(I)
δAMPA
δGABA
fit

Perturbed

mean(I) [%] GABA [%]AMPA [%]δ δδ

Peturbing mean afferents

δmean(E) [%]

Peturbing afferent variance Peturbing synaptic couplings

CV(E) [%] CV(I) [%]

Figure 5. Linking gain modulation to cluster timescale and processing speed. a) Schematic of the
effect of perturbations on network dynamics. Dynamics in a two-cluster network is captured by its
effective potential energy (top panel). Potential wells represent two attractors where either cluster
is active (A and B). A perturbations that shrinks the barrier height ∆ separating the attractors
induces faster transition rates between attractors and shorter cluster activation lifetime (black and
red: unperturbed and perturbed conditions, respectively). Mean field theory provides a relation
between potential energy and transfer function (bottom panel), thus linking cluster lifetime to
neuronal gain in the absence of stimuli (dashed brown line, gain). b): A single-cell transfer function
(bottom, empirical data in blue; sigmoidal fit in brown) can be estimated by matching a neuron’s
firing rate distribution during ongoing periods (top) to a gaussian distribution of input currents
(center, quantile plots; red stars denotes matched median values). c) Perturbation-induced changes
in gain (x-axis: gain change in perturbed minus unperturbed condition, mean±s.e.m. across 10
networks; color-coded markers represent different perturbations) explain changes in cluster lifetime
(y-axis, linear regression, R2 = 0.96) as predicted by mean field theory (a and Fig. S4). d):
Perturbation-induced changes in gain during ongoing periods predict the effect of perturbations on
stimulus-processing speed (linear regression, R2 = 0.71). e) Breakdown of the relationship between
Perturbation-induced gain changes and processing speed (same data as in d).

and 4 higher cortical visual areas (LM, AL, PM, AM; open-source neuropixels dataset
available from the Allen Institute [39]). We interpreted periods where the animal was
resting as akin to the “unperturbed” condition in our model, and periods where the animal
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was running as the “perturbed” condition (Fig. 6a in the data). During periods of ongoing
activity (in the absence of visual stimuli), we found that locomotion induced an overall
increase in firing rate across visual cortical areas (Fig. 6b left), in agreement with previous
studies [40–42]. More specifically, we found that locomotion induces mixed excited and
inhibited responses across neurons (Fig. 6b right). Both these effects were consistent with
the effect of locomotion as a perturbation inducing an increase in δvar(E) (Fig. 3b).

We then set out to test whether the theoretical link between gain modulation dur-
ing ongoing periods and changes in stimulus-processing speed could explain the empirical
effects of locomotion. We thus estimated the single-cell transfer functions from spiking
activity during ongoing periods both when the animal was at rest and in motion. We
found that locomotion strongly modulated the single-cell gain in the absence of stimuli
(Fig. 6c). Specifically, we found that locomotion decreased the single-cell gain across all
areas (Fig. 6d), consistent with the theoretical prediction from an increase in δvar(E)
(Fig. 5e). According to our theory, this decrease in gain would predict an acceleration of
stimulus-processing speed, which we then proceeded to test.

Previous studies have observed an improvement in peak decoding performance during
locomotion [17], but changes in decoding latency have not been investigated. To probe
the speed and accuracy of visual responses in perturbed and unperturbed conditions, we
performed a cross-validated classification analysis to assess the amount of information re-
garding the orientation of drifting grating stimuli present in population spiking activity
along the visual cortical hierarchy. Crucially, because decoding accuracy depends on sam-
ple size, we equalized number of trials between resting and running conditions. We found
that trials in which the animal was running revealed both an increase in peak decoding
accuracy and an anticipation of stimulus coding (shorter latency) as compared to trials
where the animal was stationary (Fig. 6e-g), consistently across the whole visual hierar-
chy (Fig. 6g). Furthermore, the time to reach significant decoding for each area followed
the anatomical hierarchy score in both unperturbed and perturbed conditions, consistent
with the idea that information about the visual stimulus travels up a visual hierarchy in a
feed-forward fashion (Fig. 6f, see [39]).

Given that locomotion induced an increase in firing rates in all areas (Fig. 6b), we then
examined the extent to which the observed effects of locomotion (increased peak accuracy
and anticipation) were merely due to the increase in firing rates. We thus matched the dis-
tribution of firing rates between running and resting (see methods and Fig. S5). We found
that after rate matching the change in peak decoding accuracy decreased significantly (Fig.
S6-S8). Crucially, the anticipation of stimulus processing speed induced by locomotion was
still present in the rate-matched condition (Fig. S6), confirming that it was independent
of changes in firing rates. The same effect was preserved in the rate-matched model sim-
ulations as well (Fig. S9). We thus concluded that the anticipation of visual processing
speed induced by locomotion is consistent with a mechanism whereby locomotion decreases
single-cell gain via an increase in the afferent variance δvar(E) as predicted by our theory.
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Figure 6. Effects of locomotion on visual processing. a) Representative raster plots from five
cortical visual areas (color-coded) with population spiking activity during passive presentation
of drifting gratings (dashed red line represents stimulus onset) during periods of running (right,
running speed in top panels) rest (left). b): A representative single-cell distribution of firing rates
for rest (blue) and running (red) conditions. The overlaid distributions of firing rates are obtained
by passing a standard normal distribution through the sigmoidal transfer function fit shown in
the inset for rest (full gray line) and running (dashed gray line). The gain for each behavioral
condition (orange lines) was estimated as the slope of the sigmoidal transfer function fit at the
inflection point (see Methods). c) Left: mean firing rate by area during rest (blue) and running
(red), averaged across all periods of ongoing activity. Right: Fraction of neurons by area with
significantly excited (positive bars) and inhibited (negative bars) responses to bouts of running
(rank-sum test, ∗ = p < 0.005). d): Single-cell gain modulation (∆gain=gain(running)-gain(rest))
by area across all neurons during ongoing periods (bars show 95% confidence interval; rank-sum test
∗ = p < 0.005). e) Time course of the mean stimulus-decoding accuracy across orientations during
running and rest using neurons from V1 as predictors shows the anticipation of stimulus coding in
the running condition (single sessions and session average, thin and thick lines, respectively; see
Methods). f Decoding latency (first bin above chance decoding regions in e) slows down along the
anatomical hierarchy (x-axis: anatomical hierarchy score from [39]). g) Difference in processing
speed between running and resting (average latency of decoding accuracy between 40% and 80%,
yellow area in panel e) reveals running-induced coding acceleration (t-test, ∗ = p < 0.01).
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3 Discussion

Cortical circuits flexibly adapt their information processing capabilities to changes in en-
vironmental demands and internal state. Empirical evidence suggests that these state-
dependent modulations may occur already in the sensory cortex where they may be in-
duced by top-down pathways or neuromodulation. Here, we presented a mechanistic the-
ory explaining how cortical stimulus-processing speed can be flexibly controlled in a state-
dependent manner via gain modulation, induced by transient changes in the afferent cur-
rents or in the strength of synaptic transmission.

Our theory entails a recurrent spiking network where excitatory and inhibitory neurons
are arranged in clusters, generating metastable activity in the form of transient activation
of subsets of clusters. We showed that gain modulation controls the timescale of metastable
activity and thus the network’s information-processing speed and reaction times. In particu-
lar, our theory predicted that perturbations that decrease (increase) the intrinsic single-cell
gain during ongoing periods accelerate (slow down) the latency of stimulus responses.

We tested this prediction by examining the effect of locomotion on visual processing
in freely running mice. We found that locomotion reduced the intrinsic single-cell gain
during ongoing periods, thus accelerating stimulus-coding speed across the visual cortical
hierarchy. Our theory suggests that the observed effects of locomotion are consistent with
a perturbation that increases the spatial variance of the afferent currents to the local ex-
citatory population. These results establish a new theory of state-dependent adaptation
of cortical responses via gain modulation, unifying the effect of different pathways under a
shared computational mechanism.

3.1 Metastable activity in cortical circuits

The crucial dynamical feature of our model is its metastable activity, whereby single-trial
ensemble spike trains unfold through sequences of metastable states. State are long-lasting,
with abrupt transitions between consecutive states. Metastable activity has been ubiq-
uitously observed in a variety of cortical and subcortical areas, across species and tasks
[43–51]. Metastable activity can be used to predict behavior and was implicated as a neu-
ral substrate of cognitive function, such as attention [45], expectation [20], and decision
making [38, 48, 50]. Metastable activity was observed also during ongoing periods, in the
absence of sensory stimulation, suggesting that it may be an intrinsic dynamical regime of
cortical circuits [25, 45]. Here, we showed how cortical circuits can flexibly adjust their per-
formance and information-processing speed via modulations of their metastable dynamics.

Metastable activity may naturally arise in circuits where multiple stable states, or at-
tractors, are destabilized by external perturbations [52] or intrinsically generated variability
[20, 23–25, 27, 28, 38]. Biologically plausible models of metastable dynamics have been
proposed in terms of recurrent spiking networks where neurons are arranged in clusters,
reflecting the empirically observed assemblies of functionally correlated neurons [29–32].
Clustered network models of metastable dynamics provide a parsimonious explanation of
several physiological observations such as stimulus-induced reductions of trial-to-trial vari-
ability [24, 25, 27, 53, 54], of firing rate multistability [25], and of neural dimensionality
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[26]. Our results extend the biological plausibility of clustered networks by showing that
they capture other ubiquitous features of cortical dynamics: they operate in the inhibition
stabilized regime [55–57]; they naturally give rise to lognormal distribution of firing rates
[58–61]. This class of models thus provide a biologically plausible, mechanistic link between
connectivity, dynamics, and information-processing.

3.2 Linking metastable activity to flexible cognitive function via gain modu-
lation

Recent studies have shown that cortical circuits may implement a variety of flexible cognitive
computations by modulating the timescale of their intrinsic metastable dynamics [20, 45,
48, 51]. Our results establish a comprehensive framework to investigate the extent of
this hypothesis. We propose that gain modulation is the neural mechanism underlying
flexible state-dependent cortical computation. Specifically, we showed that gain modulation
controls the timescale of metastable dynamics, which, in turn, determines the network’s
information-processing speed.

3.3 Alternative models of gain modulation

Previous studies have suggested gain modulation as a mechanism to sharpen single-cell
tuning curves without affecting selectivity [62, 63], potentially mediating attention [64–
66]. In those studies, gain modulation was defined as change in the single-neuron response
function to stimuli of increasing contrast. Here, we have taken a different approach and
defined gain as the slope of the intrinsic neuronal current-to-rate function during ongoing
periods (i.e., in the absence of stimuli, see also [20, 63, 67]), as opposed to the contrast
response function. We have classified mechanisms of gain modulation which act by changing
the mean or spatial variance across neurons of the cell-type specific afferent currents to the
local cortical circuit, where we modeled afferent currents as constant biases; or by changing
the recurrent couplings. The rationale for our choice was to investigate the effects on
internally generated variability in a network whose dynamics were entirely deterministic.
Alternatively, one could model external currents as time-dependent inputs with fast noise,
such as Poisson processes or colored noise. In that case, changes in background noise due
to barrages of synaptic inputs are capable of inducing gain modulation as well [63, 67].
Previous work compared these different kinds of perturbations (Poisson noise or afferent
spatial variance) in the case of the perturbation δvar(E) [20], showing they may lead to
similar outcomes.

3.4 Physiological mechanisms of gain modulation

Several different physiological pathways can modulate the gain of the intrinsic neuronal
transfer function, including neuromodulation, top-down and cortico-cortical interactions.
Gain modulation can also be induced artificially by means of optogenetic or pharmacological
manipulations. The perturbations investigated in our model may be related to different
pathways and implicated in various types of cognitive function.
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3.4.1 Neuromodulation

Neuromodulatory pathways strongly affect sensory processing in cortical circuits by chang-
ing cell-type specific afferent currents to the circuit, in some cases controlling their dynam-
ical regime [15]. Our theory may be applicable to explain the effects of cholinergic and
serotonergic activation on sensory cortex.

Cholinergic pathways, modulating ionic currents in pyramidal cells [68], can control
cortical states and mediate the effects of arousal and locomotion. Artificial stimulation of
cholinergic pathways was shown to improve sensory coding in visual [8, 69] and barrel cortex
[70]. Cholinergic stimulation alone in the absence of sensory stimuli was shown to induce
mixed responses with different neural populations increasing or decreasing their spiking
activity [69]. Our theory shows that these combined experimental observations (coding
improvement and mixed firing rate changes) are consistent with a mechanism whereby
cholinergic activation induces an increase in δvar(E) afferents to sensory cortex, inducing
an acceleration of sensory processing (Fig. 2e and 3b).

Activation of serotonergic pathways by stimulation of dorsal raphe serotonergic neurons
or local iontophoresis was shown to transiently degrade stimulus coding in sensory cortex,
decreasing responses to mechanosensory stimuli [71] and increasing the latency of the first
spike evoked by auditory stimuli [72]. Serotonergic stimulation was shown to decrease firing
rates in the olfactory cortex [73], inferior colliculus [72], and primary visual cortex [74]. Our
theory shows that these experimental observations (coding degradation and decreased firing
rates) are consistent with two alternative mechanisms (Fig. 2d and 3b): either an increase
in the afferent currents to I populations (i.e., δmean(I)> 0) implementing the paradoxical
inhibition effect [33]; or a decrease in the afferents to E populations (i.e., δmean(E)< 0).
Future experiments could test between these two alternatives.

3.4.2 Top-down projections

A prominent feature of sensory cortex is the integration of feedforward and cortico-cortical
feedback pathways at each stage of sensory processing [75]. In particular, top-down pro-
jections from higher cortical areas to sensory cortex are known to modulate the speed and
accuracy of sensory processing [20]. Our theory may explain the effects of activating several
cortico-cortical pathways.

Activation of feedback axons from motor cortex (M1) to somatosensory cortex (S1) was
shown to increase activity in S1 during whisking [76] and led to faster and more accurate
responses to whisker stimulation [77]. Suppression of the same pathway induced slower S1
responses to whisking in awake mice. Our theory shows that the effect of these cortico-
cortical perturbations is consistent with an increase in the mean afferent currents to E
populations in S1 (i.e., the δmean(E) perturbation in Fig. 2d), leading to higher firing
rates and faster processing speed.

Expectation and arousal are known to strongly modulate neural activity in sensory
cortices [78]. Expected stimuli are processed faster and more accurately than unexpected
stimuli both in auditory [5] and gustatory cortex [6]. Experimental evidence shows that
the anticipation of sensory processing induced by expectation is mediated by top-down
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projections from the amygdala to the gustatory cortex [6], whose activation elicits complex
excited and inhibited responses in both pyramidal and inhibitory cells in the gustatory
cortex [6, 79]. Our theory suggests that these top-down projections may operate by inducing
an increase in the spatial variance of the afferent currents to the E population (δvar(E) in
Fig. 2d), extending previous results [20] to networks including inhibitory clusters.

In attentional tasks, distractors slow down reaction times [2, 3], a behavioral effect that
may be mediated by changes in the speed and accuracy of sensory processing in cortical
circuits [4]. The presence of distracting stimuli within a neurons receptive field suppresses
its responses to the preferred stimulus [80]. The underlying mechanism may recruit lateral
inhibition onto the local cortical circuit [81, 82]. Our theory shows that this mechanism is
consistent with a modulation of the afferents to local I populations, mediated by either an
increase in δmean(I) or δvar(I) in Fig. 2d. It would be interesting to discriminate between
these two perturbations with future experiments.

3.4.3 Optogenetic and pharmacological manipulations

Our theory may shed light on the effects of manipulation experiments. Optogenetic activa-
tion (inactivation) of specific E or I cells [83, 84] has been modeled as an increase (decrease)
of the afferent currents to those cells [56, 85, 86]. However, protein expression may not be
complete across all cells of the targeted population, and even in the case of complete ex-
pression across the targeted population, different cells may be more or less sensitive to
laser stimulation. Thus the effect of optogenetic stimulation on the targeted population
may then be more accurately modeled by a concurrent change in both mean and variance
of the targeted cell-type specific afferents (e.g., δmean(E) and δvar(E) for E populations;
δmean(I) and δvar(I) for I populations). Recent studies showed that, while a homogeneous
stimulation of all I cell types simultaneously can be captured by a model of E-I recurrently
coupled neurons (as in our model), partial activation of specific inhibitory cell-types may
induced more complex responses [56, 84, 86–88]. We plan to revisit this issue in the future.

Our theory may also be applicable to the effects of pharmacological manipulations
of different synaptic receptors. In particular, the effects of combined local injection of
AMPA/kainate and NMDA receptor antagonists (agonists) may be recapitulated by a de-
crease (increase) in δAMPA, which correspondingly perturb the value of JIE , JEE couplings
(Fig. 2d). Similarly, the effects of local injection of GABA receptor antagonists (agonists)
may be recapitulated by a decrease (increase) in δGABA, which correspondingly perturb
the value of JEI , JII couplings.

3.5 Locomotion and gain modulation

Locomotion has been shown to modulate visually evoked activity [40] and is sufficient in
driving activity in mouse V1 [13, 89]. Our results were consistent with previous studies in
showing that locomotion affects the activity of neurons in the visual cortical hierarchy during
both ongoing and stimulus-evoked activity. We found that locomotion in the absence of
sensory stimuli induces an average increase in firing rates. At the single-cell level we reported
a complex mix of excited and inhibited responses in both E and I cells, also consistent with
previous results [9, 42]. Crucially, we uncovered that locomotion decreased the single-cell

– 17 –

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.07.030700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030700
http://creativecommons.org/licenses/by-nc/4.0/


Model parameters for clustered network simulations
Parameter Description Value
jEE mean E-to-E synaptic weights ×

√
N 0.6 mV

jIE mean E-to-I synaptic weights ×
√
N 0.6 mV

jEI mean I-to-E synaptic weights ×
√
N 1.9 mV

jII mean I-to-I synaptic weights ×
√
N 3.8 mV

jE0 mean I-to-I synaptic weights ×
√
N 2.6 mV

jI0 mean I-to-I synaptic weights ×
√
N 2.3 mV

δ standard deviation of the synaptic weight distribution 20%

J+
EE Potentiated intra-cluster E-to-E weight factor 14
J+
II Potentiated intra-cluster I-to-I weight factor 5
gEI Potentiation parameter for intra-cluster I-to-E weights 10
gIE Potentiation parameter for intra-cluster E-to-I weights 8
rext Average baseline afferent rate to E and I neurons 5 spks/s
V thr
E E-neuron threshold potential 1.43 mV
V thr
I I-neuron threshold potential 0.74 mV
V reset E- and I-neuron reset potential 0 mV
τm E- and I-neuron membrane time constant 20 ms
τrefr E- and I-neuron absolute refractory period 5 ms
τs E- and I-neuron synaptic time constant 5 ms

Table 1. Parameters for the clustered network used in the simulations.

gain in the absence of visual stimuli across the board in the visual hierarchy (Fig. 6). Our
theory predicted that the observed decrease in gain would lead to an acceleration of visual
processing during locomotion (Fig. 2c), which we confirmed in the data (Fig. 6). Such
acceleration of processing speed did not depend on the locomotion-induced changes in firing
rates and was still present even after matching the firing rate distributions between running
and rest conditions (Fig. S5). Our results (increased firing rates with mixed excited and
inhibited responses, and faster visual processing) suggest that the effect of locomotion may
be mediated by a increase in the spatial variance of the afferent current to the E populations
(δvar(E) perturbation) [9, 40, 90]. Concretely, gain modulation may the combined effect of
activating neuromodulatory pathways such as cholinergic [9] and noradrenergic [91] inputs.

4 Methods

4.1 Spiking network model

Architecture. We modeled the local cortical circuit as a network of N = 2000 excitatory
(E) and inhibitory (I) neurons (with relative fraction nE = 80% and nI = 20%) with
random recurrent connectivity (Fig. 1). Connection probabilities were pEE = 0.2 and
pEI = pIE = pII = 0.5. Nonzero synaptic weights from pre-synaptic neuron j to post-
synaptic neuron i were Jij = jij/

√
N , with jij sampled from a gaussian distribution with

mean jαβ , for α, β = E, I, and standard deviation δ2. E and I neurons were arranged in
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Model parameters for the reduced two-cluster network
Parameter Description Value
jEE mean E-to-E synaptic weights ×

√
N 0.8 mV

jEI mean I-to-E synaptic weights ×
√
N 10.6 mV

jIE mean E-to-I synaptic weights ×
√
N 2.5 mV

jII mean I-to-I synaptic weights ×
√
N 9.7 mV

jE0 mean I-to-I synaptic weights ×
√
N 14.5 mV

jI0 mean I-to-I synaptic weights ×
√
N 12.9 mV

J+
EE Potentiated intra-cluster E-to-E weight factor 9
rext Average baseline afferent rate to E and I neurons 7 spk/s
V thr
E E-neuron threshold potential 4.6 mV
V thr
I I-neuron threshold potential 8.7 mV
τs E- and I-neuron synaptic time constant 4 ms
nbgr Fraction of background E neurons 65%

Table 2. Parameters for the simplified two-cluster network used for the mean-field theory analysis
(the remaining parameters are in Table 1.

p clusters. E clusters had heterogeneous sizes drawn from a gaussian distribution with a
mean of N clust

E = 80 E-neurons and 20% standard deviation. The number of clusters was
then determined as p = round(nEN(1 − nbgr)/N clust

E ), where nbgr = 0.1 is the fraction of
background neurons in each population, i.e., not belonging to any cluster. I clusters had
equal size N clust

I = round(nIN(1 − nbgr/p). Synaptic weights for within-cluster neurons
where potentiated by a ratio factor J+

αβ . Synaptic weights between neurons belonging to
different clusters were depressed by a factor J−αβ . Specifically, we chose the following scaling:
J+
EI = p/(1 + (p− 1)/gEI), J+

IE = p/(1 + (p− 1)/gIE), J−EI = J+
EI/gEI , J

−
IE = J+

IE/gIE and
J−αα = 1−γ(J+

αα−1) for α = E, I, with γ = f(2−f(p+1))−1, where f = (1−nbgr)/p is the
fraction of E neurons in each cluster. Within-cluster E-to-E synaptic weights were further
multiplied by cluster-specific factor equal to the ratio between the average cluster size N clust

E

and the size of each cluster, so that larger clusters had smaller within-cluster couplings. We
chose network parameters so that the cluster timescale was 100 ms, as observed in cortical
circuits [20, 25, 44]. Parameter values are in Table 1.

Neuronal dynamics. We modeled spiking neurons as current-based leaky-integrate-
and-fire (LIF) neurons whose membrane potential V evolved according to the dynamical
equation

dV

dt
=

V

τm
+ Irec + Iext ,

where τm is the membrane time constant. Input currents included a contribution Irec
coming from the other recurrently connected neurons in the local circuit and an external
current Iext = I0 + Istim + Ipert (units of mV s−1). The first term I0 = NextJα0rext (for
α = E, I) is a constant term representing input to the E or I neuron from other brain
areas and Next = nENpEE ; while Istim and Ipert represent the incoming sensory stimulus
or the various types of perturbation (see Stimuli and perturbations below). When V hits
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threshold V thr
α (for α = E, I), a spike is emitted and V is then held at the reset value

V reset for a refractory period τrefr. We chose the thresholds so that the homogeneous
network (i.e.,where all J±αβ = 1) was in a balanced state with average spiking activity at
rates (rE , rI) = (2, 5) spks/s [20, 22]. Recurrent synapses evolved according to the following
equation

τsyn
dIrec
dt

= −Irec +

N∑
j=1

Jij
∑
k

δ(t− tk) ,

where τs is the synaptic time constant, Jij are the recurrent couplings and tk is the time of
the k-th spike from the j-th presynaptic neuron. Parameter values are in Table 1.

Stimuli and perturbations. We considered two classes of inputs: sensory stimuli and
perturbations. In the “evoked” condition (Fig. 2a), We presented the network 4 sensory
stimuli, modeled as changes in the afferent currents targeting 50% of E-neurons in stimulus-
selective clusters; each E-cluster had a 50% probability of being selective to a sensory
stimulus (mixed selectivity). I-clusters were not stimulus-selective. In both the unperturbed
and the perturbed stimulus-evoked conditions, stimulus onset occurred at time t = 0 and
each stimulus was represented by an afferent current Istim(t) = Iextrstim(t), where rstim(t)

is a linearly ramping increase reaching a value rmax = 20% above baseline at t = 1. We
considered several kinds of perturbations. In the perturbed stimulus-evoked condition (Fig.
2a, right panel), perturbation onset occurred at time t = −0.5 and lasted until the end of the
stimulus presentation at t = 1 with a constant time course. We also presented perturbations
in the absence of sensory stimuli (“ongoing” condition, Fig. 4); in that condition, the
perturbation was constant and lasted for the whole duration of the trial (5s). Finally, when
assessing single-cell responses to perturbations, we modeled the perturbation time course
as a double exponential with rise and decay times [0.1, 1]s (Fig. 3). In all conditions,
perturbations were defined as follows:

• δmean(E), δmean(I): A constant offset Ipert = zI0 in the mean afferent currents was
added to all neurons in either E or I populations, respectively, expressed as a fraction
of the baseline value I0 (see Neuronal dynamics above), where z ∈ [−0.1, 0.2] for E
neurons and z ∈ [−0.2, 0.2] for I neurons.

• δvar(E), δvar(I): For each E or I neuron, respectively, the perturbation was a constant
offset Ipert = zI0, where z is a gaussian random variable with zero mean and standard
deviation σz. We chose σz ∈ [0, 0.2] for E neurons and σz ∈ [0, 0.5] for I neurons. This
perturbation did not change the mean afferent current but only its spatial variance
across the E or I population, respectively.

• δAMPA: A constant change in the mean jαE → (1+z)jαE synaptic couplings (for α =

E, I), representing a modulation of glutamatergic synapses. We chose z ∈ [−0.1, 0.2].

• δGABA: A constant change in the mean jαI → (1+z)jαI synaptic couplings (for α =

E, I), representing a modulation of GABAergic synapses. We chose z ∈ [−0.2, 0.2].

The range of the perturbations were chosen so that the network still produced metastable
dynamics for all values.
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Inhibition stabilization. We simulated a stimulation protocol used in experiments to test
inhibition stabilization (Fig. 2e). This protocol is identical to the δmean(I) perturbation
during ongoing periods, where the perturbation targeted all I neurons with an external
current Ipert = zI0 applied for the whole length of 5s intervals, with z ∈ [0, 1.2] and 40
trials per network and 10 networks for each value of the perturbation.

Simulations. All data analyses, model simulations, and mean field theory calculations
were performed using custom software written in MATLAB, C and Python. Simulations in
the stimulus-evoked conditions (both perturbed and unperturbed) comprised 10 realizations
of each network (each network with different realization of synaptic weights), with 20 trials
for each of the 4 stimuli. Simulations in the ongoing condition comprised 10 different
realization of each network, with 40 trials per perturbation. Each network was initialized
with random synaptic weights and simulated with random initial conditions in each trial.
Sample sizes were similar to those reported in previous publications [20, 25, 26]. Dynamical
equations for the leaky-integrate-and-fire neurons were integrated with the Euler method
with a 0.1ms step.

4.2 Mean field theory

We performed a mean field analysis of a simplified two-cluster network for leaky-integrate-
and-fire neurons with exponential synapses, comprising p+ 2 populations for p = 2 [20, 22]:
the first p representing the two E clusters, the last two representing the background E and
the I population. The infinitesimal mean µn and variance σ2

n of the postsynaptic currents
are:

µn = τm
√
N

[
nEpEEjEE

(
fJ+

EErn + J−EE(

p−1∑
l=1

rl + (1− pf)rbgrE ) +
jE0

jEE
rext

)
− nIpEIjEIrI

]
,

µbgr = τm
√
N

[
nEpEEjEE

(
J−EE

p∑
l=1

rl + (1− pf)rbgrE +
jE0

jEE
rext

)
− nIpEIjEIrI

]
,

µI = τm
√
N

[
nEpIEjIE

(
f

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpII(jIIrI + jI0rext)

]
, (4.1)

σ2
n = τm

√
N [nEpEEj

2
EE

(
f(J+

EE)2rn + (J−EE)2(

p−1∑
l=1

rl + (1− pf)rbgrE ))

)
− nIpEIj2

EIrI ] ,

σ2
bgr = τm

√
N

[
nEpEEj

2
EE

(
(J−EE)2

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpEIj2

EIrI

]
,

σI = τm
√
N

[
nEpIEj

2
IE

(
f

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpIIj2

IIrI

]
, (4.2)

where rn, rl = 1, . . . , p are the firing rates in the p E-clusters; rbgrE , rI , rext are the firing rates
in the background E population, in the I population, and in the external current. Other
parameters are described in Architecture and in Table 2. The network attractors satisfy
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the self-consistent fixed point equations:

rl = Fl[µl(r), σ2
l (r)] , (4.3)

where r = (r1, . . . , rp, rbgr, rI) and l = 1, . . . , p, bgr, I, and Fl is the current-to-rate transfer
function for each population, which depend on the condition. In the absence of perturba-
tions, all populations have the LIF transfer function

Fl(µl, σl) =

(
τrefr + τm

√
π

∫ Θl

Hl

eu
2
[1 + (u)]

)−1

, (4.4)

where Hl = (V reset − µl)/σl + ak and Θl = (V thr
l − µl)/σl + ak. k =

√
τs/τm and

a = |ζ(1/2)|/
√

2 are terms accounting for the synaptic dynamics [92]. The perturbations
δvar(E) and δvar(I) induced an effective population transfer function F eff on the E and I
populations, respectively, given by [20]:

F pertα (µα, σα) =

∫
DzFα(µα + zσzµ

ext
α , σ2

α) , (4.5)

where α = E, I and Dz = exp(−z2/2/
√

2π) is a gaussian measure of zero mean and
unit variance, µextα = τm

√
Nnαpα0jα0rext is the external current and σz is the standard

deviation of the perturbation with respect to baseline, denoted CV(E) and CV(I) in Fig.
S4 and in the Results. Stability of the fixed point equation 4.3 was defined with respect to
the approximate linearized dynamics of the instantaneous mean ml and variance s2

l of the
input currents:[20, 25]

τs
dml

dt
= −ml + µl(rl) ; τs

ds2
l

2dt
= −s2

l + σ2
l (rl) ; rl = Fl(ml(r), s2

l (r)) , (4.6)

where µl, σ2
l are defined in 4.1-4.2 and Fl represents the appropriate transfer function 4.4

or 4.5. Fixed point stability required that the stability matrix

Slm =
1

τs

(
∂Fl(µl, σ

2
l )

∂rm
− ∂Fl(µl, σ

2
l )

∂σ2
l

∂σ2
l (r)

∂rm
− δlm

)
, (4.7)

was negative definite. The full mean field theory described above was used for the com-
prehensive analysis of Fig. S4. For the schematic of Fig. 5a, we replaced the LIF transfer
function 4.4 with the simpler function F̃ (µE) = 0.5(1 + tanh(µE)) and the δvar(E) pertur-
bation effect was then modeled as F̃ eff (µ) =

∫
DzF̃ (µE + zσzµext).

Effective mean field theory for a reduced network. To calculate the potential energy
barrier separating the two network attractors in the reduced two-cluster network, we used
the effective mean field theory developed in [20, 34]. The idea is to first estimate the force
acting on neural configurations with cluster firing rates r = [r̃1, r̃2] outside the fixed points
(4.3), then project the two-dimensional system onto a one-dimensional trajectory along
which the force can be integrated to give an effective potential E (Fig. S4). In the first
step, we start from the full mean field equations for the P = p+ 2 populations in 4.3, and
obtain an effective description of the dynamics for q populations “in focus” describing E
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clusters (q = 2 in our case) by integrating out the remaining P − q out-of-focus populations
describing the background E neurons and the I neurons (P − q = 2 in our case). Given a
fixed value r̃ = [r̃1, . . . , r̃q] for the q in-focus populations, one obtains the stable fixed point
firing rates r′ = [r′q+1, . . . , r

′
P ] of the out-of-focus populations by solving their mean field

equations
r′β(r̃) = Fβ[µβ(r̃, r′), σ2

β(r̃, r′)] , (4.8)

for β = q+ 1, . . . , P , as function of the in-focus populations r̃, where stability is calculated
with respect to the condition (4.7) for the reduced (q + 1, . . . , P ) out-of-focus populations
at fixed values of the in-focus rates r̃. One then obtains a relation between the input r̃

and output values r̃out of the in-focus populations by inserting the fixed point rates of the
out-of-focus populations calculated in (4.8):

routα (r̃) = Fα[µα(r̃, r′(r̃)), σ2
α(r̃, r′(r̃))] , (4.9)

for α = 1, . . . , q. The original fixed points are r̃∗ such that r̃∗α = routα (r̃∗).
Potential energy barriers and transfer function gain. In a reduced network with two

in-focus populations [r̃1, r̃2] corresponding to the two E clusters, one can visualize Eq. (4.9)
as a two-dimensional force vector r̃−rout(r̃) at each point in the two-dimensional firing rate
space r̃. The force vanishes at the stable fixed points A and B and at the unstable fixed
point C between them (Fig. S4). One can further reduce the system to one dimension by
approximating its dynamics along the trajectory between A and B as [34]:

τs
dr̃

dt
= −r̃ + rout(r̃) , (4.10)

where y = rout(r̃) represents an effective transfer function and r̃− rout(r̃) an effective force.
We estimated the gain g of the effective transfer function as g = 1 − rout(r̃min)−rout(r̃min)

r̃min−r̃max
,

where r̃min and r̃max represent, respectively, the minimum and maximum of the force (see
Fig. S4). From the one-dimensional dynamics (4.10) one can define a potential energy via
∂E(r̃)
∂r = r̃− rout(r̃). The energy minima represent the stable fixed points A and B and the

saddle point C between them represents the potential energy barrier separating the two
attractors. The height ∆ of the potential energy barrier is then given by

∆ =

∫ C

A
dr̃[r̃ − rout(r̃)] , (4.11)

which can be visualized as the area of the curve between the effective transfer function and
the diagonal line (see Fig. 5).

4.3 Experimental data

We tested our model predictions using the open-source dataset of neuropixel recordings from
the Allen Institute for Brain Science [39]. We focused our analysis on experiments where
drifting gratings were presented at four directions (0◦, 45◦, 90◦, 135◦) and one temporal
frequency (2 Hz). Out of the 54 sessions provided, only 7 sessions had enough trials per
behavioral condition to perform our decoding analysis. V1 was collected in 5 of these 7
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sessions, with a median value of 75 neurons per session (LM: 6 sessions, 47 neurons; AL:
5 sessions, 61 neurons; PM: 6 sessions, 55; AM: 7 sessions, 48 neurons). We matched the
number and duration of trials across condition and orientation and combined trials from the
drifting gratings repeat stimulus set, and drifting grating contrast stimulus set. To do this,
we combined trials with low-contrast gratings (0.08, 0.1, 0.13, 0.2; see Fig. S8) and trials
with high-contrast gratings (0.6, 0.8, 1; see Fig. S7) into separate trial types to perform
the decoding analysis, and analyzed the interval [0, 0.5] seconds aligned to stimulus onset.

For evoked activity, running trials were classified as those where the animal was running
faster than 3 cm/s for the first 0.5 seconds of stimulus presentation. During ongoing activity,
behavioral periods were broken up into windows of 1 second. Periods of running or rest
were classified as such if 10 seconds had elapsed without a behavioral change. Blocks of
ongoing activity were sorted and used based on the length of the behavior. Out of the 54
sessions provided, 14 sessions had enough time per behavioral condition (minimum of 2
minutes) to estimate single-cell transfer functions. Only neurons with a mean firing rate
during ongoing activity greater than 5Hz were included in the gain analysis (2119 out of
4365 total neurons).

4.4 Stimulus decoding

For both the simulations and data, a multi-class decoder was trained to discriminate be-
tween four stimuli from single-trial population activity vectors in a given time bin [93]. To
create a timecourse of decoding accuracy, we used a sliding window of 100ms (200ms) in
the data (model), which was moved forward in 2ms (20ms) intervals in the data (model).
Trials were split into training and test data-sets in a stratified 5-fold cross-validated man-
ner, ensuring equal proportions of trials per orientation in both data-sets. In the model,
a leave-2-out cross-validation was performed. To calculate the significance of the decoding
accuracy, an iterative shuffle procedure was performed on each fold of the cross-validation.
On each shuffle, the training labels were shuffled and the classifer accuracy was predicted
on the unshuffled test data-set. This shuffle was performed 100 times to create a shuffle
distribution to rank the actual decoding accuracy from the unshuffled decoder against and
to determine when the mean decoding accuracy had increased above chance. This time
point is what we referred to as the latency of stimulus decoding. To account for the speed
of stimulus decoding (the slope of the decoding curve), we defined the ∆-Latency between
running and rest as the average time between the two averaged decoding curves from 40%
up to 80% of the max decoding value at rest.

4.5 Firing rate distribution match

To control for increases of firing rate due to locomotion (see Fig. 6c), we matched the
distributions of population counts across the trials used for decoding in both behavioral
conditions. This procedure was done independently for each sliding window of time along
the decoding time course. Within each window, the spikes from all neurons were summed
to get a population spike count per trial. A log-normal distribution was fit to the popula-
tion counts across trials for rest and running before the distribution match (Fig S5a left).
We sorted the distributions for rest and running in descending order, randomly removing
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spikes from trials in the running distribution to match the corresponding trials in the rest
distribution (Fig S5a right). By doing this, we only removed the number of spikes nec-
essary to match the running distribution to rest distribution. For example, trials where
the rest distribution had a larger population count, no spikes were removed from either
distribution. Given we performed this procedure at the population level rather than per
neuron, we checked the change in PSTH between running and rest conditions before and
after distribution matching (Fig S5b). This procedure was also performed on the simulated
data (Fig. S9).

4.6 Single-cell gain

To infer the single-cell transfer function in simulations and data, we followed the method
originally described in [38] (see also [37, 94] for a trial-averaged version). We estimated the
transfer function on ongoing periods when no sensory stimulus was present. Briefly, the
transfer function of a neuron was calculated by mapping the quantiles of a standard gaussian
distribution of input currents to the quantiles of the empirical firing rate distribution during
ongoing periods (see 5b). We then fit this transfer function with a sigmoidal function. The
max firing rate of the neuron in the sigmoidal fit was bounded to be no larger than 1.5
times that of the empirical max firing rate, to ensure realistic fits. We defined the gain as
the slope at the inflection point of the sigmoid.

4.7 Single-cell response and selectivity

We estimated the proportion of neurons that were significantly excited or inhibited by
artificial perturbations (see 3a-b) or locomotion (see 6c) during periods of ongoing activity,
in the absence of sensory stimuli. In the model, we simulated 40 trials per network, for
10 networks per each value of the perturbation. each trial in the interval [−0.5, 1]s, with
onset of the perturbation at t = 0 (the perturbation was modeled as a double exponential
with rise and decay times [0.2, 1], Fig. 3a). In the data, we estimated spike counts after
matching sample size between rest and running conditions. Spike counts were estimated
in 500ms windows for each neuron in both behavioral conditions, and significant difference
between the conditions was assessed with a rank-sum test.

We estimated single neuron selectivity to sensory stimuli in each condition from the
average firing rate responses rai (t) of the i-th neuron to stimulus a in trial t. For each pair
of stimuli, selectivity was estimated as

d′(a, b) =
mean [r(t)a]−mean

[
r(t)b

]√
1
2 (var[r(t)a] + var[r(t)b])

,

where mean and var are estimated across trials. The d’ was then averaged across stimulus
pairs.
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Figure S1. Inhibition stabilization in clustered networks. When increasing the inhibitory drive
(afferent current to the I population), both E and I firing rates decrease (black and red curve in
right panel, mean±s.e.m. across 10 simulated networks), realizing the paradoxical effect, signature
of the inhibition stabilized regime [33]. Beyond δmean(I)=50% the E population shuts down and
the I population rebounds (dashed vertical line).
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Figure S2. Perturbation-induced changes in single-cell response. a) Changes in peak-firing rate
compared to baseline (∆PSTH=peak-baseline; positive for excited responses, negative for inhibited
responses) for E and I responsive neurons (fractions reported in Fig. 3b), in response to a pertur-
bation with time course as in Fig. 3a. b) Single-cell changes in firing rate response to stimuli due
to the perturbations (∆ =peak response-baseline in each perturbed or unperturbed condition) are
overall uncorrelated to changes in stimulus-decoding latencies (mean±s.e.m. across 10 networks;
cfr. Fig. 3c-d). c) Single-cell changes in stimulus selectivity due to the perturbations (d’) are overall
uncorrelated to changes in stimulus-decoding latencies (same notation as in a). While for pertur-
bations affecting I populations (green check mark) single-cell responses are correlated to changes in
coding speed, for perturbations affecting the E populations (red cross) single cell-responses are not
correlated to changes in coding speed.
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Figure S3. Perturbations-induced modulations in timescales. Perturbation-induced changes in the
cluster inter-activation interval (IAI, a) closely track the changes in cluster activation lifetime τ (b)
and correlate strongly with the perturbation-induced changes in stimulus-processing speed (c).
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Figure S4. Effective mean field theory for barrier height and gain. a) Left: Reduced two-cluster
theory showing the force vector (black arrows, color-coded map represents the log of the force
vector norm) acting on a configuration where the two clusters have firing rates r̃1, r̃2. The force
vanishes at the stable fixed points A and B, corresponding to attractors where either cluster is
active and the other inactive (inset), and at saddle point C between them. Top right: From the
projection of the force vector on the trajectory between the attractors (white curve in left panel)
one obtains an effective transfer function rout(r̃) whose slope yields the population intrinsic gain.
Bottom right: The energy barrier separating the two attractors A and B is defined as the line
integral of the projected force along the trajectory. b): The perturbation δvar(E) lowers the energy
barrier between the two attractors (darker color-shades represent increasing values CV(E) of the
perturbation). c) Mean field theory predicts a direct relationship between the height of the barrier
∆ separating the attractors and the gain for all perturbations.
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Figure S5. Anticipation of stimulus decoding persists even after matching the distribution of
firing rates across behavioral conditions. a) Firing rate distributions for both rest and running
before (left) and after (right) randomly removing spikes from the running condition. Black lines
show log-normal fits of distributions. b) ∆ PSTH between behavioral conditions before and after
distribution matching shows effects of match across each neuron’s firing rate. c) Mean stimulus-
decoding accuracy across orientations per behavioral condition using neurons from V1 as predictors
shows the anticipation of the stimulus in the running condition after distribution matching (same
sessions as in Fig. 6e). d) Summary of changes in processing speed due to locomotion by area after
distribution matching. (t-test, p< 0.01)
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Figure S6. Matching the distribution of firing rates between behavioral conditions reduces the
change in peak decoding, but preserves the change in decoding latency between behavioral condi-
tions. a) ∆-Latency over all areas, separated by the grating contrast shows that even after matching
the distribution of firing rates between conditions (purple), the increase in sensory processing dur-
ing running was still significant (rank-sum test, gray ∗ = p < 0.005) The change in ∆-Latency
between non-matched (orange) and matched (purple) datasets was significant (rank-sum test,black
∗ = p < 0.001) b) The difference in peak decoding between behavioral conditions is reduced for
low and high contrast drifting grating trials after matching the distributions (rank-sum test, gray
∗ = p < 0.005). The change in ∆-Decoding peak between non-matched and matched datasets was
significant (rank-sum test, black ∗ = p < 0.005) for both contrasts.
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Figure S7. Mean stimulus-decoding accuracy of high-contrast drifting gratings across sessions per
behavioral condition and area before (a) and after (b) matching the distribution of firing rates
shows the decrease in ∆-Decoding peaks and preservation of ∆-Latency. Notations as in Fig. 6e.
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Figure S8. Mean stimulus-decoding accuracy of low-contrast drifting gratings across sessions per
behavioral condition and area before (a) and after (b) matching the distribution of firing rates
shows the decrease in ∆-Decoding peaks and preservation of ∆-Latency. Notations as in Fig. 6e.
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Figure S9. In the model, matching the distribution of firing rates between perturbed (δvar(E)
with CV(E)=20%) and unperturbed conditions preserved the perturbation-induced acceleration in
stimulus processing speed (same data as in Fig. 2b). a) ∆-Latency over 10 simulated networks
shows that even after matching the distribution of firing rates between conditions (purple), the
increase in sensory processing speed during the perturbed condition was still significant (rank-sum
test, ∗ = p < 0.005). There was no significant change in ∆-Latency between unmatched and
matched datasets (rank-sum test,p > 0.05). Time course of stimulus-decoding accuracy over all 10
simulated networks before (b) and after (c) matching the distribution of firing rates.
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