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Abstract 

High-throughput single-cell sequencing technologies hold tremendous potential for defining cell 
types in an unbiased fashion using gene expression and epigenomic state. A key challenge in 
realizing this potential is integrating single-cell datasets from multiple protocols, biological contexts, 
and data modalities into a joint definition of cellular identity. We previously developed an approach 
called Linked Inference of Genomic Experimental Relationships (LIGER) that uses integrative 
nonnegative matrix factorization to address this challenge. Here, we provide a step-by-step protocol 
for using LIGER to jointly define cell types from multiple single-cell datasets. The main steps of the 
protocol include data preprocessing and normalization, joint factorization, quantile normalization and 
joint clustering, and visualization. We describe how to jointly define cell types from single-cell 
RNA-seq and single-nucleus ATAC-seq data, but similar steps apply across a wide range of other 
settings and data types, including cross-species analysis, single-nucleus DNA methylation, and 
spatial transcriptomics. Our protocol contains examples of expected results, describes common 
pitfalls, and relies only on our freely available, open-source R implementation of LIGER. We also 
provide Rmarkdown tutorials showing the outputs from each individual code segment. The analysis 
process can be performed in 1 - 4 h depending on dataset size and assumes no specialized 
bioinformatics training. 

Introduction 

Identifying the molecular features that define the types and functions of individual cells provides a 
tremendous opportunity for understanding the genomic blueprint of the human body. The classic 
approach to categorize cells relies on qualitative characterization, including gross morphology, the 
presence or absence of a few surface proteins, and broad cellular function. However, a more 
comprehensive definition of cell identity requires the inclusion of transcriptomic and epigenomic 
profiles of cells. In recent years, a variety of high-throughput single-cell sequencing technologies 
have emerged, measuring the gene expression, DNA methylation, and chromatin accessibility of 
individual cells. These data modalities together enable researchers to revisit the conventional 
classifications of cell types and states in a quantitative, systematic, unbiased fashion. Such 
quantitative definition of cell identity promises to revolutionize our understanding of cell biology 
across a range of contexts, including neuroscience and developmental biology. A reference map of 
the molecular states of healthy cells will in turn allow for probing the causes of cellular abnormality 
and may ultimately inspire the development of novel targeted therapeutics.  
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In order to achieve this goal, an analytical method capable of integrating various single-cell data 
modalities is needed. Although large datasets of expression, DNA methylation, chromatin 
accessibility at single-cell resolution are widely available, multiple modalities are not usually 
measured from the same individual cells due to limitations in existing sequencing technologies. This 
requires the integration method to identify the features or properties that represent the “essential” 
aspects of a cell’s identity, rather than the “dispensable” properties that change across biological 
settings, modalities, protocols, or time. 
 
In addition, when leveraging such datasets to define cell identity, we want to capture both discrete 
cell types and continuous variation such as cell states. For example, Saunders et al. found that 
glutamatergic and GABAergic neurons in the mouse cortex specialize in clearly distinguishable, 
discrete subtypes​1​. In contrast, the spiny projection neurons in the striatum show more continuous 
variation, with cell identity being the combination of patch/matrix and direct/indirect distinctions​1​. 
 
Another important consideration is the ability to separate technical confounders from biological 
signals. Such confounding effects can include the presence of artificial cell doublets created during 
the cell isolation process, differences in mitochondrial RNA and ribosomal protein content due to cell 
dissociation, and the presence of free-floating RNA from lysed cells. Failure to account for such 
factors can lead, for example, to erroneously defining a cell type or state predominantly by its 
mitochondrial RNA profile, in the absence of any significant biological difference from other cells of 
the same type. 
 
Integrative analysis should also allow for identifying similarities and differences in corresponding 
cells across tissues, species, and conditions. For example, it will help to answer questions such as 
how one tissue differs from another in terms of cell type composition as well as cell-type-specific 
gene expression. We can also gain a deeper understanding of the cell types and cell-type-specific 
differences underlying diverse forms and functions across species. Moreover, biomedical 
researchers are often interested in the cell-type-specific gene expression patterns associated with 
risk, onset and progression of diseases. 
 
Development of the protocol 
 
In our previous Cell paper​2​, we first used LIGER to jointly define cell types and their sex-specific 
differences in the mouse bed nucleus of the stria terminalis (BNST). Through the analysis of 
scRNA-seq data from BNST, we found significant sexual dimorphism in the gene expression 
patterns of multiple cell types.  Secondly, we utilized LIGER to define cell types across species in 
mouse and human substantia nigra by integrating scRNA-seq datasets.  

 
We also linked single-cell epigenomic and gene expression states by integrating transcriptomic and 
DNA methylation data from the mouse frontal cortex using LIGER. This joint analysis aided in the 
interpretation of populations difficult to identify from methylation alone and increased our sensitivity 
for detecting rare cell types. It further allowed us to investigate the epigenetic regulation of gene 
expression for each jointly defined cell type.  

 
In addition, we jointly defined cell populations using scRNA-seq profiles and spatial transcriptomic 
data (StarMAP) from mouse frontal cortex. This joint analysis not only enabled inference of spatial 
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information for gene expression profiles from dissociated cells, but also increased the sensitivity for 
identifying cell clusters from the ​in situ ​data. 

 
Applications of the method 

Tran and Shekhar et al. recently used LIGER in their study of neuronal type-specific response to 
injury​3​. They focused on the adult mouse retinal ganglion cells (RGCs) and investigated the 
resilience of RGC types following optic nerve crush (ONC), a common model of traumatic axonal 
injury. The authors employed scRNA-seq to profile the injured RGCs at different time points post 
ONC. They used LIGER to develop a common taxonomy of cell types that was robust to time of 
injury, mouse strain, and batch effects. The capability of LIGER to distinguish shared features such 
as RGC type-specific expression pattern and dataset-specific features--such as injury-related 
changes--along the time course enabled discovery of RGC type-specific molecular signatures 
related to cell resilience and susceptibility to injury. More recently, Krienen et al. applied LIGER to 
probe interneuron cell types and their gene expression patterns across multiple species, including 
humans, macaques, marmosets, and mice​4​. The authors used LIGER to jointly define interneuron 
cell types across species and brain regions from Drop-Seq data. The resulting joint analysis 
revealed shared cell types across species; an interneuron cell type that appears in humans and 
monkeys but not mice; and species-specific gene expression differences within shared cell types. 
 
Comparison with other methods 

There are several existing methods for single-cell data integration, including Scanorama, Seurat, 
Conos, and Harmony. Scanorama is a method designed for scRNA-seq dataset integration and 
batch correction and was introduced by Hie et al. in 2019​5​. Inspired by the idea of stitching images 
into a panoramic picture, the key strategy of this method is to identify the common cell types shared 
in all pairs of dataset by finding the mutual nearest neighbors in a low-dimensional space obtained 
by singular value decomposition. Then pairs of datasets are merged into a “cellular panorama” 
based on their matched cells. The panoramic stitching approach requires that each of the input 
datasets shares at least one cell type with at least one of the others.  

The Kharchenko group developed a three-phase approach for clustering on networks of samples 
(Conos) from multiple scRNA-seq datasets​6​. The input datasets are filtered and normalized in Conos 
phase I. In phase II, pairwise comparison of the datasets using PCA embeddings is performed to 
obtain the initial mapping between the cell samples. In the last phase of Conos, a joint graph is 
constructed based on the inter-sample and intra-sample edges. The joint graph can be used for 
downstream analysis such as community detection, visualization, or label and expression value 
propagation.  
 
Korsunsky and colleagues developed a multi-dataset integration algorithm, Harmony, in their recent 
publication​7​. Harmony takes an initial PCA embedding of scRNA-seq expression matrices as input 
and learns a batch-corrected embedding that allows for downstream analysis, including visualization 
and clustering. This is accomplished by an iterative process of soft clustering, calculating the 
centroids of the resulting clusters, computing cluster-specific correction vectors based on the 
centroids, and correcting the cells using the obtained correction vectors. The process is repeated 
until the devised objective, maximizing both the data integration and separation of cell types, is 
reached.  
 
Scanorama, Harmony, and Conos are designed primarily for integrating multiple RNA datasets, but  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029546doi: bioRxiv preprint 

https://paperpile.com/c/NOys4p/pSWWr
https://paperpile.com/c/NOys4p/tqBGu
https://paperpile.com/c/NOys4p/yAegN
https://paperpile.com/c/NOys4p/wdfHr
https://paperpile.com/c/NOys4p/xPJqm
https://doi.org/10.1101/2020.04.07.029546
http://creativecommons.org/licenses/by/4.0/


Seurat ​8​ is the most similar method to LIGER in that it is intended for integrating multiple data 
modalities, including RNA, ATAC, and spatial transcriptomic data. However, there are some key 
differences. Seurat performs “label transfer” between reference and query datasets rather than joint 
cell type definition when integrating RNA and ATAC or spatial transcriptomic and dissociated data. 
Additionally, Seurat uses a completely shared latent space (CCA) to identify corresponding cells, 
rather than a space that includes dataset-specific differences. In contrast, LIGER’s dimensionality 
reduction strategy captures both shared signals and dataset-specific differences per cell type directly 
in the factorization. Additionally, the metagene factors learned by LIGER are often interpretable in 
terms of specific biological or technical sources of variation, whereas each of the principal 
components or canonical components calculated by Seurat often contains a mixture of signals. 
Finally, Seurat “corrects” the gene expression values using nearest neighbor relationships 
(“anchors”), whereas LIGER leaves the original expression data unchanged. 
 
A recent paper performed systematic benchmarking of 14 single-cell data integration methods and 
recommended Harmony, LIGER, and Seurat as the top-performing and most robust approaches​9​. 
The paper benchmarked the 14 approaches on 10 different single-cell datasets using multiple 
metrics, including kBET​10​, average silhouette width, and adjusted rand index. Harmony, LIGER, and 
Seurat outperformed the other tested methods across a range of scenarios in their ability to align 
datasets while maintaining correct cell type distinctions. 

Experimental design 

The design of single-cell sequencing experiments is complex, involving many biological and 
experimental considerations beyond the scope of this protocol. However, we will highlight two salient 
issues that affect the joint cell type analysis we describe in this protocol. First, whenever possible, 
biological and technical batches should not be confounded. For example, in a cross-species analysis 
of mouse and human brain cells, both mouse and human cells should be extracted using the same 
protocols; if whole-cell transcriptomes are extracted from the mouse cells, but only nuclear RNA is 
extracted from the human cells, the biological variable (species) is confounded by a technical 
variable (whole-cell versus nuclear extraction protocol). It may still be possible, using LIGER, to 
identify shared cell types and gene expression signatures using such a batch design, but 
disentangling biological from technical differences will be challenging. Similarly, if jointly defining cell 
types using scRNA-seq and snATAC-seq, use cells from the same tissue sample for both protocols. 
Otherwise, biological differences in cell composition or genotype may confound the joint analysis. 
For human studies comparing many individuals, genetic variation can be used to multiplex cells from 
multiple donors within a single batch, allowing reliable determination of cell-type-specific 
inter-individual variation without uncontrolled technical variables​11​. 

A second consideration is the trade-off between the number of cells sequenced and sequencing 
depth per cell. Although the decision depends on the biological questions that the researcher wants 
to answer, it is generally preferable to sequence more cells rather than more reads per cell. A recent 
analysis paper found that, for droplet single-cell RNA-seq protocols, sequencing more than 15,000 
reads per cell provides only small benefit​12​. Sequencing large numbers of cells is especially 
important for characterizing rare cell types, such as the recently discovered pulmonary ionocyte​13,14​. 
However, some biological applications, such as studying alternative splicing​15​ or characterizing 
important low-expression genes such as G-protein coupled receptors and transcription factors, will 
require a high depth of coverage per cell. Furthermore, the choice of library preparation protocol may 
also influence the decision about cells vs. reads, because protocols (such as SMART-seq) that 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029546doi: bioRxiv preprint 

https://paperpile.com/c/NOys4p/FQljL
https://paperpile.com/c/NOys4p/Z37J
https://paperpile.com/c/NOys4p/EMyk
https://paperpile.com/c/NOys4p/BwKX
https://paperpile.com/c/NOys4p/xcHY
https://paperpile.com/c/NOys4p/y3eB+ifkl
https://paperpile.com/c/NOys4p/5Df8
https://doi.org/10.1101/2020.04.07.029546
http://creativecommons.org/licenses/by/4.0/


sample from all positions within a transcript benefit more from increased coverage than poly(A) 
priming protocols that capture only the ends of transcripts. 

Limitations 

LIGER should not be used when there is no biological similarity expected between datasets. For 
example, there is nothing to be gained by trying to integrate single-cell data from HeLA cells with 
data from HEK293 cells. Doing so will not yield significant biological insights and may result in false 
positive results, although LIGER is designed to minimize such spurious alignment.​ ​Additionally, 
LIGER relies on corresponding features shared across all datasets to be analyzed. Thus, it cannot 
be directly applied to integrate single-cell gene expression data with single-cell morphological data, 
chromatin conformation data, or metabolomic data, whose features have no clearly defined 
relationship with the expression of individual genes. 

 
Materials 

● Hardware: a personal computer with internet connection 
● Software: 

○ RStudio or R command line (version 3.5 or greater) 
○ bedmap (if calculating gene body counts from raw snATAC-seq data) 

● Input data: 
○ Two or more matrices, each containing gene-level counts across a set of single cells 
○ A common starting point is the output from the 10X Genomics Cellranger pipeline, 

which outputs a gene expression matrix in matrix market (.mtx) format. 
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Figure 1: Diagram of high-level protocol steps.  
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Procedure 

Joint definition of cell types from multiple scRNA-seq datasets 

This protocol demonstrates the R commands to run the LIGER package on a sample dataset 
consisting of two single-cell RNA-seq experiments. These commands can be run from the R 
command line interface or the RStudio integrated development environment. 

Stage I: Preprocessing and Normalization (3 - 5 seconds) 

1. ​For the first portion of this protocol, we will be integrating published data​11​ from control and 
interferon-stimulated peripheral blood mononuclear cells (PBMC). This dataset was originally in the 
form of output from the 10X Cellranger pipeline. We directly load downsampled versions of the 
control and stimulated DGEs here. 

ctrl_dge <- readRDS(​"ctrl_dge.RDS"​); 
stim_dge <- readRDS(​"stim_dge.RDS"​); 

For 10X CellRanger output, we can instead use the `read10X` function, which generates a matrix or 
list of matrices directly from the output directories. 

library ​(liger) 
matrix_list <- read10X(sample.dirs =c(​"10x_ctrl_outs"​, ​"10x_stim_outs"​), 
sample.names = c(​"ctrl"​, ​"stim"​), merge = ​F​); 

?TROUBLESHOOTING 

2. ​With the digital gene expression matrices for both datasets, we can initialize a LIGER object using 
the ​createLiger ​function. 

ifnb_liger <- createLiger(list(ctrl = ctrl_dge, stim = stim_dge)) 

ifnb_liger ​ now contains two datasets in its​ raw.data​ slot, ctrl and stim. We can run the rest of the 
analysis on this LIGER object. 

?TROUBLESHOOTING 

3. ​Before we can perform matrix factorization to integrate our datasets, we must run several 
preprocessing steps to normalize expression data to account for differences in sequencing depth 
and efficiency between cells, identify variably expressed genes, and scale the data so that each 
gene has the same variance. Note that because nonnegative matrix factorization requires positive 
values, we do not center the data by subtracting the mean. We also do not log transform the data. 

ifnb_liger <- normalize(ifnb_liger) 

ifnb_liger <- selectGenes(ifnb_liger) 

ifnb_liger <- scaleNotCenter(ifnb_liger) 

?TROUBLESHOOTING 

Stage II: Joint Matrix Factorization (3-10 minutes) 

4. ​We are now able to run integrative non-negative matrix factorization on the normalized and scaled 
datasets. The key parameter for this analysis is​ k​, the number of matrix factors (analogous to the 
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number of principal components in PCA). In general, we find that a value of ​k ​ between 20 and 40 is 
suitable for most analyses and that results are robust for choice of ​k​. Because LIGER is an 
unsupervised, exploratory approach, there is no single “right” value for ​k ​, and in practice, users 
choose ​k​ from a combination of biological prior knowledge and other information. 

ifnb_liger <- optimizeALS(ifnb_liger, k = ​20​) 

The optimization yields several low-dimensional matrices, including the ​H​ matrix of metagene 
expression levels for each cell, the ​W​ matrix of shared metagenes, and the ​V ​ matrices of 
dataset-specific metagenes. 

Please note that the time required of this step is highly dependent on the size of the datasets being 
used. For datasets of about 30,000 cells or less, this step should take less than 30 minutes. 

Stage III: Quantile Normalization and Joint Clustering (1-2 minutes) 

5. ​We can now use the resulting factors to jointly cluster cells and perform quantile normalization by 
dataset, factor, and cluster to fully integrate the datasets. All of this functionality is encapsulated 
within the ​quantile_norm​ function, which uses maximum factor assignment followed by refinement 
using a k-nearest neighbors graph. 

ifnb_liger <- quantile_norm(ifnb_liger) 

6. ​The ​quantile_norm ​ procedure produces joint clustering assignments and a low-dimensional 
representation that integrates the datasets together. These joint clusters directly from iNMF can be 
used for downstream analyses (see below). Alternatively, we can also run Louvain community 
detection, an algorithm commonly used for single-cell data, on the normalized cell factors. The 
Louvain algorithm excels at merging small clusters into broad cell classes and thus may be more 
desirable in some cases than the maximum factor assignments produced directly by iNMF. 

ifnb_liger <- louvainCluster(ifnb_liger, resolution = 0​.25​) 

Stage IV: Visualization and Downstream Analysis (25-40 seconds) 

7. ​To visualize the clustering of cells graphically, we can project the normalized cell factors to two or 
three dimensions. LIGER supports both t-SNE and UMAP for this purpose. Note that if both 
techniques are run, the object will only hold the results from the most recent. 

ifnb_liger <- runUMAP(ifnb_liger) 

The LIGER package implements a variety of utilities for visualization and analysis of clustering, gene 
expression across datasets, and comparisons of cluster assignments. We will summarize several 
here. 

8.​ ​plotByDatasetAndCluster​ plots two images using the coordinates generated by t-SNE or UMAP in 
the previous step. The first plot colors cells by dataset of origin, and the second colors cells by joint 
cluster assignment. The plots provide visual confirmation that the datasets are well aligned and the 
clusters are consistent with the structure of the data as revealed by UMAP (​Figure 2​). 

plotByDatasetAndCluster(ifnb_liger) 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029546
http://creativecommons.org/licenses/by/4.0/


 

Figure 2: LIGER jointly identifies clusters from across single-cell RNA-seq datasets. a,b, 
Uniform manifold approximation and projection (UMAP) plots of a LIGER analysis of 3000 control 
and 3000 interferon-beta stimulated PBMCs profiled by scRNA-seq, colored by dataset (​a​) and 
LIGER joint cluster assignment (​b​). 

To directly study the impact of factors on the clustering and determine what genes load most highly 
on each factor, we use the ​plotGeneLoadings​ function, which returns plots of metagene expression 
levels on the dimensionally reduced graphs and gene loading values by dataset for each metagene 
( ​Figure 3​). 

gene_loadings <- plotGeneLoadings(ifnb_liger, do.spec.plot = ​FALSE​, return.plots = 
TRUE​) 
gene_loadings[[​4​]] 
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Figure 3: LIGER enables metagene and dataset specific analysis of PBMC data.​ UMAP plots 
showing metagene expression levels (factor loading values for each cell; top) and gene loadings (on 
a particular metagene; bottom) for Factor 4, which specifically loads on Cluster 3. In gene loading 
plots, gene names are sorted in decreasing order of magnitude of their factor loading contribution 
and correspond to colored points in scatterplots. Plots are organized to show the dataset-specific 
metagene values for control cells, the shared metagene values common to all datasets and the 
dataset-specific metagene values for interferon-stimulated cells. 

Using the ​runWilcoxon​ function, we can next identify gene markers for all clusters. We can also 
compare expression within each cluster across datasets, which in this case reveals markers of 
interferon-beta stimulation. The function returns a table of data that allows us to determine the 
significance of each gene’s differential expression, including log fold change, area under the curve 
and ​p​-value ( ​Table 1​). 

cluster.results <- runWilcoxon(ifnb_liger, compare.method = “clusters”) 

dataset.results <- runWilcoxon(ifnb_liger, compare.method = “datasets”) 

head(cluster.results) 

 

 feature group avgExpr logFC statistic auc pval padj pct_in pct_out 

1 RP11-2 0 -23.014 0.001 320575 0.500 0.939 0.959 100 100 
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06L10.2 5.245 

2 
RP11-2
06L10.9 0 -23.015 0.001 

320575
3.245 0.500 0.939 0.959 100 100 

3 
LINC00
115 0 -23.015 -0.037 

319809
9.603 0.499 0.128 0.258 100 100 

4 NOC2L 0 -21.807 0.267 
325965

7.500 0.508 0.025 0.073 100 100 

5 KLHL17 0 -23.003 0.006 
320666

8.940 0.500 0.740 0.824 100 100 

6 
PLEKH
N1 0 -23.014 -0.035 

319810
7.603 0.499 0.128 0.258 100 100 

Table 1: Wilcoxon test results indicating shared cluster markers across datasets 

The number of marker genes identified by ​runWilcoxon​ varies and depends on the datasets used. 
The function outputs a data frame that the user can then filter to select markers that are statistically 
and biologically significant. For example, one strategy is to filter the output by taking markers which 
have ​padj​ (Benjamini-Hochberg adjusted ​p ​-value) less than 0.05 and ​logFC​ (log fold change 
between observations in-group versus out-group) larger than 3: 

cluster.results <- cluster.results[cluster.results$padj < ​0.05​,] 
cluster.results <- cluster.results[cluster.results$logFC > ​3​,] 

We can then re-sort the markers by ​padj​ value in ascending order and choose the top 100 for each 
cell type. For example, we can subset and re-sort the output for ​Cluster 3​ and take the top 20 
markers by typing these commands (​Table 2​): 

wilcoxon.cluster_3 <- cluster.results[cluster.results$group == ​3​, ] 
wilcoxon.cluster_3 <- wilcoxon.cluster_3[order(wilcoxon.cluster_3$padj), ] 

head(wilcoxon.cluster_3) 

 

 feature group avgExpr logFC statistic auc pval padj pct_in pct_out 

41861 GNLY 3 -5.282466 
16.1473

23 2379942 
0.96476

42 0 0 100 100 

46904 CLIC3 3 
-12.96207

0 
9.48559

9 1946458 
0.78904

17 0 0 100 100 

47130 PRF1 3 
-12.26057

3 
9.83008

2 1970124 
0.79863

52 0 0 100 100 

49239 GZMB 3 -7.840488 
13.6971

78 2231966 
0.90477

89 0 0 100 100 

52832 NKG7 3 -6.594620 
14.4331

85 2324832 
0.94242

43 0 0 100 100 

48310 KLRC1 3 
-18.00005

9 
4.91623

9 1606731 
0.65132

52 
1.83940
5e-289 

4.09911
4e-286 100 100 
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Table 2: Top shared cluster markers from the Wilcoxon test on IFNB dataset 

We can visualize the expression profiles of individual genes, such as the differentially expressed 
genes that we just identified. This allows us to visually confirm the cluster- or dataset-specific 
expression patterns of marker genes. The UMAP plots of ​PRF1​ expression indicate that this gene is 
a specific marker for Cluster 3, with high values in this cell group and low values elsewhere (​Figure 
4​). Meanwhile, we can also see that the distributions are very similar between the control and 
interferon-stimulated datasets, indicating that LIGER has properly aligned these two datasets.  

plotGene(ifnb_liger, ​"PRF1"​) 

 

 

Figure 4: Marker gene identified by LIGER shows consistent cell-type-specific expression 
across datasets. a​,​b ​, UMAP representations of expression for gene ​PRF1 ​, a marker gene of cluster 
3, in control ( ​a​) and interferon-beta stimulated​ ​( ​b​) PBMCs exhibit similar distributions. 

We can also use ​plotGene​ to inspect genes with expression that differs within a cluster across 
datasets. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029546
http://creativecommons.org/licenses/by/4.0/


 

Figure 5: Marker genes identified by LIGER show expression differences across datasets. a​,​b ​, 
UMAP representations of expression for gene ​IFIT3​, a marker gene of the interferon-stimulated 
dataset, shows low expression in control (​a​) and high expression in interferon-stimulated​ ​( ​b​) 
PBMCs. ​c ​,​d ​, UMAP representations of expression for gene ​IFITM3​, a marker gene of cluster 1, in 
control ( ​c​) and IFNB-stimulated​ ​( ​d​) PBMCs similarly shows more expression in interferon-stimulated 
cells. 
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Joint definition of cell types from single-cell gene expression and single-nucleus chromatin 
accessibility data (Human bone marrow mononuclear cells) 

In this section, we will demonstrate LIGER’s ability to jointly define cell types by leveraging multiple 
single-cell modalities. We integrate published human bone marrow mononuclear cell (BMMC) data ​16 
profiled by single-cell RNA-seq and single-nucleus ATAC-seq to enable cell type definitions that 
incorporate both gene expression and chromatin accessibility data. Such joint analysis allows not 
only the taxonomic categorization of cell types, but also a deeper understanding of their underlying 
regulatory networks. The pipeline for jointly analyzing scRNA-seq and snATAC-seq is similar to that 
for integrating multiple scRNA-seq datasets in that both rely on joint matrix factorization and quantile 
normalization. The main differences are: (1) snATAC-seq data needs to be processed into 
gene-level values; (2) gene selection is performed on the scRNA-seq data only; and (3) downstream 
analyses can use both gene-level and intergenic information. 

Stage I: Preprocessing and Normalization (40 - 50 minutes) 

In order to jointly analyze scRNA and snATAC-seq data, we first need to transform the snATAC-seq 
data--a genome-wide epigenomic measurement--into gene-level counts which are comparable to 
gene expression data from snRNA-seq. Most previous single-cell studies have used an approach 
inspired by traditional bulk ATAC-seq analysis: identifying chromatin accessibility peaks, then 
summing together all peaks that overlap each gene. This strategy is also appealing because the 10X 
CellRanger pipeline, a commonly used commercial package, automatically outputs such peak 
counts. However, we find this peak summing strategy undesirable because: (1) peak calling is 
performed using all cells, which biases against rare cell populations; (2) gene body accessibility is 
often more diffuse than that of specific regulatory elements, and thus may be missed by peak calling 
algorithms; and (3) information from reads outside of peaks is discarded, further reducing the 
amount of data in the already sparse measurements. Instead of summing peak counts, we find that 
the simplest possible strategy seems to work well: counting the total number of ATAC-seq reads 
within the gene body and promoter region (typically 3 kb upstream) of each gene in each cell. 

Note that in this part, we included the details of running this preprocessing workflow for only one 
sample. Users should re-run this counting step multiple times for more than one snATAC-seq 
sample. 

Note also that several commands need to be run through the ​Command Line Interface​ instead of 
the R Console or IDE (RStudio). We also employ the ​bedmap​ command from the BEDOPS tool to 
make a list of cell barcodes that overlap each gene and promoter. The gene body and promoter 
indexes are ​.bed​ files, which indicate gene and promoter coordinates. Since ​bedmap​ expects sorted 
inputs, the fragment output from CellRanger, gene body and promoter indexes should all be sorted. 

We show below how to perform these steps for snATAC-seq data generated by the 10X Chromium 
system, the most widely used snATAC-seq platform. The input for this process is the file 
fragments.tsv​ output by CellRanger, which contains all ATAC reads that passed filtering steps.  

1. ​We must first sort ​fragments.tsv​ by chromosome, start, and end position using the ​sort​ command 
line utility. The ​-k​ option lets the user sort the file on a certain column; including multiple ​-k ​ options 
allows sorting by multiple columns simultaneously. The ​n​ behind ​-k​ stands for ‘numeric ordering’. 
Here the sorted ​.bed​ file order is defined first by lexicographic chromosome order (using the 
parameter ​-k1,1​), then by ascending integer start coordinate order (using parameter ​-k2,2n​), and 
finally by ascending integer end coordinate order (using parameter ​-k3,3n​). Note that this step may 
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take a while, since the input fragment file is usually very large (for example, a typical fragment file of 
4-5 GB can take about 40 minutes). 

sort -k1,​1​ -k2,2n -k3,3n GSM4138888_scATAC_BMMC_D5T1.fragments.tsv > 
atac_fragments.sort.bed 

Gene body and promoter locations should also be sorted using the same strategy for sorting 
fragment output files: 

sort -k ​1​,​1​ -k2,2n -k3,3n hg19_genes.bed > hg19_genes.sort.bed 
sort -k ​1​,​1​ -k2,2n -k3,3n hg19_promoters.bed > hg19_promoters.sort.bed 

 
2. ​Use the ​bedmap​ command to determine which fragments overlap each gene body and promoter: 

bedmap --ec --delim ​"\t"​ --echo --echo-map-id hg19_promoters.sort.bed 
atac_fragments.sort.bed > atac_promoters_bc.bed 

bedmap --ec --delim ​"\t"​ --echo --echo-map-id hg19_genes.sort.bed 
atac_fragments.sort.bed > atac_genes_bc.bed 

Important flags are as follows: 

● --delim​. This changes output delimiter from ‘|’ to specified delimiter between columns, which 
in our case is “\t”. 

● --ec ​. Adding this will check input files to make sure that they are properly formatted and 
sorted. 

● --echo​. Adding this will print each line from reference file in output. The reference file in our 
case is gene or promoter index. 

● --echo-map-id ​. Adding this will list IDs of all overlapping elements from mapping files, which 
in our case are cell barcodes from fragment files. 

3. ​We then import the ​bedmap​ outputs into the R Console or RStudio. Note that the ​as.is ​ option in 
read.table ​ is specified to prevent the conversion of character columns to factor columns: 

genes.bc <- read.table(file = ​"atac_genes_bc.bed"​, sep = ​"\t"​, as.is = c(​4​,​7​), 
header = ​FALSE​) 
promoters.bc <- read.table(file = ​"atac_promoters_bc.bed"​, sep = ​"\t"​, as.is = 
c(​4​,​7​), header = ​FALSE​) 

Cell barcodes are then split and extracted from the outputs. We recommend filtering barcodes that 
have a total number of reads lower than a certain threshold, for example, 1500. This threshold can 
be adjusted according to the size and quality of the samples. 

bc <- genes.bc[,​7​] 
bc_split <- strsplit(bc,​";"​) 
bc_split_vec <- unlist(bc_split) 

bc_unique <- unique(bc_split_vec) 

bc_counts <- table(bc_split_vec) 

bc_filt <- names(bc_counts)[bc_counts > ​1500​] 
barcodes <- bc_filt 
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4. ​We can then use LIGER’s ​makeFeatureMatrix​ function to calculate accessibility counts for gene 
body and promoter individually. This function takes the output from ​bedmap​ and efficiently counts 
the number of fragments overlapping each gene and promoter. We could count the genes and 
promoters in a single step, but choose to calculate them separately in case it is necessary to look at 
gene or promoter accessibility individually in downstream analyses. 

library ​(liger) 
gene.counts <- makeFeatureMatrix(genes.bc, barcodes) 

promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes) 

Next, these two count matrices need to be re-sorted by gene symbol. We then add the matrices 
together, yielding a single matrix of gene accessibility counts in each cell. Note that we also append 
the sample name to each cell barcode to avoid duplicate cell names across experiments. 

gene.counts <- gene.counts[order(rownames(gene.counts)), ] 

promoter.counts <- promoter.counts[order(rownames(promoter.counts)),]  

D5T1 <- gene.counts + promoter.counts 

colnames(D5T1) <- paste0(​"D5T1_"​, colnames(D5T1)) 

?TROUBLESHOOTING 

5. ​Once the gene-level snATAC-seq counts are generated, the ​read10X​ function from LIGER can be 
used to read scRNA-seq count matrices output by CellRanger. You can pass in a directory (or a list 
of directories) containing raw outputs (for example, “​/Sample_1/outs/filtered_feature_bc_matrix ​”) to 
the parameter ​sample.dirs​. Next, a vector of names to use for the sample (or samples, 
corresponding to ​sample.dirs​) should be passed to parameter ​sample.names​ as well. LIGER can 
also use data from any other protocol, as long as it is provided in a genes x cells R matrix format. 

bmmc.rna <- read10X(sample.dirs = list(​"/path_to_sample"​), sample.names = 
list(​"rna"​)) 

6. ​We can now create a LIGER object with the ​createLiger​ function. We also remove unneeded 
variables to conserve memory. 

bmmc.data <- list(atac = D5T1, rna = bmmc.rna) 

int.bmmc <- createLiger(bmmc.data) 

rm(genes.bc, promoters.bc, gene.counts, promoter.counts, D5T1, bmmc.rna) 

?TROUBLESHOOTING 

7. ​Preprocessing steps are needed before running matrix factorization. Each dataset is normalized 
to account for differences in total gene-level counts across cells using the ​normalize​ function. Next, 
highly variable genes from each dataset are identified and combined for use in downstream analysis. 
Note that by setting the parameter ​datasets.use​ to 2, genes will be selected only from the 
scRNA-seq dataset (the second dataset) by the ​selectGenes​ function. We recommend not using the 
ATAC-seq data for variable gene selection because the statistical properties of the ATAC-seq data 
are very different from scRNA-seq, violating the assumptions made by the statistical model we 
developed for selecting genes from RNA data. Finally, the ​scaleNotCenter​ function scales 
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normalized datasets without centering by the mean, giving the nonnegative input data required by 
iNMF. 

int.bmmc <- normalize(int.bmmc) 

int.bmmc <- selectGenes(int.bmmc, datasets.use = ​2​) 
int.bmmc <- scaleNotCenter(int.bmmc) 

?TROUBLESHOOTING 

Stage II: Joint Matrix Factorization (3 - 10 minutes) 

8. ​We next perform joint matrix factorization (iNMF) on the normalized and scaled RNA and ATAC 
data. This step calculates metagenes--sets of co-expressed genes that distinguish cell 
populations--containing both shared and dataset-specific signals. The cells are then represented in 
terms of the “expression level” of each metagene, providing a low-dimensional representation that 
can be used for joint clustering and visualization. To run iNMF on the scaled datasets, we use the 
optimizeALS ​ function with proper hyperparameter settings. 

The important parameters are as follows: 

● k​. Integer value specifying the inner dimension of factorization, or number of factors. Higher ​k 
is recommended for datasets with more substructure. We find that a value of ​k​ in the range 
20 - 40 works well for most datasets. Because this is an unsupervised, exploratory analysis, 
there is no single “right” value for ​k​, and in practice, users choose ​k​ from a combination of 
biological prior knowledge and other information. 

● lambda​. This is a regularization parameter. Larger values penalize dataset-specific effects 
more strongly, causing the datasets to be better aligned, but possibly at the cost of higher 
reconstruction error. The default value is 5. We recommend using this value for most 
analyses, but find that it can be lowered to 1 in cases where the dataset differences are 
expected to be relatively small, such as scRNA-seq data from the same tissue but different 
individuals. 

● thresh ​. This sets the convergence threshold. Lower values cause the algorithm to run longer. 
The default is 1e-6. 

● max.iters​. This variable sets the maximum number of iterations to perform. The default value 
is 30. 

int.bmmc <- optimizeALS(int.bmmc, k = ​20​) 

 

Stage III: Quantile Normalization and Joint Clustering (1 minute) 

9. ​Using the metagene factors calculated by iNMF, we then assign each cell to the factor on which it 
has the highest loading, giving joint clusters that correspond across datasets. We then perform 
quantile normalization by dataset, factor, and cluster to fully integrate the datasets.  

int.bmmc <- quantile_norm(int.bmmc) 

Important parameters of ​quantile_norm ​are as follows: 

● knn_k​. This sets the number of nearest neighbors for within-dataset KNN graph. The default 
is 20. 
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● quantiles. ​This sets the number of quantiles to use for quantile normalization. The default is 
50. 

● min_cells ​. This indicates the minimum number of cells to consider a cluster as shared across 
datasets. The default is 20. 

● dims.use​. This sets the indices of factors to use for quantile normalization. The user can 
pass in a vector of indices indicating specific factors. This is helpful for excluding factors 
capturing biological signals such as the cell cycle or technical signals such as mitochondrial 
genes. The default is all ​k​ of the factors.  

● do.center ​. This indicates whether to center the data when scaling factors. The default is 
FALSE. This option should be set to TRUE when metagene loadings have a mean above 
zero, as with dense data such as DNA methylation. 

● max_sample​. This sets the maximum number of cells used for quantile normalization of each 
cluster and factor. The default is 1000. 

● refine.knn​. This indicates whether to increase robustness of cluster assignments using KNN 
graph. The default is TRUE. 

● eps ​. This sets the error bound of the nearest neighbor search. The default is 0.9. Lower 
values give more accurate nearest neighbor graphs but take much longer to compute. We 
find that this parameter affects result quality very little. 

● ref_dataset ​. This indicates the name of the dataset to be used as a reference for quantile 
normalization. By default, the dataset with the largest number of cells is used.  

10. ​The ​quantile_norm ​ function gives joint clusters that correspond across datasets, which are often 
completely satisfactory and sufficient for downstream analyses. However, if desired, after quantile 
normalization, users can additionally run the Louvain algorithm for community detection, which is 
widely used in single-cell analysis and excels at merging small clusters into broad cell classes. This 
can be achieved by running the ​louvainCluster ​function. Several tuning parameters, including 
resolution​, ​k ​, and ​prune ​ control the number of clusters produced by this function. For this dataset, 
we use a resolution of 0.2, which yields 18 clusters (see below). 

int.bmmc <- louvainCluster(int.bmmc, resolution = 0​.2​) 

 

Stage IV: Visualization (2 - 3 minutes) and Downstream Analysis (30 - 40 minutes) 

11. ​In order to visualize the clustering results, the user can use two dimensionality reduction 
methods supported by LIGER: t-SNE and UMAP. We find that often for datasets containing 
continuous variation such as cell differentiation, UMAP better preserves global relationships, 
whereas t-SNE works well for displaying discrete cell types, such as those in the brain. The UMAP 
algorithm (called by the ​runUMAP ​ function) scales readily to large datasets. The ​runTSNE​ function 
also includes an option to use FFtSNE, a highly scalable implementation of t-SNE that can efficiently 
process large datasets. For the BMMC dataset, we expect to see continuous lineage transitions 
among the differentiating cells, so we use UMAP to visualize the data in two dimensions (​Figure 6​). 

int.bmmc <- runUMAP(int.bmmc, distance = ​'cosine'​, n_neighbors = ​30​, min_dist = 
0.3​) 

12. ​We can then visualize each cell, colored by cluster or dataset. 
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plotByDatasetAndCluster(int.bmmc, axis.labels = c(​'UMAP 1'​, ​'UMAP 2'​)) 

 

 

Figure 6: LIGER allows integrated alignment and clustering of BMMC data across 
technologies. a,b, ​UMAP plots of a LIGER analysis of 12,602 scRNA-seq profiles and 6,234 nuclei 
profiled by snATAC-seq, colored by technology (​a​) and LIGER cluster assignment (​b​).  

13. ​LIGER employs the Wilcoxon rank-sum test to identify marker genes that are differentially 
expressed in each cell type using the following settings. We provide parameters that allow the user 
to select which datasets to use ( ​data.use​) and whether to compare across clusters or across 
datasets within each cluster (​compare.method ​). To identify marker genes for each cluster combining 
snATAC and scRNA profiles, typing in: 

int.bmmc.wilcoxon <- runWilcoxon(int.bmmc, data.use = ​'all'​, compare.method = 
'clusters'​) 

Important parameters of ​runWilcoxon ​are as follows: 

● data.use ​. This selects which dataset (or set of datasets) to be included. The default is ​‘all’ 
(using all the datasets). 

● compare.method​. This indicates whether to compare across clusters or across datasets 
within each cluster. Setting compare.method to ​‘clusters’ ​ compares each feature’s (genes, 
peaks, etc.) loading between clusters combining all datasets, which gives us the most 
specific features for each cluster. On the other hand, setting compare.method to ​‘datasets’ 
gives us the features most differentially expressed across datasets for every cluster. 

14. ​The number of marker genes identified by ​runWilcoxon ​ varies and depends on the datasets 
used. The function outputs a data frame that the user can then filter to select markers that are 
statistically and biologically significant. For example, one strategy is to filter the output by taking 
markers which have ​padj ​ (Benjamini-Hochberg adjusted ​p​-value) less than 0.05 and ​logFC​ (log fold 
change between observations in group versus out) larger than 3: 
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int.bmmc.wilcoxon <- int.bmmc.wilcoxon[int.bmmc.wilcoxon$padj < ​0.05​,] 
int.bmmc.wilcoxon <- int.bmmc.wilcoxon[int.bmmc.wilcoxon$logFC > ​3​,] 

We can then sort the markers by ​padj​ value in ascending order and choose the top 100 for each cell 
type. For example, we can subset and re-sort the output for ​Cluster 1​ and take the top 20 markers 
by typing these commands: 

wilcoxon.cluster_1 <- int.bmmc.wilcoxon[int.bmmc.wilcoxon$group == ​1​, ] 
wilcoxon.cluster_1 <- wilcoxon.cluster_1[order(wilcoxon.cluster_1$padj), ] 

markers.cluster_1 <- wilcoxon.cluster_1[​1​:​20​, ] 

15.​ We also provide functions to check these markers by visualizing their expression across 
datasets. ​ ​We can use the ​plotGene​ to visualize the expression or accessibility of a marker gene, 
which is helpful for visually confirming putative marker genes or investigating the distribution of 
known markers across the sequenced cells. Such plots can also confirm that datasets are properly 
aligned. 

For instance, we can plot ​S100A9 ​, which the Wilcoxon test identified as a marker for ​Cluster 1​, and 
MS4A1 ​, a marker for ​Cluster 4 ​: 

S100A8 <- plotGene(int.bmmc, ​"S100A9"​, axis.labels = c(​'UMAP 1'​, ​'UMAP 2'​), 
return.plots = ​TRUE​) 
MS4A1 <- plotGene(int.bmmc, ​"MS4A1"​, axis.labels = c(​'UMAP 1'​, ​'UMAP 2'​), 
return.plots = ​TRUE​) 
plot_grid(S100A8[[​2​]],MS4A1[[​2​]],S100A8[[​1​]],MS4A1[[​1​]], ncol=​2​) 
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Figure 7: Expression and chromatin accessibility of marker genes selected by LIGER show 
consistency across modalities. a​,​b ​, UMAP representations of expression for genes ​S100A9​ (​a ​) 
and ​MS4A1​ (​b ​). ​c ​,​d ​, UMAP representations of chromatin accessibility for genes ​S100A9​ (​c ​) and 
MS4A1 ​ (​d ​), which show highly similar distributions compared to their expression (​a​, ​b ​). 

The UMAP plots of expression and chromatin accessibility indicate that ​S100A9​ and ​MS4A1​ are 
indeed specific markers for ​Cluster 1​ and ​Cluster 4​, respectively, with high values in these cell 
groups and low values elsewhere (​Figure 7​). Furthermore, we can see that the distributions are 
strikingly similar between the RNA and ATAC datasets, indicating that LIGER has properly 
integrated the two data types. 

16.​ A key advantage of using iNMF instead of other dimensionality reduction approaches such as 
PCA is that the dimensions are individually interpretable. For example, a single dimension of the 
space often captures a particular cell type. Furthermore, iNMF identifies both shared and 
dataset-specific features along each dimension, giving insight into exactly how corresponding cells 
across datasets are both similar and different. The function ​plotGeneLoadings​ allows visual 
exploration of such information. It is recommended to call this function into a PDF file due to the 
large number of plots produced.  

pdf(​'Gene_Loadings.pdf'​) 
plotGeneLoadings(int.bmmc, return.plots = ​FALSE​) 
dev.off() 
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Alternatively, the function can return a list of plots. For example, we can visualize the factor loading 
of ​Factor 7 ​ typing in: 

gene_loadings <- plotGeneLoadings(int.bmmc, do.spec.plot = ​FALSE​, return.plots = 
TRUE​) 
gene_loadings[[​7​]] 

 

 

Figure 8: Metagenes and metagene expression levels for BMMC data.​ UMAP plots showing 
metagene expression levels (top) and gene loading values (bottom) for Factor 7, which specifically 
loads on Cluster 4. In gene loading plots, gene names are sorted in decreasing order of magnitude 
of their factor loading contribution and correspond to colored points in scatterplots. Plots are 
organized to show the metagene specific to snATAC-seq (left), the shared metagene common to all 
datasets (middle) and the metagene specific to scRNA-seq profiles (right). 

 

The loading pattern of ​Factor 7 ​ shows that ​Factor 7 ​ specifically loads on ​Cluster 4 ​( ​Figure 8​, top). 
We also see both the shared markers (including ​MS4A1 ​, which we already inspected above) and 
dataset-specific genes that characterize this dimension (​Figure 8​, bottom). For example, ​CCR6 ​ and 
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NCF1 ​ are the top dataset-specific genes in the ATAC and RNA datasets, respectively. To inspect 
these genes, we plotted their expression and accessibility, which confirm that these genes show 
clear differences (​Figure 9​). ​CCR6 ​ shows nearly ubiquitous chromatin accessibility but is expressed 
only in clusters 2 and 4. The accessibility is highest in these clusters, but the ubiquitous accessibility 
suggests that the expression of ​CCR6​ is somewhat decoupled from its accessibility, likely regulated 
by other factors. Conversely, ​NCF1​ shows high expression in clusters 1, 3, 4 and 9, despite no clear 
enrichment in chromatin accessibility within these clusters 4 and 9. This may again indicate 
decoupling between the expression and chromatin accessibility of ​NCF1​. Another possibility is that 
the difference is due to technical effects--the gene body of ​NCF1​ is short (~15KB), and short genes 
are more difficult to capture in snATAC-seq than in scRNA-seq because there are few sites for the 
ATAC-seq transposon to insert. 

 

Figure 9: Genes showing expression and accessibility differences. a​,​b ​, UMAP representation 
of expression for ​CCR6​ (​a ​) and ​NCF1​ (​b ​). ​c ​,​d ​, UMAP representation of chromatin accessibility of 
CCR6 ​ (​c ​) and ​NCF1​ (​d ​), which both show distinct distributions compared to their expressions (​a​, ​b ​). 

17. ​Single-cell measurements of chromatin accessibility and gene expression provide an 
unprecedented opportunity to investigate epigenetic regulation of gene expression. Ideally, such 
investigation would leverage paired ATAC-seq and RNA-seq from the same cells, but such 
simultaneous measurements are not generally available. However, using LIGER, it is possible to 
computationally infer “pseudo-multi-omic” profiles by linking scRNA-seq profiles--using the jointly 
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inferred iNMF factors--to the most similar snATAC-seq profiles. After this imputation step, we can 
perform downstream analyses as if we had true single-cell multi-omic profiles. For example, we can 
identify putative enhancers by correlating the expression of a gene with the accessibility of 
neighboring intergenic peaks across the whole set of single cells.  

To achieve this, we first need a matrix of accessibility counts within intergenic peaks. The 
CellRanger pipeline for snATAC-seq outputs such a matrix by default, so we will use this as our 
starting point. The count matrix, peak genomic coordinates, and source cell barcodes output by 
CellRanger are stored in a folder named ​filtered_peak_matrix​ in the output directory. The user can 
load these and convert them into a peak-level count matrix by typing these commands: 

barcodes <- read.table(​'/outs/filtered_peak_bc_matrix/barcodes.tsv'​, sep = 
'\t'​, header = ​FALSE​, as.is = ​TRUE​)$V1 
peak.names <- read.table(​'/outs/filtered_peak_bc_matrix/peaks.bed'​, sep = ​'\t'​, 
header = ​FALSE​) 
peak.names <- paste0(peak.names$V1, ​':'​, peak.names$V2, ​'-'​, peak.names$V3) 
pmat <- readMM(​'/outs/filtered_peak_bc_matrix/matrix.mtx'​) 
dimnames(pmat) <- list(peak.names, barcodes) 

18. ​The peak-level count matrix is usually large, containing hundreds of thousands of peaks. We 
next filter this set of peaks to identify those showing cell-type-specific accessibility. To do this, we 
perform the Wilcoxon rank-sum test and pick those peaks which are differentially accessible within a 
specific cluster. Before running the test, however, we need to: (1) subset the peak-level count matrix 
to include the same cells as the gene-level counts matrix; (2) replace the original gene-level counts 
matrix in the LIGER object by peak-level counts matrix; and (3) normalize peak counts to sum to 1 
within each cell. We can do this with the following steps: 

int.bmmc.ds <- int.bmmc 

pmat <- pmat[ ,intersect(colnames(pmat),colnames(int.bmmc@raw.data[[​'atac'​]]))] 
int.bmmc.ds@raw.data[[​'atac'​]] <- pmat 
int.bmmc.ds <- normalize(int.bmmc.ds) 

Now we can perform the Wilcoxon test: 

peak.wilcoxon <- runWilcoxon(int.bmmc.ds, data.use = ​1​, compare.method = 
'clusters'​) 

The user can find documentation of important parameters of ​runWilcoxon​ in the section above 
(“ ​Identify Gene Markers of Individual Cell Types​”). 

?TROUBLESHOOTING 

19. ​We can now use the results of the Wilcoxon test to retain only peaks showing differential 
accessibility across our set of joint clusters. Here we kept peaks with Benjamini-Hochberg adjusted 
p-value < 0.05 and log fold change > 2.  

peak.wilcoxon​ <- ​peak.wilcoxon ​[​peak.wilcoxon ​$padj < ​0.05​,] 
peak.wilcoxon​ <- ​peak.wilcoxon ​[​peak.wilcoxon ​$logFC > ​2​,] 
peak.sel <- unique(​peak.wilcoxon$feature) 
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int.bmmc.ds@raw.data[[​'atac'​]] = int.bmmc.ds@raw.data[[​'atac'​]][peaks.sel, ] 

20. ​Using this set of differentially accessible peaks, we now impute a set of “pseudo-multi-omic” 
profiles by inferring the intergenic peak accessibility for scRNA-seq profiles based on their nearest 
neighbors in the joint LIGER space. LIGER provides a function named ​imputeKNN ​that performs this 
task, yielding a set of profiles containing both gene expression and chromatin accessibility 
measurements for the same single cells: 

int.bmmc.ds = imputeKNN(int.bmmc.ds, reference = ​'atac'​) 

Important parameters of ​imputeKNN ​are as follows: 

● reference​. Dataset containing values to impute into query dataset(s). For example, setting 
reference = ‘atac’​ uses the values in dataset ​‘atac’ ​ to predict chromatin accessibility values 
for scRNA-seq profiles. 

● queries​. Dataset to be augmented by imputation. For example, setting ​query = ‘rna’​ predicts 
chromatin accessibility values for scRNA-seq profiles. 

● knn_k​. The maximum number of nearest neighbors to use for imputation. The imputation 
algorithm simply builds a k-nearest neighbor graph using the aligned LIGER latent space, 
then averages values from the reference dataset across neighboring cells. The default value 
is 20. 

● weight ​. This indicates whether to use KNN distances to weight datasets (TRUE) or to 
average equally among all neighbors (FALSE). The default is TRUE. 

● norm ​. This indicates whether to normalize data after imputation. The default is TRUE. 
● scale​. This indicates whether to scale data after imputation. The default is FALSE. 

21. ​Now that we have both the (imputed) peak-level counts matrix and the (observed) gene 
expression counts matrix for the same cells, we can evaluate the relationships between pairs of 
genes and peaks, linking genes to putative regulatory elements. We use a simple strategy to identify 
such gene-peak links: Calculate correlation between gene expression and peak accessibility of all 
peaks within 500 KB of a gene, then retain all peaks showing statistically significant correlation with 
the gene. The ​linkGenesAndPeaks​ function performs this analysis: 

gmat = int.bmmc@norm.data[[​'rna'​]] 
pmat = int.bmmc.ds@norm.data[[​'rna'​]] 
regnet = linkGenesAndPeaks(gene_counts = gmat, peak_counts = pmat, dist = 

'spearman'​, alpha = ​0.05​, path_to_coords = ​'some_path/gene_coords.bed'​)  
rm(int.bmmc.ds, gmat, pmat) 

Important parameters of ​linkGenesAndPeaks ​are as follows: 

● gene_counts​. A gene expression matrix (genes by cells) of normalized counts. This matrix 
has to share the same column names (cell barcodes) as the matrix passed to ​peak_counts​. 

● peak_counts ​. A peak-level matrix (peaks by cells) of normalized accessibility values, such as 
the one resulting from ​imputeKNN​. This matrix must share the same column names (cell 
barcodes) as the matrix passed to ​gene_counts​.  

● genes.list​. A list of the genes symbols to be tested. If not specified, this function will use all 
the gene symbols from the matrix passed to ​gmat ​by default. 

● dist​. This indicates the type of correlation to calculate -- one of “spearman” (default), 
"pearson", or "kendall". 
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● alpha ​. Significance threshold for correlation p-value. Peak-gene correlations with p-values 
below this threshold are considered significant. The default is 0.05. 

● path_to_coords​. The path to the gene coordinates file (in .​bed​ format). We recommend 
passing in the same ​bed​ file used for making barcodes list in ​Step 1​. 

22. ​The output of this function is a sparse matrix with peak names as rows and gene symbols as 
columns, with each element indicating the correlation between peak ​i​ and gene ​j​ (or 0 if the gene 
and peak are not significantly linked). For example, we can subset the results for marker gene 
S100A9​, which is a marker gene of ​Cluster 1 ​ identified in the previous section, and rank these peaks 
by their correlation: 

S100A9 <- regnet[, ​'S100A9'​] 
S100A9 <- S100A9[abs(S100A9) > ​0​] 
View(S100A9[order(abs(S100A9), decreasing = ​TRUE​)]) 

We also provide a function to transform the peaks-genes correlation matrix into an Interact Track for 
visualizing the calculated linkage between genes and correlated peaks.  

makeInteractTrack(regnet, genes.list = ​'S100A9'​, path_to_coords = 
'some_path/gene_coords.bed'​) 

Important parameters of this function​ ​are as follows: 

● corr.mat ​. A peaks x genes sparse matrix containing inferred gene-peak links (as output by 
linkGenesAndPeaks​). 

● genes.list​. A vector of the gene symbols to be included in the output Interact Track file. If not 
specified, this function will use all the gene symbols in ​corr.mat ​by default.  

● path_to_coords​. The path to the gene coordinates file (in .​bed​ format). We recommend using 
the same .​bed ​ file used for making the barcodes list in ​Step 1​. 

● output_path​. The path to the directory in which the Interact Track file will be stored. The 
default is the working directory. 

The output of this function will be a UCSC Interact Track file named ​‘Interact_Track.bed’​ containing 
linkage information of the specified genes and correlated peaks stored in the given directory. The 
user can then upload this file as a custom track using this page 
( ​https://genome.ucsc.edu/cgi-bin/hgCustom​) and display it in the UCSC Genome browser.  

For example, the two peaks most correlated to ​S100A9​ expression are shown in the UCSC genome 
browser ( ​Figure 10​). One of the peaks overlaps with the TSS of ​S100A8 ​, a neighboring gene that is 
co-expressed with ​S100A9​, while another peak overlaps with the TSS of ​S100A9 ​ itself. The last 
peak, ​chr1:153358896-153359396​, does not overlap with a gene body and shows strong H3K27 
acetylation across ENCODE cell lines, indicating that this is likely an intergenic regulatory element. 
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Figure 10: UCSC genome browser view showing the correlations between three candidate 
chromatin accessible regions and target gene​ S100A9 ​. ​The locations of three peaks are shown 
as short black strips within the row “Regions”, and the correlations are illustrated by dotted arcs. 
H3K27 acetylation and DNasel hypersensitivity across ENCODE cell lines are also shown at the 
bottom. 

To further inspect the correlation between ​chr1:153358896-153359396 ​and ​S100A9​, we plotted the 
accessibility of this peak and the expression of ​S100A9 ​( ​Figure 11​). We can see that the two are 
indeed very correlated and show strong enrichment in clusters 1 and 3. Thus, the intergenic peak 
likely serves as a cell-type-specific regulator of ​S100A9​. 

 

Figure 11: Expression and correlated accessibility for ​S100A9 ​and nearby intergenic peak. a​, 
UMAP representation of imputed chromatin accessibility of gene ​S100A9​. ​b ​, UMAP representation 
of chromatin accessibility for peak ​chr1:153358896-153359396. 
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Anticipated Results and Troubleshooting 

In this section, we will introduce a new, pre-factorized object to demonstrate several common issues 
encountered with LIGER and compare possible outputs. This object is composed of two datasets of 
interneurons and oligodendrocytes from the mouse frontal cortex ​(Saunders et al. 2018)​, two distinct 
cell types that should not align if integrated. We used this dataset in our previous paper as a 
“negative control” to test whether LIGER spuriously aligns distinct cell types, and we use it here to 
demonstrate several pitfalls in LIGER analysis. 

i_and_o <- readRDS(​"i_and_o.RDS"​) 

Selecting hyperparameters 

To get the best results from the factorization, we first run a hyperparameter optimization for ​k​, the 
number of factors, and ​lambda​, the penalty term associated with dataset specific factors. Although 
suggestK ​ and ​suggestLambda​ could be used to initially find these values, utilizing ​suggestNewK​ and 
suggestNewLambda ​ instead, respectively, after running an initial factorization will result in faster 
output.  

suggestNewK(ifnb_liger) 

suggestNewLambda(ifnb_liger, k = ​20​) 

 

Figure 12: Parameter selection of the number of factors ​k​ and the tuning parameter ​λ​. a,b, ​As 
increases in ​λ​ (​a ​) and ​k​ (​b ​) results in smaller relative increases in metrics of their effectiveness, the 
“elbow” of the graph can be interpreted as the optimal hyperparameter value. 

We select the value ​k ​= 20 at which the increase in median KL divergence becomes negligible, using 
the plot generated by ​suggestNewK ​( ​Figure 12, b​). The plot generated by ​suggestNewLamda 
demonstrates that maximum alignment is reached at small values of lambda, so the default value 
lambda=5​ or less is a reasonable choice for this dataset (​Figure 12, a​). With these parameters, we 
run ​optimizeALS​, LIGER's implementation of integrative non-negative matrix factorization algorithm, 
again.  

We note again that because LIGER is an unsupervised method and no ground truth is available, 
there is no one correct value of ​k ​. Thus, we recommend using the above heuristics as a guide rather 
than a definitive answer. Also, we recommend starting with a value of ​k ​ in the range 20-40 and 
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simply running an initial analysis, rather than trying to determine the perfect ​k ​ before looking at the 
results. 

Factor Curation 

One benefit of iNMF over other dimensionality reduction techniques is the interpretability of the 
resulting metagenes in terms of biological or technical signals. By studying the gene loadings for 
each metagene, as represented by the W matrix, we can directly interpret the biological relevance of 
each factor and exclude nuisance technical or biological signals in downstream analyses. We can 
also gain insights into the biological interpretation of each factor. ​runGSEA​ can be used as a tool to 
analyze factor composition. If no parameters specifying gene sets are given, then the function will 
use all Reactome gene sets that contain at least one of the genes in the object. This allows a 
principled means of determining what biological or technical signal each factor represents. 

gsea_output <- runGSEA(ifnb_liger) 

gsea_output[[​1​]][[ ​4​]][ ​1​:​15​,​1​:​3​] 

 

 pathway pval padj 

1 Immune System 0.000100 0.007639 

2 Innate Immune System 0.000100 0.007639 

3 
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 0.000100 0.007639 

4 Antigen processing-Cross presentation 0.000100 0.007639 

5 Adaptive Immune System 0.000200 0.007639 

6 Cytokine Signaling in Immune system 0.000200 0.007639 

7 Signaling by Interleukins 0.000200 0.007639 

8 GPCR ligand binding 0.000200 0.007639 

9 ER-Phagosome pathway 0.000201 0.007639 

10 TNFR2 non-canonical NF-kB pathway 0.000402 0.013750 
Table 3: Gene sets enriched in factor 16 of IFNB LIGER result 

From ​Table 3 ​, we find overrepresentation of gene sets related to the interaction between the innate 
and adaptive immune systems in Factor 4. The ER-Phagosome pathway is responsible for the 
release of cytokines as a part of the process of cross presentation. This supports the inclusion of the 
gene sets for cytokine signalling and interleukins, a type of cytokine. We also see that GPCR ligand 
binding is significant, possibly meaning that the immune response is a result of non-immune 
signalling. From this information, we can hypothesize that cells that highly load factor 4 may be 
responsible for initiating an immune response, specifically that of a T lymphocyte due to the 
significance of interleukin signalling and cross presentation. Because we know factor 4 loads 
primarily on cluster 5, the cluster may represent T lymphocytes. 

If we have a custom list of gene sets to study, we can pass those to ​runGSEA ​ in the form of a 
named list of Entrez IDs. This input can easily be generated with the help of the ​msigdbr ​ package. In 
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the example below, a set of mitochondrial gene sets from the Gene Ontology cellular components 
subcategory is used for GSEA. 

m_set <- msigdbr(species = ​"Homo sapiens"​, category = ​"C5"​, subcategory = ​"CC"​) 
m_set <- m_set[grepl(​"MITOCHON"​, m_set$gs_name),] 
m_set <- split(m_set$entrez_gene, f = m_set$gs_name) 

gsea_output <- runGSEA(i_and_o, custom_gene_sets = m_set) 

gsea_output[[​1​]][[ ​16​]][ ​1​:​8​] 

After running GSEA on ​i_and_o​'s factors, we find that factors 15 and 16 significantly overrepresent 
several gene sets associated with mitochondrial function. 

We can also use ​plotFactors​ after running ​quantile_norm​ to directly compare raw and normalized 
gene loadings across the datasets. Because of the large number of charts it generates, it should be 
called into a PDF. 

pdf(​"i_and_o_factors.pdf"​) 
plotFactors(i_and_o) 

dev.off() 

If we look at factor 15, which overexpresses mitochondrial gene sets, we can see that a majority of 
cells in both datasets have non-zero cell loading values on this factor. This is a common pattern in 
metagenes representing technical artifacts; biological signals often have much more specific and 
sparse loadings. Thus, it is likely that this factor captures a technical artifact related to mitochondrial 
genes and should be removed from the analysis. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029546
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 13: Plots of raw and normalized loading of Factor 15.​ Scatter plots, with factor loadings 
values as y axis and cells as x axis,  for both unaligned (raw) and aligned (normalized) factor 
loadings of ​Factor 15​. 

 

To remove these factors from further analysis, we again run ​quantile_norm ​, with the ​dims.use 
parameter equal to the set difference of the list of all factors and technical artifacts. 

i_and_o <- quantile_norm(i_and_o, dims.use = setdiff(​1​:​40​, c( ​15​,​16​))) 
i_and_o <- runUMAP(i_and_o, distance = ​'cosine'​, n_neighbors = ​30​, min_dist = 
0.3​) 

If we compare the final integration with and without the mitochondrial artifact factors, we find that the 
alignment of the datasets decreases slightly after we remove the factors (​Figure 14​). This is 
because, without the artifacts, there is less overlap in expression between the datasets for LIGER to 
use in integration. 
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Figure 14: The alignment between datasets decreases after removing the mitochondrial 
artifact factors. a,b, ​UMAP plots of a LIGER analysis of 3212 interneurons and 2524 
oligodendrocytes, with (​a​) and without ( ​b​) factors 15 and 16, colored by datasets. 

Metrics for Confirming Results 

calcARI ​, based on the Adjusted Rand Index, and ​calcPurity​ can be used to compare the clustering 
generated by LIGER with some other clustering, such as known cell types or clustering as 
determined by another method. Both return a value between 0 and 1, with 0 representing total 
disagreement and 1 representing identical clusterings. 

known_clustering <- readRDS(​"known_clustering.RDS"​) 
calcARI(ifnb_liger, known_clustering) 

calcPurity(ifnb_liger, known_clustering) 

calcAgreement​ returns a metric of the distortion of the geometry of the datasets after factorization 
and quantile alignment. Although it can theoretically approach a maximum of 1, representing 
complete preservation of geometry, it generally reaches 0.2 to 0.3. 

calcAgreement(ifnb_liger) 

calcAlignment ​ returns a metric of how uniformly mixed multiple datasets are, with a maximum of 1 
representing perfect integration. 

calcAlignment(ifnb_liger) 

 

Here we show side-by-side UMAP representations of the oligos/interneurons dataset and the PBMC 
dataset ( ​Figure 15​). This plot indicates the poor alignment between the oligos and interneurons 
visually, in addition to the metrics calculated above. 

plotByDatasetAndCluster(i_and_o, return.plots = ​T​)[[ ​1​]] 
plotByDatasetAndCluster(ifnb_liger, return.plots = ​T​)[[ ​1​]] 
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Figure 15: Distinct cell types show poor alignment compared to normal PBMC datasets. a​, 
UMAP plot of a LIGER analysis of two distinct cell types, interneurons (3212 cells) and oligos (2524 
cells) showing poor alignment. ​b​, UMAP plot of a LIGER analysis of 3000 control and 3000 
interferon-stimulated PBMCs showing complete and well-mixed alignments. 

In this example, we see very limited overlap between the ​interneuron​ and ​oligos​ datasets in ​i_and_o​, 
whereas the control and stimulated datasets in ​ifnb_liger​ are almost perfectly aligned. If you see a 
plot like the one on the left, it is likely that you are trying to integrate datasets that have no common 
biology. In addition to visually inspecting the t-SNE or UMAP plot, you can use the function 
calcAlignment ​ to calculate a metric quantifying the degree of alignment.  

calcAlignment(i_and_o) 

calcAlignment(ifnb_liger) 

Returning to our example above, the oligodendrocytes and interneurons dataset​ ​gives an alignment 
score of 0.161, whereas ​ifnb_liger​ has a near-perfect alignment score of 0.947.  

 

Step Problem Possible reason Solution 

Procedure 1 - step 
1 
Procedure 2 - step 
4 

Error: 'xxx' is not an 
exported object from 
'namespace:liger’ 

The user installed a different 
package which has the same 
name via CRAN with the 
command 
“​install.packages(‘liger’)​” 

Remove your current 
installation of ​liger​ and install 
our package with the 
command 
“​devtools::install_github('Maco
skoLab/liger')​” 

Procedure 1 - step 
1 
Procedure 2 - step 
4 

Error: Failed to install 
'liger' from GitHub: 
Failed to install 'xxx' from 
GitHub: 
(converted from warning) 
cannot remove prior 

This error raises when the 
user is trying to update 
installed packages before 
installing ​liger​. It is due to 
incompatibility between old 
and new versions of some 

Remove your current 
installation of the package 
which needed to be updated 
and re-install them before the 
liger​ installation. 
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installation of package 
‘xxx’ 
 

packages 

Procedure 1 - step 
2 
Procedure 2 - step 
6 

Error in 
.rowNamesDF<-(x, value 
= value) : invalid 
'row.names' length 

This error raises when an 
input matrix has only a few 
cells (for example, 1 or 2) left 
after removing cells not 
expressing any measured 
genes 

The user can consider 
removing all the cells from that 
dataset since it doesn't make 
sense to perform subsequent 
analyses (such as iNMF 
factorization) when one 
dataset contains only a single 
cell 

Procedure 1 - step 
3 
Procedure 2 - step 
7, 18 

Error: unable to find an 
inherited method for 
function ‘normalize’ for 
signature "liger" 

There are some Bioconductor 
packages that also define a 
normalize function. Under 
certain conditions, if you load 
one of those packages first, it 
will overwrite the ​‘normalize’ 
function from ​liger 

Use double colon “::” to 
access the ​‘normalize’​ function 
from ​liger​ package, e.g., 
“​liger:: normalize(liger_object)​” 

Table 4: Troubleshooting table 
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