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Abstract

High-throughput single-cell sequencing technologies hold tremendous potential for defining cell
types in an unbiased fashion using gene expression and epigenomic state. A key challenge in
realizing this potential is integrating single-cell datasets from multiple protocols, biological contexts,
and data modalities into a joint definition of cellular identity. We previously developed an approach
called Linked Inference of Genomic Experimental Relationships (LIGER) that uses integrative
nonnegative matrix factorization to address this challenge. Here, we provide a step-by-step protocol
for using LIGER to jointly define cell types from multiple single-cell datasets. The main steps of the
protocol include data preprocessing and normalization, joint factorization, quantile normalization and
joint clustering, and visualization. We describe how to jointly define cell types from single-cell
RNA-seq and single-nucleus ATAC-seq data, but similar steps apply across a wide range of other
settings and data types, including cross-species analysis, single-nucleus DNA methylation, and
spatial transcriptomics. Our protocol contains examples of expected results, describes common
pitfalls, and relies only on our freely available, open-source R implementation of LIGER. We also
provide Rmarkdown tutorials showing the outputs from each individual code segment. The analysis
process can be performed in 1 - 4 h depending on dataset size and assumes no specialized
bioinformatics training.

Introduction

Identifying the molecular features that define the types and functions of individual cells provides a
tremendous opportunity for understanding the genomic blueprint of the human body. The classic
approach to categorize cells relies on qualitative characterization, including gross morphology, the
presence or absence of a few surface proteins, and broad cellular function. However, a more
comprehensive definition of cell identity requires the inclusion of transcriptomic and epigenomic
profiles of cells. In recent years, a variety of high-throughput single-cell sequencing technologies
have emerged, measuring the gene expression, DNA methylation, and chromatin accessibility of
individual cells. These data modalities together enable researchers to revisit the conventional
classifications of cell types and states in a quantitative, systematic, unbiased fashion. Such
quantitative definition of cell identity promises to revolutionize our understanding of cell biology
across a range of contexts, including neuroscience and developmental biology. A reference map of
the molecular states of healthy cells will in turn allow for probing the causes of cellular abnormality
and may ultimately inspire the development of novel targeted therapeutics.
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In order to achieve this goal, an analytical method capable of integrating various single-cell data
modalities is needed. Although large datasets of expression, DNA methylation, chromatin
accessibility at single-cell resolution are widely available, multiple modalities are not usually
measured from the same individual cells due to limitations in existing sequencing technologies. This
requires the integration method to identify the features or properties that represent the “essential’
aspects of a cell’s identity, rather than the “dispensable” properties that change across biological
settings, modalities, protocols, or time.

In addition, when leveraging such datasets to define cell identity, we want to capture both discrete
cell types and continuous variation such as cell states. For example, Saunders et al. found that
glutamatergic and GABAergic neurons in the mouse cortex specialize in clearly distinguishable,
discrete subtypes. In contrast, the spiny projection neurons in the striatum show more continuous
variation, with cell identity being the combination of patch/matrix and direct/indirect distinctions’.

Another important consideration is the ability to separate technical confounders from biological
signals. Such confounding effects can include the presence of artificial cell doublets created during
the cell isolation process, differences in mitochondrial RNA and ribosomal protein content due to cell
dissociation, and the presence of free-floating RNA from lysed cells. Failure to account for such
factors can lead, for example, to erroneously defining a cell type or state predominantly by its
mitochondrial RNA profile, in the absence of any significant biological difference from other cells of
the same type.

Integrative analysis should also allow for identifying similarities and differences in corresponding
cells across tissues, species, and conditions. For example, it will help to answer questions such as
how one tissue differs from another in terms of cell type composition as well as cell-type-specific
gene expression. We can also gain a deeper understanding of the cell types and cell-type-specific
differences underlying diverse forms and functions across species. Moreover, biomedical
researchers are often interested in the cell-type-specific gene expression patterns associated with
risk, onset and progression of diseases.

Development of the protocol

In our previous Cell paper?, we first used LIGER to jointly define cell types and their sex-specific
differences in the mouse bed nucleus of the stria terminalis (BNST). Through the analysis of
scRNA-seq data from BNST, we found significant sexual dimorphism in the gene expression
patterns of multiple cell types. Secondly, we utilized LIGER to define cell types across species in
mouse and human substantia nigra by integrating scRNA-seq datasets.

We also linked single-cell epigenomic and gene expression states by integrating transcriptomic and
DNA methylation data from the mouse frontal cortex using LIGER. This joint analysis aided in the
interpretation of populations difficult to identify from methylation alone and increased our sensitivity
for detecting rare cell types. It further allowed us to investigate the epigenetic regulation of gene
expression for each jointly defined cell type.

In addition, we jointly defined cell populations using scRNA-seq profiles and spatial transcriptomic
data (StarMAP) from mouse frontal cortex. This joint analysis not only enabled inference of spatial
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information for gene expression profiles from dissociated cells, but also increased the sensitivity for
identifying cell clusters from the in situ data.

Applications of the method

Tran and Shekhar et al. recently used LIGER in their study of neuronal type-specific response to
injury®. They focused on the adult mouse retinal ganglion cells (RGCs) and investigated the
resilience of RGC types following optic nerve crush (ONC), a common model of traumatic axonal
injury. The authors employed scRNA-seq to profile the injured RGCs at different time points post
ONC. They used LIGER to develop a common taxonomy of cell types that was robust to time of
injury, mouse strain, and batch effects. The capability of LIGER to distinguish shared features such
as RGC type-specific expression pattern and dataset-specific features--such as injury-related
changes--along the time course enabled discovery of RGC type-specific molecular signatures
related to cell resilience and susceptibility to injury. More recently, Krienen et al. applied LIGER to
probe interneuron cell types and their gene expression patterns across multiple species, including
humans, macaques, marmosets, and mice*. The authors used LIGER to jointly define interneuron
cell types across species and brain regions from Drop-Seq data. The resulting joint analysis
revealed shared cell types across species; an interneuron cell type that appears in humans and
monkeys but not mice; and species-specific gene expression differences within shared cell types.

Comparison with other methods

There are several existing methods for single-cell data integration, including Scanorama, Seurat,
Conos, and Harmony. Scanorama is a method designed for scRNA-seq dataset integration and
batch correction and was introduced by Hie et al. in 2019°. Inspired by the idea of stitching images
into a panoramic picture, the key strategy of this method is to identify the common cell types shared
in all pairs of dataset by finding the mutual nearest neighbors in a low-dimensional space obtained
by singular value decomposition. Then pairs of datasets are merged into a “cellular panorama”
based on their matched cells. The panoramic stitching approach requires that each of the input
datasets shares at least one cell type with at least one of the others.

The Kharchenko group developed a three-phase approach for clustering on networks of samples
(Conos) from multiple scRNA-seq datasets®. The input datasets are filtered and normalized in Conos
phase I. In phase Il, pairwise comparison of the datasets using PCA embeddings is performed to
obtain the initial mapping between the cell samples. In the last phase of Conos, a joint graph is
constructed based on the inter-sample and intra-sample edges. The joint graph can be used for
downstream analysis such as community detection, visualization, or label and expression value
propagation.

Korsunsky and colleagues developed a multi-dataset integration algorithm, Harmony, in their recent
publication’. Harmony takes an initial PCA embedding of scRNA-seq expression matrices as input
and learns a batch-corrected embedding that allows for downstream analysis, including visualization
and clustering. This is accomplished by an iterative process of soft clustering, calculating the
centroids of the resulting clusters, computing cluster-specific correction vectors based on the
centroids, and correcting the cells using the obtained correction vectors. The process is repeated
until the devised objective, maximizing both the data integration and separation of cell types, is
reached.

Scanorama, Harmony, and Conos are designed primarily for integrating multiple RNA datasets, but
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Seurat? is the most similar method to LIGER in that it is intended for integrating multiple data
modalities, including RNA, ATAC, and spatial transcriptomic data. However, there are some key
differences. Seurat performs “label transfer” between reference and query datasets rather than joint
cell type definition when integrating RNA and ATAC or spatial transcriptomic and dissociated data.
Additionally, Seurat uses a completely shared latent space (CCA) to identify corresponding cells,
rather than a space that includes dataset-specific differences. In contrast, LIGER’s dimensionality
reduction strategy captures both shared signals and dataset-specific differences per cell type directly
in the factorization. Additionally, the metagene factors learned by LIGER are often interpretable in
terms of specific biological or technical sources of variation, whereas each of the principal
components or canonical components calculated by Seurat often contains a mixture of signals.
Finally, Seurat “corrects” the gene expression values using nearest neighbor relationships
(“anchors”), whereas LIGER leaves the original expression data unchanged.

A recent paper performed systematic benchmarking of 14 single-cell data integration methods and
recommended Harmony, LIGER, and Seurat as the top-performing and most robust approaches®.
The paper benchmarked the 14 approaches on 10 different single-cell datasets using multiple
metrics, including KBET'?, average silhouette width, and adjusted rand index. Harmony, LIGER, and
Seurat outperformed the other tested methods across a range of scenarios in their ability to align
datasets while maintaining correct cell type distinctions.

Experimental design

The design of single-cell sequencing experiments is complex, involving many biological and
experimental considerations beyond the scope of this protocol. However, we will highlight two salient
issues that affect the joint cell type analysis we describe in this protocol. First, whenever possible,
biological and technical batches should not be confounded. For example, in a cross-species analysis
of mouse and human brain cells, both mouse and human cells should be extracted using the same
protocols; if whole-cell transcriptomes are extracted from the mouse cells, but only nuclear RNA is
extracted from the human cells, the biological variable (species) is confounded by a technical
variable (whole-cell versus nuclear extraction protocol). It may still be possible, using LIGER, to
identify shared cell types and gene expression signatures using such a batch design, but
disentangling biological from technical differences will be challenging. Similarly, if jointly defining cell
types using scRNA-seq and snATAC-seq, use cells from the same tissue sample for both protocols.
Otherwise, biological differences in cell composition or genotype may confound the joint analysis.
For human studies comparing many individuals, genetic variation can be used to multiplex cells from
multiple donors within a single batch, allowing reliable determination of cell-type-specific
inter-individual variation without uncontrolled technical variables".

A second consideration is the trade-off between the number of cells sequenced and sequencing
depth per cell. Although the decision depends on the biological questions that the researcher wants
to answer, it is generally preferable to sequence more cells rather than more reads per cell. A recent
analysis paper found that, for droplet single-cell RNA-seq protocols, sequencing more than 15,000
reads per cell provides only small benefit'2. Sequencing large numbers of cells is especially
important for characterizing rare cell types, such as the recently discovered pulmonary ionocyte' .
However, some biological applications, such as studying alternative splicing'® or characterizing
important low-expression genes such as G-protein coupled receptors and transcription factors, will
require a high depth of coverage per cell. Furthermore, the choice of library preparation protocol may
also influence the decision about cells vs. reads, because protocols (such as SMART-seq) that


https://paperpile.com/c/NOys4p/FQljL
https://paperpile.com/c/NOys4p/Z37J
https://paperpile.com/c/NOys4p/EMyk
https://paperpile.com/c/NOys4p/BwKX
https://paperpile.com/c/NOys4p/xcHY
https://paperpile.com/c/NOys4p/y3eB+ifkl
https://paperpile.com/c/NOys4p/5Df8
https://doi.org/10.1101/2020.04.07.029546
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.029546; this version posted April 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sample from all positions within a transcript benefit more from increased coverage than poly(A)
priming protocols that capture only the ends of transcripts.

Limitations

LIGER should not be used when there is no biological similarity expected between datasets. For
example, there is nothing to be gained by trying to integrate single-cell data from HeLA cells with
data from HEK293 cells. Doing so will not yield significant biological insights and may result in false
positive results, although LIGER is designed to minimize such spurious alignment. Additionally,
LIGER relies on corresponding features shared across all datasets to be analyzed. Thus, it cannot
be directly applied to integrate single-cell gene expression data with single-cell morphological data,
chromatin conformation data, or metabolomic data, whose features have no clearly defined
relationship with the expression of individual genes.

Materials

e Hardware: a personal computer with internet connection
e Software:
o RStudio or R command line (version 3.5 or greater)
o bedmap (if calculating gene body counts from raw snATAC-seq data)
e Input data:
o Two or more matrices, each containing gene-level counts across a set of single cells
o A common starting point is the output from the 10X Genomics Cellranger pipeline,
which outputs a gene expression matrix in matrix market (.mtx) format.
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Figure 1: Diagram of high-level protocol steps.
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Procedure

Joint definition of cell types from multiple scRNA-seq datasets

This protocol demonstrates the R commands to run the LIGER package on a sample dataset
consisting of two single-cell RNA-seq experiments. These commands can be run from the R
command line interface or the RStudio integrated development environment.

Stage I: Preprocessing and Normalization (3 - 5 seconds)

1. For the first portion of this protocol, we will be integrating published data'' from control and
interferon-stimulated peripheral blood mononuclear cells (PBMC). This dataset was originally in the
form of output from the 10X Cellranger pipeline. We directly load downsampled versions of the
control and stimulated DGEs here.

ctrl _dge <- readRDS("ctrl _dge.RDS");
stim_dge <- readRDS("stim_dge.RDS");

For 10X CellRanger output, we can instead use the "read10X" function, which generates a matrix or
list of matrices directly from the output directories.

library(liger)
matrix_list <- readleX(sample.dirs =c("10x_ctrl outs", "1O0x_stim outs"),
sample.names = c("ctrl", "stim"), merge = F);

?TROUBLESHOOTING

2. With the digital gene expression matrices for both datasets, we can initialize a LIGER object using
the createLiger function.

ifnb_liger <- createlLiger(list(ctrl = ctrl dge, stim = stim_dge))

ifnb_liger now contains two datasets in its raw.data slot, ctrl and stim. We can run the rest of the
analysis on this LIGER object.

?TROUBLESHOOTING

3. Before we can perform matrix factorization to integrate our datasets, we must run several
preprocessing steps to normalize expression data to account for differences in sequencing depth
and efficiency between cells, identify variably expressed genes, and scale the data so that each
gene has the same variance. Note that because nonnegative matrix factorization requires positive
values, we do not center the data by subtracting the mean. We also do not log transform the data.

ifnb_liger <- normalize(ifnb_liger)
ifnb_liger <- selectGenes(ifnb_liger)
ifnb_liger <- scaleNotCenter(ifnb_liger)

?TROUBLESHOOTING

Stage Il: Joint Matrix Factorization (3-10 minutes)

4. We are now able to run integrative non-negative matrix factorization on the normalized and scaled
datasets. The key parameter for this analysis is k, the number of matrix factors (analogous to the
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number of principal components in PCA). In general, we find that a value of k between 20 and 40 is
suitable for most analyses and that results are robust for choice of k. Because LIGER is an
unsupervised, exploratory approach, there is no single “right” value for k, and in practice, users
choose k from a combination of biological prior knowledge and other information.

ifnb_liger <- optimizeALS(ifnb_liger, k = 20)

The optimization yields several low-dimensional matrices, including the H matrix of metagene
expression levels for each cell, the W matrix of shared metagenes, and the V matrices of
dataset-specific metagenes.

Please note that the time required of this step is highly dependent on the size of the datasets being
used. For datasets of about 30,000 cells or less, this step should take less than 30 minutes.

Stage lll: Quantile Normalization and Joint Clustering (1-2 minutes)

5. We can now use the resulting factors to jointly cluster cells and perform quantile normalization by
dataset, factor, and cluster to fully integrate the datasets. All of this functionality is encapsulated
within the quantile_norm function, which uses maximum factor assignment followed by refinement
using a k-nearest neighbors graph.

ifnb_liger <- quantile_norm(ifnb_liger)

6. The quantile_norm procedure produces joint clustering assignments and a low-dimensional
representation that integrates the datasets together. These joint clusters directly from iNMF can be
used for downstream analyses (see below). Alternatively, we can also run Louvain community
detection, an algorithm commonly used for single-cell data, on the normalized cell factors. The
Louvain algorithm excels at merging small clusters into broad cell classes and thus may be more
desirable in some cases than the maximum factor assignments produced directly by iNMF.

ifnb_liger <- louvainCluster(ifnb_liger, resolution = 0.25)

Stage IV: Visualization and Downstream Analysis (25-40 seconds)

7. To visualize the clustering of cells graphically, we can project the normalized cell factors to two or
three dimensions. LIGER supports both t-SNE and UMAP for this purpose. Note that if both
techniques are run, the object will only hold the results from the most recent.

ifnb_liger <- runUMAP(ifnb_liger)

The LIGER package implements a variety of utilities for visualization and analysis of clustering, gene
expression across datasets, and comparisons of cluster assignments. We will summarize several
here.

8. plotByDatasetAndCluster plots two images using the coordinates generated by t-SNE or UMAP in
the previous step. The first plot colors cells by dataset of origin, and the second colors cells by joint
cluster assignment. The plots provide visual confirmation that the datasets are well aligned and the
clusters are consistent with the structure of the data as revealed by UMAP (Figure 2).

plotByDatasetAndCluster(ifnb_liger)
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Figure 2: LIGER jointly identifies clusters from across single-cell RNA-seq datasets. a,b,
Uniform manifold approximation and projection (UMAP) plots of a LIGER analysis of 3000 control
and 3000 interferon-beta stimulated PBMCs profiled by scRNA-seq, colored by dataset (a) and
LIGER joint cluster assignment (b).

To directly study the impact of factors on the clustering and determine what genes load most highly
on each factor, we use the plotGenelLoadings function, which returns plots of metagene expression
levels on the dimensionally reduced graphs and gene loading values by dataset for each metagene
(Figure 3).

gene_loadings <- plotGenelLoadings(ifnb_liger, do.spec.plot = FALSE, return.plots =
TRUE)
gene_loadings[[4]]
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Figure 3: LIGER enables metagene and dataset specific analysis of PBMC data. UMAP plots
showing metagene expression levels (factor loading values for each cell; top) and gene loadings (on
a particular metagene; bottom) for Factor 4, which specifically loads on Cluster 3. In gene loading
plots, gene names are sorted in decreasing order of magnitude of their factor loading contribution
and correspond to colored points in scatterplots. Plots are organized to show the dataset-specific
metagene values for control cells, the shared metagene values common to all datasets and the
dataset-specific metagene values for interferon-stimulated cells.

Using the runWilcoxon function, we can next identify gene markers for all clusters. We can also
compare expression within each cluster across datasets, which in this case reveals markers of
interferon-beta stimulation. The function returns a table of data that allows us to determine the
significance of each gene’s differential expression, including log fold change, area under the curve
and p-value (Table 1).

cluster.results <- runWilcoxon(ifnb_liger, compare.method = “clusters®”)

dataset.results <- runWilcoxon(ifnb_liger, compare.method = “datasets”)
head(cluster.results)
feature group avgExpr logFC statistic auc pval padj pct in  pct _out

1 RP11-2 0 -23.014 0.001 320575 0.500 0.939 0.959 100 100
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06L10.2 5.245
RP11-2 320575

206L10.9 0 -23.015  0.001 3.245 0500 0.939 0.959 100 100
LINCOO 319809

3 115 0 -23.015 -0.037 9.603 0499 0.128 0.258 100 100
325965

4 NOC2L 0 -21.807 0.267 7500 0508 0.025 0.073 100 100
320666

5 KLHL17 0 -23.003 0.006 8.940 0500 0.740 0.824 100 100
PLEKH 319810

6 N1 0 -23.014 -0.035 7.603 0499 0.128 0.258 100 100

Table 1: Wilcoxon test results indicating shared cluster markers across datasets

The number of marker genes identified by runWilcoxon varies and depends on the datasets used.
The function outputs a data frame that the user can then filter to select markers that are statistically
and biologically significant. For example, one strategy is to filter the output by taking markers which
have padj (Benjamini-Hochberg adjusted p-value) less than 0.05 and /ogFC (log fold change
between observations in-group versus out-group) larger than 3:

cluster.results <- cluster.results[cluster.results$padj < 0.05,]
cluster.results <- cluster.results[cluster.results$logfFC > 3,]

We can then re-sort the markers by padj value in ascending order and choose the top 100 for each
cell type. For example, we can subset and re-sort the output for Cluster 3 and take the top 20
markers by typing these commands (Table 2):

wilcoxon.cluster_3 <- cluster.results[cluster.results$group == 3, ]
wilcoxon.cluster 3 <- wilcoxon.cluster_3[order(wilcoxon.cluster_3$padj), ]
head(wilcoxon.cluster_ 3)

feature group avgExpr @ logFC  statistic  auc pval padj pct_in  pct_out
16.1473 0.96476

41861  GNLY 3  -5.282466 23 2379942 42 0 0 100 100
-12.96207 9.48559 0.78904

46904 CLIC3 3 0 9 1946458 17 0 0 100 100
-12.26057 9.83008 0.79863

47130 PRF1 3 3 2 1970124 52 0 0 100 100
13.6971 0.90477

49239 GZMB 3 | -7.840488 78 2231966 89 0 0 100 100
14.4331 0.94242

52832 | NKG7 3 | -6.594620 85 2324832 43 0 0 100 100

-18.00005 4.91623 0.65132 1.83940 4.09911

48310 KLRC1 3 9 9 1606731 52 5e-289 | 4e-286 100 100


https://doi.org/10.1101/2020.04.07.029546
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.029546; this version posted April 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 2: Top shared cluster markers from the Wilcoxon test on IFNB dataset

We can visualize the expression profiles of individual genes, such as the differentially expressed
genes that we just identified. This allows us to visually confirm the cluster- or dataset-specific
expression patterns of marker genes. The UMAP plots of PRF1 expression indicate that this gene is
a specific marker for Cluster 3, with high values in this cell group and low values elsewhere (Figure
4). Meanwhile, we can also see that the distributions are very similar between the control and
interferon-stimulated datasets, indicating that LIGER has properly aligned these two datasets.

plotGene(ifnb_liger, "PRF1")
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Figure 4: Marker gene identified by LIGER shows consistent cell-type-specific expression
across datasets. a,b, UMAP representations of expression for gene PRF1, a marker gene of cluster
3, in control (a) and interferon-beta stimulated (b) PBMCs exhibit similar distributions.

We can also use plotGene to inspect genes with expression that differs within a cluster across
datasets.
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Figure 5: Marker genes identified by LIGER show expression differences across datasets. a,b,
UMAP representations of expression for gene IFIT3, a marker gene of the interferon-stimulated
dataset, shows low expression in control (a) and high expression in interferon-stimulated (b)
PBMCs. c,d, UMAP representations of expression for gene IFITM3, a marker gene of cluster 1, in
control (¢) and IFNB-stimulated (d) PBMCs similarly shows more expression in interferon-stimulated
cells.
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Joint definition of cell types from single-cell gene expression and single-nucleus chromatin
accessibility data (Human bone marrow mononuclear cells)

In this section, we will demonstrate LIGER’s ability to jointly define cell types by leveraging multiple
single-cell modalities. We integrate published human bone marrow mononuclear cell (BMMC) data '
profiled by single-cell RNA-seq and single-nucleus ATAC-seq to enable cell type definitions that
incorporate both gene expression and chromatin accessibility data. Such joint analysis allows not
only the taxonomic categorization of cell types, but also a deeper understanding of their underlying
regulatory networks. The pipeline for jointly analyzing scRNA-seq and snATAC-seq is similar to that
for integrating multiple scRNA-seq datasets in that both rely on joint matrix factorization and quantile
normalization. The main differences are: (1) snATAC-seq data needs to be processed into
gene-level values; (2) gene selection is performed on the scRNA-seq data only; and (3) downstream
analyses can use both gene-level and intergenic information.

Stage I: Preprocessing and Normalization (40 - 50 minutes)

In order to jointly analyze scRNA and snATAC-seq data, we first need to transform the snATAC-seq
data--a genome-wide epigenomic measurement--into gene-level counts which are comparable to
gene expression data from snRNA-seq. Most previous single-cell studies have used an approach
inspired by traditional bulk ATAC-seq analysis: identifying chromatin accessibility peaks, then
summing together all peaks that overlap each gene. This strategy is also appealing because the 10X
CellRanger pipeline, a commonly used commercial package, automatically outputs such peak
counts. However, we find this peak summing strategy undesirable because: (1) peak calling is
performed using all cells, which biases against rare cell populations; (2) gene body accessibility is
often more diffuse than that of specific regulatory elements, and thus may be missed by peak calling
algorithms; and (3) information from reads outside of peaks is discarded, further reducing the
amount of data in the already sparse measurements. Instead of summing peak counts, we find that
the simplest possible strategy seems to work well: counting the total number of ATAC-seq reads
within the gene body and promoter region (typically 3 kb upstream) of each gene in each cell.

Note that in this part, we included the details of running this preprocessing workflow for only one
sample. Users should re-run this counting step multiple times for more than one snATAC-seq
sample.

Note also that several commands need to be run through the Command Line Interface instead of
the R Console or IDE (RStudio). We also employ the bedmap command from the BEDOPS tool to
make a list of cell barcodes that overlap each gene and promoter. The gene body and promoter
indexes are .bed files, which indicate gene and promoter coordinates. Since bedmap expects sorted
inputs, the fragment output from CellRanger, gene body and promoter indexes should all be sorted.

We show below how to perform these steps for snATAC-seq data generated by the 10X Chromium
system, the most widely used snATAC-seq platform. The input for this process is the file
fragments.tsv output by CellRanger, which contains all ATAC reads that passed filtering steps.

1. We must first sort fragments.tsv by chromosome, start, and end position using the sort command
line utility. The -k option lets the user sort the file on a certain column; including multiple -k options
allows sorting by multiple columns simultaneously. The n behind -k stands for ‘numeric ordering’.
Here the sorted .bed file order is defined first by lexicographic chromosome order (using the
parameter -k1,1), then by ascending integer start coordinate order (using parameter -k2,2n), and
finally by ascending integer end coordinate order (using parameter -k3,3n). Note that this step may
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take a while, since the input fragment file is usually very large (for example, a typical fragment file of
4-5 GB can take about 40 minutes).

sort -k1,1 -k2,2n -k3,3n GSM4138888_ scATAC_BMMC_D5T1.fragments.tsv >
atac_fragments.sort.bed

Gene body and promoter locations should also be sorted using the same strategy for sorting
fragment output files:

sort -k 1,1 -k2,2n -k3,3n hgl9 genes.bed > hgl9 genes.sort.bed
sort -k 1,1 -k2,2n -k3,3n hgl9 promoters.bed > hgl9 promoters.sort.bed

2. Use the bedmap command to determine which fragments overlap each gene body and promoter:

bedmap --ec --delim "\t" --echo --echo-map-id hgl9 promoters.sort.bed
atac_fragments.sort.bed > atac_promoters_bc.bed

bedmap --ec --delim "\t" --echo --echo-map-id hgl9 genes.sort.bed
atac_fragments.sort.bed > atac_genes bc.bed

Important flags are as follows:

e --delim. This changes output delimiter from ‘|’ to specified delimiter between columns, which
in our case is “\t”.

e --ec. Adding this will check input files to make sure that they are properly formatted and
sorted.

e --echo. Adding this will print each line from reference file in output. The reference file in our
case is gene or promoter index.

e --echo-map-id. Adding this will list IDs of all overlapping elements from mapping files, which
in our case are cell barcodes from fragment files.

3. We then import the bedmap outputs into the R Console or RStudio. Note that the as.is option in
read.table is specified to prevent the conversion of character columns to factor columns:

genes.bc <- read.table(file = "atac_genes bc.bed", sep = "\t", as.is = c(4,7),
header = FALSE)
promoters.bc <- read.table(file = "atac_promoters_bc.bed", sep = "\t", as.is =

c(4,7), header = FALSE)

Cell barcodes are then split and extracted from the outputs. We recommend filtering barcodes that
have a total number of reads lower than a certain threshold, for example, 1500. This threshold can
be adjusted according to the size and quality of the samples.

bc <- genes.bc[,7]

bc_split <- strsplit(bc,"”;"
bc_split_vec <- unlist(bc_split)

bc_unique <- unique(bc_split_vec)

bc_counts <- table(bc_split vec)

bc_filt <- names(bc_counts)[bc_counts > 1500]
barcodes <- bc_filt
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4. We can then use LIGER’s makeFeatureMatrix function to calculate accessibility counts for gene
body and promoter individually. This function takes the output from bedmap and efficiently counts
the number of fragments overlapping each gene and promoter. We could count the genes and
promoters in a single step, but choose to calculate them separately in case it is necessary to look at
gene or promoter accessibility individually in downstream analyses.

library(liger)
gene.counts <- makeFeatureMatrix(genes.bc, barcodes)
promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes)

Next, these two count matrices need to be re-sorted by gene symbol. We then add the matrices
together, yielding a single matrix of gene accessibility counts in each cell. Note that we also append
the sample name to each cell barcode to avoid duplicate cell names across experiments.

gene.counts <- gene.counts[order(rownames(gene.counts)), ]
promoter.counts <- promoter.counts[order(rownames(promoter.counts)), ]
D5T1 <- gene.counts + promoter.counts

colnames(D5T1) <- paste@("D5T1_", colnames(D5T1))

?TROUBLESHOOTING

5. Once the gene-level snATAC-seq counts are generated, the read70X function from LIGER can be
used to read scRNA-seq count matrices output by CellRanger. You can pass in a directory (or a list
of directories) containing raw outputs (for example, “/Sample_1/outs/filtered_feature_bc_matrix”) to
the parameter sample.dirs. Next, a vector of names to use for the sample (or samples,
corresponding to sample.dirs) should be passed to parameter sample.names as well. LIGER can
also use data from any other protocol, as long as it is provided in a genes x cells R matrix format.

bmmc.rna <- readleX(sample.dirs = list("/path_to_sample"), sample.names =
list("rna™))

6. We can now create a LIGER object with the createLiger function. We also remove unneeded
variables to conserve memory.

bmmc.data <- list(atac = D5T1, rna = bmmc.rna)
int.bmmc <- createLiger(bmmc.data)
rm(genes.bc, promoters.bc, gene.counts, promoter.counts, D5T1, bmmc.rna)

?TROUBLESHOOTING

7. Preprocessing steps are needed before running matrix factorization. Each dataset is normalized
to account for differences in total gene-level counts across cells using the normalize function. Next,
highly variable genes from each dataset are identified and combined for use in downstream analysis.
Note that by setting the parameter datasets.use to 2, genes will be selected only from the
scRNA-seq dataset (the second dataset) by the selectGenes function. We recommend not using the
ATAC-seq data for variable gene selection because the statistical properties of the ATAC-seq data
are very different from scRNA-seq, violating the assumptions made by the statistical model we
developed for selecting genes from RNA data. Finally, the scaleNotCenter function scales
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normalized datasets without centering by the mean, giving the nonnegative input data required by
iNMF.

int.bmmc <- normalize(int.bmmc)
int.bmmc <- selectGenes(int.bmmc, datasets.use = 2)
int.bmmc <- scaleNotCenter(int.bmmc)

?TROUBLESHOOTING

Stage Il: Joint Matrix Factorization (3 - 10 minutes)

8. We next perform joint matrix factorization (iNMF) on the normalized and scaled RNA and ATAC
data. This step calculates metagenes--sets of co-expressed genes that distinguish cell
populations--containing both shared and dataset-specific signals. The cells are then represented in
terms of the “expression level” of each metagene, providing a low-dimensional representation that
can be used for joint clustering and visualization. To run iINMF on the scaled datasets, we use the
optimizeALS function with proper hyperparameter settings.

The important parameters are as follows:

e k. Integer value specifying the inner dimension of factorization, or number of factors. Higher k
is recommended for datasets with more substructure. We find that a value of k in the range
20 - 40 works well for most datasets. Because this is an unsupervised, exploratory analysis,
there is no single “right” value for k, and in practice, users choose k from a combination of
biological prior knowledge and other information.

e Jambda. This is a regularization parameter. Larger values penalize dataset-specific effects
more strongly, causing the datasets to be better aligned, but possibly at the cost of higher
reconstruction error. The default value is 5. We recommend using this value for most
analyses, but find that it can be lowered to 1 in cases where the dataset differences are
expected to be relatively small, such as scRNA-seq data from the same tissue but different
individuals.

e thresh. This sets the convergence threshold. Lower values cause the algorithm to run longer.
The default is 1e-6.

e max.iters. This variable sets the maximum number of iterations to perform. The default value
is 30.

int.bmmc <- optimizeALS(int.bmmc, k = 20)

Stage lll: Quantile Normalization and Joint Clustering (1 minute)

9. Using the metagene factors calculated by iNMF, we then assign each cell to the factor on which it
has the highest loading, giving joint clusters that correspond across datasets. We then perform
quantile normalization by dataset, factor, and cluster to fully integrate the datasets.

int.bmmc <- quantile_norm(int.bmmc)

Important parameters of quantile_norm are as follows:

e knn_k. This sets the number of nearest neighbors for within-dataset KNN graph. The default
is 20.
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e quantiles. This sets the number of quantiles to use for quantile normalization. The default is
50.

e min_cells. This indicates the minimum number of cells to consider a cluster as shared across
datasets. The default is 20.

e dims.use. This sets the indices of factors to use for quantile normalization. The user can
pass in a vector of indices indicating specific factors. This is helpful for excluding factors
capturing biological signals such as the cell cycle or technical signals such as mitochondrial
genes. The default is all k of the factors.

e (do.center. This indicates whether to center the data when scaling factors. The default is
FALSE. This option should be set to TRUE when metagene loadings have a mean above
zero, as with dense data such as DNA methylation.

e max_sample. This sets the maximum number of cells used for quantile normalization of each
cluster and factor. The default is 1000.

e refine.knn. This indicates whether to increase robustness of cluster assignments using KNN
graph. The default is TRUE.

e ¢ps. This sets the error bound of the nearest neighbor search. The default is 0.9. Lower
values give more accurate nearest neighbor graphs but take much longer to compute. We
find that this parameter affects result quality very little.

e ref dataset. This indicates the name of the dataset to be used as a reference for quantile
normalization. By default, the dataset with the largest number of cells is used.

10. The quantile_norm function gives joint clusters that correspond across datasets, which are often
completely satisfactory and sufficient for downstream analyses. However, if desired, after quantile
normalization, users can additionally run the Louvain algorithm for community detection, which is
widely used in single-cell analysis and excels at merging small clusters into broad cell classes. This
can be achieved by running the louvainCluster function. Several tuning parameters, including
resolution, k, and prune control the number of clusters produced by this function. For this dataset,
we use a resolution of 0.2, which yields 18 clusters (see below).

int.bmmc <- louvainCluster(int.bmmc, resolution = 0.2)

Stage IV: Visualization (2 - 3 minutes) and Downstream Analysis (30 - 40 minutes)

11. In order to visualize the clustering results, the user can use two dimensionality reduction
methods supported by LIGER: t-SNE and UMAP. We find that often for datasets containing
continuous variation such as cell differentiation, UMAP better preserves global relationships,
whereas t-SNE works well for displaying discrete cell types, such as those in the brain. The UMAP
algorithm (called by the runUMARP function) scales readily to large datasets. The runTSNE function
also includes an option to use FFtSNE, a highly scalable implementation of t-SNE that can efficiently
process large datasets. For the BMMC dataset, we expect to see continuous lineage transitions
among the differentiating cells, so we use UMAP to visualize the data in two dimensions (Figure 6).

int.bmmc <- runUMAP(int.bmmc, distance = 'cosine', n_neighbors = 30, min_dist =
0.3)

12. We can then visualize each cell, colored by cluster or dataset.
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plotByDatasetAndCluster(int.bmmc, axis.labels = c('UMAP 1', 'UMAP 2'))
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Figure 6: LIGER allows integrated alignment and clustering of BMMC data across
technologies. a,b, UMAP plots of a LIGER analysis of 12,602 scRNA-seq profiles and 6,234 nuclei
profiled by snATAC-seq, colored by technology (a) and LIGER cluster assignment (b).

13. LIGER employs the Wilcoxon rank-sum test to identify marker genes that are differentially
expressed in each cell type using the following settings. We provide parameters that allow the user
to select which datasets to use (data.use) and whether to compare across clusters or across
datasets within each cluster (compare.method). To identify marker genes for each cluster combining
snATAC and scRNA profiles, typing in:

int.bmmc.wilcoxon <- runWilcoxon(int.bmmc, data.use = 'all', compare.method =
"clusters')

Important parameters of runWilcoxon are as follows:

e (data.use. This selects which dataset (or set of datasets) to be included. The default is ‘all’
(using all the datasets).

e compare.method. This indicates whether to compare across clusters or across datasets
within each cluster. Setting compare.method to ‘clusters’ compares each feature’s (genes,
peaks, etc.) loading between clusters combining all datasets, which gives us the most
specific features for each cluster. On the other hand, setting compare.method to ‘datasets’
gives us the features most differentially expressed across datasets for every cluster.

14. The number of marker genes identified by runWilcoxon varies and depends on the datasets
used. The function outputs a data frame that the user can then filter to select markers that are
statistically and biologically significant. For example, one strategy is to filter the output by taking
markers which have padj (Benjamini-Hochberg adjusted p-value) less than 0.05 and /ogFC (log fold
change between observations in group versus out) larger than 3:
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int.bmmc.wilcoxon <- int.bmmc.wilcoxon[int.bmmc.wilcoxon$padj < 0.05, ]
int.bmmc.wilcoxon <- int.bmmc.wilcoxon[int.bmmc.wilcoxon$logFC > 3,]

We can then sort the markers by padj value in ascending order and choose the top 100 for each cell
type. For example, we can subset and re-sort the output for Cluster 1 and take the top 20 markers
by typing these commands:

wilcoxon.cluster 1 <- int.bmmc.wilcoxon[int.bmmc.wilcoxon$group == 1, ]
wilcoxon.cluster_1 <- wilcoxon.cluster_1[order(wilcoxon.cluster_1%$padj), ]
markers.cluster_1 <- wilcoxon.cluster_ 1[1:20, ]

15. We also provide functions to check these markers by visualizing their expression across
datasets. We can use the plotGene to visualize the expression or accessibility of a marker gene,
which is helpful for visually confirming putative marker genes or investigating the distribution of
known markers across the sequenced cells. Such plots can also confirm that datasets are properly
aligned.

For instance, we can plot ST00A9, which the Wilcoxon test identified as a marker for Cluster 1, and
MS4A1, a marker for Cluster 4

S100A8 <- plotGene(int.bmmc, "S100A9", axis.labels = c('UMAP 1', 'UMAP 2'),
return.plots = TRUE)

MS4A1 <- plotGene(int.bmmc, "MS4A1", axis.labels = c('UMAP 1', 'UMAP 2'),
return.plots = TRUE)
plot_grid(S100A8[[2]],MS4A1[[2]],5100A8[[1]],MS4A1[[1]], ncol=2)
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Figure 7: Expression and chromatin accessibility of marker genes selected by LIGER show
consistency across modalities. a,b, UMAP representations of expression for genes ST00A9 (a)
and MS4A1 (b). c,d, UMAP representations of chromatin accessibility for genes S100A9 (c) and
MS4A1 (d), which show highly similar distributions compared to their expression (a, b).

The UMAP plots of expression and chromatin accessibility indicate that ST00A9 and MS4A1 are
indeed specific markers for Cluster 1 and Cluster 4, respectively, with high values in these cell
groups and low values elsewhere (Figure 7). Furthermore, we can see that the distributions are
strikingly similar between the RNA and ATAC datasets, indicating that LIGER has properly
integrated the two data types.

16. A key advantage of using iINMF instead of other dimensionality reduction approaches such as
PCA is that the dimensions are individually interpretable. For example, a single dimension of the
space often captures a particular cell type. Furthermore, iINMF identifies both shared and
dataset-specific features along each dimension, giving insight into exactly how corresponding cells
across datasets are both similar and different. The function plotGenelLoadings allows visual
exploration of such information. It is recommended to call this function into a PDF file due to the
large number of plots produced.

pdf('Gene_Loadings.pdf")
plotGeneLoadings(int.bmmc, return.plots = FALSE)
dev.off()
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Alternatively, the function can return a list of plots. For example, we can visualize the factor loading
of Factor 7 typing in:

gene_loadings <- plotGenelLoadings(int.bmmc, do.spec.plot = FALSE, return.plots =
TRUE)
gene_loadings[[7]]
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Figure 8: Metagenes and metagene expression levels for BMMC data. UMAP plots showing
metagene expression levels (top) and gene loading values (bottom) for Factor 7, which specifically
loads on Cluster 4. In gene loading plots, gene names are sorted in decreasing order of magnitude
of their factor loading contribution and correspond to colored points in scatterplots. Plots are
organized to show the metagene specific to snATAC-seq (left), the shared metagene common to all
datasets (middle) and the metagene specific to scRNA-seq profiles (right).

The loading pattern of Factor 7 shows that Factor 7 specifically loads on Cluster 4 (Figure 8, top).
We also see both the shared markers (including MS4A1, which we already inspected above) and
dataset-specific genes that characterize this dimension (Figure 8, bottom). For example, CCR6 and
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NCF1 are the top dataset-specific genes in the ATAC and RNA datasets, respectively. To inspect
these genes, we plotted their expression and accessibility, which confirm that these genes show
clear differences (Figure 9). CCR6 shows nearly ubiquitous chromatin accessibility but is expressed
only in clusters 2 and 4. The accessibility is highest in these clusters, but the ubiquitous accessibility
suggests that the expression of CCR6 is somewhat decoupled from its accessibility, likely regulated
by other factors. Conversely, NCF1 shows high expression in clusters 1, 3, 4 and 9, despite no clear
enrichment in chromatin accessibility within these clusters 4 and 9. This may again indicate
decoupling between the expression and chromatin accessibility of NCF1. Another possibility is that
the difference is due to technical effects--the gene body of NCF1 is short (~15KB), and short genes
are more difficult to capture in snATAC-seq than in scRNA-seq because there are few sites for the
ATAC-seq transposon to insert.
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Figure 9: Genes showing expression and accessibility differences. a,b, UMAP representation
of expression for CCR6 (a) and NCF1 (b). ¢,d, UMAP representation of chromatin accessibility of
CCR6 (c) and NCF1 (d), which both show distinct distributions compared to their expressions (a, b).

17. Single-cell measurements of chromatin accessibility and gene expression provide an
unprecedented opportunity to investigate epigenetic regulation of gene expression. Ideally, such
investigation would leverage paired ATAC-seq and RNA-seq from the same cells, but such
simultaneous measurements are not generally available. However, using LIGER, it is possible to
computationally infer “pseudo-multi-omic” profiles by linking scRNA-seq profiles--using the jointly
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inferred INMF factors--to the most similar snATAC-seq profiles. After this imputation step, we can
perform downstream analyses as if we had true single-cell multi-omic profiles. For example, we can
identify putative enhancers by correlating the expression of a gene with the accessibility of
neighboring intergenic peaks across the whole set of single cells.

To achieve this, we first need a matrix of accessibility counts within intergenic peaks. The
CellRanger pipeline for snATAC-seq outputs such a matrix by default, so we will use this as our
starting point. The count matrix, peak genomic coordinates, and source cell barcodes output by
CellRanger are stored in a folder named filtered_peak_matrix in the output directory. The user can
load these and convert them into a peak-level count matrix by typing these commands:

barcodes <- read.table('/outs/filtered _peak bc_matrix/barcodes.tsv', sep =
"\t', header = FALSE, as.is = TRUE)$V1

peak.names <- read.table('/outs/filtered_peak bc_matrix/peaks.bed', sep = "\t',
header = FALSE)

peak.names <- paste@(peak.names$vi, ':', peak.names$Vv2, '-', peak.names$V3)
pmat <- readMM('/outs/filtered peak bc_matrix/matrix.mtx")

dimnames(pmat) <- list(peak.names, barcodes)

18. The peak-level count matrix is usually large, containing hundreds of thousands of peaks. We
next filter this set of peaks to identify those showing cell-type-specific accessibility. To do this, we
perform the Wilcoxon rank-sum test and pick those peaks which are differentially accessible within a
specific cluster. Before running the test, however, we need to: (1) subset the peak-level count matrix
to include the same cells as the gene-level counts matrix; (2) replace the original gene-level counts
matrix in the LIGER object by peak-level counts matrix; and (3) normalize peak counts to sum to 1
within each cell. We can do this with the following steps:

int.bmmc.ds <- int.bmmc

pmat <- pmat[ ,intersect(colnames(pmat),colnames(int.bmmc@raw.datal[['atac']]))]
int.bmmc.ds@raw.data[[ 'atac']] <- pmat

int.bmmc.ds <- normalize(int.bmmc.ds)

Now we can perform the Wilcoxon test:

peak.wilcoxon <- runWilcoxon(int.bmmc.ds, data.use = 1, compare.method =
"clusters')

The user can find documentation of important parameters of runWilcoxon in the section above
(“Identify Gene Markers of Individual Cell Types”).

?TROUBLESHOOTING

19. We can now use the results of the Wilcoxon test to retain only peaks showing differential
accessibility across our set of joint clusters. Here we kept peaks with Benjamini-Hochberg adjusted
p-value < 0.05 and log fold change > 2.

peak.wilcoxon <- peak.wilcoxon[peak.wilcoxon$padj < 0.05, ]
peak.wilcoxon <- peak.wilcoxon[peak.wilcoxon$logFC > 2,]
peak.sel <- unique(peak.wilcoxon$feature)
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int.bmmc.ds@raw.data[['atac']] = int.bmmc.ds@raw.data[[ 'atac']][peaks.sel, ]

20. Using this set of differentially accessible peaks, we now impute a set of “pseudo-multi-omic”
profiles by inferring the intergenic peak accessibility for scRNA-seq profiles based on their nearest
neighbors in the joint LIGER space. LIGER provides a function named imputeKNN that performs this
task, yielding a set of profiles containing both gene expression and chromatin accessibility
measurements for the same single cells:

int.bmmc.ds = imputeKNN(int.bmmc.ds, reference = 'atac')

Important parameters of imputeKNN are as follows:

e reference. Dataset containing values to impute into query dataset(s). For example, setting
reference = ‘atac’ uses the values in dataset ‘atac’ to predict chromatin accessibility values
for scRNA-seq profiles.

e queries. Dataset to be augmented by imputation. For example, setting query = ‘rna’ predicts
chromatin accessibility values for scRNA-seq profiles.

e knn_k. The maximum number of nearest neighbors to use for imputation. The imputation
algorithm simply builds a k-nearest neighbor graph using the aligned LIGER latent space,
then averages values from the reference dataset across neighboring cells. The default value
is 20.

e weight. This indicates whether to use KNN distances to weight datasets (TRUE) or to
average equally among all neighbors (FALSE). The default is TRUE.

e norm. This indicates whether to normalize data after imputation. The default is TRUE.
scale. This indicates whether to scale data after imputation. The default is FALSE.

21. Now that we have both the (imputed) peak-level counts matrix and the (observed) gene
expression counts matrix for the same cells, we can evaluate the relationships between pairs of
genes and peaks, linking genes to putative regulatory elements. We use a simple strategy to identify
such gene-peak links: Calculate correlation between gene expression and peak accessibility of all
peaks within 500 KB of a gene, then retain all peaks showing statistically significant correlation with
the gene. The linkGenesAndPeaks function performs this analysis:

gmat = int.bmmc@norm.data[['rna']]

pmat = int.bmmc.ds@norm.data[['rna’']]

regnet = linkGenesAndPeaks(gene counts = gmat, peak counts = pmat, dist =
'spearman’', alpha = 0.05, path_to_coords = 'some_path/gene_coords.bed")
rm(int.bmmc.ds, gmat, pmat)

Important parameters of linkGenesAndPeaks are as follows:

e gene_counts. A gene expression matrix (genes by cells) of normalized counts. This matrix
has to share the same column names (cell barcodes) as the matrix passed to peak counts.

e peak_counts. A peak-level matrix (peaks by cells) of normalized accessibility values, such as
the one resulting from imputeKNN. This matrix must share the same column names (cell
barcodes) as the matrix passed to gene_counts.

e genes.list. A list of the genes symbols to be tested. If not specified, this function will use all
the gene symbols from the matrix passed to gmat by default.

e dist. This indicates the type of correlation to calculate -- one of “spearman” (default),
"pearson", or "kendall".
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e alpha. Significance threshold for correlation p-value. Peak-gene correlations with p-values
below this threshold are considered significant. The default is 0.05.

e path to coords. The path to the gene coordinates file (in .bed format). We recommend
passing in the same bed file used for making barcodes list in Step 1.

22. The output of this function is a sparse matrix with peak names as rows and gene symbols as
columns, with each element indicating the correlation between peak i and gene j (or O if the gene
and peak are not significantly linked). For example, we can subset the results for marker gene
S7100A9, which is a marker gene of Cluster 1 identified in the previous section, and rank these peaks
by their correlation:

S100A9 <- regnet[, 'S100A9']
S100A9 <- S100A9[abs(S100A9) > 0]
View(S100A9[order(abs(S100A9), decreasing = TRUE)])

We also provide a function to transform the peaks-genes correlation matrix into an Interact Track for
visualizing the calculated linkage between genes and correlated peaks.

makeInteractTrack(regnet, genes.list = 'S100A9', path_to coords =
'some_path/gene_coords.bed")

Important parameters of this function are as follows:

e corr.mat. A peaks x genes sparse matrix containing inferred gene-peak links (as output by
linkGenesAndPeaks).

e genes.list. A vector of the gene symbols to be included in the output Interact Track file. If not
specified, this function will use all the gene symbols in corr.mat by default.

e path _to coords. The path to the gene coordinates file (in .bed format). We recommend using
the same .bed file used for making the barcodes list in Step 1.

e output path. The path to the directory in which the Interact Track file will be stored. The
default is the working directory.

The output of this function will be a UCSC Interact Track file named ‘Interact_Track.bed’ containing
linkage information of the specified genes and correlated peaks stored in the given directory. The
user can then upload this file as a custom track using this page
(https://genome.ucsc.edu/cqgi-bin/hgCustom) and display it in the UCSC Genome browser.

For example, the two peaks most correlated to ST00A9 expression are shown in the UCSC genome
browser (Figure 10). One of the peaks overlaps with the TSS of ST00A8, a neighboring gene that is
co-expressed with ST00A9, while another peak overlaps with the TSS of ST00A9 itself. The last
peak, chr1:1563358896-153359396, does not overlap with a gene body and shows strong H3K27
acetylation across ENCODE cell lines, indicating that this is likely an intergenic regulatory element.
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Figure 10: UCSC genome browser view showing the correlations between three candidate
chromatin accessible regions and target gene S700A9. The locations of three peaks are shown
as short black strips within the row “Regions”, and the correlations are illustrated by dotted arcs.
H3K27 acetylation and DNasel hypersensitivity across ENCODE cell lines are also shown at the
bottom.

To further inspect the correlation between chr1:1563358896-153359396 and S100A9, we plotted the
accessibility of this peak and the expression of ST00A9 (Figure 11). We can see that the two are
indeed very correlated and show strong enrichment in clusters 1 and 3. Thus, the intergenic peak
likely serves as a cell-type-specific regulator of ST00A9.
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Figure 11: Expression and correlated accessibility for ST00A9 and nearby intergenic peak. a,
UMAP representation of imputed chromatin accessibility of gene ST00A9. b, UMAP representation
of chromatin accessibility for peak chr1:1563358896-153359396.
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Anticipated Results and Troubleshooting

In this section, we will introduce a new, pre-factorized object to demonstrate several common issues
encountered with LIGER and compare possible outputs. This object is composed of two datasets of
interneurons and oligodendrocytes from the mouse frontal cortex (Saunders et al. 2018), two distinct
cell types that should not align if integrated. We used this dataset in our previous paper as a
“negative control” to test whether LIGER spuriously aligns distinct cell types, and we use it here to
demonstrate several pitfalls in LIGER analysis.

i and_o <- readRDS("i_and o.RDS")
Selecting hyperparameters

To get the best results from the factorization, we first run a hyperparameter optimization for k, the
number of factors, and lambda, the penalty term associated with dataset specific factors. Although
suggestK and suggestLambda could be used to initially find these values, utilizing suggestNewK and
suggestNewlLambda instead, respectively, after running an initial factorization will result in faster
output.

suggestNewK(ifnb_liger)
suggestNewLambda(ifnb_liger, k = 20)

= KL_div == log2(k)

1.00
a b

)

N

Alignment

Median KL divergence (across all cells)

40 60 2
Lambda K

Figure 12: Parameter selection of the number of factors k and the tuning parameter A. a,b, As
increases in A (a) and k (b) results in smaller relative increases in metrics of their effectiveness, the
“elbow” of the graph can be interpreted as the optimal hyperparameter value.

We select the value k = 20 at which the increase in median KL divergence becomes negligible, using
the plot generated by suggestNewK (Figure 12, b). The plot generated by suggestNewlLamda
demonstrates that maximum alignment is reached at small values of lambda, so the default value
lambda=5 or less is a reasonable choice for this dataset (Figure 12, a). With these parameters, we
run optimizeALS, LIGER's implementation of integrative non-negative matrix factorization algorithm,

again.

We note again that because LIGER is an unsupervised method and no ground truth is available,
there is no one correct value of k. Thus, we recommend using the above heuristics as a guide rather
than a definitive answer. Also, we recommend starting with a value of k in the range 20-40 and
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simply running an initial analysis, rather than trying to determine the perfect k before looking at the
results.

Factor Curation

One benefit of INMF over other dimensionality reduction techniques is the interpretability of the
resulting metagenes in terms of biological or technical signals. By studying the gene loadings for
each metagene, as represented by the W matrix, we can directly interpret the biological relevance of
each factor and exclude nuisance technical or biological signals in downstream analyses. We can
also gain insights into the biological interpretation of each factor. runGSEA can be used as a tool to
analyze factor composition. If no parameters specifying gene sets are given, then the function will
use all Reactome gene sets that contain at least one of the genes in the object. This allows a
principled means of determining what biological or technical signal each factor represents.

gsea_output <- runGSEA(ifnb_liger)
gsea_output[[21]][[4]]1[2:15,1:3]

pathway pval padj
1 Immune System 0.000100 0.007639
2 Innate Immune System 0.000100 0.007639
Immunoregulatory interactions between a Lymphoid and a
3 'non-Lymphoid cell 0.000100 0.007639
4 Antigen processing-Cross presentation 0.000100 0.007639
5 Adaptive Immune System 0.000200 0.007639
6 Cytokine Signaling in Immune system 0.000200 0.007639
7 ' Signaling by Interleukins 0.000200 0.007639
8 GPCR ligand binding 0.000200 0.007639
9 ER-Phagosome pathway 0.000201 0.007639
10 TNFR2 non-canonical NF-kB pathway 0.000402 0.013750

Table 3: Gene sets enriched in factor 16 of IFNB LIGER result

From Table 3, we find overrepresentation of gene sets related to the interaction between the innate
and adaptive immune systems in Factor 4. The ER-Phagosome pathway is responsible for the
release of cytokines as a part of the process of cross presentation. This supports the inclusion of the
gene sets for cytokine signalling and interleukins, a type of cytokine. We also see that GPCR ligand
binding is significant, possibly meaning that the immune response is a result of non-immune
signalling. From this information, we can hypothesize that cells that highly load factor 4 may be
responsible for initiating an immune response, specifically that of a T lymphocyte due to the
significance of interleukin signalling and cross presentation. Because we know factor 4 loads
primarily on cluster 5, the cluster may represent T lymphocytes.

If we have a custom list of gene sets to study, we can pass those to runGSEA in the form of a
named list of Entrez IDs. This input can easily be generated with the help of the msigdbr package. In
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the example below, a set of mitochondrial gene sets from the Gene Ontology cellular components
subcategory is used for GSEA.

m_set <- msigdbr(species = "Homo sapiens", category = "C5", subcategory = "CC")
m_set <- m_set[grepl("MITOCHON", m_set$gs _name), ]

m_set <- split(m_set$entrez_gene, f = m_set$gs_name)

gsea_output <- runGSEA(i_and_o, custom_gene_sets = m_set)
gsea_output[[21]][[16]][1:8]

After running GSEA on j_and_o's factors, we find that factors 15 and 16 significantly overrepresent
several gene sets associated with mitochondrial function.

We can also use plotFactors after running quantile_norm to directly compare raw and normalized
gene loadings across the datasets. Because of the large number of charts it generates, it should be
called into a PDF.

pdf("i_and_o_factors.pdf")
plotFactors(i_and_o)
dev.off()

If we look at factor 15, which overexpresses mitochondrial gene sets, we can see that a majority of
cells in both datasets have non-zero cell loading values on this factor. This is a common pattern in
metagenes representing technical artifacts; biological signals often have much more specific and
sparse loadings. Thus, it is likely that this factor captures a technical artifact related to mitochondrial
genes and should be removed from the analysis.
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Figure 13: Plots of raw and normalized loading of Factor 15. Scatter plots, with factor loadings
values as y axis and cells as x axis, for both unaligned (raw) and aligned (normalized) factor
loadings of Factor 15.

To remove these factors from further analysis, we again run quantile_norm, with the dims.use
parameter equal to the set difference of the list of all factors and technical artifacts.

i and o <- quantile norm(i_and_o, dims.use = setdiff(1:40, c(15,16)))
i_and_o <- runUMAP(i_and_o, distance = 'cosine', n_neighbors = 30, min_dist =
0.3)

If we compare the final integration with and without the mitochondrial artifact factors, we find that the
alignment of the datasets decreases slightly after we remove the factors (Figure 14). This is
because, without the artifacts, there is less overlap in expression between the datasets for LIGER to
use in integration.
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Figure 14: The alignment between datasets decreases after removing the mitochondrial
artifact factors. a,b, UMAP plots of a LIGER analysis of 3212 interneurons and 2524
oligodendrocytes, with (a) and without (b) factors 15 and 16, colored by datasets.

Metrics for Confirming Results

calcARI, based on the Adjusted Rand Index, and calcPurity can be used to compare the clustering
generated by LIGER with some other clustering, such as known cell types or clustering as
determined by another method. Both return a value between 0 and 1, with 0 representing total
disagreement and 1 representing identical clusterings.

known_clustering <- readRDS("known_clustering.RDS")
calcARI(ifnb_liger, known_clustering)
calcPurity(ifnb_liger, known_clustering)

calcAgreement returns a metric of the distortion of the geometry of the datasets after factorization
and quantile alignment. Although it can theoretically approach a maximum of 1, representing
complete preservation of geometry, it generally reaches 0.2 to 0.3.

calcAgreement(ifnb_liger)

calcAlignment returns a metric of how uniformly mixed multiple datasets are, with a maximum of 1
representing perfect integration.

calcAlignment(ifnb_liger)
Here we show side-by-side UMAP representations of the oligos/interneurons dataset and the PBMC
dataset (Figure 15). This plot indicates the poor alignment between the oligos and interneurons

visually, in addition to the metrics calculated above.

plotByDatasetAndCluster(i_and o, return.plots = T)[[1]]
plotByDatasetAndCluster(ifnb_liger, return.plots = T)[[1]]
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Figure 15: Distinct cell types show poor alignment compared to normal PBMC datasets. a,
UMAP plot of a LIGER analysis of two distinct cell types, interneurons (3212 cells) and oligos (2524
cells) showing poor alignment. b, UMAP plot of a LIGER analysis of 3000 control and 3000
interferon-stimulated PBMCs showing complete and well-mixed alignments.

In this example, we see very limited overlap between the interneuron and oligos datasets in |_and o,
whereas the control and stimulated datasets in ifnb_liger are almost perfectly aligned. If you see a
plot like the one on the left, it is likely that you are trying to integrate datasets that have no common
biology. In addition to visually inspecting the t-SNE or UMAP plot, you can use the function
calcAlignment to calculate a metric quantifying the degree of alignment.

calcAlignment(i_and_o)
calcAlignment(ifnb_liger)

Returning to our example above, the oligodendrocytes and interneurons dataset gives an alignment

score of 0.161, whereas ifnb_liger has a near-perfect alignment score of 0.947.

Step

Problem

Possible reason

Solution

Procedure 1 - step

Error: 'xxx' is not an

The user installed a different

“install.packages(‘liger’)’

Remove your current

1 exported object from package which has the same | installation of liger and install
Procedure 2 - step 'namespace:liger’ name via CRAN with the our package with the
4 command command

“devtools::install_github(‘Maco
skoLab/liger')”

Procedure 1 - step

Error: Failed to install

(converted from warning)
cannot remove prior

This error raises when the

incompatibility between old
and new versions of some

Remove your current

1 'liger' from GitHub: user is trying to update installation of the package
Procedure 2 - step Failed to install 'xxx' from | installed packages before which needed to be updated
4 GitHub: installing liger. It is due to and re-install them before the

liger installation.
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installation of package

¢ ’

XXX

packages

Procedure 1 - step
2
Procedure 2 - step
6

Error in
.rowNamesDF<-(x, value
= value) : invalid
'row.names' length

This error raises when an
input matrix has only a few
cells (for example, 1 or 2) left
after removing cells not
expressing any measured
genes

The user can consider
removing all the cells from that
dataset since it doesn't make
sense to perform subsequent
analyses (such as iNMF
factorization) when one
dataset contains only a single
cell

Procedure 1 - step
3

Procedure 2 - step
7,18

Error: unable to find an
inherited method for
function ‘normalize’ for
signature "liger"

There are some Bioconductor
packages that also define a
normalize function. Under
certain conditions, if you load
one of those packages first, it
will overwrite the ‘normalize’
function from liger

Use double colon “::” to
access the ‘normalize’ function
from liger package, e.g.,
“liger:: normalize(liger_object)”

Table 4: Troubleshooting table
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