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ABSTRACT

Experimental measurements or computational model predictions of the post-translational regulation of enzymes needed in a
metabolic pathway is a difficult problem. Consequently, regulation is mostly known only for well-studied reactions of central
metabolism in various model organisms. In this study, we utilize two approaches to predict enzyme regulation policies and
investigate the hypothesis that regulation is driven by the need to maintain the solvent capacity in the cell. The first predictive
method uses a statistical thermodynamics and metabolic control theory framework while the second method is performed using
a hybrid optimization-reinforcement learning approach. Efficient regulation schemes were learned from experimental data
that either agree with theoretical calculations or result in a higher cell fitness using maximum useful work as a metric. Model
predictions provide the following novel general principles: (1) the regulation itself causes the reactions to be much further from
equilibrium instead of the common assumption that highly non-equilibrium reactions are the targets for regulation; (2) regulation
is used to maintain the concentrations of both immediate and downstream product concentrations rather than to maintain a
specific energy charge; and (3) the minimal regulation needed to maintain metabolite levels at physiological concentrations also
results in the maximal energy production rate that can be obtained at physiological conditions. The resulting energy production
rate is an emergent property of regulation which may be represented by a high value of the adenylate energy charge. In
addition, the predictions demonstrate that the amount of regulation needed can be minimized if it is applied at the beginning or
branch point of a pathway, in agreement with common notions. The approach is demonstrated for three pathways in the central
metabolism of E. coli (gluconeogenesis, glycolysis-TCA and Pentose Phosphate-TCA) that each require different regulation
schemes. It is shown quantitatively that hexokinase, glucose 6-phosphate dehydrogenase and glyceraldehyde phosphate
dehydrogenase, all branch points of pathways, play the largest roles in regulating central metabolism.
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Introduction
While our understanding of regulation of transcription and post-transcriptional processes has blossomed in the past 25 years due
to advances in high-throughput experimental technologies such as RNA expression, ChIP-Seq, and mass spectrometry-based
proteomics, our understanding of post-translational regulation has advanced1–4, but not as rapidly or as far.

Recent breakthroughs include work in which mass spectrometry and NMR measured metabolite and protein levels, along
with fluxes modeled from 13C isotope labeling were used with Michaelis-Menten kinetics to determine whether the predicted
reaction fluxes matched fluxes modeled from isotope labeling data2. The correlation between predicted fluxes were evaluated
with and without regulation. If the match was better with regulation, then regulation was assumed. The work was a tour de
force in that chemostat studies we used to carefully measure both absolute and relative metabolomics data while at the same
time cover as much of the proteome as possible. In addition, Michaelis-Menten kinetic models addressed multiple levels of
regulation. The payoff was not only predictions of which enzymes might be regulated, but also inferences about the regulating
molecule.

In addressing possible scalability (or at least cost of experimentation) in the previously mentioned study, a similarly
sophisticated informatics approach was used to develop a model of small molecule regulatory networks from curated databases
of enzymes, integrate the regulatory network with a metabolic model of E. coli, and distill information on how substrates and
inhibitors contribute to metabolic flux regulation3. Interestingly, this work did not find support for the common notion that
reactions which are furthest from equilibrium are those that are most likely regulated.

Fifty years ago it was postulated that the purpose of post-translational regulation in metabolism is to either maintain a balance
of the energy charge of the adenylate pool5, or to control solvent properties6. Solvent properties have long been recognized
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as important determinants of cellular activity and function. Atkinson recognized that the maintenance of physiological
concentrations of metabolites may well be the most pressing problem of metabolic control6. Metabolite concentrations are
exponential functions of the standard chemical potentials but only a linear function of the rate constants. Consequently,
metabolite concentrations are less a function of the reaction kinetics and primarily a function of a molecule’s standard chemical
potential, which varies over a small range across species because solution conditions inside a cell also vary over a small range.
Interestingly, the set of enzymes which are post-translationally regulated is relatively well-conserved across species as well3,
despite the fact that the rate constants for the same enzymes can vary dramatically7.

In addition to metabolite concentrations per se, solvent capacity in the cell has recently focused on molecular crowding8, 9

and the impairment of diffusion10. As a cell approaches equilibrium, the cell’s cytoplasm can become glassy such that
diffusion is limited. At the same time, control of metabolites through regulation of enzyme activities is no longer effective
near equilibrium11. The equilibrium constant K for a reaction is the ratio of the exponent of the standard chemical potentials.
Consequently, metabolite concentrations may potentially approach values determined by their standard chemical potentials in
solution, which can be quite large for highly charged metabolites like fructose 1,6-bisphosphate and acetyl-coenzyme A. Not
only will metabolite levels rise, but also less water will be produced by metabolism inside the cell. In E. coli, up to 50% of the
bulk water is produced by metabolism12. Even away from equilibrium, cells clearly must regulate metabolite levels to prevent
high concentrations that would be detrimental to diffusional processes necessary for life.

Here, we investigate the hypothesis that the post-translational regulation of enzymes is at least in part driven by the need
to maintain the solvent capacity in the cell. We evaluate this hypothesis by comparing experimental metabolomics data with
steady state concentrations predicted computationally from equations for reformulated mass action kinetics. Using quantitative
metabolomics data as well as physical and biological principles, metabolic control analysis and alternatively reinforcement
learning are used to predict the control of activity required to bring metabolite levels down to observed values. Consequently, the
machine learning results confirm that an optimal control policy can be formulated which directly achieves minimal regulation
by efficiently reducing excessive metabolite concentrations.

The predictions agree with known regulation of central metabolism in model organisms. Moreover, these results show
that regulated enzymes have higher free energies of reaction precisely because of the regulation, turning common wisdom
about enzyme regulation upside-down. Instead of highly non-equilibrium reactions being the targets for regulation in metabolic
pathways13, 14, regulation results in reactions being much further from equilibrium than non-regulated reactions. Being further
away from equilibrium than other reactions is an effect, not a cause, of regulation.

Results

We solve the prediction problem of which enzyme to regulate by a novel combination of methods from statistical thermodynam-
ics, control theory and reinforcement learning (RL). The initial step is to determine steady state concentrations without applying
regulation by using numerical optimization of the respective ordinary differential equations on a convex energy surface. The
convex energy surface for metabolic dynamics is obtained by assuming that the time dependence is the same for all reactions in
the Marcelin-de Donder dynamical force equation for mass action kinetics15. Due to the assumption that the reactions all occur
on the same time scale, the thermodynamic odds of each reaction (Methods, Eqn. (7)) are similar in value in upper glycolysis,
lower glycolysis and the TCA cycle, though varying by a factor of two due to stoichiometry. Such a configuration is known as a
maximum reaction path entropy configuration16, 17. Figure 2 shows the resulting steady state reaction fluxes and reaction free
energies for the glycolysis-PPP-TCA cycle under high NAD/NADH and low NADP/NADPH conditions.

If there are no constraints, the maximum path entropy configuration also results in a maximal entropy distribution of
metabolites. However, the metabolites will be constrained to be away from the equilibrium distribution if there are non-
equilibrium boundary conditions. Since the initially predicted concentrations will then be proportional to their Boltzmann
probabilities, the initially predicted concentrations may be exceedingly high6 compared to experimentally observed values from
isotope-labeled, mass spectrometry measurements18, 19. However, these high concentrations allow for highly effective inference
of regulation to control the concentrations. The predicted concentrations, ñi, are brought into alignment with experimental
observations, ni, by applying regulation. Regulation is determined using either a Metabolic Control Analysis (MCA) approach,
or a hybrid optimization-reinforcement learning (RL) approach (Methods). In both cases, regulation is applied in the form of
an activity coefficient, α j, that scales the reaction flux for reaction j, where α j = 1.0 indicates no regulation while α j = 0.0
indicates complete regulation.

In the two MCA based methods that were developed, reactions are regulated based on the sensitivity of the predicted
concentrations to the activity coefficient that modulates each reaction, which is carried out by a specific enzyme. The sensitivity
of the ith metabolite with concentration ni (observed or predicted) to the activity, α j, of enzyme j, is described by the
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concentration control coefficient, Cn
i, j,

Cn
i, j =

∂ logni

∂ logα j
. (1)

When using predicted concentrations, ñi, we write Cñ
i, j to specify the concentration control coefficient for predicted metabolite

concentrations. We utilize a loss function defined as the logarithm of the division of the predicted concentrations or counts
to the measured concentrations or counts, Li = log(ñi/ni). The change in the loss function due to a change in the activity of
reaction j is

∆Li, j = log ñi− log(ñi−∆ñi(∆α j)) . (2)

The reaction j selected for regulation is the one whose change in activity results in the largest change in the loss functions
of all metabolites whose predicted concentrations exceed the experimentally observed concentrations, as determined by
∆L j = ∑i ∆Li, j. Regulation is considered complete when predicted metabolite concentrations are brought into agreement with
experimental measurements.

Two approaches were taken with MCA: an unrestricted control approach in which any enzyme could be a regulator for any
metabolite, and a restricted approach in which only enzymes whose immediate products exceeded the target values could be
considered as a regulator. While the unrestricted approach optimizes the system as a whole, the restricted approach is consistent
with the concept of modularity in biological systems. We refer to the latter as a local-control approach (MCA Local) since an
enzyme’s immediate products (and possibly other metabolites) are being controlled.

The RL method (Figure 1) formulates the problem of regulation in terms of a Markov decision process20, which is commonly
represented as a tuple {S,A,P,R}, where S represents the set of possible states (enzyme activities for each reaction), A represents
the set of possible actions (reactions to regulate), P represents the transitional probabilities between states, and R represents
the reward function. Reinforcement learning is utilized to obtain an optimal regulation scheme by learning from delayed
environmental feedback21, 22. Figure 1 illustrates how reactions are chosen using a policy function which returns the reaction to
be regulated (action) given the current enzyme activities (state). Learning is performed by iteratively updating the state value
function using environmental feedback (rewards) from solving the optimization routine. Specifically, we utilize a temporal
difference bootstrapping technique23 called n-step SARSA24, 25, an on-policy version of the recently popularized Q-learning
method26. In the Methods and Supplementary Material, we provide in-depth descriptions of the theories and approaches behind
the steady state optimization, the MCA methods and the RL method.

We compare the three different regulation approaches by statistically characterizing the rate of energy flow across the
reactions. The rate that energy is produced in metabolism has long been known to be one of the most significant factors
in metabolic regulation5. The sum of the rate of free energy generated across all reactions is the free energy dissipation
rate, or equivalently the negative of the entropy production rate. The free energy of the jth reaction at steady state is
∆G j =−RgT log(K jQ

−1
j ), where Rg is the gas constant, and T is the temperature, K j is the equilibrium constant and Q j is the

reaction quotient. The free energy dissipation rate is defined as the rate at which free energy is dissipated27, 28,

dG
dt

=−RgT
Z

∑
j

α j[r j logK jQ−1
j − r− j logK jQ−1

j ]. (3)

In the maximum path entropy formulation (Methods, Eqn. (10)), the rate r j is proportional to the thermodynamic driving force
on the reaction, K jQ

−1
j . The free energy change for a reaction j can be broken down into two components, an energy change,

∆E j =−RgT logK j, and a configurational entropy change, T ∆S j = RgT logQ j
17. As the reactions occur, the system moves

towards equilibrium, decreasing the reactants and increasing the products, which results in a change in the configurational
entropy due to changes in the reaction quotients. In a steady state or pseudo-steady state system, the steady state is replenished
by additional nutrients such that the reaction quotients, Q j, return to their steady state values. Replenishing the steady state,
however, requires work. Since the net entropy change in a pseudo-steady state system must be zero, the measure of work
available for processes other than maintaining the steady state, such as replication, is,

dE
dt

=−RgT
Z

∑
j

α j[r j logK j− r− j logK j]. (4)

Both dG/dt and dE/dt (the energy dissipation rate) are important metrics of the rate of work produced by metabolism. When
regulating reactions, a biological system must find a balance between a free energy dissipation rate that extracts energy from
the environment as quickly as possible and a low rate of entropy change to maintain the pseudo-steady state. In principle, any
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individual or species in a pseudo-steady state that maximizes the rate of usable work, dE/dt, will outcompete those with lower
rates of net work and will be the organism selected by nature.

We evaluated three different versions of E. coli central metabolism under four different nutrient conditions. The three
different versions of metabolism were (1) gluconeogenesis, (2) glycolysis and the TCA cycle, and (3) glycolysis, the pentose
phosphate pathway (PPP) and the TCA cycle (glycolysis-PPP-TCA). Metabolite concentration data used in the analysis were
from E. coli in exponential growth with glucose as the carbon source18, 19. In all cases, the predicted regulation matched known
regulation points in central metabolism or were adjacent to known regulation points.

Below, we discuss the largest network, glycolysis-PPP-TCA, under two identical nutrient conditions except for the
NADP/NADPH ratio, which is held fixed but at different values throughout each analysis. In condition 1, the NAD/NADH
ratio is high (31.3) and the NADP/NADPH ratio is low (0.02), which favors flux through upper glycolysis rather than PPP. In
condition 2, the NADP/NADPH ratio is also high such that NADP/NADPH = NAD/NADH = 31.318. The latter condition favors
increased flux through PPP. Analyses of gluconeogenesis and glycolysis and the TCA cycle are included in the supplementary
materials (Figure S2 and S3). In all conditions, we compare regulation that is found by the reinforcement learning method with
that found by deterministic methods using only MCA.

High NAD/NADH require regulation of metabolite levels in glycolysis
Prediction of enzyme activities using MCA methods are deterministic. Given the conditions for fixed metabolites in which
the NAD/NADP ratio is high and the NADP/NADPH ratio is low, flux is favored through upper glycolysis over PPP, and the
local MCA method predicts (Figure 3A, red ‘plus’) that five reactions in glycolysis are regulated due to the enzymes hexose
kinase (HEX1), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPD), phosphoglycerate kinase
(PGK), and pyruvate dehydrogenase (PDH), while one enzyme in PPP is regulated, phosphogluconolactonase (PGL), near
the beginning of the pathway. It is known that regulation of PPP occurs one enzyme up from PGL at glucose 6-phosphate
dehydrogenase (G6PDH) instead. But the metabolite that is over produced and is predicted to have high concentration without
regulation is phosphogluconate, the product of the PGL reaction. In practice, PGL may be a hard reaction to allosterically
regulate since it is a unimolecular ring opening reaction that may be catalyzed significantly by binding alone29.

The RL and unrestricted MCA methods both predict the same minimal regulation at HEX1 and GAPD to achieve the
same goal of maintaining the predicted concentrations at or below the experimentally observed values. The RL method,
however, additionally regulates PGK, pyruvate kinase (PYK), the pyruvate mitochondrial transporter (PYRt2m) and PDH to
obtain a similar energy dissipation rate. As shown in Figure 3A, four of these enzymes were also regulated in the local MCA
method. The difference is that HEX1 and GAPD are more extensively regulated in the RL and the unrestricted MCA methods.
Despite these differences in regulation, each regulated enzyme with the exception of the pyruvate transporter are known sites of
regulation (known sites of regulation are highlighted in bold). Regulation of the pyruvate transporter was only predicted in the
stochastic RL approach. It is likely that this regulation should be assigned to PYK or PDH as it was in the deterministic MCA
approach.

As shown in Figure 3B, whenever regulation is applied in the form of reducing the activity coefficient, the free energy of
the reaction becomes more favorable compared to reactions in the same pathway (e.g., compare to the consistency of free
energy changes in upper glycolysis, PPP, lower glycolysis and TCA cycle in Fig 2). Reducing the activity of an enzyme in
a non-equilibrium setting will cause the reactants to increase in concentration and the products to decrease in concentration,
resulting in reaction free energies being further away from equilibrium. Despite the different sites of regulation and the
difference in reaction free energies for the three methods, the free energy and energy dissipation rates are similar and are the
most favorable rates found (Figure 3C).

High NAD/NADH & High NADP/NADPH require additional regulation in PPP
In the second set of conditions, the NADP/NADPH ratio is also high, which in principle favors more flux through PPP. The
resulting regulation is similar to the first conditions in which NADP/NADPH is low with a few exceptions (Figure 4A and 4B).
The local MCA method additionally regulated G6PDH, the entry point into the PPP as well as transketolase (TKT), while the
RL method no longer regulated PYK and regulated the pyruvate mitochondrial transporter (PYRt2m) rather than PDH. The
latter is likely incorrect, but the fact that the method was trying to regulate pyruvate concentrations suggests that PYK might be
the true target of regulation. Like the local MCA method, the RL method also regulated HEX1, GAPD and PGK.

In contrast, the unrestricted MCA method regulated the same reactions as in the low NADP/NADPH conditions, HEX1
and GAPD. The regulation under a high NADP/NADPH ratio is similar to the conditions in which NADP/NADPH is low
primarily because increasing the NADP/NADPH ratio alone is insufficient to drive much flux through PPP. Because of less total
regulation, the unrestricted MCA and RL methods result in significantly higher energy dissipation rates than the local MCA
method and are thus likely to be more optimal regulation schemes.

4/21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.04.06.028035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028035
http://creativecommons.org/licenses/by/4.0/


Regulation of PFK Maximizes Flux Through PPP
Increased flux can be channeled through the PPP if PFK activity is regulated to a greater extent or is turned off completely.
Then significant flux flows through PPP instead of upper glycolysis and does so in a cyclical manner. There is experimental
support for this as well. In Neurospora crassa, glycolysis and the PPP are circadianly regulated, with the PPP being regulated
180 degrees out of phase with upper glycolysis. In the extreme case when PFK activity is turned off in the model, then the
cyclical operation of the PPP is such that three carbons are lost from each glucose molecule as CO2 before all the carbon
reaches lower glycolysis as glyceraldehyde 3-phosphate.

In the case when PFK activity is set to zero, all methods apply regulation to HEX1. This is enough for the unrestricted
MCA and RL methods to bring concentrations to within the observed experimental range, and both methods result in maximal
energy dissipation rates (Figure 5). In contrast, the local MCA method additionally requires regulation in PPP at G6PDH, PGL
and TKT. But even in this case, the local MCA method fails to completely bring sedoheptulose 7-phosphate into the range of
the experimental observations. In attempting to control sedoheptulose 7-phosphate, the applied regulation is extensive enough
such that the net flux through glycolysis, the pentose phosphate pathway and the TCA cycle approaches zero. Thus, the local
MCA method fails to obtain control. In several cases involving the local MCA method, the concentration of sedoheptulose
7-phosphate and sometimes 6-phospho D-gluconate become uncontrollable resulting in concentrations higher than what is
observed experimentally. The reason for this is that the respective reactions producing these compounds approach equilibrium;
it is known that when a reaction approaches equilibrium, the concentrations of the products are no longer controllable11

In these cases, the reactions and their metabolites are effectively uncoupled from the non-equilibrium reactions. Lack of
control may result in the respective metabolites reaching high concentrations in the cytoplasm, and the cytoplasm consequently
becoming glassy and diffusion limited. Experiments support this principle. Recent reports provide evidence that active
metabolism promotes cytoplasmic fluidization while inactive metabolism results in a glass-like cytoplasm with limited diffusion
in both bacteria10, 12 and eukaryotes30.

However, it is not clear that the failure to maintain control when using the local MCA method reflects poorly on the concept
of modularity whereby enzymes use local control. The failure to obtain control of sedoheptulose 7-phosphate can also be due to
the incomplete nature of the model of metabolism used here. It may be that in a more extensive model of metabolism, such as
the inclusion of purine and pyrimidine biosynthesis pathways branching off of D-ribose 5-phosphate, control of sedoheptulose
7-phosphate by the local MCA method may be possible. We present this possibility because Transketolase (TKT), the enzyme
producing sedoheptulose 7-phosphate is a key post-translational regulation point into purine synthesis31.

Regulation Increases Reaction Free Energies
In all cases of regulation, whenever a reaction is regulated significantly, the reaction free energy is significantly different
from the neighboring reactions which are not regulated, as shown in Figures 3B, 4B, and 5B. It is the act of regulating each
reaction that causes the respective reactants to build up and products to become relatively depleted, which causes the free
energy change of the reaction to increase in magnitude. This observation has wide support in the literature13, 14, but the cause
has been misinterpreted as being such that reactions are selected for regulation because they are far from equilibrium, rather
than reactions being far from equilibrium because they are regulated.

The reasoning for assuming that highly non-equilibrium reactions are selected for regulation has to do with the established
principle that biological systems activate metabolites for reactivity by covalently attaching high potential groups such as
coenzyme A and phosphates. These reactions will then have much higher standard free energies of reaction than they would
otherwise.

However, the use of such activators as phosphoryl groups and coenzyme A to drive a reaction will not just result in the
respective reaction being further from equilibrium, but all reactions in the pathway will be further from equilibrium because
increased product formation of the activated reaction will result in increased reactant concentration for the next reaction, and
so forth, as the effect propagates down the pathway until a steady state is reached. As a result of the highly non-equilibrium
nature of reactions in the pathway, many reaction products may be produced in biologically unreasonable concentrations. This
problem is solved by reducing the activity of either the enzyme catalyzing the reaction or upstream enzymes that have control
of the flow of material into the pathway. The reactions that have the most control can be determined using concentration control
coefficients and thermodynamics.

Discussion
All predicted schemes discussed above enforce regulation on enzymes that are known to be regulation sites. Nine of these
11 enzymes are known to be sites of post-translational regulation in glycolysis and the pentose phosphate pathway, either
allosterically or through chemical modification (Table 1): hexokinase, phospho-fructokinase, glyceraldehyde phosphate
dehydrogenase, phosphoglycerate kinase, pyruvate kinase, pyruvate dehydrogenase, glucose 6-phosphate dehydrogenase,
transketolase, and pyruvate carboxylase (supplemental material). Only the pyruvate mitochondrial transporter (PYRt2m)
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and phosphogluconolactonase (PGL) are not known to be regulated. The regulation assigned to the pyruvate transporter was
done stochastically by the reinforcement learning and likely should be assigned to PYK or PDH, as it was the deterministic
MCA approaches. PGL presumably would be hard to control since it catalyzes a highly favorable ring opening which may
only require desolvation in the enzyme active site. It is worth noting the enzymes that are known to be regulated but were
not indicated as being regulated in this study. Foremost among these is fructose bisphosphatase (FBA), an enzyme that is
well-known to be regulated in gluconeogenesis. Under the limited number of conditions used in the study of gluconeogenesis
herein, levels of fructose 6-phosphate or other downstream products never rose high enough to require regulation. Likewise,
the products of enolase, phosphoglucose isomerase, PEP carboxykinase, glucose 6-phosphatase never rose to the level that
these needed to be regulated, but it would be reasonable to expect that the respective enzymes may need to be controlled under
conditions that were not tested here.

Of the 11 enzymes predicted to be regulated, outsized roles were played by the branch points of each of the pathways,
as quantified by the influence of the enzyme activity coefficients, Cn

j , on the respective reactants or products (Table 1). The
summary concentration control coefficient reports the total influence of the activity of the enzyme on all metabolites exceeding
the experimentally observed values. Hexokinase, the entry point into the model and entry point into upper glycolysis and the
pentose phosphate pathway, had the largest role with Cn

j = 12.4, meaning that hexokinase effectively had 100% control over
12.4 reactions. Likewise, glucose 6-phosphate dehydrogenase, the entry point into the PPP, had effectively 100% influence
over 16.8 reactions, although this value is only seen this high when the phosphofructokinase activity is set to 0.0 such that the
PPP acts cyclically and three circuits around the cycle are made for each glucose metabolized. Likewise, for lower glycolysis
the main control point, glyceraldehyde 3-phosphate dehydrogenase, is the entry into the pathway which is also where upper
glycolysis and PPP converge. No regulation was needed for the TCA cycle under the conditions studied.

While the predictions align well with known sites of post-translational regulation, the predictions offer no information
on whether the regulation would be due to allosteric interactions or chemical modification as might be inferred from more
complex and expensive approaches that utilize (and require) absolute metabolite concentrations, fluxes inferred from isotope
labeling studies, MS proteomics analyses and detailed kinetic models that include explicit enzyme binding, catalysis and
product release2. The regulation predictions provided here, however, were done purely in silico with the optional use of absolute
metabolite concentrations, if available. Although the regulatory effector can’t yet be inferred from this approach, it would seem
reasonable to assume that control of metabolite concentrations would be due to allosteric regulation since allosteric interactions
work on a faster time scale than post-translational modifications. It is likely that post-translational modifications act to redirect
flux when either degradation of enzyme would be too slow, or when degradation and later resynthesis of the enzyme would be
too costly32, which is not the scenario addressed here.

Both MCA approaches were based only on adjusting the activities of enzymes that would have the most influence on
reducing concentrations to physiological values. Only the RL approach rewards regulation schemes for maximizing the entropy
production rate (Eqn. (26)). Even though the RL and MCA methods have different aims, both maximized the energy dissipation
rate, dE/dt, a principle alluded to by Lotka33. Furthermore, while the unrestricted MCA approach and the RL performed
similarly, the local MCA approach did not always find a solution, which could reflect the incompleteness of the metabolic
network that is modeled, or may simply indicate that modular regulation to this degree is insufficient. In addition, in at least one
case the local MCA approach did not produce solutions with the highest energy dissipation rates. However, the set of enzymes
predicted by the local MCA approach covers many more of the enzymes known to be classically regulated, as shown in Table 1.

Consequently, we have shown how post-translational regulation results in the emergence of the general principle of maximal,
entropy production rate for metabolism, and we can now also include the principle of maximization of the energy production
rate, dE/dt, for pseudo-steady state phenotypes. When these principles are applied for predictions, each prediction must
include the physicochemical constraints on the system, such as the inherent constraints on the maximal rates of enzymes and
thermodynamic costs and benefits, not simply metabolite solubilities32. These additional physicochemical constraints can
explain the observed upper limit to free energy dissipation in microbial systems34.

The observation of an upper limit to free energy dissipation is related to the concept of maintaining the adenylate energy
charge ratio. The adenylate energy charge rule widely found in textbooks was defined in terms of concentrations as [(ATP) +
0.5 (ADP)]/ [(ATP) + (ADP) + (AMP)]. It was proposed that biological systems maintain values of the energy charge between
0.75 and 0.90. There are now many known exceptions to this proposed rule that it can no longer be regarded as a rule but as an
emergent property, just as the maximization of energy production rates is an emergent property due to natural selection.

The simulation-based predictions of enzyme activities presented in this paper advance both the practice and theory of
biology. The ability to predict from simulation or infer the free energy changes and control coefficients (in addition to fluxes)
for each reaction allows the use of control theory and learning to analyze and explore the operations of the cell. In synthetic
biology the development of cell lines often requires additional circuits and can result in unforeseen consequences or lower cell
growth rates. Simulation of cells with engineered or deleted circuits will allow prediction of the effects in place of difficult trial
and error in experiments.
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Finally, it is important to understand the principles behind post-translational regulation because regulation of metabolism is
precisely what controls a cell’s energetic behavior. From bacterial growth and reproduction, to developing cells or even halting
the growth of cancer cells, regulation plays the central role. Learning how cells regulate and control themselves is essential for
designing new organisms that have an intended purpose (synthetic biology), developing new strategies to target and control
microbial and metabolic diseases (medicine), and understanding design principles of biology (fundamental science). Currently
no other experimental or computational approach has been shown to identify points of regulation in metabolism in a rapid
manner.

Methods
Convex Optimization Approach for obtaining Metabolic Steady State.
For a reversible chemical reaction, the reaction is described by,

νA,1nA +νB,1nB
k1−−⇀↽−−

k−1
νC,1nC +νD,1nD, (5)

where A,B,C,D represents the molecular species, the concentrations are given by ni, i = {A,B,C,D}, and νi, j represent the
unsigned stoichiometric coefficients for each molecular species i in the forward and reverse reactions j = {1,−1}.

The law of mass action may be formulated in terms of chemical kinetics or thermodynamics. With respect to chemical
kinetics, the law of mass action is expressed by the rate or net flux, Jnet,1, of the reaction where the forward and reverse rates
are proportional to the respective reactants,

Jnet,1 = k1n
νA,1
A n

νB,1
B − k−1n

νC,1
C n

νD,1
D . (6)

In this formulation, k1 and k−1 represent the rate constants of the forward and the reverse reaction, respectively. On the other
hand, the thermodynamic expression of the reaction utilizes the change in free energy, G, with respect to the extent of a reaction,
ξ . The ratio of the respective reactants and products are combined to form the reaction affinity, A1 = ∂G/∂ξ1, such that,

eA1/RgT = K1
n

νA,1
A n

νB,1
B

n
νC,1
C n

νD,1
D

= K1Q−1
1 ,

(7)

where K1 = k1/k−1 is the equilibrium constant and Q1 is the reaction quotient. Also, the analogous equation for the reverse
reaction is the reciprocal,

eA−1/RgT = K−1
n

νC,1
C n

νD,1
D

n
νA,1
A n

νB,1
B

= e−A1/RgT .

(8)

Note that Eqn. (6) is a purely kinetic description of the law of mass action, while Eqns. (7) and (8) are purely thermodynamic
expressions. This results from the fact that the latter equations do not contain any information on the time dependence of
the reaction. These formulations, however, are not mutually exclusive. Time dependence and thermodynamics can both be
described in a single equation by factoring the opposing rate from each term of Eqn. (6),

Jnet,1 = k−1nC
νC,1nD

νD,1

(
k1nA

νA,1nB
νB,1

k−1nC
νC,1nD

νD,1

)
− k1nA

νA,1nB
νB,1

(
k−1nC

νC,1nD
νD,1

k1nA
νA,1nB

νB,1

)
= k−1nC

νC,1nD
νD,1
(
K1Q−1

1
)
− k1nA

νA,1nB
νB,1
(
K−1Q−1

−1
)
,

(9)

where K1 and K−1 are the equilibrium constants and Q1 and Q−1 are the reaction quotients for reaction 1 and -1, respectively.
Eqn. (9) is the Marcelin-de Donder equation15, 35, which describes the forward and reverse reactions as being functions of the
time independent odds of the reaction and the rate of change of the odds.

Given a metabolic model with Z reactions, M metabolic species, and N total particles, we formulate the flux through each
reaction using Eqn. (9). In this work, the largest values of Z and M in a pathway are 29 and 47 respectively. If we assume the
rate of change of the odds are equal and independent of concentrations, then the coupled reactions occur on the same time scale.
Under these assumptions, the resulting equation for the jth reaction is the Marcelin equation36,

Jnet, j = c j

(
K jQ−1

j

)
− c j

(
K− jQ−1

− j

)
, (10)
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where c j represents the time dependence of the reaction odds. Because the exponential family of distributions are always
log-concave when counts are greater than or equal to zero, the energy surface on which the reactions occur is convex. This is
achieved by expressing the reactions as functions of the reaction affinities via Eqns. (7) and (8),

Jnet, j = c j

(
eA j/RgT

)
− c j

(
e−A j/RgT

)
. (11)

A vector of Z reaction fluxes J = [J1, ...,JZ ]
T can be determined from the M by Z stoichiometric matrix S and the M chemical

potentials. The stoichiometric matrix consists of elements γi, j, which are the signed stoichiometric coefficients for chemical
species j in reaction i. The time dependence of the vector of counts n = [n1, ...,nM]T of chemical species is,

dn
dt

= SJ

= S(KQ−−K−Q),
(12)

where SJ is the matrix multiplication between S and J, KQ− = [K1Q−1
1 , ...,KZQ−1

Z ]
T

is the vector of thermodynamic odds
for the forward reactions, and K−Q = [K−1

1 Q1, ...,K
−1
Z QZ ]

T
is the vector of thermodynamic odds for the reverse reactions.

Without any constraints applied, Eqn. (12) will converge to an equilibrium solution, whether the equation is solved using
ordinary differential equations or optimization methods. To obtain a non-equilibrium steady state, non-equilibrium boundary
conditions must be applied. In this case, the non-equilibrium boundary conditions consist of boundary metabolite values
representing the reactants and products of the overall chemical process that are held fixed. If there are MV variable species and
MB = M−MV boundary (fixed) species such that n = [n1, ...,nMV ,nMV+1, ...,nM]T , then the stoichiometric matrix will contain
a non-singular submatrix and Eqn. (12) will have unique solutions only if MV ≤ Z. The vector of counts n can be split into
subvectors nV = [n1, ...,nMV ]

T and nB = [nMV+1, ...,nM]T such that n = [nT
V nT

B ]
T . Likewise, the stoichiometric matrix can also

be split along the rows representing metabolites to separate the entries for the variable metabolites from those for the boundary
metabolites such that S = [ST

V ST
B ]

T where SV is an MV by Z matrix and SB is MB by Z. The time dependence of each of the
chemical species is given by,

dn
dt

=

[ dnV
dt

dnB
dt

]
=

[
SV
SB

]
(KQ−−K−Q). (13)

The optimization problem is to find nV satisfying∣∣∣∣SV (KQ−−K−Q)
∣∣∣∣2

2 = 0.0 (14)

subject to the MB boundary conditions. The optimization is carried out with a nonlinear least-squares approach using the
Levenberg-Marquardt method37, 38, and solves for the concentrations of the chemical species which makes up the reaction
quotient, Q. When SV (KQ−−K−Q) = 0.0, the optimization has found a kinetic steady state as well as a thermodynamically
balanced state such that the net thermodynamic driving forces on all the reactions are equal for linear pathways, or for
branched pathways, the net thermodynamic driving forces are proportional to the stoichiometry. If one is only interested in
the thermodynamic properties, fluxes and concentrations at steady state, then there is no need to solve for the rate constants.
Otherwise, rate constants can be back-calculated and used to solve for the system dynamics using, for example, Eqn. (6). For
example, setting j = 1, Eqn. (9) can be solved for k±1 as follows:

k1 =
J1,net

nA(1−K−1Q−1
−1)

and

k−1 =
K1

k1
.

(15)

The kinetically accessible energy surface is not necessarily convex because of the introduction of the rate constants – each
reaction now has its own time dependence.

The predicted concentrations from the optimization follow the multinomial Boltzmann distribution in which the con-
centration of each species is proportional to its standard chemical potential, µ◦i , adjusted for aqueous solution at pH 7.0,

ni ∝ e−µ◦i /kBT (16)
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subject to the constraints of the reaction stoichiometries and the non-equilibrium boundary conditions. The boundary conditions
consist of fixed concentrations of environmental nutrients such as glucose and waste products such as CO2, as well as some
cofactors. Because the concentrations are distributed as a function of their standard chemical potentials in aqueous solution, the
concentrations of highly hydrophilic charged species may be orders of magnitude above physiological values. For instance,
concentrations of ATP or acetyl CoA may be on the order of ten molar or more. Such high concentrations would make the
cytoplasm highly viscous such that diffusion would be slowed down significantly, and cellular activity would come to a halt.
However, as we shall show, the concentrations can be brought into alignment with physiological values using enzyme activities
determined from Metabolic Control Analysis39, 40.

Metabolic Regulation: A Metabolic Control Theory Approach
Regulation is applied to reactions by changing the scalar valued activity of the jth enzyme, α j ∈ [0.0,1.0], where activity values
of 0.0 and 1.0 represent complete reaction regulation and no enzyme regulation, respectively. The activity for each reaction j is
represented by a multiplier to the net reaction flux J j such that,

J j = α j(K jQ−1
j −K− jQ−1

− j), (17)

and likewise,

dn
dt

=

[ dnV
dt

dnB
dt

]
=

[
SV
SB

][
α ◦ (KQ−−K−Q)

]
, (18)

where ◦ represents the Hadamard element-wise product. Since any reaction may be regulated, the state of the system can be
described by the activity vector, α , steady state fluxes, J, and steady state metabolite concentrations n. Because the latter two
state variables can be determined from a fixed set of activities via the optimization routine, system states can be defined simply
by the activity vector α instead of the tuple (α,J,n).

In Metabolic Control Analysis (MCA), the sensitivity of a concentration ni to the activity α j of enzyme j is defined as
the concentration control coefficient Cn

i, j (Eqn. (1)). Concentration control coefficients can be used to determine how much to
reduce the activities of an enzyme to bring the predicted concentrations into alignment with physiological values observed from
experimental metabolomics assays. The detailed calculation is described in the supplementary material. If concentrations ni for
a metabolite i have not been measured, then target values are assumed to be 1.0 millimolar, which ensures that concentrations
stay reasonable even for metabolites whose concentrations have not been measured. When predicted values exceed the measured
or target values, regulation is applied to reactions by changing the scalar valued activity of the jth enzyme, α j.

Which reaction to regulate is determined from examining the concentration control coefficients with regard to the metabolites
whose concentrations are higher than is observed in experiment. We denote the set of such metabolites as M′ = {i|ñi > ni}. An
activity is then selected to be reduced based on the influence that the activity has on these concentrations,

Cn
j = ∑

i∈M′
max

(
Cn

i, j,0.0
)
. (19)

Because activities are reduced from initial values of 1.0 (full activity), only Cn
i, j > 0.0 are considered in the sum so that reduction

in activity correlates with reduction in concentration. A component cost function, Li, is defined as the division of the predicted
concentrations or counts to the measured concentrations or counts, Li = log(ñi/ni). In order to determine the point where
steady state metabolite levels are ‘in caliber’, we utilize a stopping criteria function that returns a positive scalar if any Li > 0.0
and returns zero once Li ≤ 0.0 for all i. We define this cost function as follows:

L =
Z

∑
i=1

max(Li,0.0). (20)

The maximum of Li or zero is used because the model only predicts metabolite populations that are free in solution, but
the experimentally measured concentrations are in principle those that are both enzyme-bound and free in solution. Thus,
concentrations from predictions are assumed to be ‘in caliber’ with experimental data if the predicted concentrations are less
than or equal to experimentally measured concentrations (Li ≤ 0.0).

In practice, the activity that reduces the cost function, L, the greatest amount is chosen for regulation and is again determined
using MCA. In MCA, the concentration control coefficient for metabolite i due to control by reaction j is defined by Eqn. (1).
Consequently, the change in concentration or counts due to a change in activity of reaction j is,

dñi =Cñ
i, j

dα j

α j
ñi. (21)
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For metabolite i with predicted concentration ñi and a target concentration of ni, the estimated change in the costs, ∆Li, j, of
metabolite due to a change in activity α j of reaction j is:

∆Li, j = log
ñi (α j)

ni
− log

ñi (α j−dα j)

ni

= log
ñi (α j)

ni
− log

ñi (α j)−dñi (α j,dα j))

ni

= log
ñi (α j)

ñi (α j)−dñi (α j,dα j))

=− log
ñi (α j)−dñi (α j,dα j))

ñi (α j)

=− log
(

1−
dñi (α j,dα j))

ñi (α j)

)
=− log

(
1−Cñ

i, j
dα j

α j

)
.

(22)

The change in total costs over all metabolites due to a change in activity of reaction j is calculated by summing over metabolites
that are out of ‘caliber’ with respect to the experimentally observed concentrations. We calculate the total cost as follows:

∆L j = ∑
i∈M

∆Li, j

=−∑
i∈M

log
(

1−Cñ
i, j

dα j

α j

)
,

(23)

where M represents the set of reactions able to be regulated or controlled. Finally, the question of which enzymes should be
allowed to be control points must be addressed. Two approaches were taken with MCA: an unrestricted control approach in
which any enzyme could be a regulator for any metabolite, and a restricted approach in which only enzymes whose immediate
products exceeded the target values could be considered as a regulator. We refer to the latter as a local-control approach (MCA
Local) since an enzyme’s immediate products (and possibly other metabolites) are being controlled. Regulation is then applied
at the reaction maximizing,

arg max
j∈{1,...,Z}

(∆L j) . (24)

Once a reaction j is chosen, the activity α j is changed by an appropriate amount (supplemental material). When all metabolite
values are brought into agreement with experimental observations, rate constants can be determined, if desired, using Eqn. (15).
Alternately, the influence of the activities can directly be incorporated into the rate constants. For example, given j = 1, the
resulting rate constant is,

k1 = c
J1,net

α1nA(1−K−1Q−1
−1)

. (25)

However, there is an important conceptual difference between solving mass action rate laws with parameters based on the
approach provided by Eqn. (15) compared to Eqn. (25). While the former assumes regulation is needed to bring concentrations
under control, the latter assumes no regulation is needed and control is hardwired into rate constants. The advantages of the
former are two-fold: (1) under different nutrient conditions, enzyme activities can be altered to control metabolite concentrations;
and (2) enzyme activities are adjusted away from the maximal entropy distribution only enough to bring concentrations into
alignment with observed values, resulting in a more favorable total free energy of the system. A lower total free energy also
would reduce the cost of replicating of metabolism. The actual balance between these two approaches will likely be a middle
ground between the reliance on activity coefficients as opposed to rate constants. It is unlikely that enzymes can evolve such
that the ideal rate constants, i.e. those implied by Eqn. 15, are possible for every reaction. Instead, rate constant values will be
limited by constraints due to the physics of the catalytic process.

Exploring Regulation: A Reinforcement Learning Approach
The MCA method for bringing the predicted concentrations in alignment with observed concentrations is a deterministic
approach based on an assumption that metabolite concentrations depend linearly on the enzyme activities. It is feasible that the
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assumption of linearity used in the MCA analysis (supplemental material) results in sub-optimal regulation. Optimal regulation
has been hypothesized, based on empirical data, as regulation that maintains a high energy charge, defined in terms of ATP,
ADP and AMP5. A less ad hoc definition of optimal regulation would be the maximization of the entropy production rate ,
which has also long been hypothesized as an objective of biological systems33, 41. Neither of these concepts are addressed in
the MCA approaches discussed above. For steady state systems, the entropy production rate (EPR) is the negative of the free
energy dissipation rate27, 28,

EPR =−dG
dt

= RgT
Z

∑
j

α j

[
r j logK jQ−1

j − r− j logK jQ−1
j

]
. (26)

Given a goal of maximizing the EPR, it is not clear which MCA protocol above, if either, would maximize the entropy
production rate. On one hand, the unrestricted MCA method uses less regulation and therefore often results in higher reaction
fluxes, which would increase the EPR (Eqn. (26)). On the other hand, entropy is maximized when the value of the argument of
the logarithms are distributed as uniformly as possible, which is the opposite of what occurs when a minimal set of enzymes
are chosen to be regulated. In order to explore the regulation space more completely to investigate these issues, we utilize a
machine learning method that avoids the linearity assumption by directly testing multiple future states and is directly rewarded
for maximizing the EPR.

Specifically, we use a Reinforcement Learning (RL) framework which can address decision problems that are otherwise
combinatorially intractable. Even a small metabolic network may have on the order of 20-50 reactions. To explore the state
space fully using the deterministic MCA approach, on the order of 100-500 decisions need to be made as to which reaction
to regulate depending on the state of the system. The search space is then approximately between 20100 and 50500, a number
much too large to tackle by an exhaustive search or Monte Carlo approach.

In our framework, optimal regulation of a metabolic network requires that the EPR be maximized while satisfying a stopping
criteria: L = 0.0. A diverse set of reaction regulation schemes represented by enzyme activity values, {α1, ...,αZ}, satisfy the
stopping criteria, but each scheme results in a different EPR (Fig. 3C-5C, grey dots). Thus, we utilize a hybrid optimization-RL
approach to iteratively search for the best regulation scheme. (A hybrid simulation-RL approach can also be used.) In this
framework, the agent iteratively learns how to navigate a state space, S, by using different possible actions from an action space,
A. States correspond to the value of enzyme activities while actions correspond to regulating a specified reaction. We therefore
define the state space S as the subset of RZ using range of each enzyme activity, [0.0,1.0]Z , and the action space as the set of
reactions, A = {1,2, ...,Z}. We also define a subset of S where learning terminates, ST = {s ∈ S|L(s) = 0.0}.

Because regulating the jth enzyme results in a deterministic step-size, ∆α j, the resulting state is given by the following set
of enzyme activities: {α1, ...,α j−∆α j, ...,αZ}. The goal of Reinforcement Learning is to learn an optimal policy, π∗ : S→ A,
which results in a regulation scheme that maximize some defined notion of rewards, R : S×A×S→R. In other words, learning
the optimal policy corresponds to learning the regulation scheme for the chemical reaction network that results in the largest
reward.

Each reaction that is regulated results in a scalar valued reward, or feedback, from the environment based on an ac-
tion/regulation (Figure 1) that indirectly defines optimal regulation schemes. Each regulation decision alters the steady state
metabolite concentrations, which are obtained from optimization or simulation of Eqn. (18), and used to calculate rewards
using a loss function, Λ, specified by

Λ = log(
M

∑
i

ñi

ni
). (27)

The formulation of Λ emphasizes regulation of reactions that affect metabolites which are furthest from being in caliber with
experimental measurements.

We define the environmental feedback, or reward function R as:

R
(
s,a,s′

)
=


Λ(s)−Λ(s′)

η
, L(s′) 6= 0.0

EPR(s′) +
Λ(s)−Λ(s′)

η
, L(s′) = 0.0.

(28)

Intermediate rewards are calculated by the reduction in Λ scaled by a positive factor η . Once a terminal state is found, the
final reward consists of the final change in the scaled loss function as well as the entropy production rate calculated at the final
state, EPR(s′)+ Λ(s)−Λ(s′)

η
. Thus, the agent aims to both increase the value of EPR(s) for st ∈ ST while satisfying the constraint

L = 0.0 and regulating as many reactions as is necessary.
Learning is conducted by iteratively updating the current policy function, π : S→ A, that determines the agent behavior. The

policy function determines which reaction j ∈ Z should be regulated based on the current enzyme activities, {α1, ...,αZ} ∈ S.

11/21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.04.06.028035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028035
http://creativecommons.org/licenses/by/4.0/


Here, we utilize an n-step SARSA algorithm25 to perform fitted value function iteration. An optimal policy is therefore
learned by iteratively updating the value function, V : S→ R, which is defined as the expected rewards to be received
by following a fixed policy from a specified state, V π(st) = Eπ [rt:t+n|st ]. In an n-step algorithm, the value function is
meant to predict the discounted reward, rt:t+n, for n future steps. The n-step reward experienced by the agent is defined as
rt:t+n = rt + γrt+1 + ...+ γn−1rt+n−1 + γnV (st+n), where γ ∈ [0.0,1.0] is the discount factor. Each reward, rt = R(st−1,a,st),
represents the feedback from moving into state st from st−1 after taking some action a. The first n steps represent the rewards
experienced, while the term V (st+n) represents the future rewards. Once a terminal state is less than n steps away, the n-step
reward is truncated to the appropriate length.

Learning the value function implicitly improves the policy. The relation between the value of a state and the policy is given
by an ε-greedy policy, which is defined as:

π (s) =

{
arg max

a∈A
(R(s,a,s′)+ γV (s′)) , ξ ≥ ε

random choice, ξ < ε,
(29)

where ξ is a uniform random number between 0.0 and 1.0. As the value function is better estimated, the policy determines
reactions to regulate that lead to the greatest cumulative reward. Exploration is imposed by randomly choosing reactions to
regulate, allowing the policy to escape local minima. As the agent learns, ε is slowly annealed to reduce exploration and
fluctuations in the value function. During each training episode, we begin at the state s = {1.0, ...,1.0}, such that all enzyme
activities are unregulated. Trajectories through state space are stopped when the stopping criteria L = 0.0 is satisfied. This
condition requires that all reactions have cost function values at or below zero before the reinforcement learning ends and the
predictions are in caliber with the experimental values.

Finally, the state value function is estimated by using a neural network implemented in PyTorch42 with a single hidden layer
and hyperbolic tangent activation functions. Updates to the value function are performed by optimizing the neural network
using stochastic gradient descent. This is done by backpropagating the squared loss between the predicted value and the n-step
reward, [V (st)− rt:t+n]

2.

Model Training
Prediction of network regulation was performed using a trained neural network to estimate the value function. Network weights
were adjusted using stochastic gradient descent with a learning rate, lr ∈ {10−4,10−5,10−6}. Each algorithm learned and
generated data using an ε-greedy policy with initial ε = 0.5 or 0.2 depending on the size of the pathway. ε was annealed by
dividing by a factor of two every 25 learning episodes.

For each pathway, 10 agents are trained for each different value of n ∈ {2,4, ...,12} and each learning rate. The resulting
average of 10 RL runs for the glycolysis-PPP-TCA pathway (Figure S1) show the mean reward for the 350 training episodes.
Optimal regulation is prescribed by analyzing the agent with the largest cumulative reward averaged over the last 50 terminal
states.

Experimental Data
The metabolomics data used in this study was from E. coli studies by Bennett, et al.18, and Park, et al19. Briefly, E. coli cells
were grown in isotope-labeled media and then extracted in organic solvent containing unlabeled internal standards in known
concentrations. Metabolites were extracted in cold solvent and analyzed using chromatography-MS, and concentrations relative
to the known standard concentrations were obtained using peak ratios of the labeled samples to unlabeled standards.
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Enzyme Pathway CCCñ
j Prediction Method Evidence

HEX1 Upper glycolysis 12.4 RL, L-MCA, MCA 13

PFK Upper glycolysis 4.6 L-MCA 13, 14

GAPD Lower glycolysis 4.6 RL, L-MCA, MCA 14, 43

PGK Lower glycolysis 3.8 RL, L-MCA 14, 44

PYK Lower glycolysis 1.7 RL 45–47

PYRt2m Lower glycolysis 1.1 RL –
PDH Lower glycolysis 0.6 RL, L-MCA 48

G6PDH Pentose phosphate 16.8 RL, L-MCA 49

PGL Pentose phosphate 16.0 L-MCA –
TKT Pentose phosphate 5.0 L-MCA 31

PC Gluconeogenesis 3.7 RL, L-MCA, MCA 50

Modeled and known to be regulated but not observed
PGM Lower glycolysis 3.0 – 51

FBP Gluconeogenesis 0.1 – 13, 14

Table 1. The set of enzymes found to be regulated in all analyses along with the associated pathway, the concentration control
coefficient, Cñ

j , of the reaction summed over all metabolites before any regulation is applied, the method predicting the
regulation and the experimental evidence from the literature for predicted regulation. Abbreviations are the same as in Figure 2.
PC is pyruvate carboxylase and is observed to be regulated in gluconeogenesis (supplementary material Table S4).

Figure 1. Schematic of in silico framework for learning regulation (grey box) with coupled simulation or optimization routine
controlling environmental feedback. Initial framework input (green box) consists of target metabolite concentrations from
experimental data. The output (red box) consists of a learned optimal enzyme regulation scheme necessary to reach the target
concentrations. Learning is performed by repeatedly testing different regulation schemes and updating the value function, V ,
that returns a scalar value for a given set of enzyme activities. Enzyme activities, represented as states, are chosen for
regulation by performing actions that are determined by a policy function. A given policy is determined by V . The new steady
state metabolite concentrations resulting from applied regulation are determined by an optimization routine. Alterations in
metabolite concentrations are a direct result of moving into a state s′ from a state s after taking action a, i.e. performing
regulation. These dynamic changes are used to define a reward function, R, that determines environmental feedback. Rewards
are used to direct the agent as it explores and learns a policy that predicts optimal enzyme regulation.
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Figure 2. Initial steady state properties before any regulation is applied in the form of reduced activity coefficients for
glycolysis-PPP-TCA cycle with high NAD/NADH and low NADP/NADPH conditions. The steady state is determined by
maximizing the reaction path entropy such that the net thermodynamic driving force on each reaction is proportioned according
to the governing equation for metabolite kinetics, Eqn. (14). (A) Unregulated reaction fluxes. (B) Unregulated reaction free
energies. Reduction of activity coefficients to values less than 1.0 reduces both the steady state fluxes and the reaction free
energies (Fig. 3-5).
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Figure 3. Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and low NADP/NADPH conditions. (A) Predicted
enzyme activities at terminal states are calculated using Metabolic Control Analysis, shown as red ‘plus’s and green ‘X’s,
respectively. Results are compared to those found using a RL approach (black square).(B) Reaction free energy changes are no
longer equally distributed across subpathways (Fig. 2, upper glycolysis, PPP, lower glycolysis, TCA cycle) but instead free
energies are further from equilibrium at reactions where regulation is applied. (C) Free energy and energy dissipation rates.
Grey dots represent the population of terminal states found while training the RL agent. Abbreviations: HEX1, Hexokinase;
PGI, phosphoglucose isomerase; PFK, phosphofructokinase; TPI, Triosephosphate isomerase; GAPD, Glyceraldehyde
3-phosphate dehydrogenase; PGK, Phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, Enolase; PYK, Pyruvate
kinase; PYRt2m, pyruvate transporter; PDH, Pyruvate dehydrogenase; G6PDH, Glucose 6-phosphate dehydrogenase; PGL,
Phosphogluconolactonase; GND, phosphogluconate dehydrogenase; RPI, Ribose 5-phosphate isomerase; RPE, Ribose
5-phosphate epimerase; TKT1, Transketolase 1; TALA, Transaldolase; TKT2, Transketolase 2; CS, Citrate Synthase; ACONT,
Aconitase; ICDH, Isocitrate dehydrogenase; AKDG, a-ketoglutarate dehydrogenase; SUCOAS, Succinyl-CoA synthetase;
SUCD1, Succinate dehydrogenase; FUM, Fumarase; MDH, Malate dehydrogenase; GOGAT, Glutamine oxoglutarate
aminotransferase.
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Figure 4. Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and high NADP/NADPH conditions. (A) Predicted
enzyme activities at terminal states are calculated using Metabolic Control Analysis, shown as red ‘plus’s and green ‘X’s,
respectively. Results are compared to those found using a RL approach (black square). (B) Reaction free energies. (C) Free
energy and energy dissipation rates. Grey dots represent the population of terminal states found while training the RL agent.
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Figure 5. Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and high NADP/NADPH conditions and PFK
activity set to zero. (A) Predicted enzyme activities at terminal states are calculated using Metabolic Control Analysis, shown
as red ‘plus’s and green ‘X’s, respectively. Results are compared to those found using a RL approach (black square). (B)
Reaction free energies. (C) Free energy and energy dissipation rates. Grey dots represent the population of terminal states
found while training the RL agent. The local MCA method results in zero flux (supplementary materials Table S1) and is
therefore not shown.
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