

1

2

### 3 Neural signatures of performance feedback in the paced

## 4 auditory serial addition task (PASAT): an ERP study

5

6 Anja Sommer, Lukas Ziegler, Christian Plewnia\*

7

8

9

10 Neurophysiology & Interventional Neuropsychiatry, Department of Psychiatry and  
11 Psychotherapy, University Hospital of Tübingen, Tübingen, Germany

12

13

14 \* Corresponding author

15 E-mail: christian.plewnia@uni-tuebingen.de

16

17

18

19

## 20      **Abstract**

21              Due to its importance for successful human behavior, research into cognitive control  
22      functioning has gained increasing interest. The paced auditory serial addition task (PASAT)  
23      has been used to test and train this fundamental function. It is a challenging task, requiring a  
24      high cognitive load in a stressful and frustrating environment. Its underlying neural  
25      mechanisms, however, are still unclear. To explore the neural signatures of the PASAT and  
26      their link to ongoing cognitive processing, feedback locked event-related potentials were  
27      derived from healthy participants during an adaptive 2-back version of the PASAT. Larger  
28      neural activation after negative feedback was found for feedback related negativity (FRN),  
29      P300 and late positive potential (LPP). In early stages of feedback processing (FRN), a larger  
30      difference between positive and negative feedback responses was associated with poorer  
31      overall performance, whereas this association was inverted for the later stages (P300 and  
32      LPP). This indicates stage-dependent associations of neural activation after negative  
33      information and cognitive functioning. Conceivably, increased early responses to negative  
34      feedback signify distraction whereas higher activity at later stages reflect cognitive control  
35      processes to preserve ongoing performance.

## 36 **Introduction**

37        In a world full of competing information and sources of distraction, the ability to  
38    maintain coordinated and purposeful behavior is essential to sustain goal directed processes.  
39    This requires cognitive control, which comprises different cognitive functions including the  
40    ability to pay selective attention, ignore distracting information, turn attention away from  
41    stimuli when they prove irrelevant, and the ability to store and manipulate internal  
42    representations of information [1]. Especially the inhibition of irrelevant but salient  
43    information, like emotional stimuli challenges cognitive control [2]. Cognitive control is a  
44    key factor for successful human behavior. Therefore, it is not surprising that dysfunctional  
45    cognitive control is increasingly recognized as a key feature of various psychiatric disorders.  
46    In fact, research shows that in particular patients suffering from depression are prone to a  
47    heightened sensitivity towards negative stimuli, which receive more attention and working  
48    memory capacity and therefore impede the maintenance of coordinated and purposeful  
49    behavior [3]. This ‘negativity bias’ constitutes an important factor for the development and  
50    maintenance of depression as well as a central mechanism of recovery via restoration of  
51    cognitive control functioning [1]. Consistently, impairment of goal-directed behavior can be  
52    observed in healthy participants when cognitive resources are occupied by emotionally  
53    salient distractors [4].

54        A task used to investigate cognitive control is the ‘paced auditory serial addition task’  
55    (PASAT) [5] in which digits are presented auditorily and participants add the current digit to  
56    the digit they heard before. In its adaptive version, inter-stimulus intervals (ISI) decrease  
57    (increase) when several consecutive trials are correct (incorrect). The PASAT has been used  
58    as a cognitive control task in healthy [6 - 9] as well as clinically depressed [10, 11] and at-  
59    risk participants [12], for an overview see [13, 14]. These comprehensive data indicate that  
60    this task is particularly suitable to investigate and train cognitive control in both, healthy

61 subjects and psychiatric patients. Regarding its specific mechanism, it has been shown that  
62 the PASAT induces frustration and negative affect presumably due to receiving continuously  
63 feedback on current performance and working at the individual processing speed limit.  
64 Furthermore, the negative affective change induced by the PASAT can in turn be correlated  
65 with a lower performance [6] implying that task- or feedback-related irritation must be  
66 compensated to maintain goal directed behavior. Therefore, the PASAT challenges cognitive  
67 control by means of emotional and cognitive responses to feedback information at a high  
68 cognitive load. Regarding the neurophysiological implementation of this competence,  
69 prefrontal control on limbic areas plays a key role in overcoming the distraction by negative  
70 information and to maintain goal directed behavior [6]. Actually, it has been shown that the  
71 dorsolateral prefrontal cortex (dlPFC) is critically involved in the PASAT performance [15].  
72 However, more studies are needed for a better understanding of the mechanisms of action  
73 underlying the PASAT. Therefore, the goal of the current study is to investigate the highly  
74 time dynamic neural signatures of the PASAT and to capture the conflict of competing  
75 negative information and ongoing cognitive functioning in the PASAT. Due to their high  
76 temporal resolution event related potentials (ERP) are best suited to find such neural  
77 signatures of the PASAT performance.

78 The feedback related negativity (FRN) is a negative deflection peaking between 200-  
79 300 ms after stimulus presentation and is an ERP commonly used to investigate feedback  
80 [16, 17]. It is larger for negative than positive feedback and maximal at medial frontal  
81 electrode sites [18]. Besides of its informative value concerning current task performance [19,  
82 20] it has been suggested that the FRN indicates the emotional impact of a negative  
83 expectation violation [21], implying that feedback does involve emotional processing that  
84 captures cognitive resources. Since in our study negative information is operationalized by  
85 feedback, we utilized the FRN to investigate early parts of negative information processing.

86 Of note, in our study its registration conditions however differ from the common  
87 investigations of the FRN or feedback processing because it summarizes the processing of  
88 new information (next digit) and performance feedback (last digit).

89 Attention allocation to task relevant as well as subsequent memory processes is  
90 reflected by the P300. It is a positive deflection peaking between 300-400 ms following  
91 stimulus presentation which is maximal at midline-parietal sites [22, 23]. Furthermore, an  
92 enhanced amplitude for emotional compared to neutral stimuli can be observed for both,  
93 positive and negative content [24 - 26] probably reflecting high inherent motivational  
94 salience of emotional stimuli per se. Therefore, it seems to be best suited to study negative  
95 information processing during a demanding cognitive task. Moreover, several studies have  
96 linked larger P300 amplitudes with performance gains in non-emotional [27, 28] as well as in  
97 emotional tasks [29] making it a suitable to investigate associations of neural feedback  
98 processing and PASAT performance in our study.

99 The LPP is known to capture attention allocation toward emotional salient stimuli [30,  
100 31]. It is recorded at centro-parietal sites and begins as early as 200-300 ms post-stimulus. In  
101 contrast to the P300 it can outlast the stimulus presentation well beyond several seconds [32].  
102 Therefore, besides its sensitivity to automatic attention allocation to emotional stimuli, it  
103 reflects continued processing of emotional content and is regulated by top-down mechanisms.  
104 Moreover, the magnitude of the LPP amplitude has also been linked to task performance [33 -  
105 35]. We want to utilize the LPP in our study to capture late neural reactions to negative  
106 information in the form of feedback and moreover to investigate its associations with the  
107 PASAT performance.

108 Taken together, with this study, we investigate the time dynamic neural signatures  
109 (FRN, P300 and LPP) of the PASAT and aim for a better understanding of its underlying  
110 mechanisms. As negative feedback is associated with negative affect and competes with

111 ongoing performance, we assume to find larger amplitudes for negative than positive  
112 feedback in all stages of feedback processing. Furthermore, we explore associations of  
113 PASAT performance and ERP magnitudes and assume to find significant correlations of  
114 cognitive control functioning and neural activation.

## 115 **Material and Methods**

### 116 **Subjects**

117        Twenty-five healthy participants were recruited via internet advertisement. All  
118    participants had normal or corrected to normal vision and normal hearing. Exclusion criteria  
119    were current psychiatric disorders, neurological disorders, major head injuries or color  
120    blindness. They received a financial compensation or course credit for their participation. All  
121    participants gave their written informed consent. One participant had to be excluded due to  
122    excessive noise in the electroencephalographic (EEG) data (see Electrophysiological Data  
123    Processing). The remaining 24 participants (16 female, age:  $M = 23.71$ ,  $SD = 4.06$ ) were  
124    included in the analysis. To asses neurophysiological characteristics of the participants, we  
125    measured complex attention, motor speed, visual-motor conceptual screening and executive  
126    functions with the Trail Making Test (TMT) [36]. As a measure for approximate general  
127    intelligence we conducted the Multiple Choice Word Fluency Test (MWT-B) [37]. In  
128    addition, we measured participant's working memory with a short version of a digit span test  
129    of the Wechsler Adult Intelligence Scale [38]. In our digit span task participants had to  
130    memorize 2-8 digits (two trials per level of difficulty, both were used for the calculation of  
131    the score) and repeat them in the same order (digit span same order) or in the reverse order  
132    (digit span reverse order). See table 1 for demographic and neuropsychological characteristics  
133    of the sample and supporting information S1 file for the data underlying the sample  
134    characteristics. The study was approved by the local ethics committee and was conducted in  
135    compliance with the Declaration of Helsinki.

136

137

138

139 **Table 1 - Demographic and neurophysiological characteristics of the participants**

| Characteristic                    | %     | M      | SD    | Range  |
|-----------------------------------|-------|--------|-------|--------|
| Sex (female)                      | 66.66 |        |       |        |
| Age                               |       | 23.71  | 4.06  | 20-37  |
| Level of education                |       |        |       |        |
| University entrance diploma (yes) | 95.83 |        |       |        |
| TMT-A (s)                         |       | 23.12  | 7.55  | 14-51  |
| TMT-B (s)                         |       | 50.28  | 12.51 | 28-78  |
| Digit span same order             |       | 8.33   | 1.95  | 5-12   |
| Digit span reverse order          |       | 7.38   | 2.20  | 4-12   |
| MWT-B (IQ)                        |       | 108.58 | 12.63 | 91-145 |

140 **Notes.** TMT-A = time to complete the Trail Making Test part A; TMT-B = time to complete the Trail Making Test part B; Digit span same order = number of correct remembered digits in the Digit span same order task; Digit span reverse order = number of correct remembered digits in the Digit span reverse order task; MWT-B IQ = Intelligence Quotient assessed with the MWT-B

141 **Tasks**

142 The tasks *PASAT* and *color presentation* outlined below were computer-based and  
143 implemented using PsychoPy2 v1.80.02 [39, 40]. They were presented on a 17-inch monitor.

144  
145 **Paced auditory serial addition task (PASAT)**

146 We used a 2-back version of an adaptive Paced Auditory Serial Addition Task (2-back

147 PASAT). Participants sat in front of a monitor (distance: approximately 65cm) and heard  
148 digits (1-9, duration of presentation: 433-567 ms) via in ear headphones. The task was to add  
149 the current digit to the digit they heard before the last one (2-back). Results were indicated by  
150 pressing the corresponding key on a keyboard that was equipped with the response letters 2-  
151 18. Feedback was given after each trial simultaneously with the presentation of the new digit  
152 by presenting green (red) light after correct (incorrect) responses. In order to make the  
153 feedback highly salient the whole monitor was filled with the corresponding feedback color  
154 (e.g. 17 inch). The duration of the feedback presentation was 433 ms (matched to the  
155 presentation duration of the shortest number). Initially the ISI was set to three seconds. The  
156 ISI thereby refers to the time in between presented digits as well as feedback, since it was  
157 presented simultaneously. The ISI was decreased (increased) after four consecutively correct  
158 (incorrect) trials by 100ms to adapt to the capability of the participants. Therefore, the task  
159 maintained difficult but manageable throughout the whole session. The task comprised three  
160 blocks á 5 minutes with 30 seconds of break in between. The total number of correct trials  
161 was used as the main outcome variable. Because the PASAT puts high demands on WM and  
162 processing speed it is challenging to stay focused throughout the task and not getting  
163 distracted by the feedback information. Accordingly, low cognitive control would result in  
164 fewer consecutive correct responses. Therefore, we calculated the proportion of consecutive  
165 correct relative to the overall correct responses (performance stability) as a second outcome  
166 variable.

## 167 **Control Task ‘color presentation’**

168 Since we aimed to test the differential neural responses to feedback valence as  
169 indicated by red and green screen color in contrast to the neural activation to red and green  
170 color as such, we conducted a control task ‘color presentation’ (CP). Participants were asked

171 to sit in front of a monitor (distance: approximately 65cm) and perceive red and green light  
172 peripheral by keeping their gaze on the keyboard just like they would do while performing  
173 the 2-back PASAT. The task consisted of two blocks á 2.5 minutes. Red and green light was  
174 presented for 433 ms (as in the 2-back PASAT) in random order with a jittered inter stimulus  
175 interval (1500 -2500 ms).

176 In sum, there were four conditions for the calculation of the ERPs: green color after a  
177 correct trial in the 2-back PASAT (green feedback), red color after an incorrect trial in the 2-  
178 back PASAT (red feedback), green color in the CP and red color in the CP. For the 2-back  
179 PASAT, only feedback following a response was used (e.g. trials with red feedback for a  
180 missing response were excluded from analysis).

181

## 182 **Electroencephalography recording**

183 The electroencephalogram (EEG) was recorded using an elastic cap (EASYCAP  
184 GmbH, Hersching, Germany), the actiCHamp amplifier system with 32 active Ag/AgCl  
185 electrodes and the corresponding Brain Vision Recorder system (Brain Products GmbH,  
186 Gilching, Germany). EEG was registered from 27 scalp sites (FP1, F7, F3, Fz, F4, F8, FC5,  
187 FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz,  
188 O2). Additionally, an electrooculogram (EOG) was recorded. For horizontal eye movements  
189 two electrodes were placed approximately one cm left and right of the eyes. One electrode  
190 positioned approximately one cm below the left eye and the Fp1 electrode were used to  
191 register vertical eye movements. Furthermore, electrodes were placed on the left and right  
192 mastoid. The left mastoid served as the online reference and a forehead electrode as the  
193 ground. The online sampling rate was 1000 Hz. Impedances were kept below 10kΩ before  
194 initiation of the recording.

## 195 **Procedure**

196 The experiment took place in a dimly lit, quiet room. After the participants gave their  
197 written informed consent, the EEG electrodes were attached to the scalp. Participants were  
198 asked to sit quietly during the EEG recording. The experiment started with the CP. After that,  
199 participants carried out the 2-back PASAT. To make sure participants understood the  
200 instruction of the task, they completed 30 practice trials, which were excluded from analysis.  
201 To control for affective effects of the 2-back PASAT, participants completed the 20 item  
202 positive and negative affect schedule (PANAS) [41] immediately before and after the 2-back  
203 PASAT. That followed a resting phase of 7 minutes during that heart rate measures were  
204 obtained, which are not subject of the current paper.

## 205 **Electrophysiological Data Processing**

206 We analyzed the EEG data using the EEGLAB toolbox [42] running on MATLAB  
207 9.2 R2017a (The MathWorks, Natick, MA, USA) and the EEGLAB toolbox ERPLAB [43].  
208 The raw EEG was resampled offline to 250 Hz and re-referenced to an average of the left and  
209 right mastoids. Band-pass filters with a low and high cutoff of 0.1 and 35 Hz, and a notch-  
210 filter at 50 Hz were applied. Ocular artifacts were removed manually using independent  
211 component analysis (JADE algorithm) [44]. Subsequently feedback locked epochs were  
212 extracted ranging from -100 to 1000 ms relative to feedback (2-back PASAT) and color (CP)  
213 onset respectively. Artifact correction was conducted in the epoched EEG. Epochs containing  
214 EEG signals exceeding an amplitude of 65  $\mu$ V within a 100ms moving window or exceeding  
215 -65 - 65  $\mu$ V within the epoch were considered artifacts and were rejected (using the ERPLAB  
216 implemented automated artifact detection). Participants with more than 25% of rejected  
217 epochs were excluded from further analysis (n = 1). In the 2-back PASAT on average M =

218 4.12% of the green feedback trials ( $SD = 5.50\%$ ) and  $M = 4.60\%$  of the red feedback trials  
219 ( $SD = 5.27\%$ ) were rejected. In the CP  $M = 2.57\%$  of the green color trials ( $SD = 4.67\%$ ) and  
220  $M = 3.25\%$  of the red color trials ( $SD = 6.76\%$ ) were rejected. Overall, 2610 green and 1245  
221 red feedbacks of the 2-back PASAT and 1796 green and 1771 red color trials were included  
222 in the ERP analysis. ERPs were constructed by separately averaging trials in the four  
223 conditions (green feedback, red feedback, green color, red color). Subsequently we calculated  
224 difference waves: positive feedback = green feedback- green color, negative feedback = red  
225 feedback – red color. All further ERP analyses refer to these difference waves (see supporting  
226 information Figures S1-6 depicting the raw waveforms and scalp maps separately for the 2-  
227 back PASAT and CP).

228 We chose the electrode sites and time windows to measure the FRN, P300 and LPP  
229 according to previous literature. The FRN was defined as the mean amplitude within a time  
230 window between 200-300 ms following feedback at Fz [18]. The P300 was scored as the  
231 average of three centro-parietal sites (Cz, CPz, Pz). Since according to visual inspection there  
232 is a large shift in the P300 waveforms due to the FRN, the P300 was defined as the base-to-  
233 peak amplitude as follows: we first calculated the peak amplitude (PA) of the most negative  
234 peak between 200-300 ms post feedback presentation separately for positive and negative  
235 feedback. Then we calculated the PA of the most positive peak between 300-400 ms post  
236 feedback presentation separately for positive and negative feedback (PA P300). Afterwards  
237 the difference between the peak and the base was calculated separately for positive and  
238 negative feedback (base-to-peak P300 = PA P300 - PA of the negative peak between 200-300  
239 ms post feedback presentation [22, 45, 46]. The LPP was scored as the average of five centro-  
240 parietal sites (Cz, CP1, CPz, CP2, Pz) and defined as the mean amplitude within a time  
241 window between 400-1000 ms following feedback [32, 47].

242

## 243 Data Analysis

244 All statistical analyses were performed using SPSS Statistics for Microsoft Windows  
245 (version 24.0). See supporting information S1 file for the data underlying the results. To  
246 analyze a differential neural activation to positive vs. negative feedback we performed paired  
247 t-tests separately for the FRN, P300 and the LPP. To further analyze associations of the  
248 valence-specific neural activation ( $\Delta$  = negative-positive feedback) and changes in the affect  
249 ratings with the 2-back PASAT performance (number of correct trials and performance  
250 stability) we calculated bivariate correlation analyses using Pearson's correlation coefficient.  
251 Additionally, it could be assumed that a better 2-back PASAT performance would be  
252 associated with fewer incorrect trials and therefore with fewer negative feedback. In turn, the  
253 mere difference in the presentation frequency of good vs. bad performers could lead to a  
254 differential neural reaction to negative feedback and we would not know if an association of  
255 the valence-specific neural activation ( $\Delta$  = negative-positive feedback) and the 2-back  
256 PASAT performance could just occur due to this difference and not due to differences in  
257 cognitive control functions. Therefore, we additionally calculated the correlation of the  
258 number of incorrect trials and the 2-back PASAT performance (number of correct trials). For  
259 all analyses, two-tailed tests were used, and a 0.05 level of significance was employed. Post-  
260 hoc paired t-tests were conducted where appropriate.

261 **Results**

262 **Changes in Affect and Behavioral Data**

263 After the 2-back PASAT, overall affect deteriorated significantly as indicated by the  
264 PANAS: positive affect ratings decreased [before:  $M = 29.13$ ,  $SD = 5.06$ ; after:  $M = 26.21$ ,  
265  $SD = 5.67$ ;  $t(23) = 2.41$ ,  $p = .025$ ] and negative affect ratings increased [before:  $M = 13.29$ ,  
266  $SD = 2.93$ ; after:  $M = 20.96$ ,  $SD = 9.51$ ;  $t(23) = -4.86$ ,  $p < .001$ ]. There were no significant  
267 correlations of the affect ratings with the 2-back PASAT performance (all  $p \geq .472$ ).  
268 Concerning the 2-back PASAT performance, on average, participants gave 113.04 ( $SD =$   
269 31.32) correct, and 52.42 ( $SD = 19.68$ ) incorrect responses with 239.54 ( $SD = 31.45$ ) trials  
270 overall (including trials without a response).

271

272 **Electrophysiological Data**

273 **Feedback related negativity**

274 Figure 1 displays the grand average waveform (panel A) of the FRN and the mean  
275 voltage distribution across the scalp (panel B) for negative and positive feedback separately  
276 (note that higher negative values indicate a larger FRN). The mean amplitude FRN for  
277 negative feedback was significantly larger ( $M = -0.817$ ,  $SD = 3.223$ ) than for positive  
278 feedback [ $M = 0.846$ ,  $SD = 2.843$ ;  $t_{(23)} = 2.671$ ,  $p = .014$ ]. The correlation analysis for the  
279 valence-specific neural activation of the FRN ( $\Delta$ FRN = negative-positive feedback, e.g. a  
280 more negative value indicates that the FRN for negative feedback was larger than for positive  
281 feedback), revealed a significant association between the  $\Delta$ FRN and the number of correct  
282 trials in the 2-back PASAT (see Figure 1C, note that for all scatterplots the Y-axis is ordered

283 ascendingly according to the values indicating larger ERPs, e.g. for the FRN values are  
284 ordered from positive to negative). A smaller  $\Delta$ FRN (e.g. more positive  $\Delta$ FRN) was linked to  
285 a larger amount of correct trials over all [ $r_{(22)} = 0.425, p = .038$ ]. In addition, we found a  
286 significant correlation of the  $\Delta$ FRN and the performance stability. A smaller  $\Delta$ FRN (e.g.  
287 more positive  $\Delta$ FRN) was linked to a higher performance stability [ $r_{(22)} = 0.433, p = .034$ ].

288 --- FIGURE 1 ABOUT HERE ---

289 **FIGURE 1. Feedback related negativity.** Panel **A** displays the grand average waveform  
290 separately for negative and positive feedback at Fz. Panel **B** shows the scalp map displaying  
291 the mean voltage distribution for negative and positive feedback separately (200 - 300 ms post  
292 feedback). Panel **C** shows a scatterplot displaying the 2-back PASAT performance as a  
293 function of the valence-specific FRN ( $\Delta$ FRN = negative-positive feedback). Note, for the  
294  $\Delta$ FRN, more negative values indicate a larger amplitude by negative than positive feedback.  
295 Therefore, negative values are at the top of the Y-axis.

296

## 297 **P300**

298 Figure 2 displays the grand average waveform of the P300 (panel A) and the mean  
299 voltage distribution across the scalp (panel B) for negative and positive feedback separately.  
300 Note that to avoid carry over effects of the shifts in the waveform in the time range of the  
301 FRN to the P300, we conducted base-to-peak analyses to define the P300 amplitudes. A  
302 paired t-test revealed a significant difference between the P300 for positive and negative  
303 feedback. The P300 was significantly larger for negative feedback ( $M = 10.648, SD = 4.047$ )  
304 than for positive feedback [ $M = 8.812, SD = 3.464; t_{(23)} = 3.64, p = .001$ ]. For the valence-  
305 specific neural activation of the P300 ( $\Delta$ P300 = negative-positive feedback), we found a  
306 significant correlation between the  $\Delta$ P300 and the number of correct trials in the 2-back

307 PASAT (see Figure 2C). We observed that a larger P300 elicited by negative as compared to  
308 positive feedback (e.g. a more positive  $\Delta$ P300) was linked to more correct trials [ $r_{(22)} = 0.422$ ,  
309  $p = .040$ ]. In addition, we found a significant correlation of the  $\Delta$ P300 and the performance  
310 stability [ $r_{(22)} = 0.465$ ,  $p = .022$ ]. A larger P300 by negative as compared to positive feedback  
311 was linked to increases in performance stability.

312 --- FIGURE 2 ABOUT HERE ---

313 **FIGURE 2. P300.** Panel **A** displays the grand average waveform of the P300 separately for  
314 negative and positive feedback averaged across Cz, CPz, Pz. Note that a base-to-peak analysis  
315 was performed for the P300. Panel **B** shows the scalp map displaying the mean voltage  
316 distribution for negative and positive feedback separately (300 - 400 ms post feedback). Panel  
317 **C** shows a scatterplot displaying the 2-back PASAT performance as a function of the valence-  
318 specific P300 ( $\Delta$ P300 = negative-positive feedback).

319

320 **Late positive potential**

321 The grand average waveform of the LPP (panel A) and the mean voltage distribution  
322 across the scalp (panel B) for negative and positive feedback separately, are depicted in  
323 figure 3. We found a significant difference between the mean amplitude LPP for positive and  
324 negative feedback. The LPP for negative feedback was significantly larger ( $M = 3.125$ ,  $SD =$   
325  $3.118$ ) compared to positive feedback [ $M = 2.368$ ,  $SD = 3.026$ ;  $t(23) = 2.215$ ,  $p = .037$ ].  
326 Further, there was a medium effect sized correlation of the valence-specific neural activation  
327 of the LPP ( $\Delta$ LPP = negative-positive feedback) and the number of correct trials, which  
328 failed to reach significance [ $r(22) = 0.300$ ,  $p = .155$ ]. However, we found a significant  
329 correlation of  $\Delta$ LPP and performance stability in the 2-back PASAT [ $r(22) = 0.407$ ,  $p = .049$ ,

330 see Figure 3C]. A larger LPP by negative as compared to positive feedback was linked to  
331 increases in performance stability.

332 --- FIGURE 3 ABOUT HERE ---

333 **FIGURE 3. Late positive potential.** Panel **A** displays the grand average waveform of the LPP  
334 separately for negative and positive feedback averaged across Cz, CPz, Pz, CP1, CP2. Panel **B**  
335 shows the scalp map displaying the mean voltage distribution for negative and positive  
336 feedback separately (400 - 1000 ms post feedback). Panel **C** shows a scatterplot displaying the  
337 2-back PASAT performance as a function of the valence-specific LPP ( $\Delta$ LPP = negative-  
338 positive feedback).

## 339 Discussion

340 In this study, we examined electrophysiological characteristics of cognitive control  
341 processes and their relation to task performance by means of a challenging and adaptive 2-  
342 back PASAT. The main findings are (a) that positive and negative feedback induce a  
343 differential neural activation throughout the time course of feedback processing (b) that the  
344 valence-specific neural activation (negative-positive feedback) is associated with the 2-back  
345 PASAT performance, and (c) that the direction of this association is critically dependent on  
346 the stage of feedback processing.

347 We found that negative information in the form of performance feedback produced  
348 similar neural signals for the FRN time range as in common studies investigating feedback  
349 processing [48]. Thus, in line with our hypothesis, the FRN was larger for negative feedback  
350 than for positive feedback. This observation for the FRN is frequently interpreted as a  
351 stronger neural reaction of the anterior cingulate cortex (ACC) for negative than for positive  
352 feedback. Since the pMFC including the ACC is known to reflect the motivational value of  
353 stimuli [49] this further suggests that in early stages of feedback processing in the 2-back  
354 PASAT, negative feedback is probably perceived as more salient than positive feedback. This  
355 makes sense, concerning the fact that negative feedback contains important information to  
356 adapt behavior according to changing task demands. Therefore, it could be assumed that a  
357 more pronounced reaction to errors is beneficial for task performance. In accordance with this  
358 assumption several authors describe a beneficial effect of larger FRN and error-related  
359 negativity (ERN) amplitudes on task performance [50 - 53]. For example, when learning a  
360 sequence of button presses by trial and error the FRN was significantly larger for trials that  
361 were followed by a correct response indicating that a larger FRN was associated with a better  
362 learning efficacy [54]. However, in our study we found that a larger valence-specific FRN

363 amplitude was associated with poorer task performance, indicating that in the 2-back PASAT  
364 the feedback plays a different role compared to common studies investigating the FRN. To  
365 understand this, it must be considered that in the present study, besides of its informational  
366 value, the negative feedback had also the potential to fundamentally distract from task  
367 performance, since it was presented simultaneously with the next target. Therefore, we  
368 interpret the FRN as a neural signature of attention allocation towards a distractive negative  
369 information as opposed to the task relevant target. This is in line with the assumption that the  
370 FRN indicates the emotional impact of negative expectation violation [21]. In accordance  
371 with the well-established evidence of a negativity bias linked to a decreased cognitive control  
372 in depression, it has been shown that the FRN is enhanced in patients suffering from current  
373 as well as remitted depression indicating a hypersensitivity to loss, punishment or negative  
374 related stimuli in depression [55 - 57] which reflects reduced cognitive control over emotions.  
375 This is consistent with our finding of a poorer 2-back PASAT performance (number of  
376 correct trials as well as the performance stability) in healthy participants with larger FRNs.  
377 Moreover, this finding suggests that a larger neural activation following negative than  
378 positive feedback is linked to an enhanced sensitivity to negative stimuli, which leads to  
379 increased distraction, by the valence-specific neural activation in this early stage of feedback  
380 processing.

381 For the P300 we could also confirm our hypothesis of a stronger neural activation for  
382 negative than for positive feedback. Consistent with findings showing that the P300 reflects  
383 attention allocation towards motivationally and/ or emotionally relevant content, this  
384 indicates that negative feedback in the 2-back PASAT is associated with greater resource  
385 allocation than positive feedback. This assumption is bolstered by the correlation of the  
386  $\Delta$ P300 (negative-positive feedback) and the 2-back PASAT: in contrast to the FRN a larger  
387 P300 to negative than positive feedback was associated with a larger number of correct trials

388 and a higher performance stability. This finding is in accordance with previous studies  
389 showing comparable associations. For instance it has been observed that a better performance  
390 in an n-back working memory task was associated with a larger P300 amplitude [27, 28].  
391 Moreover, a larger P300 was found to be associated with more remembered stimuli of  
392 emotional content [29]. Therefore, our finding adds further evidence that the additional  
393 recruitment of neural activity at this stage of processing leads to performance gains and the  
394 maintenance of goal-oriented behavior.

395 In line with our hypothesis, we also found a larger amplitude for negative than for  
396 positive feedback for the LPP. Since a large body of evidence shows that the LPP is larger for  
397 emotional than for non-emotional stimuli this indicates that negative feedback was perceived  
398 as emotionally more relevant than positive feedback [30]. The fact that negative feedback  
399 captures more resources than positive feedback reflected by the LPP suggests that in later  
400 stages of feedback processing a negativity bias can be observed. Regarding the valence-  
401 specific neural activation of the LPP ( $\Delta$ LPP = negative-positive feedback) we could observe  
402 a similar pattern as for the  $\Delta$ P300. Although the medium effect sized correlation of the  $\Delta$ LPP  
403 with the number of correct trials in the 2-back PASAT failed to reach significance, we found  
404 a significant correlation of the  $\Delta$ LPP and the performance stability, indicating the same  
405 association: a larger LPP by negative than positive feedback was associated with a higher  
406 performance stability. Just like the association of the  $\Delta$ P300 with performance, a stronger  
407 neural reaction to negative than positive feedback in later processing stages seems to reflect  
408 the recruitment of additional cognitive resources, which increase the effective maintenance of  
409 coordinated behavior. Our data are in accordance with results showing a positive relationship  
410 between larger LPP amplitudes and task performance. This was observed for example in  
411 a delayed working memory task: larger  $\Delta$ LPPs (negative - positive) evoked by emotional  
412 pictures serving as distractors were associated with better task performances [35].

413 Furthermore, also in an approach avoidance task it was found that larger LPP amplitudes  
414 were linked to faster RTs [34]. In contrast, there is also a finding of larger LPP amplitudes  
415 associated with performance deteriorations, indicating increased engagement with a  
416 distracting stimulus [33]. However, it must be considered that no WM task was used in this  
417 study, but a speeded response task, focusing on the investigation of attentional processes and  
418 less demanding cognitive functions as opposed to our study. In sum, our results for the LPP  
419 and the P300 seem to be in line with the idea of an additional recruitment of cognitive  
420 resources by emotional stimuli [58], at least in these late stages of feedback processing.

421 Consistent with previous studies, we found affect ratings significantly decreased after  
422 2-back PASAT performance [6, 59, 60]. However, there was no significant correlation  
423 between the PANAS affect ratings and the 2-back PASAT performance [6]. Nevertheless,  
424 their functional association is underlined by the correlation between the evoked potentials  
425 indicating emotional processing and task performance. For that matter, the use of self-report  
426 questionnaires like the PANAS might be not sufficiently precise to detect latent affect  
427 changes.

428 Taken together it appears that in the early stages of feedback processing (<300 ms  
429 following feedback) in the 2-back PASAT, less automatic resource allocation towards  
430 negative than positive feedback is beneficial for task performance. Whereas in later stages  
431 (>300 ms following feedback) this association is inverted: a more extensive neural  
432 recruitment following negative feedback is linked with better performance. Conceivably, in  
433 bad performers increased early (< 300 ms) activation after negative feedback interferes with  
434 successful memory updating. Apparently, through largely bottom up driven processing,  
435 attentional resources are diverted away from target processing and towards distractive  
436 negative information, which is reflected by a large neural response to negative feedback.  
437 Accordingly, good performance is associated with the ability to engage top-down control

438 already at early processing stages and maintaining attentional resources to targets and not  
439 negative feedback information. Opposingly, in later stages of feedback processing (> 300  
440 ms), large valence-specific amplitudes seem to reflect resource allocation towards goal  
441 directed task processing, indicating successful implementation of top-down control.  
442 Therefore, good performers are apparently capable of using the feedback information in a top  
443 down driven manner to achieve goal directed behavior, reflected by a large valence specific  
444 neural activation in late processing stages.

445 Overall the ERP signatures we found contribute to a better understanding of the neural  
446 mechanisms underlying the PASAT and furthermore help to gain better understand why the  
447 PASAT is an efficient cognitive control training and could be a promising, innovative  
448 treatment option for patients suffering from depression. Our results suggest that poor  
449 performance is associated with increased sensitivity to negative information in early  
450 processing stages and reduced allocation of cognitive resources in later stages. As stated  
451 above, depressed patients depict a hypersensitivity to negative feedback and negative  
452 information in general. PASAT training may help to reduce this hypersensitivity by  
453 implementing cognitive control strategies in early processing stages to cope with the  
454 frustration caused by PASAT. At the same time, these activated cognitive resources could  
455 lead to an effective use of the feedback information in later processing stages. This  
456 hypothesis is supported by findings showing a critical involvement of the dlPFC in the  
457 PASAT performance [15], which in turn is a neuronal structure underlying cognitive control  
458 functioning and has been found to be hypoactive in depressed patients [61]. Our results  
459 provide useful tools to test such a possible training mechanism and to determine which  
460 patients can benefit from a cognitive control training in the long run.

461 There are some limitations of the current study. It could be assumed that a better  
462 performance in the 2-back PASAT would be confounded by fewer incorrect trials and

463 therefore fewer negative feedback. This would indicate that a differential neural reaction to  
464 negative vs. positive feedback could be a result of this difference as opposed to be a marker  
465 of cognitive control functions. However, due to the adaptive design of the 2-back PASAT, a  
466 good performance goes along with a faster stimulus presentation and as a result, participants  
467 make more mistakes. This is also reflected by the missing association of the 2-back PASAT  
468 performance and the amount of negative feedback: good performers receive as much negative  
469 feedback as bad performers. In addition, there have been a lot of misses in the task (e.g. trials  
470 without a response) that were excluded from data analysis. Probably also these misses reflect  
471 meaningful information. However, during the experiment we observed that the cause for the  
472 misses are manifold: participants simply processed the digits not fast enough; sometimes  
473 there actually was a response, but it occurred at the same time the feedback was presented  
474 (meaning it was not recorded) or sometimes participants zoned out and did not process the  
475 stimuli at all for several trials. Unfortunately, we cannot distinguish between these cases  
476 afterwards but at the same time it can be assumed that their informative value for cognitive  
477 functions and neural responses to feedback are quite different. Therefore, we decided to  
478 exclude misses completely from the analysis.

479 To conclude, by elucidating the neural mechanisms underlying the PASAT  
480 performance, we demonstrate that enhanced neural activity in early processing stages of  
481 negative feedback indicates a diversion of cognitive resources towards negative information  
482 resulting in reduced goal-oriented behavior. In turn, additional allocation of resources after  
483 salient negative information as indicated by a higher P300 and LPP is linked with enhanced  
484 performance and may thus represent a neural signature of successful cognitive control of  
485 distractive negative information. Our results provide the basis for further studies using and  
486 investigating the PASAT as an effective cognitive control task. Based on these results, future  
487 studies will further elucidate associations and malleability of negative information

488 processing, cognitive performance and mood regulation in sensitive population groups and  
489 psychiatric disorders.

## 490 References

491

492 1. Roiser JP, Elliott R, Sahakian BJ. Cognitive Mechanisms of Treatment in Depression.  
493 Neuropsychopharmacology. 2012;37(1):117–36. doi: 10.1038/npp.2011.183

494 2. Iordan AD, Dolcos S, Dolcos F. Neural signatures of the response to emotional  
495 distraction: a review of evidence from brain imaging investigations. Front Hum  
496 Neurosci. 2013;7(June):1–21. doi:10.2466/pms.1977.44.2.367

497 3. De Raedt R, Koster EHW. Understanding vulnerability for depression from a cognitive  
498 neuroscience perspective: A reappraisal of attentional factors and a new conceptual  
499 framework. Cogn Affect Behav Neurosci. 2010;10(1):50–70.  
500 doi:10.3758/CABN.10.1.50

501 4. Dolcos F, McCarthy G. Brain Systems Mediating Cognitive Interference by Emotional  
502 Distraction. J Neurosci. 2006;26:2072–9. doi:10.1523/JNEUROSCI.5042-05.2006

503 5. Gronwall D. Paced Auditory Serial-Addition Task: A measure of recovery from  
504 concussion. Percept Mot Skills. 1977;44:367–373. doi:10.2466/pms.1977.44.2.367

505 6. Plewnia C, Schroeder PA, Kunze R, Faehling F, Wolkenstein L. Keep Calm and Carry  
506 On: Improved Frustration Tolerance and Processing Speed by Transcranial Direct  
507 Current Stimulation (tDCS). PLoS One. 2015;10(4):e0122578. doi:  
508 10.1371/journal.pone.0122578

509 7. Pope PA, Brenton JW, Miall RC. Task-Specific Facilitation of Cognition by Anodal  
510 Transcranial Direct Current Stimulation of the Prefrontal Cortex. Cereb Cortex. 2015;  
511 doi: 10.1093/cercor/bhv094

512 8. Wiegand A, Sommer A, Nieratschker V, Plewnia C. Improvement of cognitive control  
513 and stabilization of affect by prefrontal transcranial direct current stimulation (tDCS).  
514 Sci Rep. 2019;9(1):1–8. doi: 10.1038/s41598-019-43234-2

515 9. Calkins AW, Deveney CM, Weitzman ML, Hearon BA, Siegle GJ, Otto MW. The  
516 Effects of Prior Cognitive Control Task Exposure on Responses to Emotional Tasks in  
517 Healthy Participants. *Behav Cogn Psychother.* 2011;39(02):205–20. doi:  
518 10.1017/S1352465810000652

519 10. Siegle GJ, Ghinassi F, Thase ME. Neurobehavioral therapies in the 21st century:  
520 Summary of an emerging field and an extended example of cognitive control training  
521 for depression. *Cognit Ther Res.* 2007;31:235–62. doi: 10.1007/s10608-006-9118-6

522 11. Siegle GJ, Price RB, Jones NP, Ghinassi F, Painter T, Thase ME. You Gotta Work at  
523 It: Pupillary Indices of Task Focus Are Prognostic for Response to a Neurocognitive  
524 Intervention for Rumination in Depression. *Clin Psychol Sci.* 2014;2(4):455–71. doi:  
525 10.1177/2167702614536160

526 12. Hoorelbeke K, Koster EHW, Vanderhasselt M-A, Callewaert S, Demeyer I. The  
527 influence of cognitive control training on stress reactivity and rumination in response  
528 to a lab stressor and naturalistic stress. *Behav Res Ther.* 2015 Jun ;69:1–10. doi:  
529 10.1016/j.brat.2015.03.010

530 13. Koster EHW, Hoorelbeke K, Onraedt T, Owens M, Derakshan N. Cognitive control  
531 interventions for depression: A systematic review of findings from training studies.  
532 *Clin Psychol Rev.* 2017;53(February):79–92. doi: 10.1016/j.cpr.2017.02.002

533 14. Van den Bergh N, Hoorelbeke K, De Raedt R, Koster EHW. Remediation of  
534 depression-related cognitive impairment: cognitive control training as treatment  
535 augmentation. *Expert Rev Neurother.* 2018;18(12):907–13. doi:  
536 10.1080/14737175.2018.1537783

537 15. Lazeron RH., Rombouts SAR., de Sonneville L, Barkhof F, Scheltens P. A paced  
538 visual serial addition test for fMRI. *J Neurol Sci.* 2003; 213(1–2):29–34. doi:  
539 10.1016/S0022-510X(03)00144-8

540 16. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial  
541 frontal cortex in cognitive control. *Science*. 2004;306(5695):443–7. doi:  
542 10.1126/science.1100301

543 17. Hajcak G, Moser JS, Holroyd CB, Simons RF. The feedback-related negativity reflects  
544 the binary evaluation of good versus bad outcomes. *Biol Psychol*. 2006;71(2):148–54.  
545 doi: 10.1016/j.biopsych.2005.04.001

546 18. Gehring WJ, Willoughby AR. The Medial Frontal Cortex and the Rapid Processing of  
547 Monetary Gains and Losses. *Science*. 2002;295(5563):2279–82. doi:  
548 10.1126/science.1066893

549 19. Holroyd CB, Coles MGH. The neural basis of human error processing: Reinforcement  
550 learning, dopamine, and the error-related negativity. *Psychol Rev*. 2002;109(4):679–  
551 709. doi: 10.1037//0033-295X.109.4.679

552 20. Holroyd CB, Yeung N. Motivation of extended behaviors by anterior cingulate cortex.  
553 *Trends Cogn Sci*. 2012;16(2):122–8. doi: 10.1016/j.tics.2011.12.008

554 21. Luu P, Tucker DM, Derryberry D, Reed M, Poulsen C. Electrophysiological responses  
555 to errors and feedback in the process of action regulation. *Psychol Sci*. 2003;14(1):47–  
556 53. doi: 10.1111/1467-9280.01417

557 22. Sutton S, Braren M, Zubin J, John ER. Evoked-Potential Correlates of Stimulus  
558 Uncertainty. *Science*. 1965;150(3700):1187–8. doi: 10.1126/science.150.3700.1187

559 23. Polich J. Neuropsychology of P300. In: Luck SJ, Kappenman ES, editors. *The Oxford*  
560 *Handbook of Event Related Potential Component*. New York: Oxford University  
561 Press; 2012. p. 159–88.

562 24. Johnston VS, Miller DR, Burleson MH. Multiple P3s to Emotional Stimuli and Their  
563 Theoretical Significance. *Psychophysiology*. 1986;23(6):684–94. doi:10.1111/j.1469-  
564 8986.1986.tb00694.x

565 25. Keil A, Bradley MM, Hauk O, Rockstroh B, Elbert T, Lang PJ. Large-scale neural  
566 correlates of affective picture processing. *Psychophysiology*. 2002;39(2002):641–9.  
567 doi: 10.1111/1469-8986.3950641

568 26. Delplanque S, Lavoie ME, Hot P, Silvert L, Sequeira H. Modulation of cognitive  
569 processing by emotional valence studied through event-related potentials in humans.  
570 *Neurosci Lett*. 2004;356(1):1–4. doi: 10.1016/j.neulet.2003.10.014

571 27. Daffner KR, Chong H, Sun X, Tarbi EC, Riis JL, Scott M, et al. Mechanisms  
572 Underlying Age- and Performance-related Differences in Working Memory. *J Cogn  
573 Neurosci*. 2011;23(6):1298–314. doi: 10.1016/j.jneulet.2003.10.014

574 28. Saliasi E, Geerligs L, Lorist MM, Maurits NM. The Relationship between P3  
575 Amplitude and Working Memory Performance Differs in Young and Older Adults.  
576 *PLoS One*. 2013;8(5). doi: 10.1371/journal.pone.0063701

577 29. Palomba D, Angrilli A, Mini A. Visual evoked potentials, heart rate responses and  
578 memory to emotional pictorial stimuli. *Int J Psychophysiol*. 1997;27(1):55–67. doi:  
579 10.1371/journal.pone.0063701

580 30. Cacioppo JT, Crites SL, Gardner WL. Attitudes to the Right: Evaluative Processing is  
581 Associated with Lateralized Late Positive Event-Related Brain Potentials. *Personal  
582 Soc Psychol Bull [Internet]*. 1996;22(12):1205–19. doi:10.1177/01461672962212002

583 31. Ito TA, Larsen JT, Smith NK, Cacioppo JT. Negative information weighs more  
584 heavily on the brain: The negativity bias in evaluative categorizations. *J Pers Soc  
585 Psychol*. 1998;75(4):887–900. doi: 10.1037/0022-3514.75.4.887

586 32. Hajcak G, Dunning JP, Foti D. Motivated and controlled attention to emotion: time-  
587 course of the late positive potential. *Clin Neurophysiol*. 2009;120(3):505–10. doi:  
588 10.1016/j.clinph.2008.11.028

589 33. Weinberg A, Hajcak G. The late positive potential predicts subsequent interference

590 with target processing. *J Cogn Neurosci.* 2011;23(10):2994–3007.

591 doi:10.1162/jocn.2011.21630

592 34. Bamford S, Broyd SJ, Benikos N, Ward R, Wiersema JR, Sonuga-Barke E. The late  
593 positive potential: a neural marker of the regulation of emotion-based approach-  
594 avoidance actions? *Biol Psychol.* 2015; 105:115–23. doi:  
595 10.1016/j.biopsych.2015.01.009

596 35. Faehling F, Plewnia C. Controlling the Emotional Bias: Performance, Late Positive  
597 Potentials, and the Effect of Anodal Transcranial Direct Current Stimulation (tDCS).  
598 *Front Cell Neurosci.* 2016;10(June):159. doi:10.3389/fncel.2016.00159

599 36. Reitan RM. Trail Making Test: Manual for Administration and Scoring. South Tucson,  
600 Arizona: Reitan Neuropsychology Laboratory.; 1992.

601 37. Lehrl S. Mehrfachwahl-Wortschatz-Intelligenztest: MWT-B (2nd ed.). Nürnberg.  
602 Germany: Perimed-spitta; 1992.

603 38. Wechsler D. Wechsler Adult Intelligence Scale – Fourth Edition. San Antonio, Texas:  
604 Pearson; 2008.

605 39. Peirce JW. PsychoPy - Psychophysics software in Python. *J Neurosci Methods.*  
606 2007;162:8–13. doi: 10.1016/j.jneumeth.2006.11.017

607 40. Peirce JW. Generating Stimuli for Neuroscience Using PsychoPy. *Front Neuroinform.*  
608 2008;2:10. doi: 10.1016/j.jneumeth.2006.11.017

609 41. Krohne HW, Egloff B, Kohlmann C-W, Tausch A. Untersuchungen mit einer  
610 deutschen Version der ‘Positive and Negative Affect Schedule’ (PANAS).  
611 *Diagnostica.* 1996;42:139–56. doi: 10.1037/t49650-000

612 42. Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial  
613 EEG dynamics including independent component analysis. *J Neurosci Methods.*  
614 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009

615 43. Lopez-Calderon J, Luck SJ. ERPLAB: an open-source toolbox for the analysis of  
616 event-related potentials. *Front Hum Neurosci*. 2014;8(4):213.  
617 doi:10.3389/fnhum.2014.00213

618 44. Cardoso J-F. High-Order Contrasts for Independent Component Analysis. *Neural*  
619 *Comput*. 1999;11(1):157–92. doi:10.1162/089976699300016863

620 45. Johnson RJ. On the neural generators of the P300 component of the event-related  
621 potential. *Psychophysiology*. 1993;30(1):90–7. doi:10.1111/j.1469-  
622 8986.1993.tb03208.x

623 46. Yeung N, Sanfey AG. Independent coding of reward magnitude and valence in the  
624 human brain. *J Neurosci*. 2004;24(28):6258–64. doi:10.1523/JNEUROSCI.4537-  
625 03.2004

626 47. Weinberg A, Hajcak G. Beyond Good and Evil: The Time-Course of Neural Activity  
627 Elicited by Specific Picture Content. *Emotion*. 2010;10(6):767–82.  
628 doi:10.1037/a0020242

629 48. Gehring WJ, Liu Y, Orr JM, Carp J. The Error-Related Negativity (ERN/Ne). In: Luck  
630 SJ, Kappenman ES, editors. *The Oxford Handbook of Event Related Potential*  
631 Component. New York: Oxford University Press; 2012. p. 231–91.

632 49. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial  
633 frontal cortex in cognitive control. *Science*. 2004;306(5695):443–7.  
634 doi:10.1126/science.1100301

635 50. Frank MJ, Woroch BS, Curran T. Error-related negativity predicts reinforcement  
636 learning and conflict biases. *Neuron*. 2005;47(4):495–501. doi:  
637 10.1016/j.neuron.2005.06.020

638 51. Cohen MX, Elger CE, Ranganath C. Reward expectation modulates feedback-related  
639 negativity and EEG spectra. *Neuroimage*. 2007;35(2):968–78. doi:

640 10.1016/j.neuroimage.2006.11.056

641 52. Unger K, Heintz S, Kray J. Punishment sensitivity modulates the processing of  
642 negative feedback but not error-induced learning. *Front Hum Neurosci.*  
643 2012;6(June):1–16. doi: 10.3389/fnhum.2012.00186

644 53. Meyer M, Bekkering H, Janssen D, de Brujin E, Hunnius S. Neural correlates of  
645 feedback processing in toddlers. *J Cogn Neurosci.* 2014;26(7):1519–27.  
646 doi:10.1162/jocn

647 54. Van Der Helden J, Boksem MAS, Blom JHG. The importance of failure: Feedback-  
648 related negativity predicts motor learning efficiency. *Cereb Cortex.* 2010;20(7):1596–  
649 603. doi:10.1093/cercor/bhp224

650 55. Tucker DM, Luu P, Frishkoff G, Quiring J, Poulsen C. Frontolimbic Response to  
651 Negative Feedback in Clinical Depression. *J Abnorm Psychol.* 2003;112(4):667–78.  
652 doi:10.1037/0021-843X.112.4.667

653 56. Santesso DL, Steele KT, Bogdan R, Holmes AJ, Deveney CM, Meites TM, et al.  
654 Enhanced negative feedback responses in remitted depression. *Neuroreport.*  
655 2008;19(10):1045–8. doi:10.1097/WNR.0b013e3283036e73

656 57. Cavanagh JF, Bismark AJ, Frank MJ, Allen JJB. Larger error signals in major  
657 depression are associated with better avoidance learning. *Front Psychol.*  
658 2011;2(Nov):1–6. doi:10.3389/fpsyg.2011.00331

659 58. González-Garrido AA, López-Franco AL, Gómez- Velázquez FR, Ramos-Loyo J,  
660 Sequeira H. Emotional content of stimuli improves visuospatial working memory.  
661 *Neurosci Lett.* 2015;585:43–7. doi: 10.1016/j.neulet.2014.11.014

662 59. Holdwick DJ, Wingenfeld SA. The subjective experience of PASAT testing: Does the  
663 PASAT induce negative mood? *Arch Clin Neuropsychol.* 1999;14(3):273–84.  
664 doi:10.1016/S0887-6177(98)00021-3

665 60. Lejuez CW, Kahler CW, Brown RA. A modified computer version of the Paced  
666 Auditory Serial Addition Task (PASAT) as a laboratory-based stressor. *Behav Ther.*  
667 2003; 26(4):290–3. doi: 10.1016/j.beth.2006.08.006  
668 61. Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala  
669 and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related  
670 and independent features. *Biol Psychiatry.* 2007;61:198–209. doi:  
671 10.1016/j.biopsych.2006.05.048

## 672 **Supporting information**

673 **S1 File. Dataset underlying the findings.** The sav. file contains all data concerning sample  
674 characteristic as well as behavioral and electroencephalographic results underlying our  
675 findings.

676 **S1 Figure. Raw FRN for the 2-back PASAT.** The grand average waveform separately for  
677 red and green feedback (left panel) and the scalp map displaying the mean voltage  
678 distribution for red and green feedback separately (right panel, 200 - 300 ms post feedback).

679 **S2 Figure. Raw FRN for the control task ‘color presentation’.** The grand average  
680 waveform separately for red and green color (left panel) and the scalp map displaying the  
681 mean voltage distribution for red and green color separately (right panel, 200 - 300 ms post  
682 feedback).

683 **S3 Figure. Raw P300 for the 2-back PASAT.** The grand average waveform separately for  
684 red and green feedback (left panel) and the scalp map displaying the mean voltage  
685 distribution for red and green feedback separately (right panel, 300 - 400 ms post feedback).

686 **S4 Figure. Raw P300 for the control task ‘color presentation’.** The grand average  
687 waveform separately for red and green color (left panel) and the scalp map displaying the  
688 mean voltage distribution for red and green color separately (right panel, 300 - 400 ms post  
689 feedback).

690 **S5 Figure. Raw LPP for the 2-back PASAT.** The grand average waveform separately for  
691 red and green feedback (left panel) and the scalp map displaying the mean voltage  
692 distribution for red and green feedback separately (right panel, 400 - 1000 ms post feedback).

693 **S6 Figure. Raw LPP the control task ‘color presentation’.** The grand average waveform  
694 separately for red and green color (left panel) and the scalp map displaying the mean voltage  
695 distribution for red and green color separately (right panel, 400 - 1000 ms post feedback).

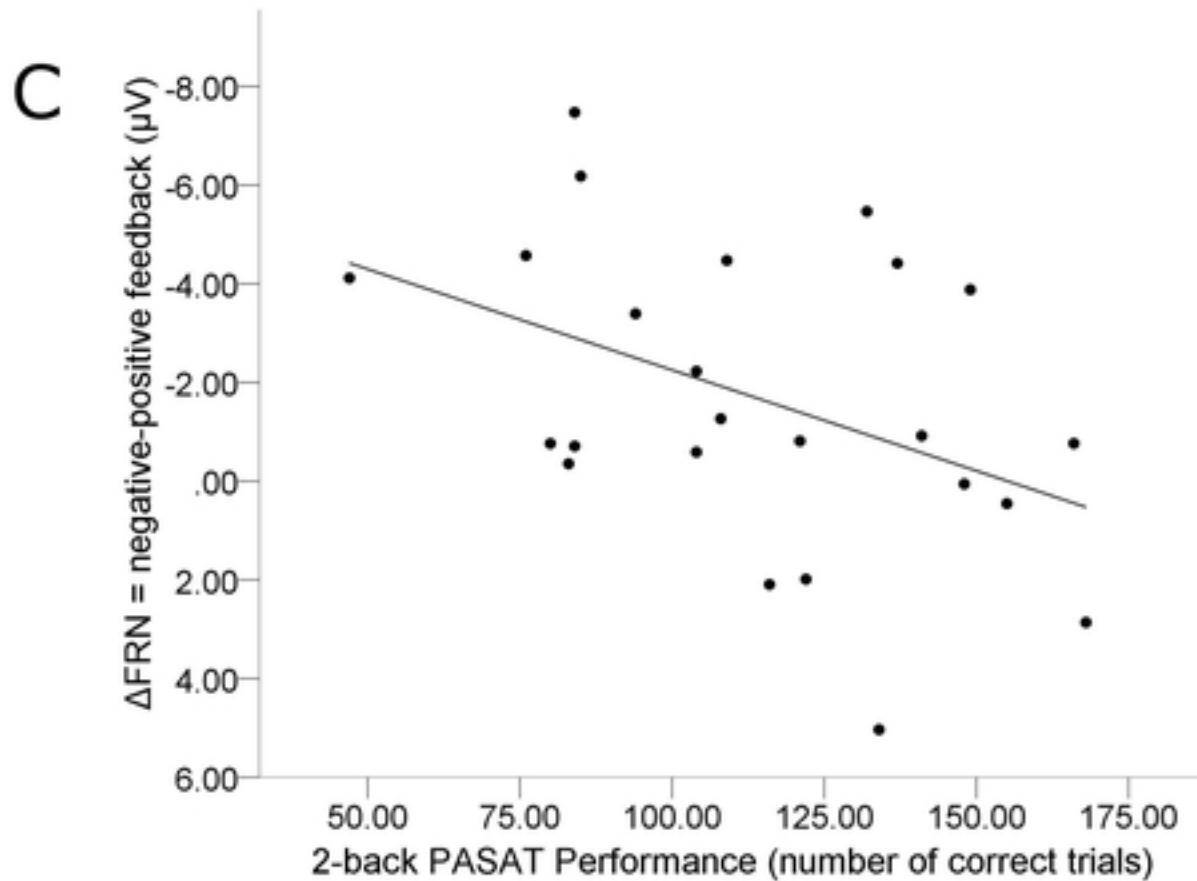
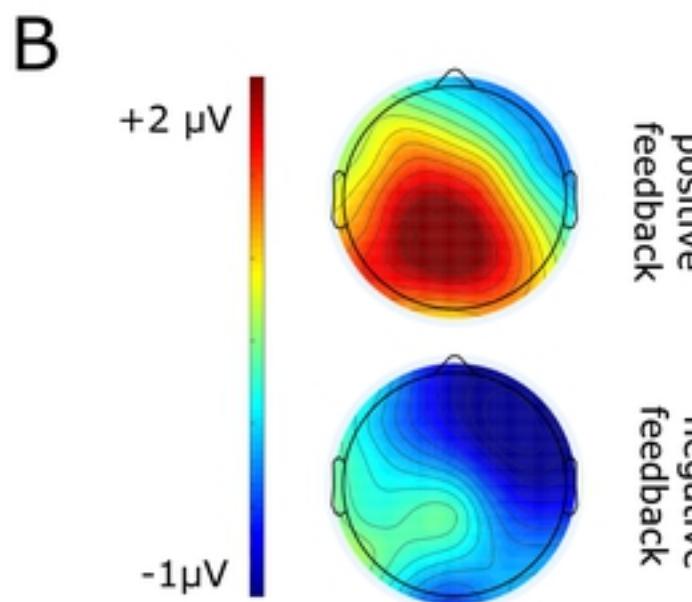
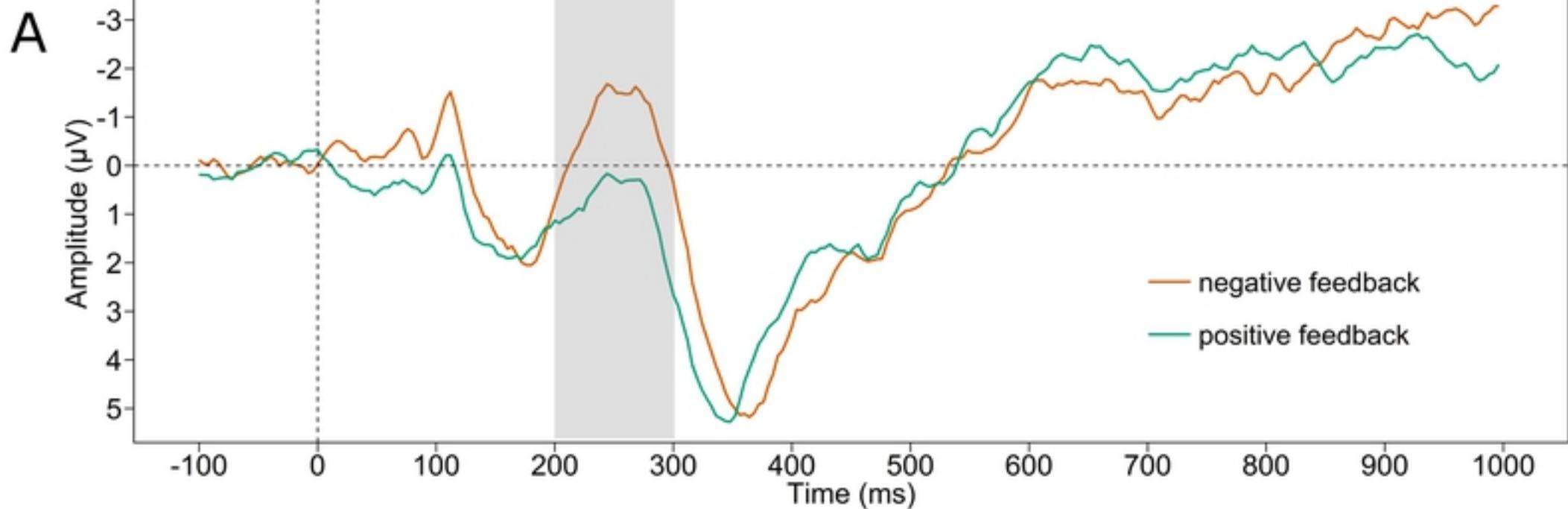





Figure 1

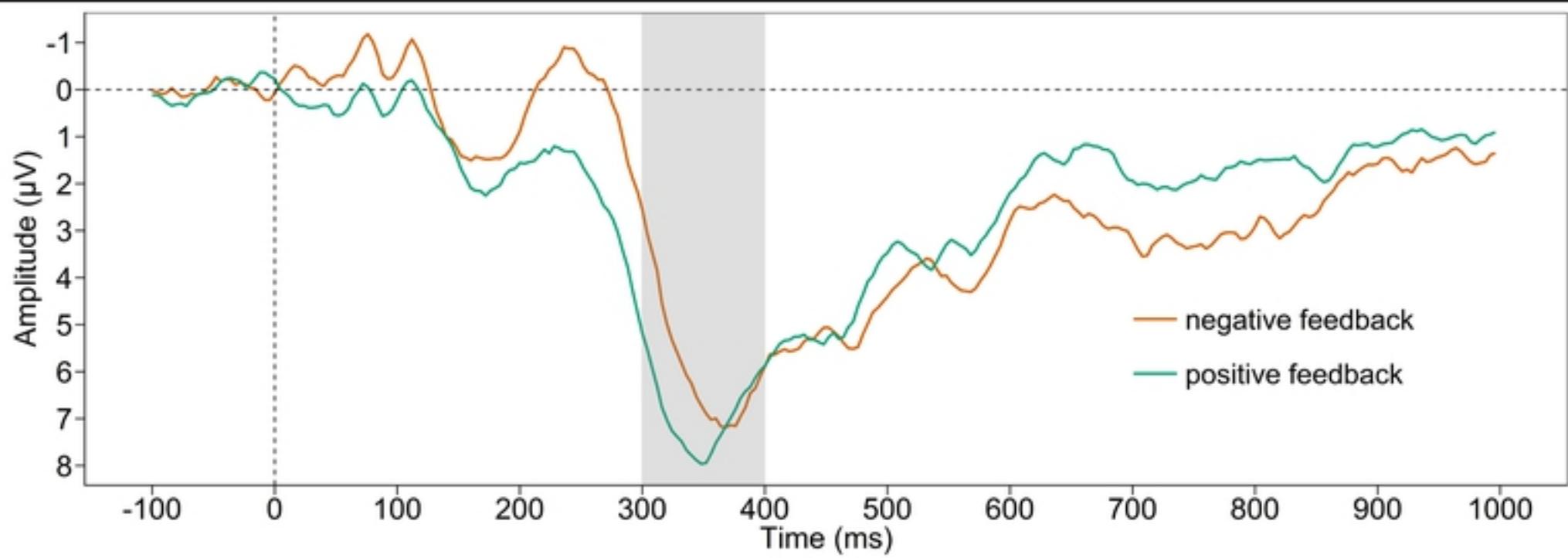
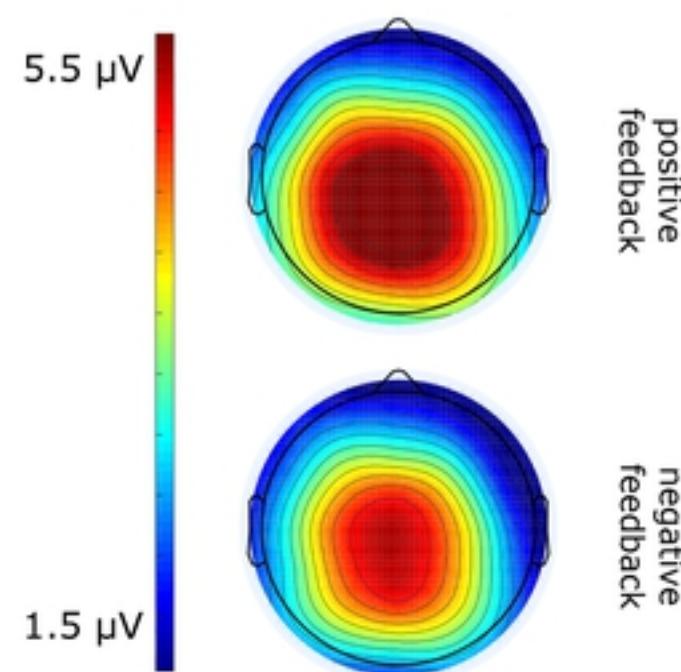
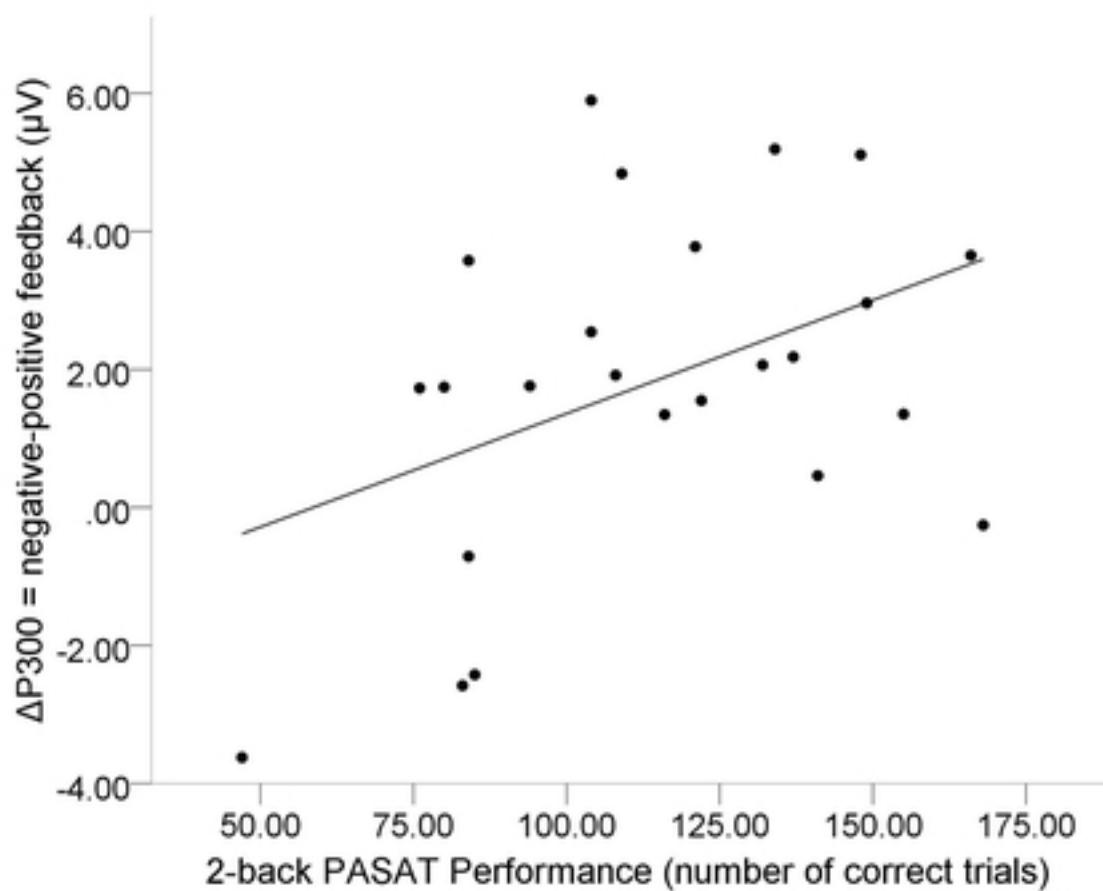



**A****B****C**

Figure 2

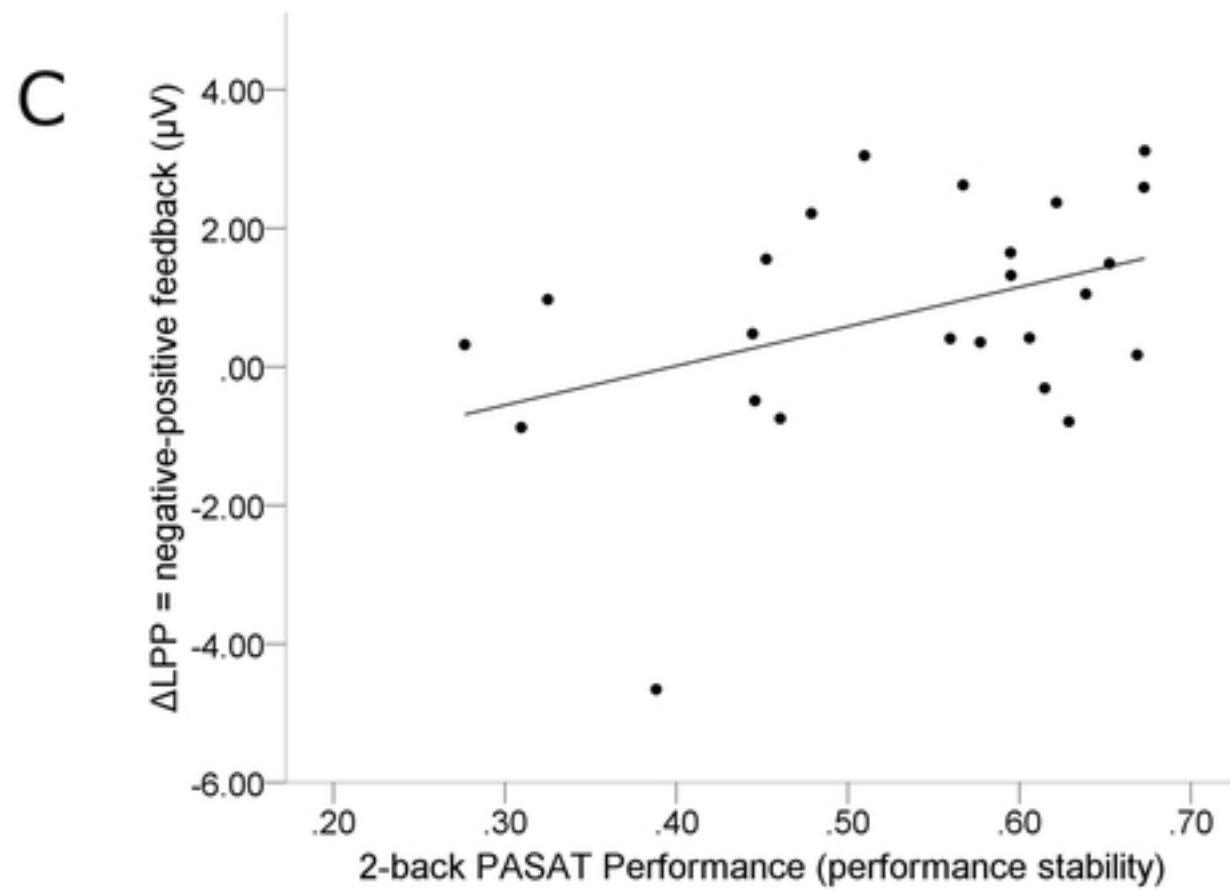
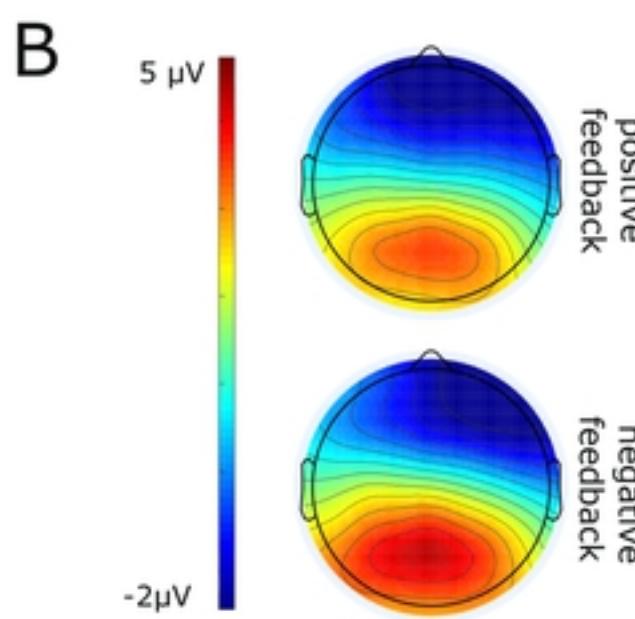
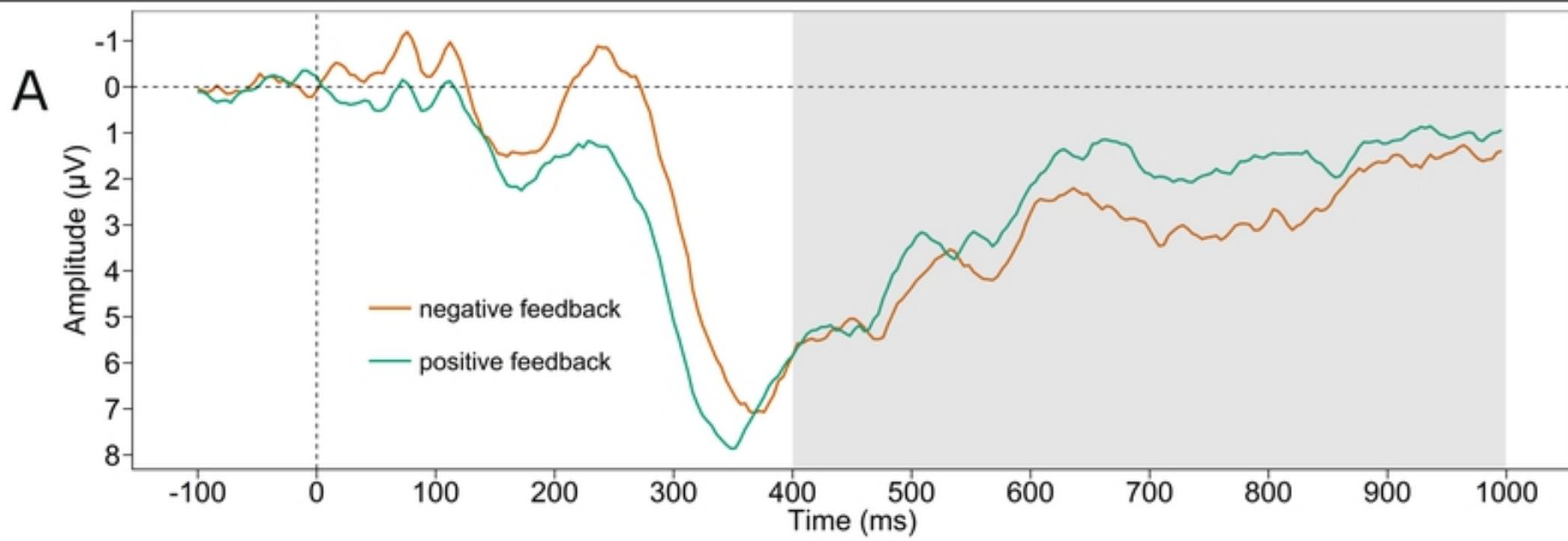





Figure 3