

1 **Cryo-EM structure of the fully-loaded asymmetric anthrax lethal toxin in its heptameric**
2 **pre-pore state**

3

4

5 Claudia Antoni^{1,*}, Dennis Quentin^{1,*}, Alexander E. Lang², Klaus Aktories², Christos
6 Gatsogiannis¹, Stefan Raunser^{1†}

7

8

9

10 ¹Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology,
11 44227 Dortmund, Germany

12 ²Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine,
13 University of Freiburg, 79104 Freiburg, Germany

14 *These authors contributed equally

15 †Correspondence: stefan.raunser@mpi-dortmund.mpg.de

16

17 **Abstract**

18

19 Anthrax toxin is the major virulence factor secreted by *Bacillus anthracis*, causing high
20 mortality in humans and other mammals. It consists of a membrane translocase, known as
21 protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF)
22 and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the
23 heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here,
24 we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in
25 its heptameric pre-pore state, which differ in the position and conformation of LFs. The
26 structures reveal that three LFs interact with the heptameric PA and upon binding change their
27 conformation to form a continuous chain of head-to-tail interactions. As a result of the
28 underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one
29 LF directly interacts with a part of PA called α -clamp, the others do not interact with this region,
30 indicating an intermediate state between toxin assembly and translocation. Interestingly, the
31 interaction of the N-terminal domain with the α -clamp correlates with a higher flexibility in the
32 C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly,
33 in which the order of LF binding determines which factor is translocated first.

34

35 **Introduction**

36 Anthrax is a life-threatening infectious disease that affects primarily livestock and wild animals,
37 but can also cause high mortality in humans (1). During the early and late steps of infection
38 with the Gram-positive bacterium *B. anthracis*, the tripartite anthrax toxin is secreted as major
39 virulence factor in order to kill host immune cells such as macrophages or neutrophils (2,3).
40 Like other AB-type toxins, it is composed of a surface binding/translocation moiety, the
41 protective antigen (PA, 83 kDa), and two cytotoxic subunits, lethal factor (LF, 90 kDa) and
42 edema factor (EF, 93 kDa) (4,5).

43 To execute their toxicity, both the zinc-dependent metalloproteinase LF and/or the
44 adenylate cyclase EF need to enter the host cytoplasm (6,7). For that purpose, PA monomers
45 first attach to the cell surface through binding to one of the two known membrane receptors,
46 capillary morphogenesis gene 2 (CMG-2) and tumor endothelial marker 8 (TEM8) (8,9). After
47 cleavage by furin-like proteases, the truncated 63 kDa-sized PA monomer oligomerizes either
48 into homo-heptamers (PA₇) or homo-octamers (PA₈) (10-12). These ring-shaped oligomers,
49 enriched in lipid raft regions, are in a pre-pore conformation as they do not penetrate the host
50 membrane (13). Due to the enhanced stability of PA₈ under diverse physiological conditions, it
51 is proposed that the octameric form could circulate in the blood to reach and exert toxicity even
52 in distant tissues (14). This suggests that both oligomeric forms play an important role in
53 intoxication, endowing *B. anthracis* with greater versatility against its host.

54 In the next step, the holotoxin is assembled by recruiting LFs/EFs. While PA₈ can bind
55 up to four factors, only three of them can simultaneously bind to PA₇. Both enzymatic substrates
56 bind to the upper rim of the PA oligomer via their N-terminal domains in a competitive manner
57 (15). Loaded complexes are then endocytosed (16,17), followed by a conformational change
58 from the pre-pore to pore state which is triggered by the low pH in the endosome (18). The
59 central feature of the pore state is an 18 nm long 14-stranded β -barrel that spans the endosomal
60 membrane with its narrowest point in the channel lumen being ~6 Å in width (19). To pass

61 through this hydrophobic restriction, called Φ -clamp, the substrate needs to be unfolded prior
62 to translocation (20).

63 Structural and functional studies on the pre-pore PA octamer bound to four LFs revealed
64 that an amphipathic cleft between two adjacent PA protomers, termed α -clamp by Krantz and
65 coworkers, assist in the unfolding process (21). More specifically, the first α -helix and β -strand
66 ($\alpha 1-\beta 1$) of LF almost completely unfold and change their position respective to the rest of the
67 protein when interacting with the α -clamp of the PA oligomer (21). After transition into the
68 pore state, the unidirectional translocation of LF is driven by a proton-motive force, comprising
69 the proton gradient between the two compartments and the membrane potential. It is thought
70 that the acidic pH present in the endosome destabilizes the LF and thus promotes unfolding of
71 its N-terminus (22). Ultimately, it is believed that the translocation follows a 'charge-dependent
72 Brownian ratchet' mechanism (23). The required unfolding and refolding of translocated
73 enzymes is facilitated *in vivo* by chaperones, but can occur *in vitro* without the need of
74 accessory proteins (24,25).

75 Crystallographic studies provided us with structural insights pertinent to the molecular
76 action of the anthrax toxin. This includes structures of the individual complex subunits such as
77 LF, EF and the PA pre-pore in both, its heptameric and octameric form (12,26-29). The PA
78 monomer was also co-crystallized with its receptor CMG-2, delineating the surface attachment
79 to the host cell in molecular detail. More recently, the elusive pore state of PA₇ was determined
80 by electron cryo-microscopy (cryo-EM) in which Jiang *et al.* made use of an elegant on-grid
81 pore induction approach (30).

82 In contrast, high resolution information on holotoxin complexes is rather scarce. The
83 only obtained crystallographic structure is the aforementioned PA₈ pre-pore in complex with
84 four LFs (21). In this structure, however, the C-terminal domain of LF is absent. Unlike PA₈,
85 loaded PA₇ was mainly studied by cryo-EM (31-35), presumably because its asymmetry
86 impeded crystallization efforts. Earlier this year, the PA₇ pore state decorated with a single LF

87 molecule and with up to two EF molecules was determined, in which it was shown that EF
88 undergoes a large conformational rearrangement as opposed to LF (36). However, cryo-EM
89 studies of the loaded heptameric pre-pore were so far limited to a resolution of ~16 Å
90 (31,32,34). In addition, the number of LFs bound to PA₇ varied between one and three in these
91 structures.

92 Here, we present three cryo-EM structures of the fully loaded anthrax lethal toxin in the
93 heptameric pre-pore state (PA₇LF₃), in which three LF molecules are bound to the rim of the
94 PA₇ ring, forming a continuous chain of head-to-tail interactions. The position and
95 conformation of the LFs, however, varies between the structures. Unexpectedly, only one of
96 three LFs interacts with the α -clamp of PA, adopting the “open” conformation as reported in
97 the PA₈LF₄ structure (21). Since we could neither observe a similar interaction for the other
98 two LFs, nor them being in the “closed” conformation, we propose that they adopt an
99 “intermediate” state between holotoxin assembly and translocation. Our findings allow us to
100 propose a model for anthrax lethal toxin assembly, in which the LF translocation sequence is
101 dictated by the order of LF binding.

102

103

104 **Results**

105

106 **Structure of the fully-loaded anthrax lethal toxin in the heptameric pre-pore state**

107 To ensure that our purified and reconstituted PA₇ complexes (Materials and Methods) are
108 indeed intact, we tested their membrane insertion capacity by reconstituting them in liposomes
109 or nanodiscs (Fig. S1). We then evaluated different molar ratios of LF:PA₇ and only obtained
110 fully-loaded anthrax lethal toxin (PA₇LF₃) when using a 10:1 molar ratio as judged by size
111 exclusion chromatography (Fig. S2A, B).

112 We then determined the structure of the PA₇LF₃ pre-pore complex by single particle
113 cryo-EM to an average resolution of 3.5 Å. However, the densities corresponding to LF
114 represented a mixture of assemblies and were partly unassignable (Fig. S3). This can be either
115 due to the symmetry mismatch that emerges when three lethal factors bind simultaneously to
116 PA₇ or to possible different conformations of the individual LFs bound to PA₇. To address these
117 points, we established an image processing workflow that includes sequential 3-D
118 classifications and rotation of classes (Fig. S3). This resulted in three reconstructions with
119 resolutions of 3.8 Å, 4.2 Å and 4.3 Å that differed in the position of the third LF bound to PA₇
120 (Fig. 1A, B, Fig. S2, S3, S4) and the conformation of LF (Fig. 1C, Fig. S2, S3, S4). The densities
121 corresponding to the lethal factors in the 4.3 Å structure were not resolved well enough to allow
122 the fitting of an atomic model (Fig. S2F, I, S4B). Therefore, we proceeded with the remaining
123 two structures, combined the two particle stacks and masked out the density of the third LF to
124 improve the resolution of the rest of the complex to 3.5 Å (Fig. S2H, S3, S4D). Using a
125 combination of the maps, we then build atomic models for the 3.8 Å and 4.2 Å reconstructions
126 (Fig. 1A, B, Table S1).

127 The structures reveal that PA₇ forms a seven-fold symmetric ring structure with a ~25
128 Å wide central opening. With the exception of a few poorly resolved loop regions in the
129 periphery of PA₇, our structures almost perfectly superimpose with the crystal structure of the
130 PA₇ pre-pore (PDB:1TZO; RMSD of 0.92 Å) (26) (Fig. S5A), indicating that the binding of LF
131 does not induce conformational changes in PA₇. This is in contrast to Ren et al. who suggested
132 that LF binding results in a distortion of the symmetric PA₇ ring, thereby facilitating the passage
133 of cargo through the enlarged lumen (31,37). Noteworthy, the 2β2-2β3 loop region (residues
134 300-323) which is implicated in pore formation was not resolved in our map. This indicates a
135 high flexibility of this loop, which is in line with previous MD simulations (38).

136 In all PA₇LF₃ structures, the three LFs sit on top of PA₇. The densities corresponding to
137 the LFs show a resolution gradient from the central N-terminal domain which is resolved best

138 to the peripheral C-terminal domain (Fig. S4A-D). This indicates that this region is quite
139 flexible compared to the rest of the toxin complex. The LFs do not only interact with PA₇ but
140 also form a continuous chain of head-to-tail interactions with each other. Binding of LF to a
141 single PA protomer is mediated via the N-terminal domain of LF, orienting its bulky C-terminal
142 domain such that the adjacent PA protomer is not accessible for binding. In this way a single
143 lethal factor *de facto* occupies two of the seven binding sites of PA₇. In the chain of LFs, the C-
144 terminal domain of the anterior LF binds to the N-terminal domain of the following one,
145 creating a directionality in the complex (Fig. 1D). Consequently, if two LFs are bound, three
146 free PA binding sites are available, of which only two can potentially be occupied due to steric
147 clashes (Fig. 1D). This results in the two complexes PA₇LF_{2+1A} and PA₇LF_{2+1B}, that differ in
148 the binding position of the third LF (Fig. 1). Since each LF occupies two potential binding sites
149 in these structures, this leads to a symmetry mismatch and leaves one PA unoccupied.

150

151 **Crucial Interactions in the PA₇LF₃ complex**

152 LF and PA interact mainly via a large planar interface at which domain I of LF interacts with
153 the LF/EF binding sites of two adjacent PAs (Fig. 2, Fig. S5B). The LF-PA interface is well
154 resolved for all LFs and almost identical in the different structures (Fig. 2A, Fig. S5A, C). The
155 interaction is primarily mediated by an extensive hydrophobic core that is further surrounded
156 by electrostatic interactions (Fig. 2A). The interface in our structure is very similar to the one
157 previously described for PA₈LF₄ (21). There, the second LF-PA interface is formed by the N-
158 terminal α -helix of LF that interacts with the α -clamp located at the interface of two PAs. This
159 “open” conformation differs from the “closed” conformation of this region as observed in the
160 structure of the unbound LF (27). When comparing the LFs in our structure with that of the
161 unbound LF, we observed that the C-terminal domain of the LFs in PA₇LF₃ is rotated in relation
162 to the N-terminal domain, bringing them closer together (Fig. 3, Movie S1). However, we only
163 found that the N-terminal region of one LF (²LF) resides in the α -clamp, adopting the “open”

164 conformation as described for PA₈LF₄ (21). In the other LFs (¹LF, ³LF), this region is flexible
165 and not interacting with the α -clamp (Fig. 2B). A steric clash between the loop region (residues
166 576-579) of ¹LF and α 1- β 1 of ²LF (Fig. 4A) prevents the N-terminal α -helix of LF from
167 remaining in the “closed” conformation. Since these LFs neither take the “open”, nor the
168 “closed” conformation, we propose that they reside in an “intermediate” conformational state
169 between toxin assembly and translocation. We further hypothesize that ²LF is the first of the
170 three lethal factors that is unfolded by PA₇ and is also the first one to be translocated.

171 As described above, the LFs interact via their N- and C-terminal regions. In two of our
172 structures, PA₇LF_{2+1A} and PA₇LF_{2+1B}, two LFs only interact at one position which is located
173 next to the major LF-PA interface. In the third structure, which we designate as PA₇LF_(2+1A),
174 two LFs likely interact with each other also via their C-terminal region close to the central axis
175 of the complex (Fig. 5, Movie S2). However, the position of the interaction differs from the
176 additional interface, that has been proposed by Fabre et al. (34). At the main ²LF-¹LF interface,
177 the helix-loop region (residues 572-579) of the first lethal factor (¹LF) forms a relatively small
178 interface with the helix-helix- β -sheet motif (residues 52-84) of the adjacent lethal factor (²LF)
179 (Fig. 4B). Residues L63, L71 and I81 of ²LF form a central hydrophobic cavity that interacts
180 with Y579 of ¹LF. In the β -sheet region of ²LF, we identified a potential backbone-backbone
181 hydrogen bond between K578 and I81 of ¹LF. In addition, P577 forms a hydrophobic
182 interaction with Y82, which is further stabilized by H91. K572, being located on the α -helix
183 next to the loop region in ¹LF, could potentially form a salt bridge interaction with E52 or D85
184 of ²LF. Together these interactions mediate the binding between two LFs. Although the local
185 resolution at the ²LF-^{3A}LF and ^{3B}LF-¹LF interfaces does not allow the fitting of side chains (Fig.
186 S4A-D), we could flexibly fit in the structures of ¹LF and ²LF at this position. Since all
187 structures are almost identical at backbone level (RMSD of 0.84 Å and 0.96 Å) (Fig. S5F), we
188 expect them to exhibit a similar network of interactions. Both interfaces, LF-PA and LF-LF that

189 we describe here limit the freedom of movement mainly in the N-terminal region of LF, but
190 still allows a certain level of flexibility in the rest of the protein.

191 In all structures, the LFs show a gradient in flexibility (Fig. 1A-C, S4A-D). This was
192 previously not observed at lower resolution (34). ¹LF is resolved best in all structures, followed
193 by ²LF and ³LF has the weakest density in all reconstructions. Since the N-terminal domain is
194 well resolved in all LFs, this cannot be due to a varying occupancy of the binding sites, but
195 must stem from a flexibility of the C-terminal domain. As expected, all free C-terminal
196 domains, i.e. those that are not stabilized by an adjacent LF are more flexible than those with a
197 binding partner. However, there is one exception, namely ²LF. In this case, the C-terminal
198 domain is always flexible, independent of a stabilizing binding partner. Interestingly, ²LF is
199 also the only lethal factor where the N-terminal α -helix of LF is ordered and resides in the α -
200 clamp, suggesting that this interaction results in a destabilization of the C-terminal domain of
201 the molecule. This is in line with a recently reported structure of the PA₇LF₁ pore state where
202 the C-terminal domain of the single LF bound was not resolved while the N-terminal α -helix is
203 also bound to the α -clamp (36).

204

205

206 **Discussion**

207 We determined three structures of the fully-loaded heptameric anthrax lethal toxin complex,
208 which differ in the position and conformations of the bound LFs. Due to a symmetry mismatch,
209 three LFs occupy six binding sites of the heptameric PA₇ complex, leaving one PA site empty.
210 Compared to the “closed” state as observed in the crystal structure of LF (27), the C-terminal
211 domain of the LFs in PA₇LF₃ is rotated respective to the N-terminal domain. However, only
212 ²LF adopts the “open” conformation which was reported for the structure of PA₈LF₄ (21), i.e.
213 the N-terminal α -helix interacts with the α -clamp of PA. ¹LF and ³LF do not show this
214 interaction, but can also not be in the “closed” conformation because of a steric clash with an

215 adjacent LF. We therefore propose that they are in an “intermediate” state between toxin
216 assembly and translocation.

217 Why has this state not been observed in the crystal structure of PA₈LF₄? It could have
218 been missed due to averaging of the asymmetric unit of the PA₈LF₄ crystals, which is composed
219 of two PAs and one LF. Another possibility is that compared to PA₇, the PA₈ pre-pore provides
220 more space for the N-termini of the LFs to arrange in the “open” conformation in comparison
221 to the PA₇ pre-pore. However, if all LFs were indeed in a “ready-to-be-translocated position”
222 which LF would then be translocated first through the narrow PA pore that only allows the
223 passage of a single unfolded LF at a time? The process could in principle be stochastic, but our
224 PA₇LF₃ structures offer an alternative explanation.

225 Already based on the low-resolution structure of the PA₇LF₃ pre-pore (34), it has been
226 suggested that the order of translocation is non-stochastic and that the first LF, whose N-
227 terminal domain is not interacting with an adjacent LF, is translocated first. After the
228 translocation of this factor, the second LF would be released from the inhibitory bond of the
229 first LF and then be translocated and so on (34). However, our data indicate that this chain
230 reaction is rather unlikely.

231 Although we can as well only speculate about the exact order of translocation, based on
232 our cryo-EM structures, two alternative scenarios are conceivable: In the first one, the factor in
233 the “open” state, ²LF, is translocated first, followed by ¹LF or ³LF which are in the
234 “intermediate” state. The second possibility would be that ¹LF and ³LF are translocated before
235 ²LF. Due to the different arrangements in the complexes, both alternatives exclude a chain
236 reaction. In addition, the translocation is not triggered or blocked by an adjacent LF.

237 While we cannot exclude the second scenario, we think that the first one is more likely.
238 Being in the “open” conformation, the N-terminal α -helix of ²LF interacts with the α -clamp of
239 PA. Similar to other unfolding machineries such as ClpA/Hsp100 (39), the α -clamp is known
240 to unfold polypeptides in a sequence-independent manner. The current theory is that it first

241 stabilizes unfolding intermediates, and introduces mechanical strain before the unfolded
242 structure is fed further down the central pore (21). In this way it would facilitate the rapid
243 unfolding of the entire ²LF molecule upon transition into the pore state. We therefore believe
244 that ²LF is translocated before ¹LF and ³LF. The higher flexibility in the C-terminal domain of
245 ²LF in the presence of potentially stabilizing neighboring LFs suggests that the interaction of
246 the N-terminal domain with the α -clamp results in a destabilization of the molecule. This in
247 turn lowers the energy barrier for the unfolding of the entire LF molecule and further supports
248 the assumption that ²LF is translocated first. Once ²LF is translocated, either ¹LF or ³LF can
249 follow. As these two LFs both adopt an “intermediate” conformation in our structures, we
250 cannot predict which LF is translocated next.

251 We propose that ²LF is not only the first LF being translocated, but also the first one
252 that binds to PA₇ during toxin assembly and predict the following model (Fig. 6). Upon binding
253 to PA, ²LF undergoes a conformational change from the “closed” to the “open” state (Fig. 6A,
254 B). In the next step, ¹LF binds to the position next to ²LF (Fig. 6C). Instead of transitioning into
255 the “open” conformation, it adopts an “intermediate” conformation. The third LF binds in a
256 similar manner, but can attach to two different PA sites, resulting in two different complexes
257 (Fig. 6D). In this way, the assembled toxin has three LFs bound to PA₇ with two in an
258 “intermediate” and one in the “open” conformation (Fig. 6D).

259 In summary, our high-resolution cryo-EM structures provide us with novel insights into
260 the organization of the fully-loaded heptameric anthrax lethal toxin and thus advance our
261 understanding of toxin assembly and translocation.

262

263

264

265 **Material and Methods**

266

267 **Protein expression and purification**

268 Protective antigen (PA) from *Bacillus anthracis* was cloned into a pET19b vector (Novagen),
269 resulting in a N-terminal His₁₀-tag fusion construct. *E. coli* BL21(DE3) were transformed with
270 the pET19b::His₁₀-PA plasmid and expression was induced immediately after transformation
271 by the addition of 75 μM IPTG. Following incubation at 28 °C for 24 h in LB medium, cells
272 were pelleted, resuspended in lysis-buffer (20 mM Tris-HCl pH 8.5, 300 mM NaCl, 500
273 μM EDTA, 5 μg/ml DNase, 1 mg/ml Lysozyme plus Protease inhibitor cComplete tablets from
274 Sigma Aldrich) and lysed by sonication. Soluble proteins were separated from cell fragments
275 by ultracentrifugation (15,000 rpm, 45 min, 4°C) and loaded onto Ni-IDA beads (Cube
276 Biotech). After several washing steps, the protein was eluted with elution buffer (500 mM
277 imidazole, 20 mM Tris-HCl pH 8.5, 500 mM NaCl, 1 mM EDTA). Protein-containing fractions
278 were pooled and dialyzed against buffer containing 50 mM Tris-HCl pH 8.5, 150 mM NaCl, 1
279 mM EDTA. Subsequently, the sample was further purified using anion-exchange Mono Q (GE
280 Healthcare) with a no-salt buffer (20 mM Tris-HCl pH 8.5) and high-salt buffer (20 mM Tris-
281 HCl pH 8.5, 1M NaCl), applying a gradient from 0 to 40%. Next, oligomerization of PA was
282 induced by addition of trypsin (1 μg enzyme for each mg of PA), followed by incubation on ice
283 for 30 min. Upon addition of double molar excess of trypsin inhibitor (Sigma Aldrich), PA₇
284 was further purified by size exclusion chromatography using a Superdex 200 column (GE
285 Healthcare). Lyophilized LF (List Biological Lab. Inc., Lot#1692A1B) were resuspended in
286 water according to the manufacturer's manual and mixed with PA₇ in a molar ration of 10:1.
287 Ultimately, loaded complexes were further purified in a final size exclusion chromatography
288 step (20 mM Tris-HCl pH 8.5, 150 mM NaCl) using a Superdex 200i column (GE Healthcare),
289 before being used in down-stream applications.

290

291 **Reconstitution of PA₇ in lipid-mimetic systems**

292 For nanodisc insertion, Ni-NTA column material was first washed with ddH₂O and subsequently
293 equilibrated with buffer A (50 mM NaCl, 20 mM Tris-HCl – pH 8.5, 0.05 % Octyl β-D-
294 glucopyranoside (w/v)). In the next step, 500 μL of 0.2 μM PA₇ in the pre-pore state was added
295 and incubated for 25 min at room temperature. An additional washing step with buffer A was
296 performed to remove unbound PA₇ pre-pore, followed by a 5 min incubation step with 1 M
297 urea at 37°C and another wash with buffer A. MSP1D1:POPC:sodium cholate ratio and
298 preparation was done according to Akkaladevi et al (33). After dialysis (MWCO of 12-14k) for
299 24 to 72 h against buffer B (50 mM NaCl, 20 mM Tris-HCl pH 7.5), excess of nanodiscs was
300 collected from five washing steps with 500 μL of buffer B. To elute PA₇ pores inserted into
301 nanodiscs, column material was incubated for 10 min on ice in buffer C (500 mM NaCl, 50
302 mM Tris-HCl pH 7.5, 50 mM imidazole). The eluted sample was concentrated and
303 subsequently used for negative staining EM.

304 For the preparation of pre-formed liposomes, POPC was initially solubilized in 5 % OG.
305 Solubilized lipids were dialyzed (MWCO: 12-14k) for 8 - 12 h at 4°C against buffer A and
306 subsequently PA₇ pre-pores were added to the lipids in a 1 : 10 molar ratio. Following 24 – 72
307 h dialysis (MWCO:12-14k) against buffer D (50 mM NaCl 50 mM NaOAc, pH 5.0), samples
308 were used for negative staining EM.

309

310 **Negative-stain electron microscopy**

311 Complex purity and integrity were assessed by negative stain electron microscopy prior to cryo-
312 EM grid preparation and image acquisition. For negative stain, 4 μl of purified PA₇LF₃ complex
313 at a concentration of ~0.04 mg/ml was applied onto a freshly glow discharged carbon-coated
314 copper grid (Agar Scientific; G400C) and incubated for 45 s. Subsequently, excess liquid was
315 blotted away with Whatman no. 4 filter papers. The sample was stained with 0.8 % (w/v) uranyl
316 acetate (Sigma Aldrich). Micrographs were recorded manually using a JEOL JEM-1400 TEM,

317 operated at an acceleration voltage of 120 kV, equipped with a 4,000 × 4,000 CMOS detector
318 F416 (TVIPS) and a pixel size of 1.84 Å/px.

319

320 **Sample vitrification**

321 For Cryo-EM sample preparation, 4 µl of purified PA₇LF₃ at a concentration of ~0.06 mg/ml
322 was applied onto freshly glow discharged grids (Quantifoil R 1.2/1.3 holey carbon with a 2 nm
323 additional carbon support) and incubated for 45 s. Subsequently, grids were blotted
324 automatically and plunged into liquid ethane using a CryoPlunge3 (Gatan) at a humidity of ~
325 95 %. Grid quality was screened before data collection using a JEOL JEM-1400 TEM electron
326 microscope (same settings as for negative-stain electron microscopy) or with an Arctica
327 microscope (FEI), operated at 200 kV. Grids were kept in liquid nitrogen for long-term storage.

328

329 **Cryo-EM data acquisition**

330 Cryo-EM data sets of PA₇LF₃ were collected on a Titan Krios transmission electron microscope
331 (FEI) equipped with a high-brightened field-emission gun (XFEG), operated at an acceleration
332 voltage of 300 kV. Micrographs were recorded on a K2 direct electron detector (Gatan) at
333 130,000 x magnification in counting mode, corresponding to a pixel size of 1.07 Å. 40 frames
334 taken at intervals of 375 ms (1.86 e⁻/Å²) were collected during each exposure, resulting in a
335 total exposure time of 15 s and total electron dose of 74.4 e⁻/Å². Using the automated data
336 collection software EPU (FEI), a total of 5238 micrographs with a defocus range between -1.2
337 and -2.6 µm was automatically collected.

338

339 **Image processing and 3-D reconstruction**

340 Micrographs of the dataset were inspected visually and ones with extensive ice contamination
341 or high drift were discarded. Next, frames were aligned and summed using MotionCor2 (in 3 x
342 3 patch mode) (40). By doing so, dose-weighted and un-weighted full-dose images were

343 generated. Image and data processing were performed with the SPHIRE/EMAN2 software
344 package (41). Un-weighted full-dose images were used for defocus and astigmatism estimation
345 by CTER. With the help of the drift assessment tool in SPHIRE, drift-corrected micrographs
346 were further sorted to discard high defocus as well as high drift images that could not be
347 compensated for by frame alignment.

348 For the PA₇LF₃ dataset, particles were automatically selected based on a trained model using
349 the crYOLO software, implemented in SPHIRE (42). In total, 382 k particles were extracted
350 from the dose-weighted full dose images with a final window size of 336 x 336 pixel. Two-
351 dimensional classification was performed using the iterative and stable alignment and clustering
352 (ISAC) algorithm implemented in SPHIRE. Several rounds of 2-D classification yielded a total
353 number of 213 k ‘clean’ dose-weighted and drift-corrected particles. During the manual
354 inspection of the 2-D class averages, top views of the particles were excluded.

355 A generated composite crystal structure consisting of PA₇ (PDB:1TZO) decorated with three
356 full-length LF (PDB:1J7N), docked with their N-terminal domain to PA as observed in the
357 PA₈LF₄ structure (PDB: 3KWV), was converted into electron density (sp_pdb2em functionality
358 in SPHIRE). After filtering to 30 Å, this map served as reference in the subsequent 3-D
359 refinement. The 3-D refinement without imposed symmetry (sxmeridien in SPHIRE, C1)
360 yielded an initial 3.5 Å electron density map of the PA₇LF₃ complex. Several rounds of 3-D
361 classification and rotation of certain classes were necessary to separate particles belonging to
362 PA₇LF_{2+1A}, PA₇LF_{2+1B} and PA₇LF_(2+1A)’ complexes. The flowchart of the image processing
363 strategy including the obtained 3-D classes as well as the number of particles that they contained
364 is described in detail in [Fig. S3](#).

365 Global resolutions of the final maps were calculated between two independently refined half
366 maps at the 0.143 FSC criterion, local resolution was calculated using sp_locres in SPHIRE.
367 The final densities were filtered according to local resolution or the local de-noising filter

368 LAFTER was applied to recover features with more signal than noise (based on half maps)
369 (43).

370

371 **Model building, refinement and validation**

372 To build the PA₇ model, a single monomer of the PA₇ crystal structure (PDB:1TZO) was used
373 as starting model and a preliminary fit into the PA density of the PA₇LF₃-masked map was done
374 using rigid body fitting in Chimera. Next, it was flexibly fitted into the corresponding density
375 using iMODFIT (44). The resulting model was copied and fitted to the other six PA densities
376 and each monomer was separately refined further using a combination of manual model
377 building in COOT and real-space refinement in PHENIX. Subsequently, all seven monomers
378 were merged together to create the final model of PA₇. Unresolved loop regions were deleted
379 (275-285, 301-322, 424-428 and 644-656) and less resolved regions exchanged to poly-A (641,
380 666-700, 710-715 and 720-735).

381 For the model building of the lethal factors, a composite model of residues 29 to 250 from the
382 N-terminal domain of LF (PDB:3KVV) and residues 251 to 773 from the full-length LF
383 structure (PDB:1J7N) was generated. This hybrid pdb served as staring model and was initially
384 fitted into the density of ¹LF and ²LF in the PA₇LF₃-masked structure using rigid body fitting in
385 Chimera. In the next step, models were flexibly fitted into the density using iMODFIT, followed
386 by further refinement using a combination of manual model building in COOT and real-space
387 refinement in PHENIX for ¹LF (52-254 and 550-600) and ²LF (32-253).

388 The resulting models for ¹LF, ²LF and PA₇ served again as starting point for the PA₇LF_{2+1B}
389 structure and were flexibly fitted into the corresponding density. Additional refinement using a
390 combination of manual model building in COOT and real-space refinement in PHENIX was
391 performed for ¹LF (52-254 and 550-600) and ²LF (32-253), similar as in the PA₇LF₃-masked
392 structure. The density for the N-terminal domain of ³LF was less well resolved and therefore

393 only flexibly fitted into the density using iMODFIT (52–254), whereas the C-terminal domain
394 was fitted using the ‘rigid body fit’ tool in Chimera.

395 Like for the PA₇LF_{2+1B} structure, obtained models of ¹LF, ²LF, ³LF (of the PA₇LF_{2+1B} structure)
396 and PA₇, were flexibility fitted into the PA₇LF_{2+1A} density map to obtain the final model of
397 PA₇LF_{2+1A}. The C-terminal domain of ³LF was fitted using the ‘rigid body fit’ tool in Chimera.
398 Geometries of the final refined models were obtained from PHENIX with data statistics
399 summarized in [Table S1](#).

400

401 **Structure analysis and visualization**

402 UCSF Chimera was used for structure analysis, visualization and figure preparation. The
403 angular distribution plots as well as beautified 2-D class averages were calculated using
404 SPHIRE.

405

406 **Acknowledgments**

407 We thank O. Hofnagel and D. Prumbaum for assistance with data collection. This work was
408 supported by the Max Planck Society (to S.R.) and the European Council under the European
409 Union’s Seventh Framework Programme (FP7/ 2007–2013) (grant no. 615984) (to S.R.). D.Q.
410 is a fellow of Fonds der Chemischen Industrie.

411

412 **Author contributions**

413 S.R. designed the project. K.A. and A.E.L. provided protein complexes. C.A. prepared
414 specimens, recorded and processed the EM data. C.A., D.Q. and C.G. analyzed the data. D.Q.
415 prepared figures. S.R. managed the project. D.Q. and S.R. wrote the manuscript with input from
416 all authors.

417

418

419 **Competing interests**

420 The authors declare no competing financial interests.

421

422 **Data availability**

423 The cryo-EM density maps of the PA₇LF_{2+1A}, PA₇LF_{2+1B} and PA₇LF_(2+1A), complexes are
424 deposited into the Electron Microscopy Data Bank with the accession codes EMD-xxxx, EMD-
425 xxxx and EMD-xxxx, respectively. Corresponding coordinates for PA₇LF_{2+1A} and PA₇LF_{2+1B}
426 have been deposited in the Protein Data Bank under accession number xxxx and xxxx. Relevant
427 data and details of plasmids and strains are available from the corresponding author upon
428 reasonable request.

429

430 **References**

431

432 1. World Health Organization. Anthrax in humans and animals. 2008.

433 2. O'Brien J, Friedlander A, Dreier T, Ezzell J, Leppla S. Effects of anthrax toxin
434 components on human neutrophils. *Infection and immunity*. American Society for
435 Microbiology Journals; 1985 Jan;47(1):306–10.

436 3. Friedlander AM. Macrophages are sensitive to anthrax lethal toxin through an acid-
437 dependent process. *J Biol Chem*. American Society for Biochemistry and Molecular
438 Biology; 1986 Jun 5;261(16):7123–6.

439 4. Sandvig K, van Deurs B. Membrane traffic exploited by protein toxins. *Annual review*
440 of cell and developmental biology. 2002;18(1):1–24.

441 5. Fribe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. *Toxins*. 2016
442 Mar;8(3):69.

443 6. Leppla SH. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases
444 cyclic AMP concentrations of eukaryotic cells. *Proceedings of the National Academy*
445 of Sciences. National Academy of Sciences; 1982 May 1;79(10):3162–6.

446 7. Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, et al.
447 Proteolytic Inactivation of MAP-Kinase-Kinase by Anthrax Lethal Factor. *Science*.
448 American Association for the Advancement of Science; 1998 May 1;280(5364):734–7.

449 8. Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JAT. Identification of the
450 cellular receptor for anthrax toxin. *Nature*. Nature Publishing Group; 2001 Nov
451 1;414(6860):225–9.

452 9. Scobie HM, Rainey GJA, Bradley KA, Young JAT. Human capillary morphogenesis
453 protein 2 functions as an anthrax toxin receptor. *Proceedings of the National Academy*
454 *of Sciences. National Academy of Sciences*; 2003 Apr 29;100(9):5170–4.

455 10. Klimpel KR, Molloy SS, Thomas G, Leppla SH. Anthrax toxin protective antigen is
456 activated by a cell surface protease with the sequence specificity and catalytic
457 properties of furin. *Proceedings of the National Academy of Sciences. National*
458 *Academy of Sciences*; 1992 Nov 1;89(21):10277–81.

459 11. Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ. Anthrax protective antigen forms
460 oligomers during intoxication of mammalian cells. *J Biol Chem. American Society for*
461 *Biochemistry and Molecular Biology*; 1994 Aug 12;269(32):20607–12.

462 12. Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II, et al. The protective
463 antigen component of anthrax toxin forms functional octameric complexes. *Journal of*
464 *molecular biology*. 2009 Sep 25;392(3):614–29.

465 13. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG. Anthrax toxin triggers
466 endocytosis of its receptor via a lipid raft–mediated clathrin-dependent process. *The*
467 *Journal of Cell Biology*. 2003 Jan 27;160(3):321–8.

468 14. Kintzer AF, Sterling HJ, Tang II, Abdul-Gader A, Miles AJ, Wallace BA, et al. Role of
469 the Protective Antigen Octamer in the Molecular Mechanism of Anthrax Lethal Toxin
470 Stabilization in Plasma. *Journal of molecular biology*. 2010;399(5):741–58.

471 15. Pimental R-AL, Christensen KA, Krantz BA, Collier RJ. Anthrax toxin complexes:
472 heptameric protective antigen can bind lethal factor and edema factor simultaneously.
473 *Biochemical and biophysical research communications. Academic Press*; 2004 Sep
474 10;322(1):258–62.

475 16. Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the
476 Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors. T Young
477 JA, editor. PLoS Pathogens. Public Library of Science; 2010 Mar 1;6(3):e1000792.

478 17. Boll W. Effects of dynamin inactivation on pathways of anthrax toxin uptake.
479 European Journal of Cell Biology. Urban & Fischer; 2004 Jan 1;83(6):281–8.

480 18. Carl J Miller, Jennifer L Elliott A, Collier RJ. Anthrax Protective Antigen: Prepore-to-
481 Pore Conversion†. Vol. 38, Biochemistry. American Chemical Society; 1999. 10 p.

482 19. Jiang J, Pentelute BL, Collier RJ, Zhou ZH. Atomic structure of anthrax protective
483 antigen pore elucidates toxin translocation. Nature. Nature Publishing Group; 2015
484 May 28;521(7553):545–9.

485 20. Krantz BA, Melnyk RA, Zhang Sen, Juris SJ, Lacy DB, Wu Z, et al. A Phenylalanine
486 Clamp Catalyzes Protein Translocation Through the Anthrax Toxin Pore. Science.
487 American Association for the Advancement of Science; 2005 Jul 29;309(5735):777–
488 81.

489 21. Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG, et al. Structural
490 basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nature
491 structural & molecular biology. Nature Publishing Group; 2010 Nov;17(11):1383–90.

492 22. Krantz BA, Trivedi AD, Cunningham K, Christensen KA, Collier RJ. Acid-induced
493 unfolding of the amino-terminal domains of the lethal and edema factors of anthrax
494 toxin. Journal of molecular biology. 2004 Nov 26;344(3):739–56.

495 23. Wynia-Smith SL, Brown MJ, Chirichella G, Kemalyan G, Krantz BA. Electrostatic
496 ratchet in the protective antigen channel promotes anthrax toxin translocation. The

497 Journal of biological chemistry. American Society for Biochemistry and Molecular
498 Biology; 2012 Dec 21;287(52):43753–64.

499 24. Tamayo AG, Slater L, Parker JT, Bharti A, Harrison R, Hung DT, et al. GRP78(BiP)
500 facilitates the cytosolic delivery of anthrax lethal factor (LF) in vivo and functions as
501 an unfoldase in vitro. Molecular Microbiology. John Wiley & Sons, Ltd; 2011 Sep
502 1;81(5):1390–401.

503 25. Slater LH, Hett EC, Clatworthy AE, Mark KG, Hung DT. CCT chaperonin complex is
504 required for efficient delivery of anthrax toxin into the cytosol of host cells.
505 Proceedings of the National Academy of Sciences. National Academy of Sciences;
506 2013 Jun 11;110(24):9932–7.

507 26. Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC. Crystal structure of the
508 anthrax toxin protective antigen. Nature. Nature Publishing Group; 1997 Feb
509 1;385(6619):833–8.

510 27. Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, et
511 al. Crystal structure of the anthrax lethal factor. Nature. Nature Publishing Group; 2001
512 Nov 1;414(6860):229–33.

513 28. Drum CL, Yan S-Z, Bard J, Shen Y-Q, Lu D, Soelaiman S, et al. Structural basis for
514 the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature. Nature
515 Publishing Group; 2002 Jan 1;415(6870):396–402.

516 29. Shen Y, Zhukovskaya NL, Guo Q, Florián J, Tang W-J. Calcium-independent
517 calmodulin binding and two-metal–ion catalytic mechanism of anthrax edema factor.
518 The EMBO Journal. John Wiley & Sons, Ltd; 2005 Mar 9;24(5):929–41.

519 30. Santelli E, Bankston LA, Leppla SH, Liddington RC. Crystal structure of a complex
520 between anthrax toxin and its host cell receptor. *Nature*. 2004 Aug;430(7002):905–8.

521 31. Ren G, Quispe J, Leppla SH, Mitra AK. Large-Scale Structural Changes Accompany
522 Binding of Lethal Factor to Anthrax Protective Antigen: A Cryo-Electron Microscopic
523 Study. *Structure*. Cell Press; 2004 Nov 1;12(11):2059–66.

524 32. Tama F, Ren G, Brooks CL, Mitra AK. Model of the toxic complex of anthrax:
525 responsive conformational changes in both the lethal factor and the protective antigen
526 heptamer. *Protein science : a publication of the Protein Society*. 2006 Sep;15(9):2190–
527 200.

528 33. Akkaladevi N, Hinton-Chollet L, Katayama H, Mitchell J, Szerszen L, Mukherjee S, et
529 al. Assembly of anthrax toxin pore: lethal-factor complexes into lipid nanodiscs.
530 *Protein science : a publication of the Protein Society*. 2013 Apr;22(4):492–501.

531 34. Fabre L, Santelli E, Mountassif D, Donoghue A, Biswas A, Blunck R, et al. Structure
532 of anthrax lethal toxin prepore complex suggests a pathway for efficient cell entry. *The*
533 *Journal of general physiology*. 2016 Oct;148(4):313–24.

534 35. Gogol EP, Akkaladevi N, Szerszen L, Mukherjee S, Chollet-Hinton L, Katayama H, et
535 al. Three dimensional structure of the anthrax toxin translocon-lethal factor complex by
536 cryo-electron microscopy. *Protein science : a publication of the Protein Society*. 2013
537 May;22(5):586–94.

538 36. Hardenbrook NJ, Liu S, Zhou K, Ghosal K, Zhou ZH, Krantz BA. Atomic structures of
539 anthrax toxin protective antigen channels bound to partially unfolded lethal and edema
540 factors. *Nature Communications*. Nature Publishing Group; 2020 Feb 11;11(1):1–10.

541 37. Lacy DB, Wigelsworth DJ, Melnyk RA, Harrison SC, Collier RJ. Structure of
542 heptameric protective antigen bound to an anthrax toxin receptor: A role for receptor in
543 pH-dependent pore formation. *Proceedings of the National Academy of Sciences*. 2004
544 Sep;101(36):13147–51.

545 38. Alisaraie L, Rouiller I. Molecular assembly of lethal factor enzyme and pre-pore
546 heptameric protective antigen in early stage of translocation. *J Mol Model*. Springer
547 Berlin Heidelberg; 2016 Jan 1;22(1):1–12.

548 39. Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW, Horwich AL. Loops in the Central
549 Channel of ClpA Chaperone Mediate Protein Binding, Unfolding, and Translocation.
550 *Cell*. Cell Press; 2005 Jul 1;121(7):1029–41.

551 40. Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. MotionCor2:
552 anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
553 *Nature methods*. Nature Publishing Group; 2017 Apr;14(4):331–2.

554 41. Moriya T, Saur M, Stabrin M, Merino F, Voicu H, Huang Z, et al. High-resolution
555 Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE.
556 *Journal of visualized experiments : JoVE*. 2017 May 16;(123).

557 42. Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, et al. SPHIRE-
558 crYOLO is a fast and accurate fully automated particle picker for cryo-EM. *Commun
559 Biol*. Nature Publishing Group; 2019 Jun 19;2(1):218–13.

560 43. Ramlaul K, Palmer CM, Aylett CHS. A Local Agreement Filtering Algorithm for
561 Transmission EM Reconstructions. *Journal of Structural Biology*. Academic Press;
562 2019 Jan 1;205(1):30–40.

563 44. Lopéz-Blanco JR, Chacón P. iMODFIT: Efficient and robust flexible fitting based on
564 vibrational analysis in internal coordinates. *Journal of Structural Biology*. Academic
565 Press; 2013 Nov 1;184(2):261–70.

566

567 **Figure captions**

568

569 **Figure 1. Cryo-EM structures of the PA₇LF₃ complexes.**

570 (A) Top view and side view of the color-coded segmented cryo-EM density map of PA₇LF_{2+1A},
571 with PA₇ in blue, ¹LF in pink, ²LF in gold and ³LF in cyan. Three lethal factors bind to the PA₇
572 ring and form a continuous chain of head-to-tail interactions. Schematic representation is shown
573 on the left, corresponding atomic model on the right. (B) Same as in (A) for the PA₇LF_{2+1B}
574 complex. (C) Same as in (A) for the PA₇LF_{(2+1A)'} complex. Notably, two LFs interact in their
575 peripheral region (C-terminal domain) with each other close to the central axis. Segmented
576 maps are shown at different thresholds for visualization. (D) Schematic representation of the
577 last step in PA₇LF₃ toxin assembly, in which the third lethal factor can bind to one of two empty
578 PA sites, resulting in two different complexes, PA₇LF_{2+1A} and PA₇LF_{2+1B}. Top and side views
579 are shown, with the same color code as in (A), except that PA protomers alternate in light and
580 dark blue.

581

582 **Figure 2. Interfaces between lethal factor and protective antigen.**

583 (A) The N-terminal domain of LF mediates binding to two adjacent PA molecules, forming a
584 large planar interface. The positions of ²LF (gold), PA and PA' (blue) are shown relative to the
585 overall shape of the complex that is represented as transparent, low-pass filtered volume. A
586 black square indicates the interaction interface between all three molecules. The inset shows a
587 close-up of the interaction regions, with contributing residues labeled. They form a central
588 hydrophobic core, that is surrounded by electrostatic interactions. (B) The second LF-PA
589 interface is formed by the N-terminal α -helix of LF, interacting with the α -clamp region,
590 located between two adjacent PA molecules. The four panels depict a close-up of this region
591 for the three different LFs (³LF can adopt two different positions, i.e. the PA₇LF_{2+1A} or

592 PA₇LF_{2+1B} complex) with half-transparent densities shown for PA (white), PA' (light blue) and
593 the LF (¹LF - pink; ²LF - gold; ³LF – cyan). Notably, only ²LF interacts with the α -clamp.

594

595 **Figure 3. Conformational change of LF upon PA binding.**

596 Superposition of ¹LF (green), ²LF (yellow) and unbound LF (green, PDB: 1J7N), aligned via
597 their N-terminal domains. Red and green arrows indicate similar positions in ¹LF and unbound
598 LF, respectively. When compared with the crystal structure of the unbound lethal factor, the
599 three LFs undergo a conformational change upon interaction with PA₇. The C-terminal domain
600 rotates with respect to the N-terminal domain such that the LFs come closer to form a
601 continuous chain of head-to-tail interactions. A schematic representation illustrates the rotation
602 of the C-terminal domain that occurs between unbound (green) and bound (red) LF
603 conformation. See also movie S1.

604

605 **Figure 4. Molecular interface between two lethal factors.**

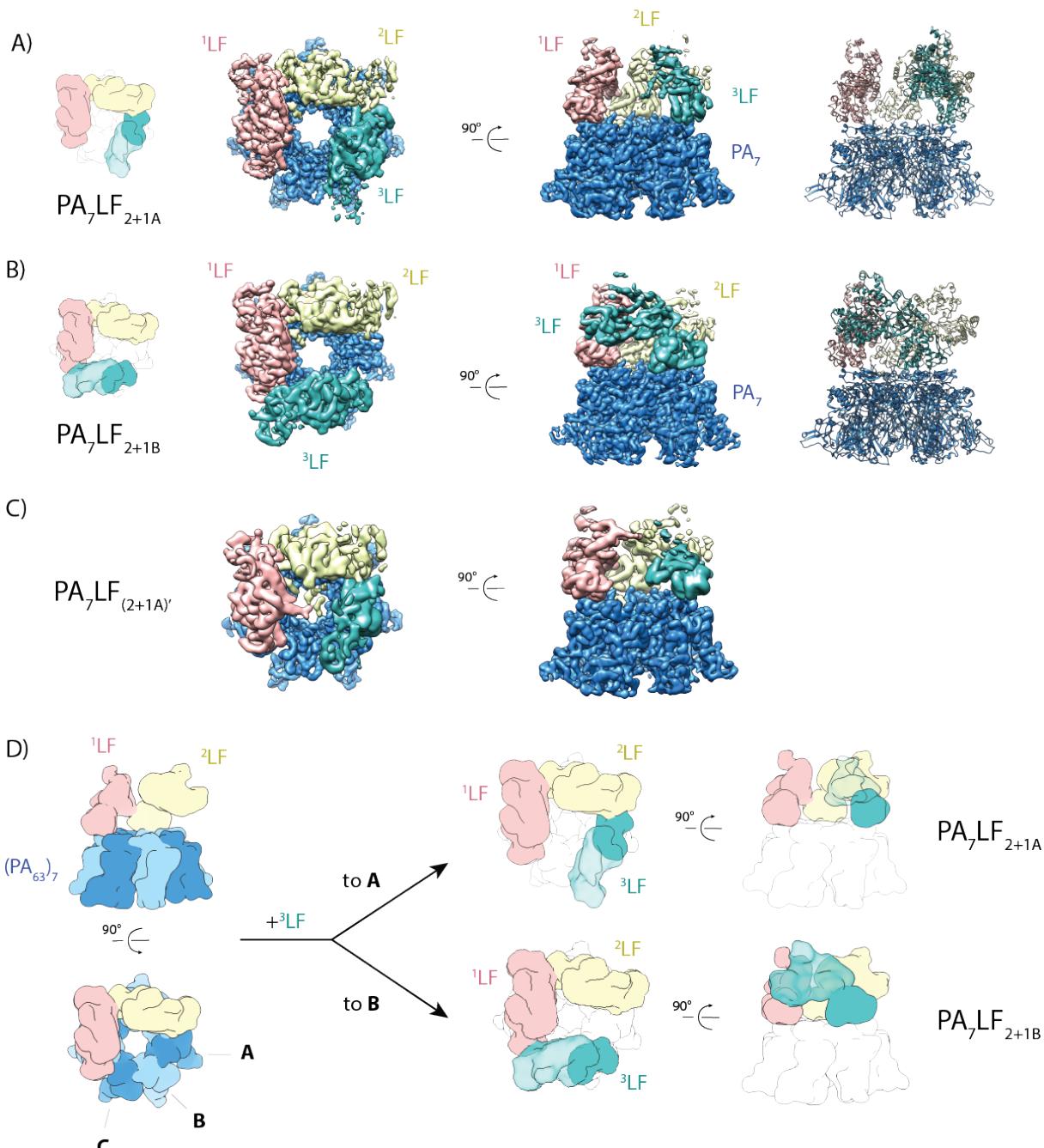
606 (A) Potential steric clash between the C-terminal domain of LF (red) and the N-terminal domain
607 of an adjacent LF when it adopts the “closed” conformation (blue). The clash is highlighted as
608 fading red spot in the background. In contrast, the “open” conformation (gold), i.e. the N-
609 terminal α -helix interacts with the α -clamp region of PA, does not result in a steric clash. (B)
610 A relatively small interaction interface mediates binding of the C-terminal domain of LF to the
611 N-terminal domain of an adjacent LF. The positions of ¹LF (pink) and ²LF (gold) are shown
612 relative to the overall shape of the complex that is represented as transparent, low-pass filtered
613 volume. A black square indicates the interaction interface between the two LFs. Insets show
614 close-ups of the interacting regions in different orientations, with contributing residues labeled.

615

616

617 **Figure 5. LFs can interact via their C-terminal domain.**

618 Top and side views of the low-passed filtered maps of the three PA₇LF₃ complexes, with
619 PA₇LF_{2+1B} in orange, PA₇LF_{2+1A} in yellow and PA₇LF_{(2+1A)'} in light blue. Volumes are shown
620 at the same threshold. While the three LFs interact in all structures via their N- and C-terminal
621 domains in a head-to-tail manner, an additional interface was identified in the PA₇LF_{(2+1A)'}
622 reconstruction. Here, the C-terminal domains of ¹LF and ²LF, interact with each other close to
623 the central axis of the PA₇LF₃ complex. This region is highlighted by dashed red circles. See
624 also movie S2.

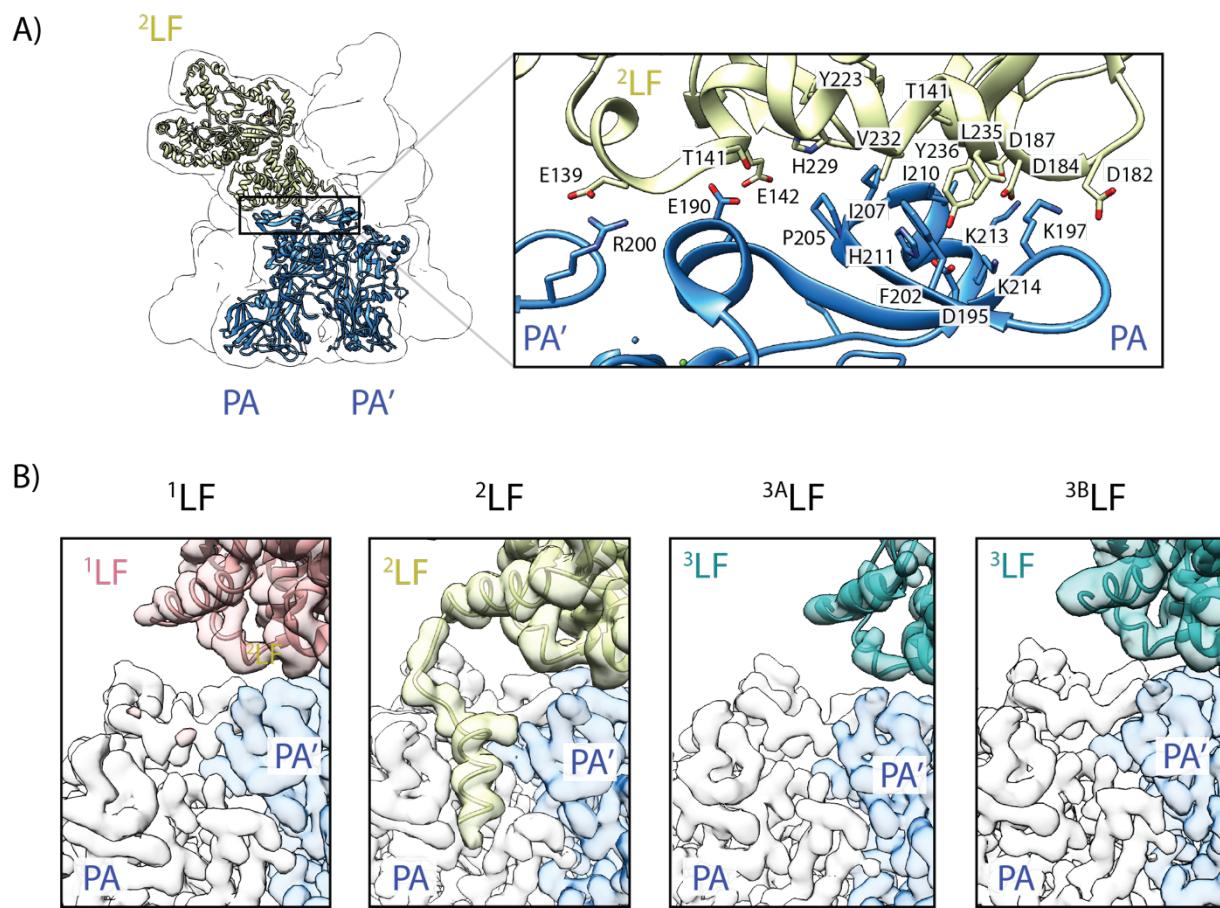

625

626 **Figure 6. Model for PA₇LF₃ assembly.**

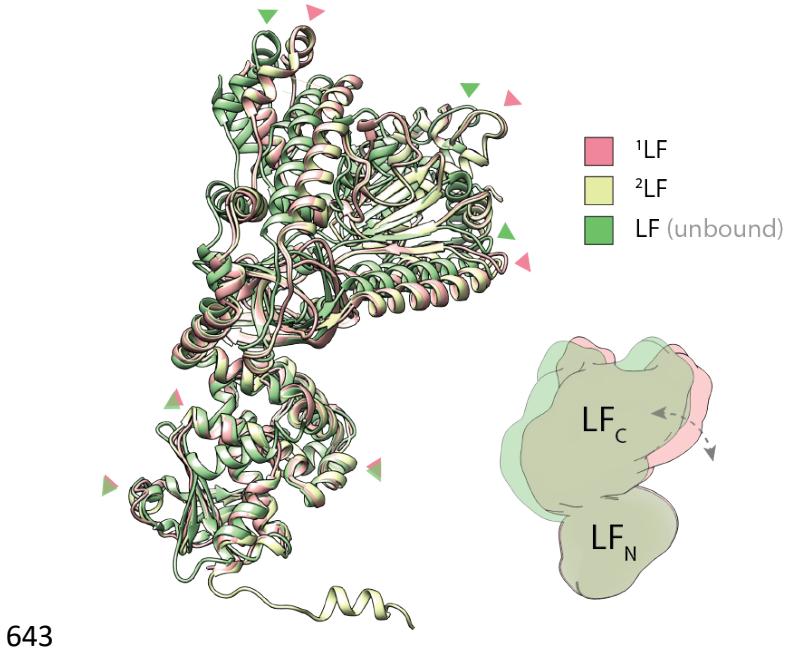
627 **(A)** After PA₇ formation on the surface of the host cell, **(B)** ²LF binds to PA₇ and its N-terminal
628 α -helix interacts with the α -clamp region of PA, characteristic for the “open” conformation.
629 **(C)** In the next step, ¹LF binds adjacent to ²LF. Instead of undergoing a conformational change
630 from “closed” to “open” state, it adopts an “intermediate” state. **(D)** Binding of the third LF is
631 similar as for ¹LF, resulting in a continuous chain of head-to-tail interactions. However, it can
632 attach to two different PA sites, resulting in two different PA₇LF₃ complexes. In this way, one
633 LF adopts the “open” conformation, whereas the other two LFs remain in an “intermediate”
634 state.

635

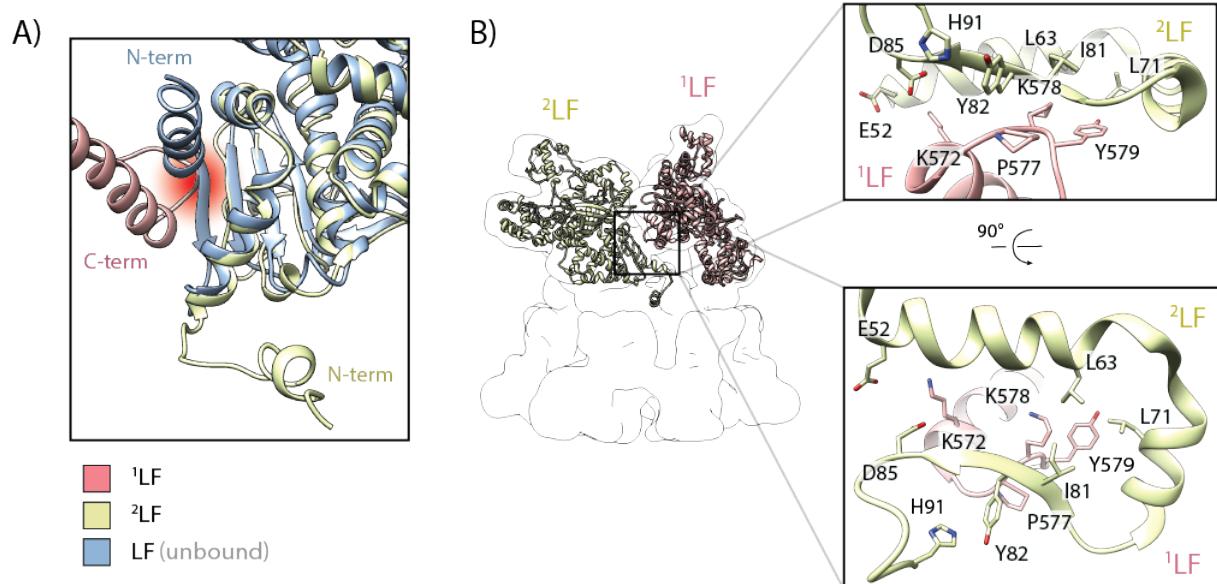
636 **Figures**



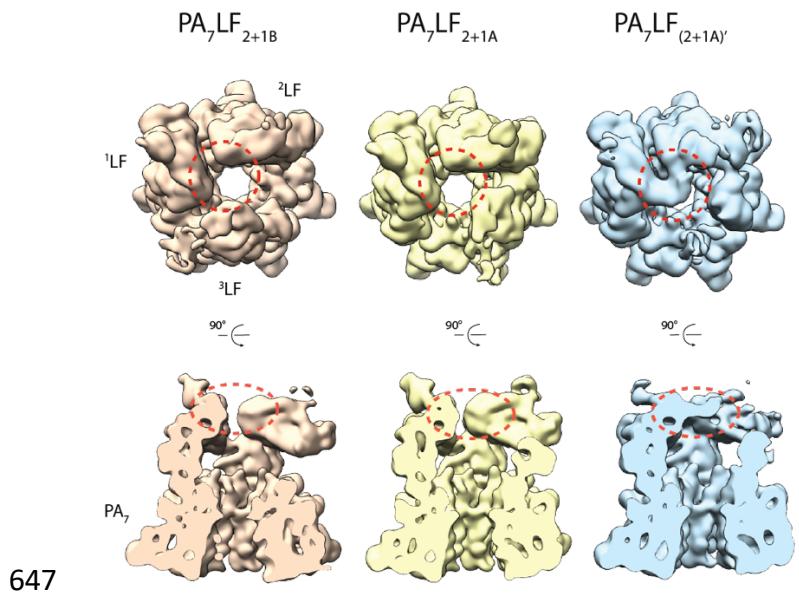
637


638 **Figure 1. Cryo-EM structures of the PA_7LF_3 complexes.**

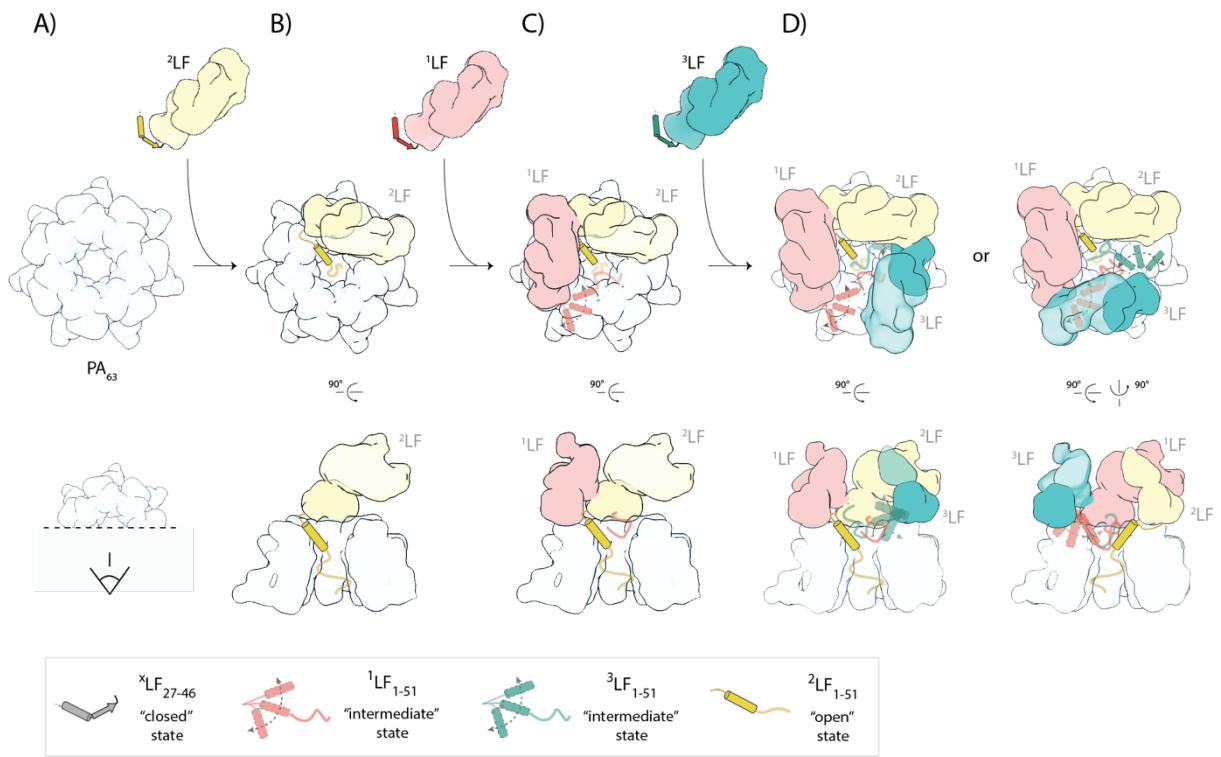
639


640

642 **Figure 2. Interfaces between lethal factor and protective antigen.**



644 **Figure 3. Conformational change of LF upon PA binding.**



645

646 **Figure 4. Molecular interface between two lethal factors.**

648 **Figure 5. LFs can interact via their C-terminal domain.**

652 **Supporting information figure captions**

653

654 **Figure S1. Reconstitution of PA₇ into lipid mimetic systems after pore transition.**

655 (A) Representative negatively stained electron micrograph areas of PA₇ reconstituted into
656 POPC liposomes (top panels), with individual inserted particles highlighted by white
657 arrowheads. Selection of inserted particles in smaller lipid vesicles (bottom panel). Scale bar:
658 15 nm. Particles are clearly accumulated at lipid membranes. (B) Representative negatively
659 stained electron micrograph area of PA₇ reconstituted in lipid nanodiscs (MSP1D1), with
660 individual inserted particles highlighted by black arrowheads. Scale bar: 20 nm (C) Model of
661 PA₇ complexes inserted into lipid nanodiscs with additional examples of individual particles
662 after reconstitution (same nanodiscs as in B). Scale bar: 20 nm.

663

664 **Figure S2. Purification and cryo-EM of PA₇LF₃.**

665 (A) Coomassie-stained SDS-PAGE of purified PA₇LF₃ complex. (B) Size exclusion
666 chromatography profile of the PA₇LF₃ complex using a Superdex 200 column. Sample fraction
667 used for cryo-EM studies is indicated by black arrow. (C) Representative digital micrograph
668 area of vitrified PA₇LF₃ complex. Scale bar: 20 nm. (D) Representative 2-D class averages
669 corresponding to C. Scale bar: 10 nm. (E-H) Rotated views of the 3-D reconstruction of
670 PA₇LF_{2+1A} (E), PA₇LF_{(2+1A)'} (F), PA₇LF_{2+1B} (G), and PA₇LF₃-masked (H), respectively. (I) FSC
671 curves between two independently refined half-maps of PA₇LF_{2+1A} (green), PA₇LF_{(2+1A)'} (red),
672 PA₇LF_{2+1B} (blue) and PA₇LF₃-masked (purple).

673

674

675

676 **Figure S3. Flowchart of image processing strategy in SPHIRE.**

677 The single particle processing workflow is shown that included multiple 3-D classification steps
678 as well as rotation of individual classes (indicated by rotation symbol). Number of particles in
679 each class is provided as orange box below the respective structure and the obtained resolution
680 of the map after 3-D refinement is indicated. For each structure a top and side view is shown
681 (in top views PA₇ density is partially clipped to focus on the bound LFs). Mask for masking out
682 third LF is provided in dashed box. Final electron density maps are highlighted by green boxes.
683 Abbreviations: cla3D – 3-D classification, cla2D – 2-D classification, ref-3D – 3-D refinement.

684

685 **Figure S4. Local resolution and 3-D orientation plots.**

686 (A-D) Rotated views of the reconstructions, PA₇LF_{2+1A} (A), PA₇LF_{(2+1A)'} (B), PA₇LF_{2+1B} (C),
687 and PA₇LF₃-masked (D), respectively, colored by local resolution. Corresponding color key of
688 local resolution is provided on the right. (E) Selected examples of side chain densities
689 corresponding to PA and LF with atomic models fitted. (F) Rotated views of the 3-D angular
690 distribution plot for the PA₇LF_{2+1A} reconstruction, in which the relative height of bars represents
691 the number of containing particles. Corresponding 2-D histogram is shown on the right. (G-I)
692 Same as in F for PA₇LF_{(2+1A)'} (G), PA₇LF_{2+1B} (H), and PA₇LF₃-masked (I).

693

694 **Figure S5. Structure comparison of PAs and LFs.**

695 (A) Superposition of the seven PA protomers in PA₇LF₃, which are colored in different blue
696 hues (left panel), and a single PA subunit (blue) with the known crystal structure (PDB: 1TZO,
697 green, right panel). Loop region 2β2-2β3 (residues 300-323), resolved only in the crystal
698 structure, is highlighted by a black arrowhead. (B) Domain organization of LF with individual
699 domains highlighted by different colors. (C) Superposition of individual LFs in the PA₇LF₃
700 structures with ¹LF in pink, ²LF in gold, ^{3B}LF_N in cyan and ^{3A}LF_N in dark green. (D)

701 Superposition of ¹LF (pink), ²LF (gold) and unbound LF (PDB: 1J7N, green), aligned via their
702 C-terminal domain. Green and red arrows indicate similar positions in ¹LF and unbound LF
703 (PDB:1J7N), respectively. Comparison reveals that the C-terminal domain is rotated respective
704 to the N-terminal domain in the PA₇LF₃ structures. (E) Superposition of the N-terminal domain
705 of the three LFs in PA₇LF₃ (green), of LF in the “open” conformation in PA₈LF₄ (PDB: 3KWV,
706 dark yellow) and of unbound LF in the “closed” conformation (PDB: 1J7N, purple). (F)
707 Superposition of the three LF-LF interfaces with ¹LF-²LF in pink, ²LF-^{3A}LF in green and ^{3B}LF-
708 ¹LF in blue.

709

710 **Supporting information movie captions**

711

712 **Movie S1. Conformational change of LF upon PA binding.**

713 The C-terminal domain of the three LF molecules rotate respective to the N-terminal domain
714 upon binding to PA₇ when compared with the unbound LF structure (PDB:1J7N), to form a
715 continuous chain of head-to-tail interactions. Top view of the morph between both
716 conformations is shown, with LFs in blue and PA₇ in transparent grey.

717

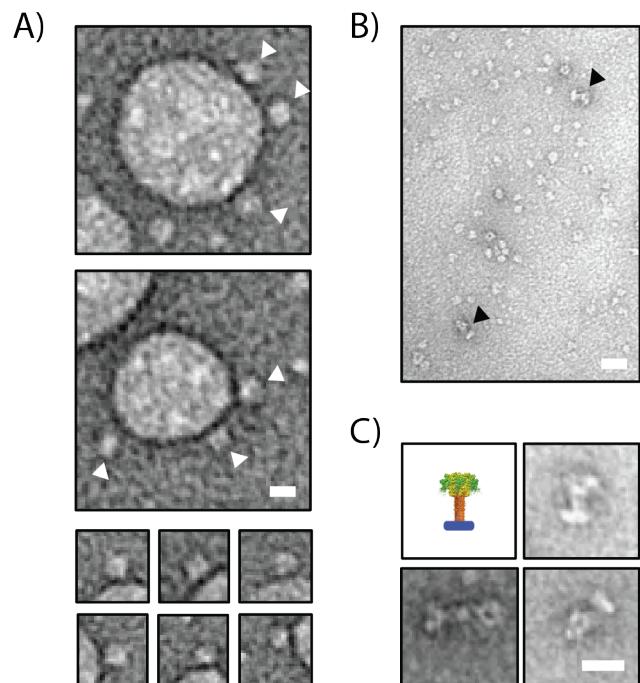
718 **Movie S2. LFs can interact via their C-terminal domains.**

719 In our PA₇LF_(2+1A)’ reconstruction, two LF molecules interact with each other via their C-
720 terminal domain close to the central axis of the complex, thus forming an additional LF-LF
721 interface. Top view of the morph between this conformation (light blue) and the one observed
722 in the PA₇LF_{2+1A} (yellow) is shown. Volumes are low-pass filtered and shown at the same
723 threshold.

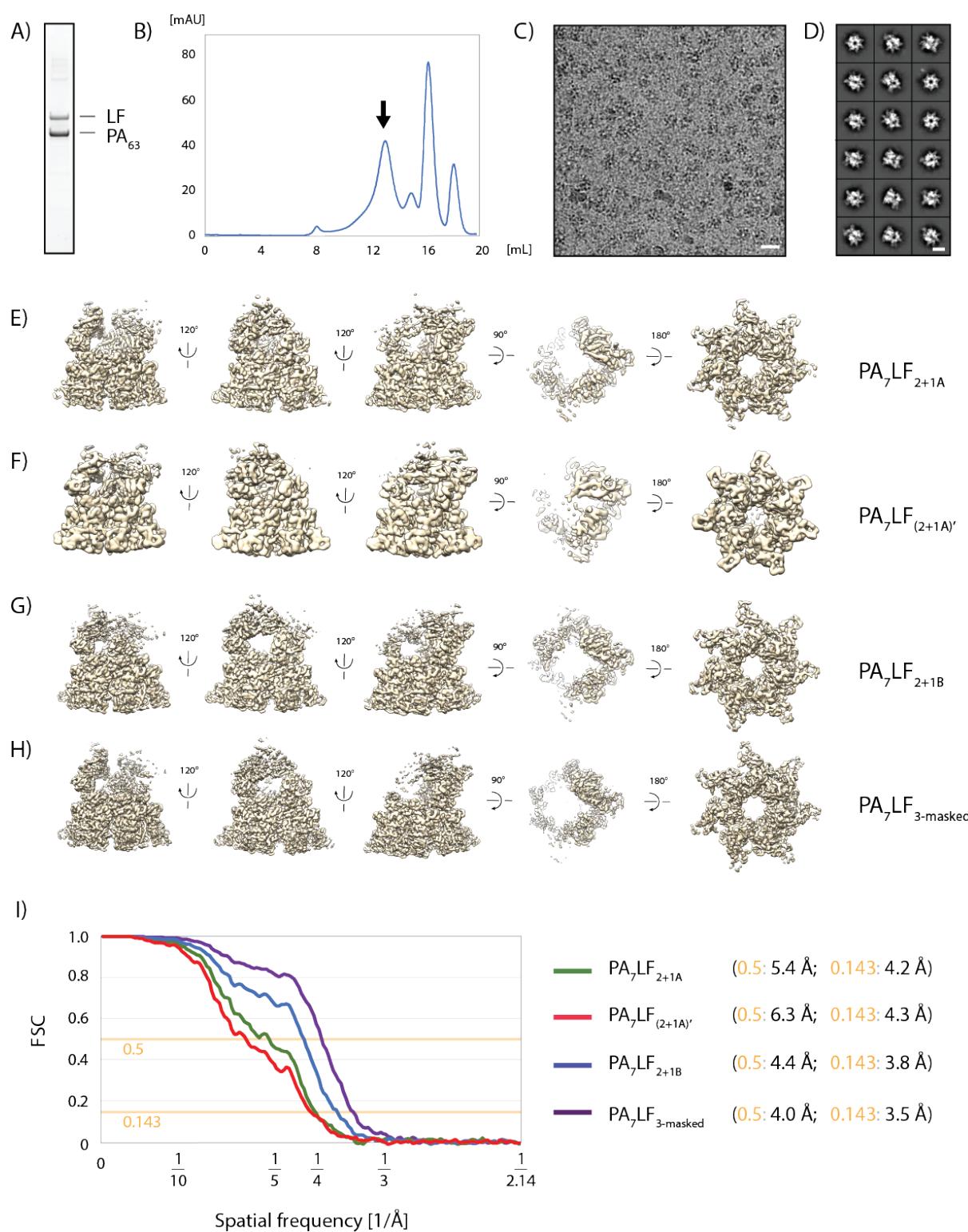
724

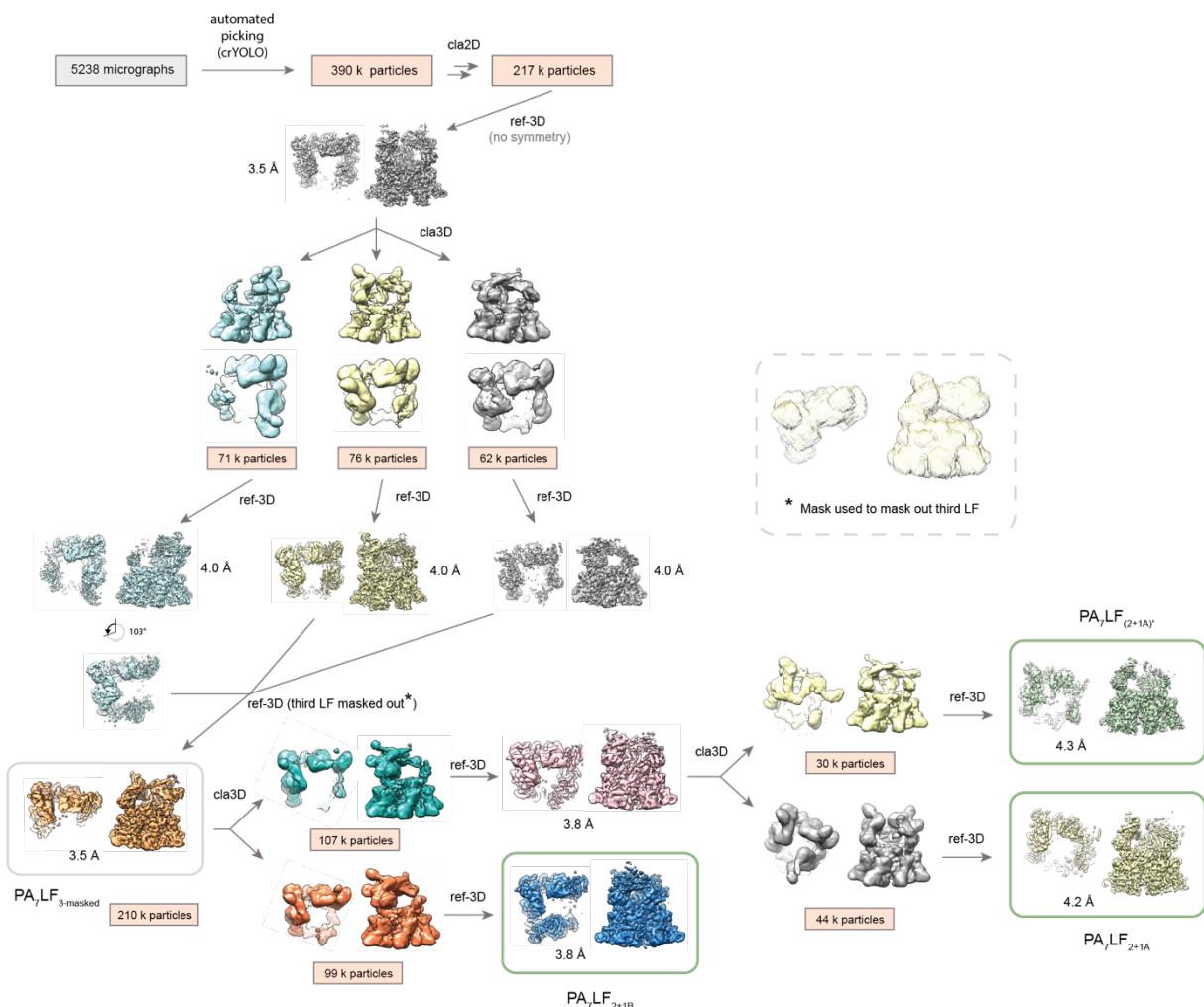
725

726 **Supporting information table captions**


727

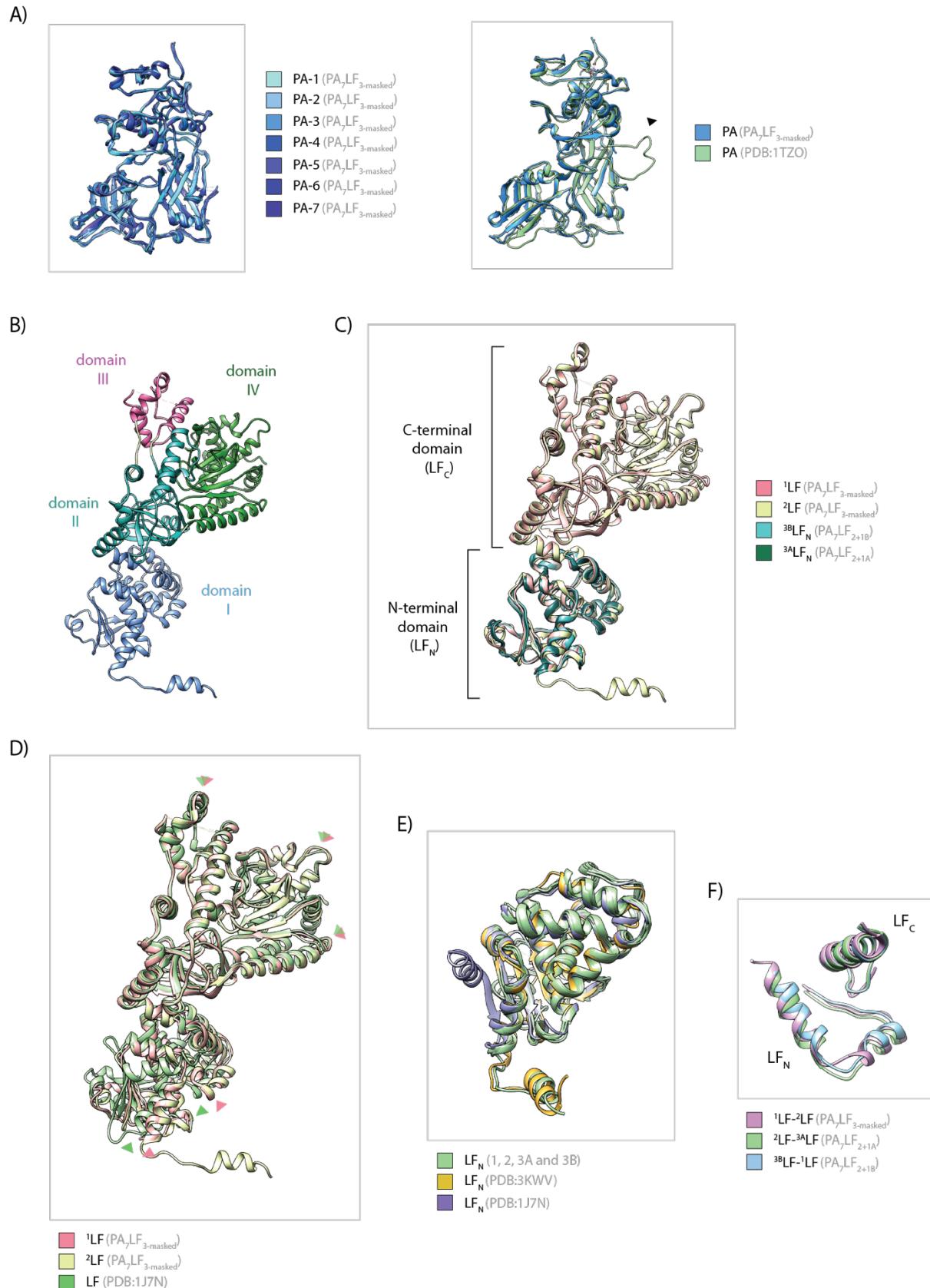
728 **Table S1. Data collection, refinement and model building statistics.**


729


730 **Supporting information figures**

731

733 **Figure S1. Reconstitution of PA₇ into lipid mimetic systems after pore transition.**


738

739 **Figure S3. Flowchart of image processing strategy in SPHIRE.**

740

741 **Figure S4. Local resolution and 3-D orientation plots.**

742

743 **Figure S5. Structure comparison of PAs and LFs.**

744

745

746 **Supporting information tables**

747

748 **Table S1. Data collection, refinement and model building statistics.**

	PA₇LF₃-masked	PA₇LF_{2+1B}	PA₇LF_{2+1A}
Microscopy and cryo-EM			
Microscope		Titan Krios	
Voltage [kV]		300	
Defocus range [μ m]		-1.2 to -2.6	
Camera		K2 Summit	
Pixel size [\AA]		1.07	
Total electron dose [$e^-/\text{\AA}^2$]		74.4	
Exposure time [s]		15	
Frames per movie		40	
Number of images		5238	
Map resolution [\AA]	3.5	3.8	4.2
Model statistics (phenix)^a			
Molprobity score	3.00	2.42	
EMRinger	2.34	1.93	
Bond RMSD [\AA]	0.008	0.004	
Angle RMSD [°]	0.723	0.753	
Ramachandran favored [%]	90.26	92.10	
Ramachandran outliers [%]	0.03	0.23	
Model statistics (iMODFIT)^a			
Molprobity score	3.01	2.43	2.63
EMRinger	0.61	0.46	1.18
Bond RMSD [\AA]	0.011	0.005	0.009
Angle RMSD [°]	1.201	0.701	0.937
Ramachandran favored [%]	84.37	89.06	86.05
Ramachandran outliers [%]	0.96	0.09	0.02

749

750 ^aA detailed description of which parts of the models were refined with phenix or flexibly fitted using iMODFIT
751 can be found in the Material and Methods section.