

1 **ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming**

2 Fei Li,^{1,#} Qiuyue Yuan,^{2,3,#} Wei Di,^{1,#} Xinyi Xia,^{1,#} Zhuang Liu,¹ Ninghui Mao,⁴ Lin Li,¹ Chunfeng Li,¹ Juan
3 He,¹ Yunguang Li,¹ Wangxin Guo,¹ Xiaoyu Zhang,¹ Yiqin Zhu,¹ Rebiguli Aji,¹ Shangqian Wang⁵, Ping
4 Chi,^{4,6-8} Brett Carver,^{4,9} Yong Wang,^{2,3,*} Yu Chen,^{4,6-8,*} & Dong Gao^{1,10,*}

5 ¹State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for
6 Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese
7 Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China

8 ²Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary
9 Sciences, Chinese Academy of Sciences, Beijing 100080, China

10 ³School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

11 ⁴Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
12 10065, USA

13 ⁵Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

14 ⁶Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA

15 ⁷Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York,
16 NY 10065, USA

17 ⁸Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian
18 Hospital, New York, NY 10065, USA

19 ⁹Department of Surgery and Division of Urology, Memorial Sloan-Kettering Cancer Center, New York, NY
20 10065, USA

21 ¹⁰Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China

22 [#] These authors contributed equally to this work.

23 *Corresponding authors:

24 Dong Gao, Ph.D. (Leading contact)

25 Shanghai Institute of Biochemistry and Cell Biology

26 Chinese Academy of Sciences

27 dong.gao@sibcb.ac.cn

28 Or

29 Yu Chen, MD., Ph.D.

30 Memorial Sloan-Kettering Cancer Center

31 cheny1@mskcc.org

32 Or

33 Yong Wang, Ph.D.

34 National Center for Mathematics and Interdisciplinary Sciences

35 Chinese Academy of Sciences

36 ywang@amss.ac.cn

37

1 **Abstract**

2 While cancer is commonly perceived as a disease of dedifferentiation, the hallmark of early stage prostate
3 cancer is paradoxically the loss of more plastic basal cells and the abnormal proliferation of more
4 differentiated secretory luminal cells. However, the mechanism of prostate cancer pro-luminal
5 differentiation is largely unknown. Through integrating analysis of the transcription factors (TFs) from 806
6 human prostate cancers, we have identified that ERG highly correlated with prostate cancer luminal
7 subtyping. ERG overexpression in luminal epithelial cells inhibits its normal plasticity to transdifferentiate
8 into basal lineage and ERG supersedes PTEN-loss which favors basal differentiation. ERG knock-out
9 disrupted prostate cell luminal differentiation, whereas AR knock-out had no such effects. Trp63 is a known
10 master regulator of prostate basal lineage. Through analysis of 3D chromatin architecture, we found that
11 ERG binds and inhibits the enhancer activity and chromatin looping of a Trp63 distal enhancer, thereby
12 silencing its gene expression. Specific deletion of the distal ERG binding site resulted in the loss of ERG-
13 mediated inhibition of basal differentiation. Thus, ERG orchestrates chromatin interactions and regulates
14 prostate cell lineage toward pro-luminal program, as its fundamental role on lineage differentiation in
15 prostate cancer initiation.

16
17 **Introduction**

18 Tumor initiation, progression, and therapy resistance involve epigenetic reprogramming that leads to
19 aberrant cell lineage specification and transition (1-5). It is critical to understand the underlying
20 mechanisms of cancer cell lineage differentiation and transition, which will provide novel insights into
21 anticancer research. Master transcription factors have been widely recognized with the function in cell
22 lineage transdifferentiation and cell fate reprogramming (6-8). The identification of master transcription
23 factors in regulation cancer cell lineage specification and transition would provide tremendous insights into
24 the mechanism of lineage plasticity in cancer progression and therapy resistance.

25 Prostate cancer is the most common cancer and the second leading cause of cancer death in Western
26 men (9). The normal prostate is a pseudostratified exocrine gland and its epithelium consists of functional
27 luminal cells that secrete proteins of the prostatic fluid, supportive basal cells that interact with stroma and
28 rare neuroendocrine cells. Compared to normal luminal cells, normal basal cells express higher levels of
29 stemness genes (10) and exhibit greater stem cell properties such as increased colony and organoid
30 formation *in vitro* and graft formation *in vivo* (11-14). While cancer is perceived as a disease of increased
31 plasticity and stemness, primary and untreated prostate cancer is pathologically defined by luminal cell
32 expansion and absence of basal cells with loss of P63 or CK5 by IHC. Primary and untreated prostate
33 cancers that exhibit true basal or neuroendocrine phenotype is extremely rare (15). We and others have
34 recently found that normal single luminal cells when grown as organoids *in vitro* or grafted *in vivo* can form
35 normal prostate glandular structures with both secretory luminal cells and basal cells that interact with
36 stroma (11, 12, 16). The fact that cancerous luminal cells in human prostate cancer cannot form basal cells
37 but directly interact with stroma suggests that prostate tumorigenesis paradoxically involves a loss of
38 normal plasticity.

39 Under intense selection pressure of androgen deprivation therapy that target the luminal lineage,
40 progression to castration-resistant prostate cancer (CRPC) is associated with secondary gain of plasticity,
41 with subsets of cancers that become neuroendocrine prostate cancer (NEPC), AR/neuroendocrine double
42 negative prostate cancer (DNPC), AR/neuroendocrine double positive “amphicrine” prostate cancer some

1 of which gain expression of basal markers(10, 17-19). These findings indicate that lineage differentiation
2 and transition may play a pivotal role across multiple stages of prostate cancer progressions.

3 Identification on the master transcription factors has provided significant insights to understand both
4 plasticity of prostate cancer lineages and mechanism of therapy resistances. For example, N-Myc was
5 identified as an oncogenic driver to promote neuroendocrine prostate cancer differentiation in the context
6 of PI3K pathway activation in both GEM mouse models (20) and transformation cellular models of human
7 prostate epithelial cells (21). In addition, SOX2 was recognized as a key transcription factor to facilitate
8 the lineage transitions from prostate luminal cell lineage to neuroendocrine and basal cell lineage in TP53-
9 deficient and RB1-deficient GEM mouse models (22) as well as cellular models of human prostate cancer
10 cell lines (23). Together, these findings proposed that SOX2 played a vital and context-dependent role for
11 regulation on prostate cancer lineages. SOX11, as another member of SOX gene family, also promoted
12 neuroendocrine differentiation and the treatment resistance to prostate cancers in the context of PTEN
13 and TP53 inactivation (24). Given that the advanced prostate cancer lineage is predominantly regulated
14 by these known transcription factors, it is reasonable to question that how primary prostate cancers gain
15 their luminal differentiation features.

16 Several ETS family members have been demonstrated to be master transcription factors in the
17 differentiation and lineage transition of several cell types (25-29). Previously, TMPRSS2-ERG fusion was
18 reported as an early genetic alteration event occurring in 50% of prostate cancers (30, 31). Numerous
19 previous studies revealed that ERG played an oncogenic role in promoting proliferation and invasion of
20 prostate cancer cells (32-36). Further, we and others have shown that ERG is a master regulator that alters
21 the chromatin enhancer landscape and AR cistrome (37-39). However, the function of ERG fusion during
22 prostate cell lineage differentiation and transition is still largely unknown. Here, through integrating analysis
23 of integrative classifier (40) and PAM50 classifier (41, 42), we have identified ERG with the potential role
24 as a master transcription factor in prostate luminal lineage differentiation. In order to consolidate the further
25 function verifications and to elucidate the detailed mechanisms, we performed multi-omics analysis (RNA-
26 seq, ATAC-seq, ChIP-seq and 3D genome analysis BL-Hi-C) and pre-clinical model assays (*in vitro*
27 organoids culture, *in vivo* transplantation and genetically engineered mouse models), and defined ERG as
28 a master transcription factor to regulate prostate luminal lineage through orchestrating chromatin
29 interactions.

30 **Results**

31 **Identification for the potential master transcription factors that regulate prostate cancer cell 32 lineage**

33 To identify the master TFs involved in prostate cancer lineage regulation, we developed a pipeline analysis
34 by evaluating the correlation of transcription factors with prostate cancer subtyping (Figure 1A). We firstly
35 chose three prostate cancer cohorts with available transcriptomic profiles and each cohort contains more
36 than 100 human prostate cancer samples (158 samples in FHCRC, 150 samples in MSKCC and 498
37 samples in TCGA) (31, 43, 44). In each cohort, we applied two prostate cancer subtyping methods, the
38 PAM50 classifier categorizing prostate cancer into three lineage-related subtypes based on prostate
39 lineage genes expression (41, 42), and the integrative classifier also revealed three distinct prostate cancer
40 subtypes by combining several data types including transcriptomic profiles and histone modifications (40).

1 As expected, prostate cancer samples in MSKCC cohort were categorized into three subtypes by PAM50
2 classifier (Supplemental Figure 1A) as well as three subtypes by integrative classifier respectively
3 (Supplemental Figure 1B). To estimate the relationship of each TF expression levels with the above three
4 cancer subtypes by PAM50 or integrative classifier respectively, cancer samples were further classified
5 into three groups according to expression levels of each TF, termed as TF-high, TF-medium and TF-low.
6 We next performed Pearson's Chi-squared test to identify TFs that significantly correlated to prostate
7 cancer lineages by PAM50 classifier and integrative classifier respectively. For each cohort, overlapped
8 TFs were further defined by overlapping the identified TFs by two subtyping methods (122 in FHCRC, 208
9 in MSKCC and 399 in TCGA) (Supplemental Figure 1, C, D and E and Supplemental Table 1). This
10 combinational analysis ensured that the identified overlapped-TFs would highly correlate with both
11 prostate cancer lineages and epigenetic classifiers. Taken the reproducibility and confidence into
12 consideration, we finally defined the 154 master TFs from those overlapped TFs that were included in at
13 least two of the three cohorts (Figure 1B and Supplemental Table 2). Among these transcription factors,
14 ERG showed consistent and high correlation with prostate cancer subtyping in all of the three cohorts
15 (Figure 1C). Gene Set Enrichment Analysis (GSEA) revealed that prostate luminal cell signature (10) was
16 significantly enriched in ERG-high prostate cancer samples, validated in two different prostate cancer
17 cohorts (Figure 1, D and E). As expected, AR and FOXA1 were also included in these transcription factors.
18 FOXA1 was reported with a pioneering function in prostate cancer lineage differentiation and the
19 determination programs (45). These results revealed the high efficiency of our method to identify the
20 master transcription factors. Overall, these results indicated that ERG, as a master transcription factor,
21 highly correlates with prostate luminal cell lineage differentiation.

22 ERG regulates normal prostate epithelial cell lineage

23 To investigate the cell lineage plasticity of normal prostate epithelial cells, we isolated basal cells
24 (Epcam⁺/Cd49f^{high}/YFP⁻) and luminal cells (Epcam⁺/Cd49f^{low}/YFP⁺) from the anterior prostate of tamoxifen-
25 treated *Tmprss2*^{CreERT2/+}; *Rosa26*^{EYFP/EYFP} (T2Y) mice and characterized their histology features of *in vitro*
26 organoids and *in vivo* allografts (Supplemental Figure 2, A and B) (46). Immunofluorescence analysis of
27 luminal- and basal-cell-derived mouse prostate organoids demonstrated that both were comprised of Krt8-
28 positive inner luminal cell layers and Krt5-positive outer basal cell layers (Supplemental Figure 2C). UGSM
29 (urogenital sinus mesenchyme) tissue recombination assay is a useful *in vivo* method for prostate
30 development and prostate cancer research (47). Using prostate UGSM tissue recombination assay, we
31 further verified that both basal and luminal prostate epithelial cells from T2Y mice could reconstitute grafts
32 with normal prostate architecture with Krt8-positive luminal cell layers and Trp63-positive basal cell layers
33 in their renal grafts (Supplemental Figure 2D). Taken together, these results revealed that both prostate
34 luminal and basal cells maintain bi-potential plasticity under both *in vitro* organoid culture and *in vivo* renal
35 transplantation conditions, similar as previously reported (12, 16).

36 To further explore the role of ERG expression in prostate cell lineage differentiation, we isolated luminal
37 cells from the anterior prostates of tamoxifen-treated *Tmprss2*^{CreERT2/+}; *Rosa26*^{EYFP/ERG} (T2YE) mice and

1 control T2Y mice to generate prostate organoids. Luminal-cell derived YFP-positive organoids from T2YE
2 mice expressed ERG by IHC and were comprised of a single luminal layer of Krt8-positive cells with loss
3 of Trp63-positive basal cells, distinct from TY mice (Figure 2A). We further analyzed the organoids derived
4 from prostate epithelial cells of *Pb-Cre4; Rosa26^{ERG/ERG}* mice and *Tmprss2-ERG* knock-in mice,
5 respectively. We confirmed that the organoids with ERG expression from these two mice also maintained
6 luminal cell features (Supplemental Figure 2E). Next, we performed UGSM tissue recombination assays
7 with ERG-positive and ERG-negative luminal-cell-derived organoids that were generated from T2YE and
8 T2Y mice, respectively. The ERG-positive allografts from T2YE mice exhibited pure luminal cell features
9 with single layer of Krt8-positive luminal cells after 2 months of transplantation (Figure 2B). On the other
10 hand, the ERG-negative grafts from T2Y mice regenerated the normal prostate architecture composed of
11 both Krt8-positive luminal cells and Trp63-positive basal cells (Figure 2B). Together, these results suggest
12 that ERG overexpression could maintain the luminal cell lineage features under the conditions of both *in*
13 *vitro* 3D organoid culture and *in vivo* UGSM tissue recombination.

14 Given the potential role of ERG in lineage differentiation, we next sought to examine the differences of
15 lineage responses in both luminal cells and basal cells with ERG overexpression. Briefly, we performed
16 FACS sorting to isolate prostate luminal cells ($\text{Cd49}^{\text{low}}/\text{Cd24}^{\text{high}}$) and basal cells ($\text{Cd49}^{\text{high}}/\text{Cd24}^{\text{low}}$) from
17 *Rosa26^{ERG/ERG}* mice (Supplemental Figure 2F). Intracellular flow cytometry for Krt5 and Krt8/Krt18 verified
18 the cellular identities of the two populations. Next, we retrovirally transduced the Cre recombinase or a
19 retrovirus control into these basal-cell-derived (BCD) organoids or luminal-cell-derived (LCD) organoids.
20 Remarkably, ERG expression in luminal-cell-derived organoids (LCD-ERG) induced a single Krt8-positive
21 luminal cell layer with loss of Trp63-positive basal cell layer, strongly indicating the predominant role of
22 ERG in prostate cell luminal lineage differentiation (Figure 2, C and G). Basal-cell-derived organoids with
23 ERG expression (BCD-ERG) still maintained a Trp63-positive outer basal cell layer, but with an apparent
24 decrease in the number of Trp63-positive basal cells (Figure 2, D and G). In addition, we also performed
25 UGSM tissue recombination assays to validate these findings *in vivo*. Allografts derived from LCD-ERG
26 organoids exhibited pure luminal cell features with the absence of Trp63-positive basal cells after 2 months
27 of transplantation (Figure 2E). On the other hand, allografts derived from BCD-ERG organoids were
28 composed of both ERG⁺/Krt8⁺ luminal cells and ERG⁺/Trp63⁺ basal cells after 2 months of transplantation
29 (Figure 2E). Intriguingly, BCD-ERG allografts also exhibited predominant luminal features with absence of
30 Trp63-positive basal cells after 4 months of transplantation (Figure 2E). Collectively, these results
31 demonstrated that ERG promoted prostate luminal lineage differentiation with luminal-cell-derived
32 organoids more vulnerable to ERG-induced luminal lineage differentiation when compared to basal-cell-
33 derived organoids.

34 To identify whether ERG expression-induced lineage changes would associate with chromatin status, we
35 next performed integrative analyses of transcriptome (RNA-seq) and chromatin accessibility (ATAC-seq)
36 of LCD organoids and LCD-ERG organoids. By assessing the lineage changes in both mRNA expression
37 and chromatin accessibility, we identified 177 down-regulated basal signature genes, such as *Krt5*, *Krt14*

1 and *Trp63*, with decreased chromatin accessibility at their promoters in LCD-ERG organoids compared to
2 LCD organoids. On the other hand, 86 up-regulated luminal signature genes, such as *Krt8*, with increased
3 chromatin accessibility that were identified in LCD-ERG organoids compared to LCD organoids (Figure 2,
4 F and G). We further confirmed the increased H3K27ac levels of the up-regulated luminal signature genes
5 and attenuated H3K27ac levels of the down-regulated basal signature genes at their promoters in LCD-
6 ERG organoids compared to LCD organoids (Figure 2H). Collectively, these data suggested that ERG-
7 induced changes in the expression of lineage genes were associated with chromatin status including
8 chromatin accessibility and histone modifications, revealing the potential relationship mediated by ERG
9 between lineage regulation and chromatin status.

10 **ERG regulates prostate cancer cell lineage**

11 Given the above finding that ERG could promote luminal lineage differentiation in normal prostate epithelial
12 cells, we next investigated that whether ERG could regulate the luminal lineage differentiation of prostate
13 cancer cells. ERG rearrangements and loss of PTEN is regarded as one of the most concurrent genetic
14 events in human prostate cancer (36, 48, 49). We generated *Tmprss2*^{CreERT2/+}; *Pten*^{fl/fl}; *Rosa26*^{ERG/ERG}
15 (T2PE) mouse model to test ERG function in Pten loss condition. Due to heterogeneous recombination
16 efficiency, ERG is only expressed in a subset of Pten deleted regions. We examined the histological
17 features of the T2PE mice prostates at the time of 7 months after tamoxifen injection. Remarkably, ERG-
18 positive prostate epithelial cells with Pten deletion exhibited pure *Krt8*-positive luminal feature and the
19 mutual exclusions with *Krt5*-positive and *Trp63*-positive prostate basal epithelial cells (Supplemental
20 Figure 3A). On the other hand, ERG-negative, Pten-deleted prostate epithelial cells exhibited the increased
21 levels of basal differentiation with the expansion of *Krt5*-positive and *Trp63*-positive prostate epithelial cells
22 (Supplemental Figure 3A). Notably, neither combination of ERG and *Krt5* nor that of ERG and *Trp63*
23 showed co-localization, which were confirmed by co-staining assays of immunofluorescence
24 (Supplemental Figure 3, B and C). Next, we isolated both *Pten*^{-/-} and *Pten*^{-/-}; *R26*^{ERG} prostate cancer cells
25 individually from the harvested prostates of 20-month old *Pb-Cre4*; *Pten*^{fl/fl} mice and *Pb-Cre4*; *Pten*^{fl/fl}
26 *Rosa26*^{ERG/ERG} mice, respectively. We found that Pten loss prostate cancer cells differentiated towards
27 basal lineage with the predominant expansion of *Trp63*-positive basal cells, while ERG overexpression
28 maintained luminal features in the context of Pten null (Figure 3A). Compared to *Pten*^{-/-} organoids, the
29 *Pten*^{-/-}; *R26*^{ERG} organoids exhibited increased expression of luminal cell lineage markers, such as *Krt8* and
30 *Krt18*, and negative for basal cell lineage markers, such as *Krt5*, *Krt14* and *Trp63* (Supplemental Figure 3,
31 D and E).

32 To characterize the impact of ERG on global gene expression, we performed RNA-seq on *Pten*^{-/-} and
33 *Pten*^{-/-}; *R26*^{ERG} organoids. GSEA analysis showed that the prostate luminal cell signature genes were
34 highly enriched in *Pten*^{-/-}; *R26*^{ERG} organoids rather than in *Pten*^{-/-} organoids (Figure 3B). Notably, the
35 expression of luminal cell lineage markers (*Krt8* and *Krt18*) as well as basal cell lineage markers (*Krt5* and
36 *Trp63*) were all included in the differentially expressed genes (DEGs) (Figure 3C), consistent with the
37 results of qRT-PCR analyses and western blotting (Supplemental Figure 3, D and E). Here, we defined

1 ERG-upregulating luminal signature (177 genes, Supplemental Table 3) by using the overlap between up-
2 regulated DEGs of *Pten*^{-/-}; *R26*^{ERG} organoids and prostate luminal cell signature, therefore these genes
3 were rigorously associated with both ERG expression and prostate luminal lineage. On the other hand,
4 ERG-downregulating basal signature (86 genes, Supplemental Table 3) was also defined by using the
5 overlap between down-regulated DEGs of *Pten*^{-/-}; *R26*^{ERG} organoids and prostate basal cell signature.
6 Furthermore, ATAC-seq and H3K27ac ChIP-seq were performed to systematically investigate the
7 transcriptomic and epigenetic regulations associated with ERG expression. Consistently, through ATAC-
8 seq and H3K27ac ChIP-seq analyses, we identified the increases of both chromatin accessibility and
9 H3K27ac levels at the promoters of luminal cell lineage markers (Krt8 and Krt18), as well as the decreases
10 of chromatin accessibility and H3K27ac levels at the promoters of basal cell lineage markers (Krt5 and
11 Krt14) in *Pten*^{-/-}; *R26*^{ERG} organoids when compared to *Pten*^{-/-} organoids (Figure 3, D and E, Supplemental
12 Figure 3F).

13 To further validate above results *in vivo*, we performed UGSM tissue recombination assays of *Pten*^{-/-}
14 organoids overexpressing TMPRSS2-ERG fusion gene with HA tag or a control vector respectively.
15 Consistent with our previous work, ERG overexpression efficiently promoted tumor growth (Supplemental
16 Figure 3G) (36, 38). In addition, ERG expression promoted luminal differentiation of prostate cancer cells
17 under the Pten loss condition (Figure 3F), further suggesting the conserved role of ERG in regulating
18 prostate cell luminal features using multiple models. Collectively, these results suggested ERG as a master
19 regulator to manipulate luminal lineage of prostate cancer cells, tightly associated with epigenetic
20 regulation.

21 ERG but not AR is sufficient to maintain luminal lineage in Pten loss prostate cancer

22 AR is a well-known transcription factor highly expressed in luminal prostate cells but is dispensable for
23 Pten-loss mediated tumorigenesis in the mouse prostate (50, 51). To determine whether ERG or AR is
24 required to maintain luminal differentiation in prostate cancer, we performed CRISPR/Cas9-mediated AR
25 knock-out (AR-KO) and ERG knock-out (ERG-KO) in *Pten*^{-/-}; *R26*^{ERG} organoids. AR targeted genes, such
26 as *Fkbp5*, *Nkx3.1*, and *Mme*, were significantly decreased in *Pten*^{-/-}; *R26*^{ERG} organoids with AR-KO
27 (Supplemental Figure 4A). AR-KO in *Pten*^{-/-}; *R26*^{ERG} organoids still maintained their pure prostate luminal
28 histology (Krt8⁺/Trp63⁻) without obvious lineage changes, which was also evident *in vivo* UGSM tissue
29 recombination assays (Figure 4, A and B and Supplemental Figure 4, B and C). On the contrary, ERG-KO
30 in *Pten*^{-/-}; *R26*^{ERG} organoids resulted in the loss of pure luminal differentiation and appearance of many
31 cells that expressed basal lineage markers (Trp63, Krt5 and Krt14) in both 3D organoids and renal grafts
32 (Figure 4, A and B and Supplemental Figure 4, B and C). In addition, the dramatic decrease on the
33 percentage of Ki67 positive cells was attributable to ERG-KO, reinforcing the oncogenic role of ERG in the
34 context of Pten loss (Figure 4B).

35 Based on the expressions of prostate lineage genes, hierarchical clustering and PCA analyses were
36 performed to evaluate the similarities among AR-KO, ERG-KO and control *Pten*^{-/-}; *R26*^{ERG} organoids. AR-
37 KO showed only relatively small changes with control *Pten*^{-/-}; *R26*^{ERG} organoids, while ERG-KO organoids

1 were clearly separated from AR-KO and control *Pten*^{-/-}; *R26^{ERG}* organoids (Figure 4, C and D). Moreover,
2 remarkable increased basal cell lineage markers, such as *Krt5* and *Trp63*, were also verified in ERG-KO
3 organoids through RNA-seq DEGs analyses of AR-KO, ERG-KO and control *Pten*^{-/-}; *R26^{ERG}* organoids
4 (Figure 4E). Furthermore, GSEA was performed to evaluate the changes of prostate cell lineage, revealing
5 that ERG-downregulating basal signature genes were significantly enriched in ERG-KO organoids, while
6 ERG-upregulating luminal signature genes were enriched in control *Pten*^{-/-}; *R26^{ERG}* organoids (Figure 4, F
7 and G). Consistently, no significant differences were identified in the expression of prostate lineage genes
8 between AR-KO and control (Supplemental Figure 4D). These findings further confirmed the importance
9 of ERG in the lineage regulation of prostate cancer cells. Moreover, in the context of both *Pten* loss and
10 ERG expression, AR deletion had no significant effects on prostate cell lineage differentiation, suggesting
11 that luminal lineage regulation in primary prostate cancer cells does not rely on AR.

12 ERG induces the global changes in chromatin interactions

13 Chromatin dynamics are highly correlated with cell fate reprogramming (52-54). To examine whether ERG
14 expression induces changes in chromatin interactions, we performed Bridge Linker-Hi-C (BL-Hi-C)(55) in
15 LCD, LCD-ERG, *Pten*^{-/-} and *Pten*^{-/-}; *R26^{ERG}* organoids. On average, each library contained over 470 million
16 unique pairwise contacts, which had high quality with over 80% percentage of *cis*-pairs in total valid pairs
17 (Supplemental Figure 5, A and B). After the systematic loop calling, we found that ERG expression resulted
18 in the increased number of interaction loops in the contexts of both *Pten* intact and *Pten* loss (Figure 5A
19 and Supplemental Figure 5C). Circos plot to globally visualize the differential interactions (DIs) across the
20 21 chromosomes (chromosome 1-19, X and Y) demonstrated that ERG expression enhanced chromatin
21 interactions (Figure 5B and Supplemental Figure 5D). To investigate the associations between chromatin
22 interactions and gene expression, we next correlated DEGs with DIs of *Pten*^{-/-}; *R26^{ERG}* organoids
23 compared to *Pten*^{-/-} organoids (Figure 5C). Remarkably, the percentages of down-regulated DEGs with
24 DIs reached to 81% (711/873, *p*=5.89e-83), including *Trp63*, and *Krt5*. Moreover, 82% (1910/2342,
25 *p*=2.77e-176) of up-regulated DEGs were found with DIs, including *Krt8* and *Krt18*. When similar analyses
26 were performed on both LCD-ERG and LCD organoids in the *Pten*-intact setting, we found that 79%
27 (1270/1612, *p*=1.82e-118) of down-regulated DEGs as well as 80% (802/1001, *p*=4.61e-89) of up-
28 regulated DEGs were both mapped with DIs respectively (Supplemental Figure 5E). To further explore the
29 enrichment pattern of chromatin interactions in prostate lineage related loci, the *Krt8* and *Krt18* genomic
30 regions in chromosome 15 were chosen with contact maps shown at 20- and 1-kb resolution. Upon close
31 inspections on these regions, we observed that enhanced chromatin interactions were detected in ERG-
32 expressing organoids, including both *Pten*^{-/-}; *R26^{ERG}* organoids (Figure 5D) and LCD-ERG organoids
33 (Supplemental Figure 5F). These observations indicate that the gene expression changes induced by ERG
34 were highly associated with the alterations of chromatin interactions. To directly characterize the role of
35 ERG in chromatin interactions, we binned the genome into 1-Mb intervals and analyzed the total DIs in
36 these genomic bins respectively. Importantly, we observed the preferential ERG binding occupancy of
37 genomic bins with more DIs (Figure 5E and Supplemental Figure 5G), such positive correlation was also

1 confirmed by Pearson correlation analysis (Figure 5F and Supplemental Figure 5H). Taken together, these
2 results suggest that ERG binding occupancy significantly correlated with differential chromatin interactions,
3 which also highly associated with differentially expressed genes, indicating the potential role of ERG in
4 transcriptional programs through re-organizing chromatin interactions to facilitate cell lineage regulation.

5 **Deletion of a specific ERG binding site disrupts the function of ERG in prostate lineage regulation**

6 Given the associations between transcriptional regulations induced by ERG and chromatin interactions,
7 we next asked whether such associations were functionally related to prostate lineage regulation. Through
8 integrating motif enrichment analysis with transcriptional expression changes generated from ATAC-seq
9 and RNA-seq respectively, we found that *Trp63* exhibited high potential as a master transcription factor in
10 both LCD organoids and *Pten*^{-/-} organoids, both of which contained cells with basal cell differentiation
11 (Supplemental Figure 6A). Concordantly, ERG played a pivotal role in prostate lineage regulation that was
12 verified in both LCD-ERG organoids and *Pten*^{-/-}; *R26*^{ERG} organoids (Supplemental Figure 6A). Indeed,
13 *Trp63* is a known master regulator of the prostate basal cell lineage and *Trp63* knockout mice failed to
14 develop basal cells (56, 57).

15 To determine whether *Trp63* expression could be regulated by ERG through altering chromatin
16 interactions, we first examined the chromatin interactions of the *Trp63* (Δ Np63) loci in *Pten*^{-/-} and *Pten*^{-/-};
17 *R26*^{ERG} organoids by BL-Hi-C. The attenuated chromatin interactions of the *Trp63* loci were identified,
18 whereas the chromatin interactions of its neighboring gene loci, *Lepre1*, were remarkably increased in
19 *Pten*^{-/-}; *R26*^{ERG} organoids compared to *Pten*^{-/-} organoids (Figure 6A). In addition, almost all the chromatin
20 interactions of the *Trp63* loci were distributed between the loci and the region at 400 kb upstream of the
21 *Trp63* promoter in both *Pten*^{-/-} and *Pten*^{-/-}; *R26*^{ERG} organoids. Intriguingly, this region was accompanied by
22 a strong ERG binding site in *Pten*^{-/-}; *R26*^{ERG} organoids (Figure 6A). This result indicated a potential role of
23 this ERG binding site in mediating the associations between *Trp63* expression and chromatin interactions.
24 We next specifically investigated the chromatin interactions and histone modifications between this distal
25 ERG binding site and *Trp63* loci. Upon close inspections on this region, we observed an enhancer strongly
26 enriched for the H3K27ac histone mark in ERG-negative LCD organoids and *Pten*^{-/-} organoids, suggesting
27 this is a bona fide enhancer for *Trp63* in prostate cells (Figure 6B and Supplemental Figure 6B). Upon
28 ERG expression in LCD-ERG organoids and *Pten*^{-/-}; *R26*^{ERG} organoids we did not observe ERG binding
29 to *Trp63* gene body, but to its distal enhancer (Figure 6B and Supplemental Figure 6B). Remarkably, there
30 were significantly decreased H3K27ac signals at the distal enhancer as well as chromatin interaction loops
31 with the *Trp63* promoter upon ERG binding site in both *Pten*^{-/-}; *R26*^{ERG} (Figure 6B and 6C) and LCD-ERG
32 organoids (Supplemental Figure 6, B and C). These results indicate a functional link between ERG-
33 directed re-wiring of chromatin interactions and epigenetic modifications to regulate gene expression.

34 To further determine whether ERG could directly repress *Trp63* expression through the distal binding-
35 induced attenuations on chromatin interactions, we used CRISPR/Cas9 system to specifically delete this
36 ERG binding site in *Pten*^{-/-}; *R26*^{ERG} and LCD-ERG organoids. Results of Sanger sequencing confirmed the

1 *Pten*^{-/-}; *R26^{ERG}* organoid clones with the successful ERG binding site heterozygous knock-out
2 (Supplemental Figure 6D). Notably, both qRT-PCR and western blotting assays revealed that deletion of
3 the ERG binding site (EB-KO) resulted in the increased expression of Trp63 and the decreased expression
4 of both Krt8 and Krt18 in *Pten*^{-/-}; *R26^{ERG}* organoids (Figure 6D and Supplemental Figure 6E) as well as
5 LCD-ERG organoids (Supplemental Figure 6, H and I). To further characterize the global changes of
6 prostate lineage induced by EB-KO, we compared three independent EB-KO organoid clones with control
7 *Pten*^{-/-}; *R26^{ERG}* organoid clones using ERG-regulating prostate lineage genes. GSEA demonstrated that
8 EB-KO was significantly associated with the reduced expression of ERG-upregulating luminal signature
9 genes and the increased expression of ERG-downregulating basal signature genes (Figure 6, E and F).
10 Furthermore, PCA analysis revealed the distinct relationships among EB-KO, ERG-KO and control in each
11 of their *Pten*^{-/-}; *R26^{ERG}* organoids. Intriguingly, ERG control showed a closer relationship with EB-KO than
12 that with ERG-KO, suggesting that EB-KO could partially phenocopy the biological effects of ERG-KO
13 (Supplemental Figure 6F). Given the effects of EB-KO on lineage changes *in vitro*, we next sought to
14 investigate the effects of EB-KO *in vivo* using UGSM tissue recombination assays. Remarkably, outer layer
15 with Trp63⁺/ERG⁺ and Krt5⁺/ERG⁺ basal cells could be widely identified in EB-KO-derived allografts,
16 indicating the EB-KO-induced differentiation of prostate basal lineage *in vivo* (Figure 6,G and H and
17 Supplemental Figure 6G).

18 To validate the existence of the distal ERG binding site in human prostate cells, we analyzed a dataset
19 that was previously generated from RWPE-1 cells with ERG overexpression (58). Remarkably, we found
20 the actual existence of distal ERG binding site in ERG-expressing RWPE-1 cells (Supplemental Figure
21 7A). Moreover, the homologies for these binding sites in prostate cells between human and mouse were
22 also confirmed by the additional analyses using NCBI BLAST tools (Supplemental Figure 7B). We next
23 sought to characterize the lineage changes induced by ERG expression in human prostate cells.
24 Consistent with those results found in mouse prostate cells, ERG expression resulted in the enhanced
25 luminal phenotype with the increased expression of *KRT8* and *KRT18*, and attenuated the basal phenotype
26 indicated by the reduced expression of *TP63*, *KRT5* and *KRT14* (Supplemental Figure 7,C, D and E).

27 In summary, our above results demonstrated that the function of distal ERG binding site in ERG-
28 mediated maintenances and regulation on prostate luminal cell features, reflecting that ERG orchestrates
29 the plasticity of prostate luminal lineage through chromatin interactions. In addition, the existence of the
30 distal ERG binding site in human prostate cells reveals a conserved role of ERG in prostate luminal lineage
31 regulation.

32 Discussion

33 Definitive evidence collected during past years supports the close associations between activity of
34 transcription factors (TFs) and cell lineage determination in various biological processes, including
35 development, immune response and cancer progression (59-62). Particularly, primary prostate cancer is
36 characterized with both luminal cells expansion and loss of basal cells. Therapeutic treatments on prostate

1 cancers can select for lineage alterations with the transitions from luminal cell lineage toward
2 neuroendocrine and basal differentiation. Numerous studies have focused on lineage transitions in CRPC.
3 However, the lineage determining mechanism of primary prostate luminal cancers are still largely unknown.
4 Here, we have successfully identified ERG as a master regulator in regulating prostate cancer cell luminal
5 lineage through chromatin interaction changes.

6 TMPRSS2-ERG fusion is a common genetic alteration event (~50%), which drives ERG expression
7 occurring in the early-stage of prostate cancer (30). We identified ERG as a master regulator in prostate
8 cancer lineage regulation through the integrating analysis of three high-quality human prostate cancer
9 cohorts (Figure 1C). It is widely accepted that both prostate basal and luminal cells have bi-potential
10 plasticity, which was found in 3 dimensional organoids and UGSM tissue recombination assay (12, 16). In
11 this study, we found that ERG expression strongly facilitates the differentiations towards luminal phenotype
12 in both luminal organoids and basal organoids, consistent with previous findings that ERG expressions
13 induced a significant decrease in the proportion of prostate basal cells (63, 64). Moreover, our current
14 study indicates that luminal cells tend to be more liable for lineage regulation conducted by ERG, when
15 compared with basal cells. Together with their clinical relevance, our findings suggest the important role of
16 ERG in initiation of primary prostate cancer with luminal cell features.

17 Previous studies have provided some insights into the functional role of androgen receptor (AR) in cell
18 lineage regulation in both normal prostate development and prostate cancer. *In vivo* tissue recombination
19 modeling suggests that stromal AR, but not epithelial AR, is essential for prostate developmental growth
20 and morphogenesis (65, 66). Consistent with these findings, recent mouse lineage-tracing studies have
21 demonstrated that in adult prostate, specific AR deletion in luminal cells has little effects on luminal cell
22 differentiation (50). As for prostate cancer, highly analogous to the previous findings that prostate tumors
23 with AR knockout were characterized by luminal features in mouse models of *Pb-Cre*⁺; *Pten*^{flox/flox}; *AR*^{flox/Y}
24 (51) and *Nkx3.1*^{CreERT2/+}; *AR*^{flox/Y}; *Pten*^{flox/flox}; *R26*^{YFP/+} (50, 54), our results (Figure 4, A and B) indicate that
25 the luminal lineage differentiations for prostate cancer cells are not directly dependent on AR expression,
26 providing the novel insights that ERG can directly determine the prostate cancer cell luminal lineage
27 through the changes of global chromatin interactions. Consistently, deletions of ERG or ERG specific
28 binding site disrupt the prostate luminal lineage, leading to the differentiation of prostate basal cell lineage
29 (Figure 4, A and B and Figure 6). However, there are also limitations for our study. The percentage of
30 TMPRSS2-ERG fusion is nearly 50% in primary prostate cancer, the other half without ERG expression
31 also display a luminal cell phenotype. Also, both human and mouse normal prostate luminal cells are lack
32 of ERG expression. Therefore, further researches to define other master regulators with the function in
33 ERG-negative prostate cancer or normal prostate lineage regulation are warranted, which may provide
34 rationale for a novel therapeutic strategy and prostate development. Further investigations to dissect
35 cancer-stage-specific roles of luminal-cell AR in both primary prostate cancer and advanced prostate
36 cancer will be really necessary.

37 Furthermore, PTEN deletion is another common genetic alteration event in primary prostate cancer (31,

1 67). It was demonstrated that Pten deletion led to basal differentiation, validated by a significant increase
2 of Krt5⁺/Trp63⁺ cells with disease progression (68). Consistently, comparing with wild-type luminal
3 organoids, our Pten null organoids also exhibited basal differentiation (Figure 3A). This could explain the
4 clinical relevance that PTEN loss significantly occurs with ERG fusion, which may facilitate cancer cells to
5 maintain both proliferation capacity and luminal characteristics. Gradually increased incidents of PTEN
6 gene deletion and PI3K signaling pathway activation were identified during prostate cancer progression
7 (48, 49, 69). Therefore, our study demonstrates a possible molecular mechanism underlying the basal
8 lineage plasticity in advanced prostate cancer.

9 TMPRSS2-ERG translocation represents a distinct subset on the *cis*-regulatory landscape in primary
10 prostate tumors (39). ERG overexpression was known to induce the global changes in chromatin
11 conformation (70). Here, we have further proved that ERG overexpression globally induces chromatin
12 interaction changes (Figure 5, A and B and Supplemental Figure 5, C and D). Moreover, these chromatin
13 interaction changes are associated with the coordinated DEG expressions. Through a distant binding,
14 ERG can regulate Trp63 expression by chromatin interactions. Importantly, deletion of this binding site
15 remarkably reverses the lineage plasticity towards basal differentiation. Compelling data in supporting this
16 hypothesis has also been obtained from the re-analysis on the publicly available human datasets with ERG
17 ChIP-seq, which can validate the conserved existence of ERG binding site in human prostate cells (58).
18 Therefore, we have successfully obtained a novel finding of the conserved ERG binding site that
19 contributes to prostate lineage plasticity. In addition, we have also provided a novel research paradigm for
20 the investigation on how TFs regulate their responsive genes through chromatin interactions instead of
21 direct binding at the gene body regions.

22 Taken together, ERG is identified as a master transcription factor to manipulate plasticity in prostate cell
23 lineage differentiation towards the pro-luminal programing through chromatin interactions. Our findings can
24 propose a novel working model for elucidating the detailed mechanisms for pursuing a fundamental and
25 long-standing goal aimed at how prostate cancer cells actively maintain luminal lineage identities, as well
26 as for providing the further supporting researches on the role of lineage plasticity in prostate cancer
27 initiation.

28

29

1 **Figure legends**

2 **Figure 1. Identification for the master transcription factors that have the potential to regulate**
3 **prostate cancer lineage.** **(A)** Analysis pipeline to identify the master transcription factors involved in
4 prostate cancer lineage differentiation containing three steps (1) cohorts filtering to select prostate
5 cancer cohorts for downstream analysis, (2) cancer subtyping to categorize prostate cancer samples
6 into several subtypes by two subtyping methods respectively and (3) TFs identification to define master
7 TFs with high reproducibility and confidence. **(B)** Venn diagram showing the number of master TFs
8 generated from overlapped TFs that occurs in at least two of the three cohorts (13 of MSKCC and
9 FHCRC, 99 of MSKCC and TCGA, 22 of TCGA and FHCRC, 20 of all the three cohorts). **(C)** Bubble
10 plot of the 154 master TFs. The value for 3 axes represents $-\log_{10}(p\text{-value})$ calculated from Pearson's
11 chi-squared test for MSKCC (x axis), FHCRC (y axis) and TCGA (z axis) respectively. **(D-E)** GSEA
12 enrichment plot of ERG-high samples versus ERG-medium/low samples from FHCRC cohorts **(D)** (top)
13 and MSKCC cohorts **(E)** (bottom) using signature genes of prostate luminal cells.

14 **Figure 2. ERG promotes luminal lineage differentiation of normal prostate epithelial cells.** **(A)** H&E
15 and ERG, Trp63 and Krt8 IHC staining of luminal-cell-derived organoids generated from T2YE (top)
16 and T2Y (bottom) mice, respectively. **(B)** H&E and ERG, Trp63 and Krt8 IHC staining of allografts
17 derived from luminal-cell-derived organoids generated from T2YE (top) and T2Y (bottom) mice
18 respectively. **(C-D)** H&E and ERG, Trp63 and Krt8 IHC staining of luminal-cell-derived (LCD) organoids
19 **(C)** and basal-cell-derived (BCD) organoids **(D)** generated from *Rosa26^{ERG/ERG}* mice, infected with
20 retrovirus carrying Cre recombinase (MSCV-Cre, bottom) or control backbone (MSCV-Vector, top). **(E)**
21 H&E and Krt8, Trp63 and ERG IHC staining of allografts derived from LCD-ERG organoids (top) and
22 BCD-ERG organoids (short term for 2 months, middle; long term for 4 months, bottom), red dashed line
23 indicates the regions with predominant luminal phenotype. **(F)** Heatmap of RNA-seq showing the
24 expression of down-regulated basal lineage genes and up-regulated luminal lineage genes in LCD and
25 LCD-ERG organoids respectively. **(G-H)** Profile plot (top) and heatmap (bottom) of ATAC-seq **(G)** and
26 H3K27ac ChIP-seq **(H)** around the transcriptional start site (TSS) of down-regulated basal lineage
27 genes and up-regulated luminal lineage genes in LCD and LCD-ERG organoids respectively. Scale
28 bars, 50 μm .

29 **Figure 3. ERG promotes luminal differentiation of prostate cancer cells under the Pten loss**
30 **condition.** **(A)** H&E and ERG, Trp63, Krt8 and Pten IHC staining of WT (top), *Pten*^{-/-} (middle) and *Pten*
31 ^{-/-}; *R26^{ERG}* (bottom) organoids respectively. **(B)** GSEA enrichment plot of *Pten*^{-/-}; *R26^{ERG}* organoids versus
32 *Pten*^{-/-} organoids using prostate luminal cell signature genes. **(C)** Heatmap showing the expression of
33 ERG-upregulating luminal cell signature genes and ERG-downregulating basal cell signature genes in
34 *Pten*^{-/-} and *Pten*^{-/-}; *R26^{ERG}* organoids from RNA-seq. **(D-E)** Profile plot (top) and heatmap (bottom) of
35 ATAC-seq **(D)** and H3K27ac ChIP-seq **(E)** around the transcriptional start site (TSS) of ERG-
36 upregulating luminal cell signature genes and ERG-downregulating basal cell signature genes in *Pten*
37 ^{-/-} and *Pten*^{-/-}; *R26^{ERG}* organoids respectively. **(F)** H&E and HA, Trp63 and Krt8 IHC staining of allografts

1 derived from UGSM tissue recombination assay in SCID mice 8 weeks after transplantation of
2 organoids overexpressing the TMPRSS2-ERG fusion protein with HA tag (right) or a control vector (left).
3 Scale bars, 50 μ m.

4 **Figure 4. ERG not AR is required for sustaining luminal phenotype of prostate cancer cells in the**
5 **context of Pten loss. (A)** H&E and ERG, Trp63, Krt8 and AR IHC staining of *Pten*^{-/-}; *R26*^{ERG} organoids
6 infected with a lentiviral CRISPR/Cas9 carrying guide RNA targeting the AR (AR-KO, left) and ERG
7 (ERG-KO, middle) and a control vector (Control, right), Red arrows indicate Trp63 positive cells. **(B)**
8 H&E and ERG, AR, Trp63, Krt8 and Ki67 IHC staining of grafts derived from UGSM tissue
9 recombination assays in SCID mice 8 weeks after transplantation of *Pten*^{-/-}; *R26*^{ERG} organoids with AR-
10 KO (top), ERG-KO (middle) and Control (bottom) respectively. **(C-D)** Clustering dendrogram **(C)** and
11 PCA plot **(D)** for ERG-KO, AR-KO and Control organoids using prostate cell lineage signature genes.
12 **(E)** Heatmap showing the expression of lineage-related differentially expressed genes in ERG-KO, AR-
13 KO and Control organoids. **(F-G)** GSEA enrichment plot of ERG-KO versus Control using ERG-
14 downregulating basal cell signature genes **(F)** and ERG-upregulating luminal cell signature genes **(G)**
15 respectively. Scale bars, 50 μ m.

16 **Figure 5. ERG globally alters chromatin interactions that are associated with gene expression**
17 **changes. (A)** Venn plot showing differential chromatin interactions between *Pten*^{-/-} and *Pten*^{-/-}; *R26*^{ERG}
18 organoids, orange circle and light blue circle represent chromatin interactions of *Pten*^{-/-}; *R26*^{ERG} and *Pten*
19 ^{-/-} respectively. **(B)** Circos plot depicting chromosomes 1-19, X and Y on the basis of BL-Hi-C data and
20 RNA-seq data, indicating DIs including *Pten*^{-/-}; *R26*^{ERG} -specific DIs(orange) and *Pten*^{-/-}-specific DIs(light
21 blue), DEGs including up-regulated DEGs of *Pten*^{-/-}; *R26*^{ERG} (red) and down-regulated DEGs of *Pten*^{-/-};
22 *R26*^{ERG} (green), respectively. **(C)** Pie plots showing the percentage of down-regulated DEGs with DIs
23 (top) and up-regulated DEGs with DIs (bottom). **(D)** The normalized interaction heatmaps of *Pten*^{-/-};
24 *R26*^{ERG} (left), *Pten*^{-/-} (middle), and the difference (right) at 20 kb resolution (top) and 1 kb resolution
25 (bottom) of chromosome 15, including Krt8 and Krt18 gene loci. **(E)** Plot showing the density of ERG
26 binding (Kb) at each of the ranked (N) differential interacting chromatin loci of 1-Mb intervals. **(F)**
27 Correlation plot showing the significant positive relationship between ERG binding density and the
28 number of DIs in 1-Mb intervals.

29 **Figure 6. Deletion of a specific ERG binding site impaired the function of ERG in prostate lineage**
30 **regulation. (A)** 3D signal of BL-Hi-C showing chromatin interactions of *Trp63* loci and its neighboring
31 gene *Lepre1* loci in *Pten*^{-/-} (top) and *Pten*^{-/-}; *R26*^{ERG} (bottom) organoids respectively, red box indicates
32 the highly interacting region of *Trp63* loci, blue box indicates the highly interacting region of *Lepre1*
33 loci. **(B)** 3D signal of BL-Hi-C showing chromatin interactions between the distal ERG binding site and
34 *Trp63* gene body region in *Pten*^{-/-} (top) and *Pten*^{-/-}; *R26*^{ERG} (bottom) organoids respectively. Red arrow
35 indicates the distal ERG binding site. **(C)** Pearson's Chi-squared test to evaluate the differences of
36 interaction loops density between *Pten*^{-/-} and *Pten*^{-/-}; *R26*^{ERG} organoids. **(D)** QRT-PCR analysis of *Trp63*,
37 *Krt8* and *Krt18* mRNA expression in EB-KO and Control of *Pten*^{-/-}; *R26*^{ERG} organoids (two-tailed t-test,

1 mean \pm sem). **(E)** Heatmap of RNA-seq for EB-KO and Control of *Pten*^{-/-}; *R26^{ERG}* organoids using
2 differentially expressed prostate cell lineage signature genes. **(F)** GSEA enrichment plot of EB-KO
3 organoids versus Control organoids using ERG-downregulating basal cell signature genes (left) and
4 ERG-upregulating luminal cell signature genes (right) respectively. **(G)** ERG, Krt5 and DAPI IF staining
5 for allografts of UGSM tissue recombination assays derived from EB-KO and Control organoids, arrows
6 indicate ERG⁺/Trp63⁺ cells. **(H)** ERG, Trp63 and DAPI IF staining of allografts from UGSM tissue
7 recombination assays derived from EB-KO and Control organoids, arrows indicate ERG⁺/Trp63⁺ cells.
8 Scale bars, 50 μ m.

9 **Figure 7. Schematic diagram for ERG drives prostate cell fate reprogramming through**
10 **orchestrating chromatin interactions. (A)** Most of prostate cancers are characterized by luminal cells
11 expansion and basal cells absence, compared to normal prostate architecture that are composed of
12 both luminal cells and basal cells (top). ERG overexpression driven by TMPRSS2-ERG fusion is one
13 of the most common genetic alteration events in prostate cancer, which can alter chromatin interactions
14 (middle). Since chromatin architecture is closely associated with epigenetic modifications and mRNA
15 transcription, ERG-induced alterations in chromatin interactions may cause dysregulation of genes
16 including Trp63. ERG overexpression reduces chromatin interactions and H3K27ac levels across the
17 region from a distal ERG binding site to Trp63 gene body, which further causes decreased mRNA levels
18 of Trp63 to facilitate the function of ERG in promoting luminal lineage differentiation (bottom).

19

20

21

22

23

24

25

26

27

28

29

30

31

1 **Methods**

2 **Analysis pipeline for identification of the master transcription factors.** Prostate cohorts with more
3 than 100 samples and RNA expression profiles were selected for downstream analysis. After prostate
4 cancer cohorts filtering, further cancer subtyping was performed based on the three selected cohorts
5 including FHCRC (158 samples), MSKCC (150 samples) and TCGA (498 samples). For each cohort,
6 integrative classifier was performed to identify the transcription factors which correlated with
7 epigenetics modifications, and PAM50 classifier was performed to define prostate cancer lineage-
8 related transcription factors. In detail, to identify the potential of a TF as master regulator, samples of
9 every cohort were firstly divided into three groups according to this TF expression levels, termed as
10 TF-high, TF-medium and TF-low. Meanwhile, samples were also categorized into another three groups
11 using PAM50 classifier or integrative classifier using their own marker genes respectively. PAM50
12 classifier was performed originally based on the algorithm(42). We downloaded source code from the
13 University of North Carolina Microarray Database (<https://genome.unc.edu/pubsup/breastGEO/>). We
14 excluded normal-like subtype and HER2 subtype similarly as previous work(41). Integrative classifier
15 was performed based on 285 genes using unsupervised hierarchical clustering(40). Next, Pearson's
16 chi-squared test was performed to evaluate the correlation between its expression levels and subtypes,
17 and overlapped TFs in integrative classifier and PAM50 classifier were defined as overlapped TFs.
18 Taking confidence into consideration, overlapped TFs that occurred in at least two cohorts were defined
19 as master TFs for further study. To visualize the significance of each master TF in all of the three cohorts,
20 we performed bubble plot based on transformed p-value of each cohorts ($p\text{-value}=\sqrt{p_PAM * p_INT}$,
21 p_PAM was calculated by Pearson's chi-squared test based on PAM50 classifier, p_INT was calculated
22 by Pearson's chi-squared test based on integrative classifier).

23 **Gene targeting and mouse breeding.** All mouse studies are approved by SIBCB Animal Care and
24 Use Committee. Mice were bred and maintained according to Shanghai Laboratory Animal Center
25 Institutional Animal Regulations. *Tmprss2*^{CreERT2/+}(46), *Pten*^{fl/fl}(71), *Rosa26*^{EYFP/EYFP}(72),
26 *Rosa26*^{ERG/ERG}(38), and *Pb-Cre4*(73) mice were previously described and all in the C57/B6 background.
27 The *Tmprss2*^{CreERT2/+}; *Rosa26*^{EYFP/EYFP} (T2Y), *Tmprss2*^{CreERT2/+}; *Rosa26*^{EYFP/ERG} (T2YE),
28 *Tmprss2*^{CreERT2/+}; *Pten*^{fl/fl}; *Rosa26*^{ERG/ERG} (T2PE), *Rosa26*^{ERG/ERG}, *Tmprss2-ERG* knock-in and *Pb-*
29 *Cre4*; *Rosa26*^{ERG/ERG} mice were generated through standard mouse breeding within the SIBCB animal

1 facility.

2 **Mouse procedures.** For tamoxifen (Toronto Research Chemicals) treatment of T2Y, T2YE and T2PE
3 mice, tamoxifen was dissolved in 20 mg/mL corn oil and injected intraperitoneally to 8-week-old mice
4 at a dose of 3 mg every other day for three doses. Mice were euthanized as indicated timeline after the
5 first tamoxifen dose.

6 **Isolation and culture of mouse prostate epithelial cells.** Mouse prostates were dissected and
7 minced with scissors, then digested with Collagenase/Hyaluronidase (STEMCELL, 07912) for 30
8 minutes with every 10-minute shaking in cell incubator. And subsequently digested with TrypLE (GIBCO,
9 12605-028) for another 15 minutes with shaking. DMEM (GIBCO, C11995500BT) with 10% FBS was
10 added to stop the digestion and then cells were centrifuged for collection. Cells were cultured and
11 processed as described previously(12, 74).

12 **Flow cytometry and fluorescence-activated cell sorting (FACS).** Flow cytometry cell sorting and
13 analysis of mouse prostate cells were performed on an Aria II (BD Biosciences). Single cell suspensions
14 of T2Y mice anterior prostates were stained using CD49f-PE (eBioscience, eBioGoH3, 1:200) and DAPI
15 (4',6-diamidino-2-phenylindole). *Rosa26^{ERG/ERG}* mice prostate cells were stained using a CD49f-PE
16 (eBioscience, eBioGoH3, 1:200), Cd24-FITC (biolegend, M1/69, 1:200) and DAPI. Sorted murine
17 prostate basal cells and luminal cells were fixed in Foxp3 Fixation/Permeabilization buffer (eBioscience,
18 00-5521-00) and stained with CK5- Alexa Fluor® 488 antibody (Abcam, ab193894, 1:500) or CK8+18-
19 Alexa Fluor® 488 antibody (Abcam, ab192467, 1:500).

20 **UGSM tissue recombination assays.** UGSM tissue recombination assays were performed as
21 described previously(47). Briefly, urogenital sinus mesenchyme (UGSM) cells were dissociated from
22 urogenital sinus of day 18 rat embryos. Added 2-4mL 1% trypsin to the 3.5 cm dish and digested around
23 20 minutes at 4 degrees until the UGSM was fluffy. Wash the UGSM with DMEM with 10% FBS for
24 twice. Transfer the UGSM cells to 4-6mL 0.1% collagenase B with 1%DNase and incubated at 37
25 degrees. Shaking vigorously every 10 minutes and carefully collected supernatant, then filtered cell
26 suspension through 70µm strainer. Wash the UGM cells with DMEM with 10% FBS for twice to remove
27 collagenase B. Mix mouse prostate organoids with UGM cells at appropriate ratio. Resuspend the cell
28 mix with collagen for culture overnight. The cell pellets were transplanted under renal capsule of 6-

1 week old SCID mice. The grafts were collected and analyzed as indicated timeline after transplantation.

2 **Lentiviral CRISPR/Cas9-mediated knock-out.** To knock out ERG and AR in mice organoids, we
3 designed three pairs of single guide RNA (sgRNA) sequences for human ERG and mouse AR using
4 the design tool from the Feng Zhang Lab (MIT) and cloned the targeting sequences into the
5 LentiCRISPRv2 vector obtained from Addgene. Lentiviruses for ERG sgRNAs, AR sgRNAs or vector
6 control were generated in 293T cells by standard methods using lentiviral packaging vector. Mice and
7 human prostate cells were infected with lentivirus for 48 hours and selected with 2 µg/mL puromycin
8 for 7 days. ERG protein level and organoids histology were analyzed 21 days after infection. To knock
9 out the distal ERG-binding site with the length of 880 bp, four single guide RNAs were designed
10 including two upstream sgRNAs and two downstream sgRNAs which were subsequently cloned into
11 codon-optimized SpCas9 plasmids PX330-RFP and PM458-GFP (derivative of PX330 backbone)
12 respectively. Transient transfection was conducted to transfet above plasmids into LCD-ERG
13 organoids and *Pten*^{-/-}; *R26*^{ERG} organoids with X-tremeGENE™ 9 transfection reagent (Roche,
14 6365779001). After 2 days, GFP/RFP double positive cells were sorted into 96-well plate using FACS.
15 Knock-out efficiency was identified by PCR with 3 EB-KO-identify primers and Sanger sequencing. The
16 target guide sequences and EB-KO-identify primers are listed as followed:

17 sgERG-1-F: CACCGACACCGTTGGGATGAACTA;

18 sgERG-1-R: AAACTAGTTCATCCAACCGGTGTC;

19 sgERG-2-F: CACCGTTCTCCATCGATGTTC;

20 sgERG-2-R: AACCGAACATCGATGGAAAGGAAC;

21 sgERG-3-F: CACCGTACAGACCATGTGCGGCAG;

22 sgERG-3-R: AACCTGCCGCACATGGTCTGTAC;

23 sgAR-1-F: CACCGGTGGAAAGTAATAGTCGAT;

24 sgAR-1-R: AACATCGACTATTACTTCCACC;

25 sgAR-2-F: CACCGCACTACGGAGCTCTCACTTG;

26 sgAR-2-R: AACCAAGTGAGAGCTCCGTAGTGC;

1 sgEB-1-F: CACCGATATAGCACCTCGGTTCCCA;
2 sgEB-1-R: AAACTGGAACCGAGGTGCTATATC;
3 sgEB-2-F: CACCGGTGGAAGAGGGCATCGAATAG;
4 sgEB-2-R: AACCTATTGATGCCTCTTCCACC;
5 sgEB-3-F: CACCGATGTGATGCCTTCAGGCACG;
6 sgEB-3-R: AAACCGTGCCTGAAGGCATCACATC;
7 sgEB-4-F: CACCGCTGGAACCGAGGTGCTATA;
8 sgEB-4-R: AAACTATAGCACCTCGGTTCCCAGC;
9 EB-KO-identify-F: TTGACAATATTGGAATTAGACGATAT;
10 EB-KO-identify-R1: AGTCACTCATGAGCAGCGTC;
11 EB-KO-identify-R2: ACAACAACTTGACCGTGTGG;
12 sgControl-F: CACCGGGCGAGGAGCTGTTCACCG;
13 sgControl-R: AAACCGGTGAACAGCTCCTCGCCC;
14 **Stable gene expression.** cDNAs for human prostate cancer *TPRSS2-ERG* fusion was cloned into
15 retroviral-based vector MSCV-C-HA (Addgene). Retrovirus was produced in 293T cells by standard
16 methods using Amphi packaging vector. Prostate organoids were infected and selected with 2 μ g/mL
17 puromycin for 7 days at 48 hours after infection for subsequent histology and graft studies.
18 **Immunohistochemistry.** Organoids were fixed in 4% paraformaldehyde (Electron Microscopy
19 Sciences) for 15 minutes at room temperature. Mouse prostates and mouse organoid grafts derived
20 from UGSM tissue recombination assays were fixed using 4% paraformaldehyde overnight at 4 degrees.
21 Organoids and tissues were processed for paraffin embedding using Leica ASP6025 tissue processor
22 (Leica Biosystems). Freshly cut 5 microns paraffin sections were stained on Leica Bond RX (Leica
23 Biosystems) with appropriate negative and positive controls. The following antibodies were diluted in
24 Antibody Diluent (Leica) as indicated: ERG (Abcam, ab92513, 1:100); p63 (Abcam , ab735, 1:500);
25 CK5 (Covance, PRB-160P, 1:2,000); CK8 (Covance, cat# MMS-162P, 1:1,000); PTEN (Cell Signaling

1 Technology, 9188, 1:100); GFP (Abcam, 13970, 1:200); phospho-AKT (Ser473) (Cell Signaling
2 Technology, 4060, 1:50); HA (Cell Signaling Technology, cat# 3724, 1:200); Ki67 (Abcam, cat# ab16667,
3 1:200).

4 **Immunofluorescence.** Organoids were fixed in 4% paraformaldehyde (Electron Microscopy Sciences)
5 for 15 minutes at room temperature. Mouse prostates were fixed using 4% paraformaldehyde for 2
6 hours at 4 degrees. Organoids and mouse prostate tissue were embedded using Tissue-Tek O.C.T.
7 Freshly cut 5 Micron paraffin sections were stained with CK5 antibody (Covance, PRB-160P, 1:1,000);
8 CK8 antibody (Covance, cat# MMS-162P, 1:1,000); ERG (Abcam, ab92513, 1:100); p63 (Abcam ,
9 ab735, 1:500) on Leica Bond RX (Leica Biosystems) with appropriate negative and positive controls.
10 After washing in PBS, slides were mounted with Mowiol® 4-88 (Millipore, 475904) and imaged with a
11 Leica TCS SP5 II confocal microscope. Immunofluorescence was independently performed twice.

12 **Target cell quantification.** To calculate the number of Trp63 and ERG, Krt5 and ERG double positive
13 cells in the T2PE mice prostate PIN lesions and intraductal carcinomas, slides were scanned with
14 Pannoramic Confocal Scanner (3DHistech, Hungary) using 40x/1.2 water objective. Appropriate areas
15 of the scanned tissue were exported to .tiff files and analyzed in ImageJ/FIJI (NIH). Appropriate
16 thresholds were applied for each channel, and cells expressing ERG were segmented out from the
17 T2PE mice prostate PIN lesions and intraductal carcinomas. Then analysis was performed to determine
18 the percentage of those cells were also positive for basal markers Trp63 or Krt5.

19 **Western blotting.** Cell lysates were prepared in RIPA buffer supplemented with
20 proteinase/phosphatase inhibitor. Proteins were resolved in NuPAGE Novex 4–12% Bis-Tris Protein
21 Gels (Life Technologies) and transferred electrophoretically onto a PVDF 0.45 mm membrane
22 (Millipore). Blocking was conducted for 1 hour at room temperature in 5% milk in TBST buffer and were
23 incubated overnight at 4 degrees with the primary antibodies diluted in 5% milk in TBST buffer. The
24 following primary antibodies were used: β-Actin (Sigma-Aldrich, A3854, 1:5,000), ERG (Abcam,
25 ab92513, 1:1,000); CK5 (Covance, PRB-160P, 1:1,000); CK8 (Covance, MMS-162P, 1:1,000); PTEN
26 (Cell Signaling Technology, 9188, 1:1,1000); phospho-AKT (Ser473) (Cell Signaling Technology, 4060,
27 1:1,1000). Immunoblots were independently performed at least twice.

28 **Quantitative RT-PCR analysis.** Total RNA was extracted with TRIzol reagent (ambion, 15596018) and

1 reverse transcription was further performed with 500 ng total RNA as initiation material with
2 PrimeScriptTM RT Master Mix (TaKaRa, RR036A). qRT-PCR was conducted with 2 x S6 Universal
3 SYBR qPCR Mix (NovaBio, Q204) using the manufacturer's protocol. The primers sequences are listed
4 as followed:

5 Krt5-qPCR-F: GAACAGAGGCTGAGTCCTGGTA;
6 Krt5-qPCR-R: TCTCAGCCTCTGGATCATTGG;
7 Krt14-qPCR-F: GAAGAACCGCAAGGATGCTGAG;
8 Krt14-qPCR-R: TGCAGCTCGATCTCCAGGTTCT;
9 Trp63-qPCR-F: GTATCGGACAGCGCAAAGAACG;
10 Trp63-qPCR-R: CTGGTAGGTACAGCAGCTCATC;
11 Krt8-qPCR-F: TGGAAAGGACTGACCGACGAGAT;
12 Krt8-qPCR-R: GGCACGAACCTCAGCGATGATG;
13 Krt18-qPCR-F: AATCAGGGACGCTGAGACCACA;
14 Krt18-qPCR-R: GCTCCATCTGTGCCTTGTATCG.

15 **RNA-seq data processing and analysis.** RNA sequencing libraries were prepared with the VAHTS
16 mRNA-seq V3 Library Prep Kit for Illumina® (Vazyme, NR611). Sequencing was performed by Berry
17 Genomics. Low-quality sequences and adapters were filtered by cutadapt-1.15. Clean reads were
18 mapped to the mm9 genome using hisat2-2.1.0(75). Gene expression was quantified at the gene level
19 using featureCounts(76). Differentially expressed genes (DEGs) were analyzed by DESeq2(77) using
20 raw counts. And adj.P.value < 0.05 was set as threshold to define DEGs. GSEA (Gene Set Enrichment
21 Analysis)(78) was conducted to determine statistically significant defined signatures based on the
22 normalized expression value calculated from DESeq2. Enriched pathway analysis was performed using
23 Metascape(79).

24 **ATAC-seq library preparation.** 50,000 cells were collected by centrifuging and washed with ice-cold
25 PBS. Cells were lysed in 50µL ice-cold lysis buffer (10mM pH7.4 Tris-HCl; 10mM NaCl; 3mM MgCl2;

1 0.5%NP-40) for 10 minutes on ice. Immediately after lysis, nuclei were spun at 500g for 5 minutes using
2 a refrigerated centrifuge at 4 degrees. Following steps to generate sequencing libraries was performed
3 with TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme, TD501).

4 **ATAC-seq data processing and analysis.** We used Partek Genomics Suite to map sequencing reads
5 and remove duplicate reads to mouse reference genome mm9. Peaks were identified using HOTSPOT
6 with default parameters (<http://www.uwencode.org/proj/hotspot/>). HOTSPOT analysis generates two
7 types of peaks: narrow peak and hotspot regions (broad peak). In this study, we used the narrow peaks
8 for downstream analysis.

9 **Quantify chromatin accessibility of ATAC-seq.** We referred to narrow peak as regulatory element (RE).
10 ATAC-seq will measure the accessibility in a given regulatory element. We can quantify the openness for
11 the RE by a simple fold change score, which computes the enrichment of read counts by comparing the
12 RE with a large background region. Briefly, let N be the number of reads in RE of length L and G that in
13 the W background window (1Mb in our case) around this RE. The openness of RE o can be defined as:

$$14 \quad o = \frac{N/L}{G/W}$$

15 **Differential ATAC-seq peaks analysis.** Differential ATAC-seq peaks analysis was performed by
16 comparing LCD organoids with LCD-ERG organoids, as well as comparing *Pten*^{-/-} organoids with *Pten*^{-/-};
17 *R26*^{ERG} organoids. We defined the sample specific peaks with >1.5 fold-changes and an openness
18 value >1.

19 **ChIP-seq library preparation.** 10 million target cells were collected for centrifuging and then
20 resuspended in 10mL freshly made 1% formaldehyde with incubation at room temperature for 10
21 minutes with rotation. 526ul 2.5M glycine was added to a final concentration of 125 mM to quench the
22 formaldehyde at room temperature for 5 minutes with rotation. Cells were pelleted and washed in ice-
23 cold PBS. 880 μ L of ice-cold cell lysis buffer (1% SDS; 10 mM EDTA; 50 mM Tris-HCl; 1X proteinase
24 inhibitor) was added to lyse cross-linked cells with rotation at 4 degrees for 30 minutes. 880 μ L cell lysis
25 was transferred into a Covaris milliTUBE 1mL AFA Fiber and sheared with Covaris S220 (Fill level: 10;
26 Duty cycle: 5; PIP: 140; Cycles/Burst: 200; Time: 4 minutes). Samples was clarified for 15 minutes at
27 16100 rcf at 4 degrees. Another 1600 μ L ChIP Dilution Buffer (0.01% SDS; 1.1% Triton X-100 (fisher

1 scientific, BR151-500); 1.2 mM EDTA; 16.7 mM Tris pH 7.5; 167 mM NaCl) was added to achieve SDS
2 concentration of 0.33%. 60µL Protein A beads was pre-cleared in 500µL ChIP Dilution Buffer. Protein
3 A beads (Invitrogen, 10001D) were resuspended in 60µL of ChIP Dilution Buffer and added to sample
4 at 4 degrees for 1 hour. Samples with beads was put on magnet and the supernatant was transferred
5 into new tubes. Target antibody (5 µg for H3K27ac (Abcam, ab4729), 8 µg for ERG (Abcam, ab92513))
6 was added at 4 degrees for incubation overnight with rotation. To bind target antibody, 60µL pre-cleared
7 Protein A beads were added to samples with two-hour rotation at 4 degrees. Beads was washed three
8 times each with Low Salt Wash Buffer, High Salt Wash Buffer and LiCl Wash Buffer. 100µL of freshly-
9 made DNA Elution Buffer (50 mM NaHCO₃; 1% SDS) was added to resuspend ChIP sample beads with
10 incubation at RT for 10 minutes, followed by 3 minutes at 37 degrees. ChIP sample beads were placed
11 on magnet and the supernatant was transferred to a new tube. Another 100µL of DNA Elution Buffer
12 was added to ChIP samples and the same incubation protocol was conducted. Supernatant of ChIP
13 samples was collected again to the new tube. 10µL of Proteinase K (Invitrogen, 25530049) was added
14 to each sample with incubation at 67 degrees at least 4 hours with shaking. DNA was purified with
15 QIAGEN purification kit (QIAGEN, 28106) and eluted in 20µL of nuclease-free water. Sequencing
16 libraries were prepared from TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme, TD503) using the
17 manufacturer's recommended protocol.

18 **ChIP-seq data processing and analysis.** The ChIP-seq pipeline was based on the ENCODE (phase-
19 3) transcription factor and histone ChIP-seq pipeline specifications (by Anshul Kundaje)
20 (<https://github.com/ENCODE-DCC/chip-seq-pipeline2>). Sequencing reads were mapped to mm9 using
21 bwa(80) with parameters *aln -q 5 -l 32 -k 2*. Unmapped, multimapping, low-quality reads and duplicates
22 were filtered by samtools(81). Peaks were identified using MACS2(82) with an FDR of 0.05.

23 **Bridge Linker-Hi-C (BL-Hi-C) assay.** The libraries of BL-Hi-C were generated using the two-step
24 ligation protocols as previously described(55). One million cells were cross-linked in 1mL 1% methanol
25 free formaldehyde (Sigma-Aldrich, F8775) with shaking for 10 minutes at room temperature. 2.5M
26 glycine was added to quench formaldehyde to a final concentration of 0.2M with shaking for 10 minutes
27 at room temperature, and then the cells were put on ice for 5 minutes. Cell pellets were collected with
28 centrifuging and then 1mL 0.1% SDS BL-Hi-C Lysis buffer (50 mM HEPES-KOH, pH 7.5; 150 mM NaCl;
29 1 mM EDTA; 1% Triton X-100; 0.1% Sodium Deoxycholate; 0.1% SDS) with proteinase inhibitor was

1 added with incubation for 15 minutes at 4°C with shaking at 850 rpm. Cells were centrifuged and
2 resuspended with 1mL of 0.55% SDS BL-Hi-C Lysis buffer (50 mM HEPES-KOH, pH 7.5; 150 mM NaCl;
3 1 mM EDTA; 1% Triton X-100; 0.1% Sodium Deoxycholate; 1% SDS; 1X proteinase inhibitor) for
4 another 15-minute incubation at 4°C with shaking at 850 rpm. Cells were collected by centrifuging and
5 resuspended with 100 μ L of 0.3% SDS in 1 \times NEBuffer 2.1(NEB, B7002S) with following shaking at 37°C
6 for 30 minutes at 900 rpm. 135 μ L nuclease-free water and 15 μ L 20% Triton X-100 were added and
7 samples were kept at 37°C for 15min with shaking at 900rpm. Cell pellets were collected and
8 resuspended by 76.5 μ L nuclease-free water, 10 μ L 10 X NEBuffer2.1, 2.5 μ L of 20% Triton X-100, 1 μ L
9 BSA (100x, 10mg/mL) and 10 μ L HaeIII (10U/ μ L, NEB, R0108S) with shaking at 37°C overnight. 2 μ L
10 10mM dATP (NEB, N0440S) and 5 μ L Klenow Fragment (3'->5' exo-, NEB, N0202S) for A-tailing were
11 added at 37°C for 40 minutes. Cell pellets were collected and resuspended with 411 μ L nuclease-free
12 water, 50 μ L T4 DNA ligase buffer (NEB, B0202S), 25 μ L 20% Triton X-100, 5 μ L BSA, 5 μ L T4 DNA ligase
13 (NEB, M0202S) and 4 μ L Bridge Linker (Bridge Linker S2-F: /5P/CGCGATATC/iBIOdT/TATCTGACT;
14 Bridge Linker S2-R: /5P/GTCAGATAAGATATCGCGT) with subsequent rotation at room temperature
15 for 4 hours. Cell pellets were centrifuged at 1000g for 2 minutes at 4°C and resuspended with 88 μ L
16 nuclease-free water, 10 μ L λ Exonuclease Buffer, 1 μ L λ Exonuclease (NEB, M0262L) and 1 μ L
17 Exonuclease I (NEB, M0293L) with shaking at 37°C for 60 minutes. DNA purification was conducted
18 with Phenol: Chloroform: Isoamyl Alcohol 25:24:1(Sigma-Aldrich, cat. no. P3803) and eluted with 60 μ L
19 of TE buffer. Add another 60 μ L 2XB&W buffer was added into DNA solution for sonication with setting
20 Covaris parameters for the DNA size of 300 bp. Streptavidin C1 beads were washed (Invitrogen, 65001)
21 with 1mL 1X TWB buffer for twice and resuspended with 20 μ L 1 \times B&W buffer. To bind target DNA,
22 beads suspension was added into 130 μ L sonicated DNA solution with incubation at room temperature
23 for 15 minutes with rotation at 900 rpm. Beads was then washed with 1X TWB buffer, BW buffer and
24 nuclease-free water. Finally, DNAs-on-beads was resuspended in 50 μ L nuclease-free water. Library
25 construction for sequencing was conducted with VAHTS Universal DNA Library Prep Kit for Illumina
26 (Vazyme, ND607). The BL-Hi-C library was sequenced with the Illumina Sequencer NovaSeq (PE
27 2 \times 150 bp reads).

28 **BL-Hi-C data processing.** We first trimmed the linkers of BL-Hi-C sequence using trimLinker function of
29 ChIA-PET2(83). HiC-Pro(84) was then performed to process Hi-C data through several main steps

1 including mapping raw reads to mm9 reference genome, detecting valid ligation products, quality control
2 and generating raw contact maps. To evaluate the library quality, we firstly removed duplicated reads, and
3 then divided the remaining valid reads into several groups including cis long-range (>200k), cis short-range
4 (<200k), and trans contacts, each group was indicated by different color. High quality of our BL-Hi-C
5 libraries was demonstrated by ~40% for the proportion of long-range valid pairs (84). For raw contact
6 matrix generation, in detail, we set a variety of resolutions including 10kb, 20kb, 40kb, 150kb, 500kb, and
7 1Mb, which denoted that genome was divided into bins with the above equal sizes respectively. Then we
8 used the iterative correction method to eliminate systematic bias to get the normalized contact matrix.
9 Homer (85) was performed to further identify significant interactions (loops) (FDR <0.0001) based on
10 contact maps using 10k resolution.

11 **Identification of differential chromatin interactions.** We performed differential chromatin interactions
12 by comparing LCD organoids with LCD-ERG organoids, as well as by comparing *Pten*^{-/-} organoids with
13 *Pten*^{-/-}; *R26*^{ERG} organoids. We referred to the set of significant interactions identified by Homer in each
14 sample as its loop set and differential loops were defined by the difference of two sets.

15 **Identification of the relationship between chromatin interactions and ERG binding.** To
16 characterize the relationship between chromatin interaction and ERG binding, we divided the genome into
17 1-Mb bins and sorted the genomic bins by the number of *Pten*^{-/-}; *R26*^{ERG}/LCD-ERG-specific loops. We next
18 performed Pearson correlation based on the number of *Pten*^{-/-}; *R26*^{ERG}/LCD-ERG-specific loops and ERG
19 binding density, generated from BL-Hi-C and ERG ChIP-seq data respectively. We also calculated the
20 average number of ERG binding sites for the first N bins with *Pten*^{-/-}; *R26*^{ERG}/LCD-ERG-specific loops (N
21 ranges 20 to 2,779). Results showed a strong association between hotspots of differential chromatin
22 interactions and enrichment of ERG binding.

23 **Statistical analysis.** For significant tests, two-tail Student's t-test and Pearson's Chi-squared test were
24 used for comparing differences between two groups, and one-way ANOVA tests were used for multiple
25 groups.

26 **Acknowledgements**

27 We would like to acknowledge Baojin Wu, Guoyuan Chen and Wei Tang for the animal husbandry and Wei
28 Bian for technical help at the SIBCB Core Facility. We would like to thank the Genome Tagging Project
29 (GTP) Center, Shanghai Institute of Biochemistry and Cell Biology, CAS for technical support. We thank

1 the MSKCC Molecular Cytology (Ning Fan, Mesruh Turkekul, Sho Fujisawa), MSKCC Integrated
2 Genomics Operation (Daoqi You, Agnes Viales) and MSKCC Epigenomics Core Facility (Yang Li). We
3 thank Dr. Wilbert Zwart and Dr. Suzan Steloo at the Netherlands Cancer Institute for sharing analysis
4 methods of the integrative classifier. This study was supported by grants from the Strategic Priority
5 Research Program of the Chinese Academy of Sciences (XDB19000000 and XDA16020905), the National
6 key research and development program of China (No. 2017YFA0505500), the National Natural Science
7 Foundation of China (81830054 and 81772723), and the US National Cancer Institute (R01CA208100,
8 R01CA193837, P50CA092629 and P30CA008748).

9 **Author contributions**

10 D.G. and Y.C. conceived and designed the experimental approach. Y.W., B.C. and P.C. provided advice
11 about experimental design. F.L., W.D. and X.Y.X. performed most of the experiments. Q.Y.Y., F.L., L.L. and
12 Y.W. contributed to the computational analysis and statistical analysis. C.F.L. and J.H. generated the
13 expression vectors and lentiviral CRISPR/Cas9 vectors. Z.L., N.H.M., Y.G.L., W.X.G. and S.Q.W. prepared
14 mouse organoids RNA and sequencing. X.Y.Z., Z.L., Y.Q.Z. and R.A. helped with allograft experiments
15 and mouse experiments, D.G. F.L. and Y.C. wrote the manuscript. All authors discussed result and edited
16 the manuscript.

17 **Declaration of interests**

18 The authors have no competing interests to declare.

19 **Accession numbers**

20 The raw data for RNA-seq, ChIP-seq, BL-Hi-C and processed data for ATAC-seq have been deposited in
21 NODE (<http://www.biosino.org/node>). All data can be viewed in by pasting the accession (OEP000693)
22 into the text search box or through the URL: <http://www.biosino.org/node/project/detail/OEP000693>,
23 including ATAC-seq data (OEX002111), ChIP-seq data (OEX002110), RNA-seq data (OEX002109) and
24 BL-Hi-C data (OEX002216).

25 **Supplemental material**

26 Supplemental Table 1. Overlapped TFs for each prostate cancer cohorts.

27 Supplemental Table 2. 154 Master TFs.

28 Supplemental Table 3. ERG-upregulating luminal signature genes and ERG-downregulating basal
29 signature genes.

30

1 REFERENCES

- 2 1. Varga J, and Greten FR. Cell plasticity in epithelial homeostasis and tumorigenesis. *Nat Cell Biol.* 2017;19(10):1133-41.
- 3 2. Restivo G, Diener J, Cheng PF, Kiowski G, Bonalli M, Biedermann T, et al. low neurotrophin receptor CD271 regulates phenotype switching in melanoma. *Nat Commun.* 2017;8(1):1988.
- 4 3. Davies AH, Beltran H, and Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. *Nat Rev Urol.* 2018;15(5):271-86.
- 5 4. Arozarena I, and Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. *Nature Reviews Cancer.* 2019;19(7):377-91.
- 6 5. Suva ML, Riggi N, and Bernstein BE. Epigenetic reprogramming in cancer. *Science.* 2013;339(6127):1567-70.
- 7 6. Takahashi K, and Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell.* 2006;126(4):663-76.
- 8 7. Sarkar A, and Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. *Cell Stem Cell.* 2013;12(1):15-30.
- 9 8. Nieto MA, Huang RY, Jackson RA, and Thiery JP. Emt: 2016. *Cell.* 2016;166(1):21-45.
- 10 9. Siegel RL, Miller KD, and Jemal A. Cancer statistics, 2019. *CA Cancer J Clin.* 2019;69(1):7-34.
- 11 10. Zhang D, Park D, Zhong Y, Lu Y, Rycaj K, Gong S, et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. *Nat Commun.* 2016;7:10798.
- 12 11. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. *Cell.* 2014;159(1):176-87.
- 13 12. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. *Cell.* 2014;159(1):163-75.
- 14 13. Xin L, Lukacs RU, Lawson DA, Cheng D, and Witte ON. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. *Stem Cells.* 2007;25(11):2760-9.
- 15 14. Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, et al. Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. *Prostate.* 2010;70(5):491-501.
- 16 15. Parsons JK, Gage WR, Nelson WG, and De Marzo AM. p63 protein expression is rare in prostate adenocarcinoma: implications for cancer diagnosis and carcinogenesis. *Urology.* 2001;58(4):619-24.
- 17 16. Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, et al. Single luminal epithelial progenitors can generate prostate organoids in culture. *Nat Cell Biol.* 2014;16(10):951-61, 1-4.
- 18 17. Labrecque MP, Coleman IM, Brown LG, True LD, Kollath L, Lakely B, et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. *J Clin Invest.* 2019;130:4492-505.
- 19 18. Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. *Clin Cancer Res.* 2014;20(4):890-903.
- 20 19. Mosquera JM, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. *Neoplasia.* 2013;15(1):1-10.
- 21 20. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. *Cancer Cell.* 2016;30(4):563-77.
- 22 21. Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, et al. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells. *Cancer Cell.* 2016;29(4):536-47.

1 22. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress
2 prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. *Science*. 2017;355(6320):78-
3 83.

4 23. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and
5 antiandrogen resistance in TP53- and RB1-deficient prostate cancer. *Science*. 2017;355(6320):84-8.

6 24. Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a Mechanism of
7 Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. *Cancer Discov*.
8 2017;7(7):736-49.

9 25. Baltzinger M, Mager-Heckel AM, and Remy P. XI erg: expression pattern and overexpression during
10 development plead for a role in endothelial cell differentiation. *Dev Dyn*. 1999;216(4-5):420-33.

11 26. Sharrocks AD. The ETS-domain transcription factor family. *Nat Rev Mol Cell Biol*. 2001;2(11):827-37.

12 27. Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, et al. ETV1 is a lineage survival factor that
13 cooperates with KIT in gastrointestinal stromal tumours. *Nature*. 2010;467(7317):849-53.

14 28. Barozzi I, Simonatto M, Bonifacio S, Yang L, Rohs R, Ghisletti S, et al. Coregulation of transcription factor
15 binding and nucleosome occupancy through DNA features of mammalian enhancers. *Mol Cell*.
16 2014;54(5):844-57.

17 29. Morita R, Suzuki M, Kasahara H, Shimizu N, Shichita T, Sekiya T, et al. ETS transcription factor ETV2
18 directly converts human fibroblasts into functional endothelial cells. *Proc Natl Acad Sci U S A*.
19 2015;112(1):160-5.

20 30. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of
21 TMPRSS2 and ETS transcription factor genes in prostate cancer. *Science*. 2005;310(5748):644-8.

22 31. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. *Cell*.
23 2015;163(4):1011-25.

24 32. Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, et al. TMPRSS2/ERG promotes epithelial
25 to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. *PLoS One*.
26 2011;6(7):e21650.

27 33. Adamo P, and Lademeyer MR. The oncogene ERG: a key factor in prostate cancer. *Oncogene*.
28 2016;35(4):403-14.

29 34. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al. Role of the TMPRSS2-ERG gene
30 fusion in prostate cancer. *Neoplasia*. 2008;10(2):177-88.

31 35. Hollenhorst PC, Ferris MW, Hull MA, Chae H, Kim S, and Graves BJ. Oncogenic ETS proteins mimic
32 activated RAS/MAPK signaling in prostate cells. *Genes Dev*. 2011;25(20):2147-57.

33 36. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG expression cooperates
34 with loss of PTEN to promote cancer progression in the prostate. *Nat Genet*. 2009;41(5):619-24.

35 37. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor,
36 polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. *Cancer Cell*. 2010;17(5):443-
37 54.

38 38. Chen Y, Chi P, Rockowitz S, Iaquinta PJ, Shamu T, Shukla S, et al. ETS factors reprogram the androgen
39 receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. *Nat Med*.
40 2013;19(8):1023-9.

41 39. Kron KJ, Murison A, Zhou S, Huang V, Yamaguchi TN, Shiah YJ, et al. TMPRSS2-ERG fusion co-opts
42 master transcription factors and activates NOTCH signaling in primary prostate cancer. *Nat Genet*.
43 2017;49(9):1336-45.

44 40. Stelloo S, Nevedomskaya E, Kim Y, Schuurman K, Valle-Encinas E, Lobo J, et al. Integrative epigenetic

1 taxonomy of primary prostate cancer. *Nat Commun.* 2018;9(1):4900.

2 41. Zhao SG, Chang SL, Erho N, Yu M, Lehrer J, Alshalalfa M, et al. Associations of Luminal and Basal
3 Subtyping of Prostate Cancer With Prognosis and Response to Androgen Deprivation Therapy. *JAMA
4 Oncol.* 2017;3(12):1663-72.

5 42. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast
6 cancer based on intrinsic subtypes. *J Clin Oncol.* 2009;27(8):1160-7.

7 43. Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al. Substantial interindividual and limited
8 intraindividual genomic diversity among tumors from men with metastatic prostate cancer. *Nat Med.*
9 2016;22(4):369-78.

10 44. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of
11 human prostate cancer. *Cancer Cell.* 2010;18(1):11-22.

12 45. Adams EJ, Karthaus WR, Hoover E, Liu D, Gruet A, Zhang Z, et al. FOXA1 mutations alter pioneering
13 activity, differentiation and prostate cancer phenotypes. *Nature.* 2019;571(7765):408-12.

14 46. Gao D, Zhan Y, Di W, Moore AR, Sher JJ, Guan Y, et al. A Tmprss2-CreERT2 Knock-In Mouse Model for
15 Cancer Genetic Studies on Prostate and Colon. *PLoS One.* 2016;11(8):e0161084.

16 47. Xin L, Ide H, Kim Y, Dubey P, and Witte ON. In vivo regeneration of murine prostate from dissociated cell
17 populations of postnatal epithelia and urogenital sinus mesenchyme. *Proc Natl Acad Sci U S A.* 2003;100
18 Suppl 1:11896-903.

19 48. Han B, Mehra R, Lonigro RJ, Wang L, Suleman K, Menon A, et al. Fluorescence in situ hybridization study
20 shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. *Mod
21 Pathol.* 2009;22(8):1083-93.

22 49. Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of
23 PTEN loss in prostate cancer. *Nat Rev Urol.* 2018;15(4):222-34.

24 50. Xie Q, Liu Y, Cai T, Horton C, Stefanson J, and Wang ZA. Dissecting cell-type-specific roles of androgen
25 receptor in prostate homeostasis and regeneration through lineage tracing. *Nat Commun.* 2017;8:14284.

26 51. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating
27 castration-resistant prostate cancer growth. *Cancer Cell.* 2011;19(6):792-804.

28 52. Stadhouders R, Filion GJ, and Graf T. Transcription factors and 3D genome conformation in cell-fate
29 decisions. *Nature.* 2019;569(7756):345-54.

30 53. Cuvier O, and Fierz B. Dynamic chromatin technologies: from individual molecules to epigenomic
31 regulation in cells. *Nat Rev Genet.* 2017;18(8):457-72.

32 54. Chua CW, Epsi NJ, Leung EY, Xuan S, Lei M, Li BI, et al. Differential requirements of androgen receptor in
33 luminal progenitors during prostate regeneration and tumor initiation. *eLife.* 2018;7:e28768.

34 55. Liang Z, Li G, Wang Z, Djekidel MN, Li Y, Qian MP, et al. BL-Hi-C is an efficient and sensitive approach for
35 capturing structural and regulatory chromatin interactions. *Nat Commun.* 2017;8(1):1622.

36 56. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, et al. p63 is a prostate basal cell marker and
37 is required for prostate development. *Am J Pathol.* 2000;157(6):1769-75.

38 57. Kurita T, Medina RT, Mills AA, and Cunha GR. Role of p63 and basal cells in the prostate. *Development.*
39 2004;131(20):4955-64.

40 58. Kedge V, Selvaraj N, Nicholas TR, Budka JA, Plotnik JP, Jerde TJ, et al. An Interaction with Ewing's
41 Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in
42 Prostate Cancer. *Cell Rep.* 2016;17(5):1289-301.

43 59. Rothenberg EV, Moore JE, and Yui MA. Launching the T-cell-lineage developmental programme. *Nat
44 Rev Immunol.* 2008;8(1):9-21.

1 60. Yui MA, and Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity.
2 *Nat Rev Immunol.* 2014;14(8):529-45.

3 61. Bushweller JH. Targeting transcription factors in cancer - from undruggable to reality. *Nat Rev Cancer.*
4 2019.

5 62. Hemberger M, Hanna CW, and Dean W. Mechanisms of early placental development in mouse and
6 humans. *Nature Reviews Genetics.* 2019.

7 63. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD, et al. A causal role for ERG in neoplastic
8 transformation of prostate epithelium. *Proc Natl Acad Sci U S A.* 2008;105(6):2105-10.

9 64. Blee AM, He Y, Yang Y, Ye Z, Yan Y, Pan Y, et al. TMPRSS2-ERG Controls Luminal Epithelial Lineage and
10 Antiandrogen Sensitivity in PTEN and TP53-Mutated Prostate Cancer. *Clin Cancer Res.* 2018;24(18):4551-
11 65.

12 65. Wang Y, Sudilovsky D, Zhang B, Haughney PC, Rosen MA, Wu DS, et al. A human prostatic epithelial
13 model of hormonal carcinogenesis. *Cancer Res.* 2001;61(16):6064-72.

14 66. Marker PC, Donjacour AA, Dahiya R, and Cunha GR. Hormonal, cellular, and molecular control of
15 prostatic development. *Dev Biol.* 2003;253(2):165-74.

16 67. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity
17 of primary human prostate cancer. *Nature.* 2011;470(7333):214-20.

18 68. Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, and Wu H. Pten deletion leads to the expansion of a
19 prostatic stem/progenitor cell subpopulation and tumor initiation. *Proc Natl Acad Sci U S A.*
20 2006;103(5):1480-5.

21 69. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of
22 lethal castration-resistant prostate cancer. *Nature.* 2012;487(7406):239-43.

23 70. Rickman DS, Soong TD, Moss B, Mosquera JM, Dlaba J, Terry S, et al. Oncogene-mediated alterations in
24 chromatin conformation. *Proc Natl Acad Sci U S A.* 2012;109(23):9083-8.

25 71. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback
26 regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. *Cancer Cell.*
27 2011;19(5):575-86.

28 72. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, et al. Cre reporter strains produced by
29 targeted insertion of EYFP and ECFP into the ROSA26 locus. *BMC Dev Biol.* 2001;1:4.

30 73. Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ, et al. Generation of a prostate epithelial cell-
31 specific Cre transgenic mouse model for tissue-specific gene ablation. *Mech Dev.* 2001;101(1-2):61-9.

32 74. Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, et al. Organoid culture systems for prostate
33 epithelial and cancer tissue. *Nat Protoc.* 2016;11(2):347-58.

34 75. Kim D, Langmead B, and Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. *Nat
35 Methods.* 2015;12(4):357-60.

36 76. Liao Y, Smyth GK, and Shi W. featureCounts: an efficient general purpose program for assigning
37 sequence reads to genomic features. *Bioinformatics.* 2014;30(7):923-30.

38 77. Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for RNA-seq data
39 with DESeq2. *Genome Biol.* 2014;15(12):550.

40 78. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment
41 analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad
42 Sci U S A.* 2005;102(43):15545-50.

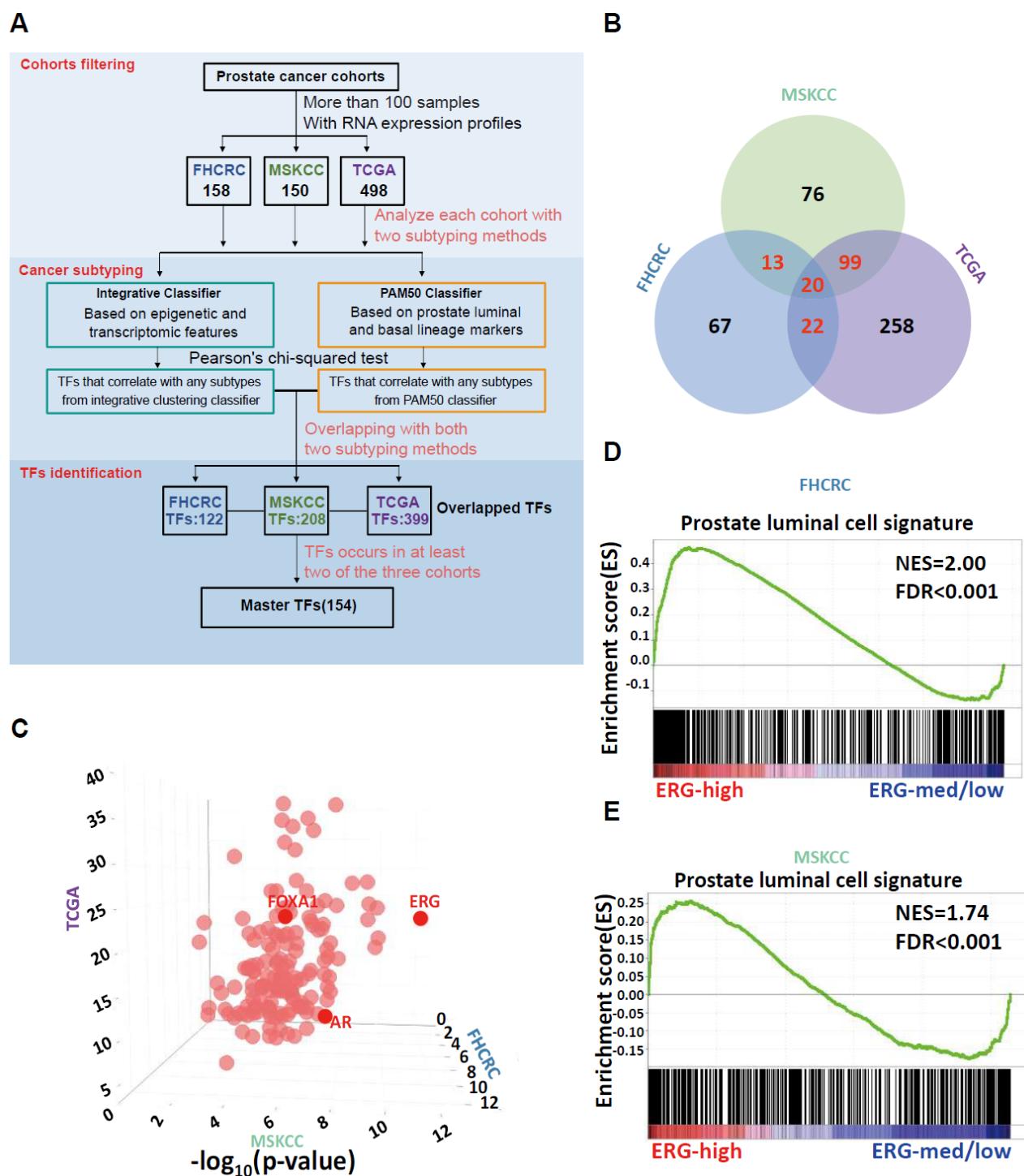
43 79. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a
44 biologist-oriented resource for the analysis of systems-level datasets. *Nat Commun.* 2019;10(1):1523.

1 80. Li H, and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
2 *Bioinformatics*. 2009;25(14):1754-60.

3 81. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format
4 and SAMtools. *Bioinformatics*. 2009;25(16):2078-9.

5 82. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-
6 Seq (MACS). *Genome Biol*. 2008;9(9):R137.

7 83. Li G, Chen Y, Snyder MP, and Zhang MQ. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data
8 analysis. *Nucleic Acids Res*. 2017;45(1):e4.


9 84. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible
10 pipeline for Hi-C data processing. *Genome Biol*. 2015;16:259.

11 85. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-
12 determining transcription factors prime cis-regulatory elements required for macrophage and B cell
13 identities. *Mol Cell*. 2010;38(4):576-89.

14

Figures

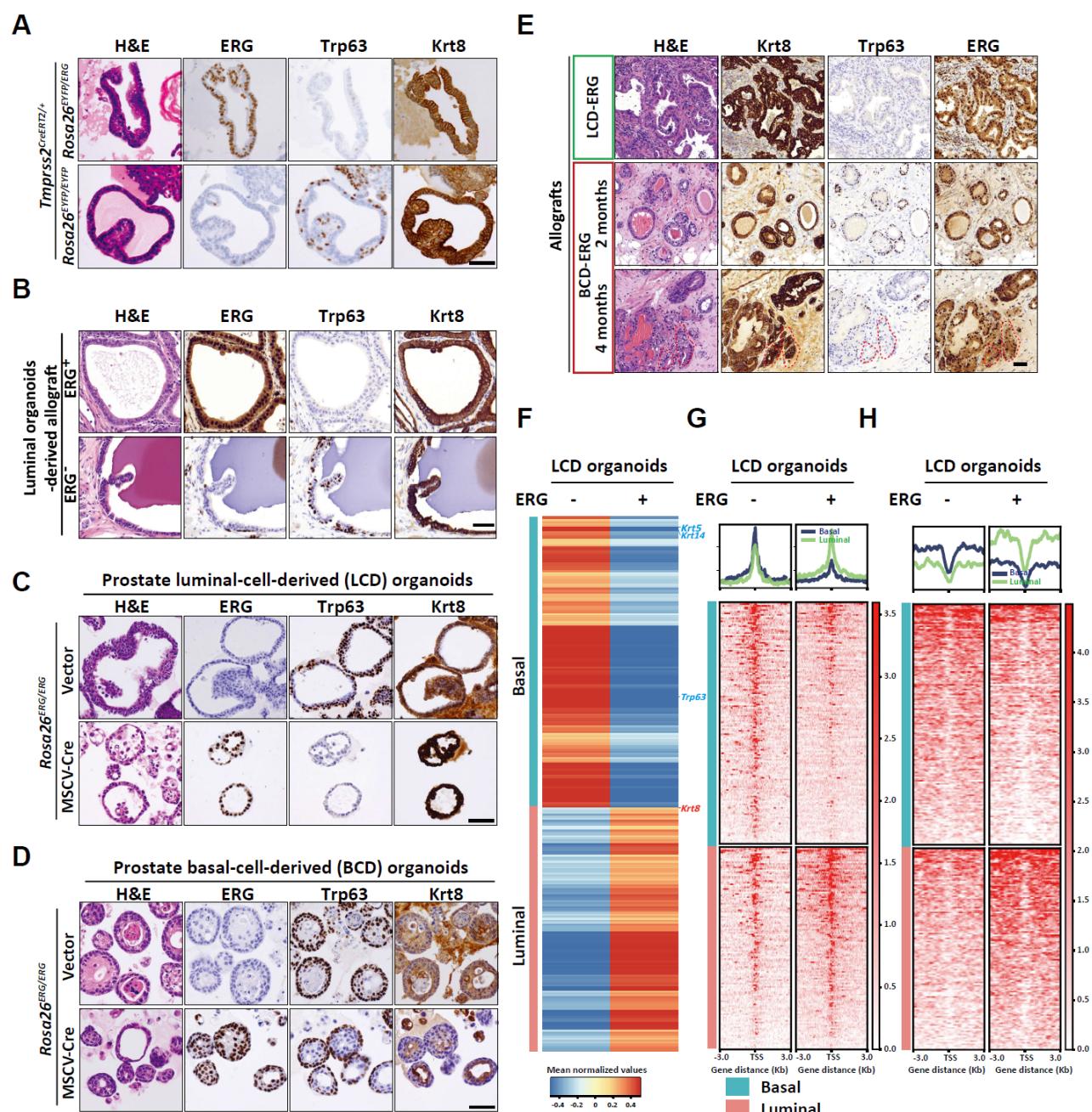

Figure. 1

Figure 1. Identification for the master transcription factors that have the potential to regulate prostate cancer lineage. (A) Analysis pipeline to identify the master transcription factors involved in prostate cancer lineage differentiation containing three steps (1) cohorts filtering to select prostate cancer cohorts for downstream analysis, (2) cancer subtyping to categorize prostate cancer samples

into several subtypes by two subtyping methods respectively and (3) TFs identification to define master TFs with high reproducibility and confidence. **(B)** Venn diagram showing the number of master TFs generated from overlapped TFs that occurs in at least two of the three cohorts (13 of MSKCC and FHCRC, 99 of MSKCC and TCGA, 22 of TCGA and FHCRC, 20 of all the three cohorts). **(C)** Bubble plot of the 154 master TFs. The value for 3 axes represents $-\log_{10}(p\text{-value})$ calculated from Pearson's chi-squared test for MSKCC (x axis), FHCRC (y axis) and TCGA (z axis) respectively. **(D-E)** GSEA enrichment plot of ERG-high samples versus ERG-medium/low samples from FHCRC cohorts **(D)** (top) and MSKCC cohorts **(E)** (bottom) using signature genes of prostate luminal cells.

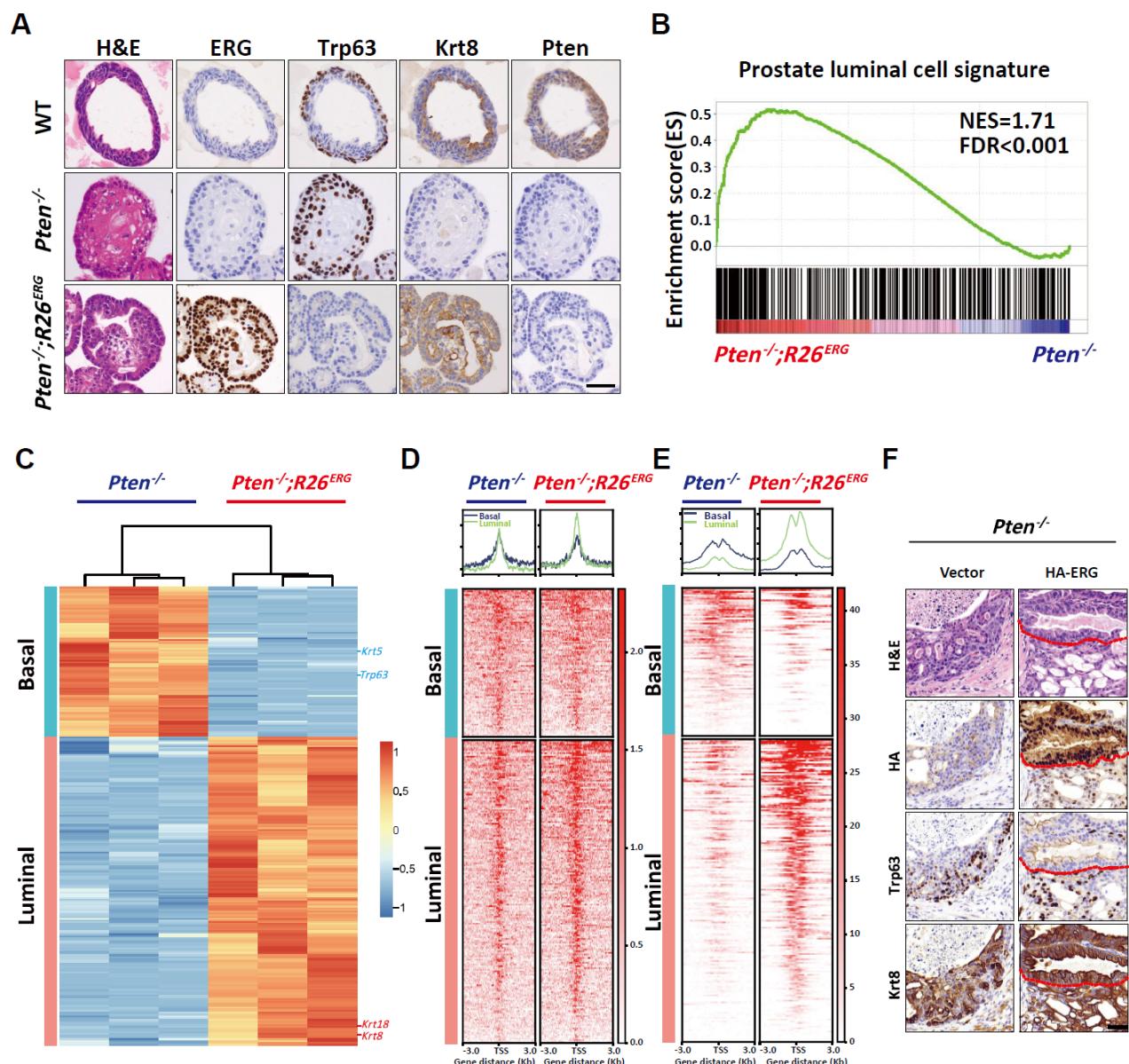

Figure. 2

Figure 2. ERG promotes luminal lineage differentiation of normal prostate epithelial cells. **(A)** H&E and ERG, Trp63 and Krt8 IHC staining of luminal-cell-derived organoids generated from T2YE (top) and T2Y (bottom) mice, respectively. **(B)** H&E and ERG, Trp63 and Krt8 IHC staining of allografts derived from luminal-cell-derived organoids generated from T2YE (top) and T2Y (bottom) mice respectively. **(C-D)** H&E and ERG, Trp63 and Krt8 IHC staining of luminal-cell-derived (LCD) organoids **(C)** and basal-cell-derived (BCD) organoids **(D)** generated from *Rosa26^{ERG/ERG}* mice, infected with retrovirus carrying Cre recombinase (MSCV-Cre, bottom) or control backbone (MSCV-Vector, top). **(E)** H&E and Krt8, Trp63 and ERG IHC staining of allografts derived from LCD-ERG organoids (top) and

BCD-ERG organoids (short term for 2 months, middle; long term for 4 months, bottom), red dashed line indicates the regions with predominant luminal phenotype. **(F)** Heatmap of RNA-seq showing the expression of down-regulated basal lineage genes and up-regulated luminal lineage genes in LCD and LCD-ERG organoids respectively. **(G-H)** Profile plot (top) and heatmap (bottom) of ATAC-seq **(G)** and H3K27ac ChIP-seq **(H)** around the transcriptional start site (TSS) of down-regulated basal lineage genes and up-regulated luminal lineage genes in LCD and LCD-ERG organoids respectively. Scale bars, 50 μ m.

Figure. 3

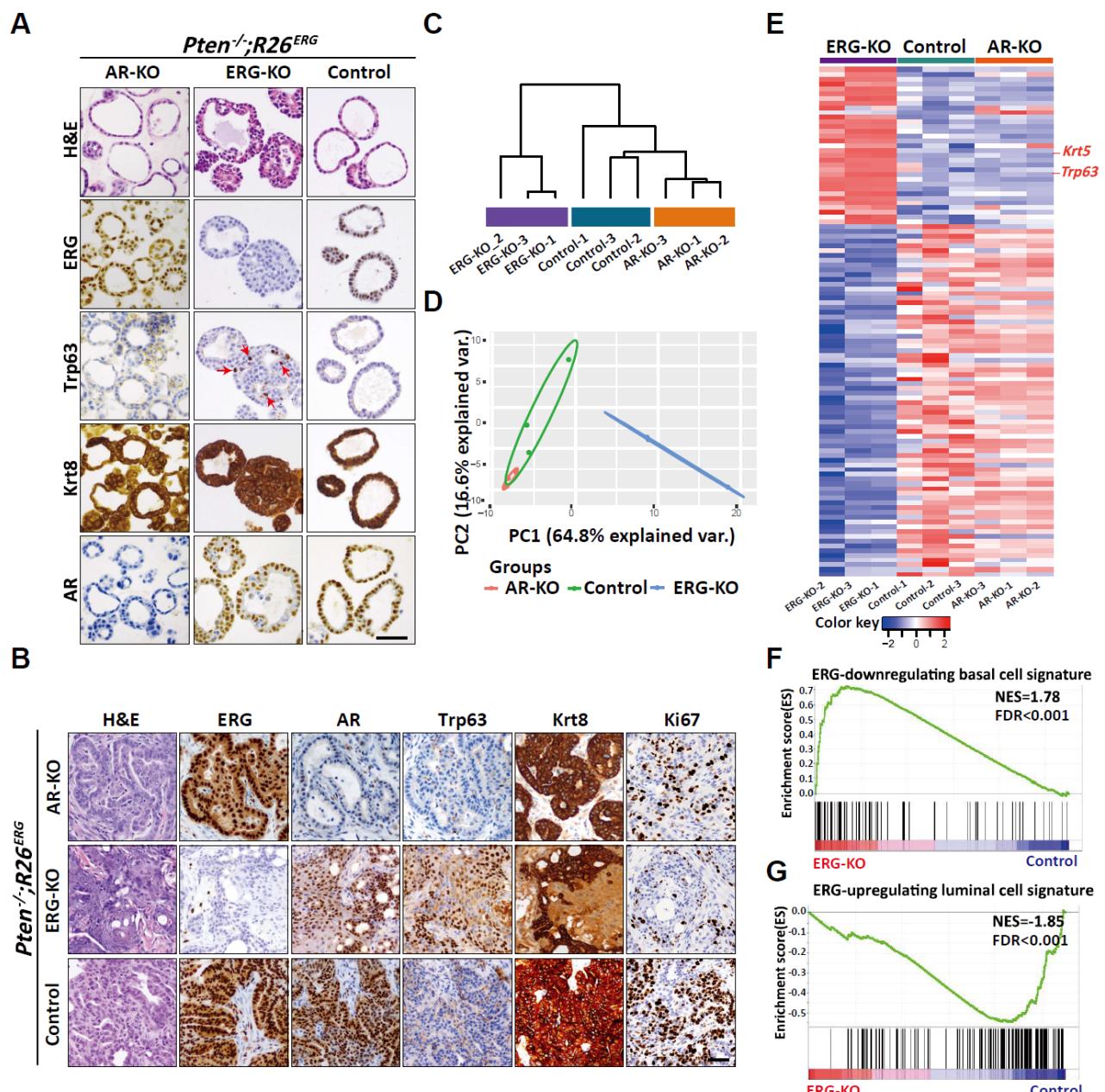


Figure 3. ERG promotes luminal differentiation of prostate cancer cells under the Pten loss condition. (A) H&E and ERG, Trp63, Krt8 and Pten IHC staining of WT (top), *Pten*^{-/-} (middle) and *Pten*^{-/-; R26^{ERG} (bottom) organoids respectively. **(B)** GSEA enrichment plot of *Pten*^{-/-; R26^{ERG} organoids versus *Pten*^{-/-} organoids using prostate luminal cell signature genes. **(C)** Heatmap showing the expression of ERG-upregulating luminal cell signature genes and ERG-downregulating basal cell signature genes in *Pten*^{-/-} and *Pten*^{-/-; R26^{ERG} organoids from RNA-seq. **(D-E)** Profile plot (top) and heatmap (bottom) of ATAC-seq (**D**) and H3K27ac ChIP-seq (**E**) around the transcriptional start site (TSS) of ERG-upregulating luminal cell signature genes and ERG-downregulating basal cell signature genes in *Pten*^{-/-} and *Pten*^{-/-; R26^{ERG} organoids respectively. **(F)** H&E and HA, Trp63 and Krt8 IHC staining of allografts derived from UGSM tissue recombination assay in SCID mice 8 weeks after transplantation of}}}}

organoids overexpressing the TMPRSS2-ERG fusion protein with HA tag (right) or a control vector (left).

Scale bars, 50 μ m.

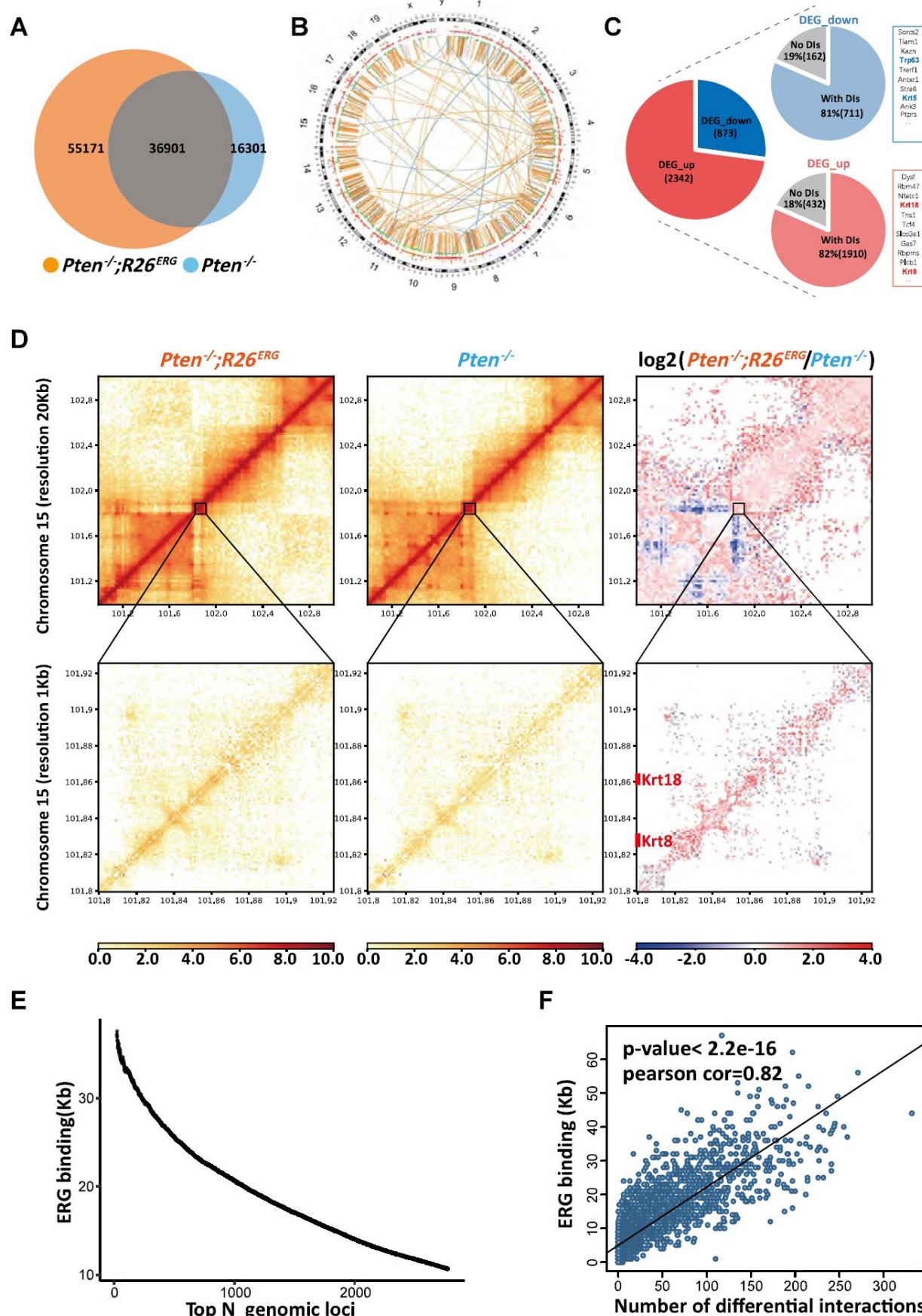

Figure. 4

Figure 4. ERG not AR is required for sustaining luminal phenotype of prostate cancer cells in the context of Pten loss. (A) H&E and ERG, Trp63, Krt8 and AR IHC staining of *Pten*^{-/-}; *R26*^{ERG} organoids infected with a lentiviral CRISPR/Cas9 carrying guide RNA targeting the AR (AR-KO, left) and ERG (ERG-KO, middle) and a control vector (Control, right). Red arrows indicate Trp63 positive cells. **(B)** H&E and ERG, AR, Trp63, Krt8 and Ki67 IHC staining of grafts derived from UGSM tissue recombination assays in SCID mice 8 weeks after transplantation of *Pten*^{-/-}; *R26*^{ERG} organoids with AR-KO (top), ERG-KO (middle) and Control (bottom) respectively. **(C-D)** Clustering dendrogram (**C**) and PCA plot (**D**) for ERG-KO, AR-KO and Control organoids using prostate cell lineage signature genes. **(E)** Heatmap showing the expression of lineage-related differentially expressed genes in ERG-KO, AR-

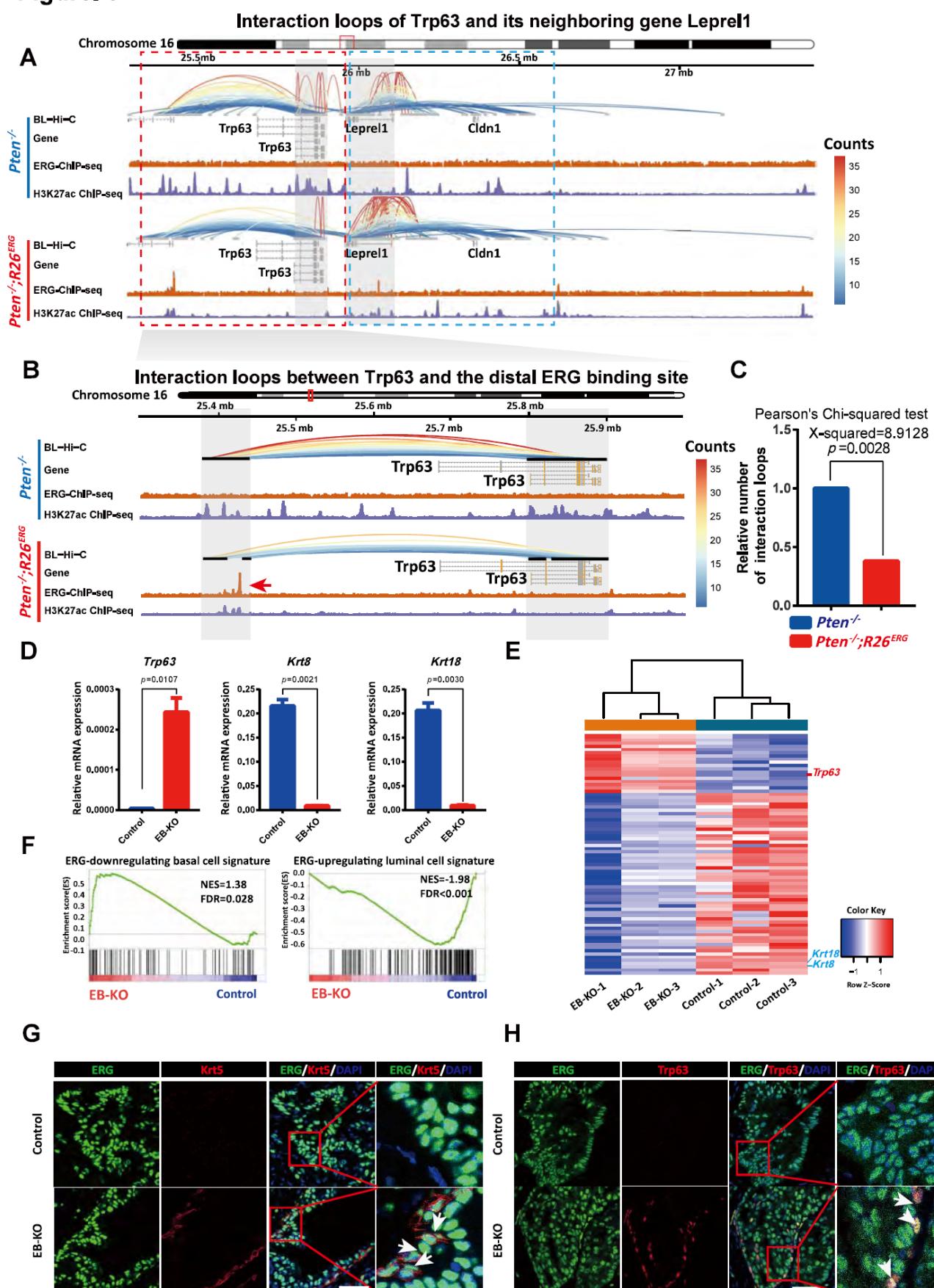

KO and Control organoids. **(F-G)** GSEA enrichment plot of ERG-KO versus Control using ERG-downregulating basal cell signature genes **(F)** and ERG-upregulating luminal cell signature genes **(G)** respectively. Scale bars, 50 μ m.

Figure. 5

Figure 5. ERG globally alters chromatin interactions that are associated with gene expression changes. **(A)** Venn plot showing differential chromatin interactions between *Pten*^{-/-} and *Pten*^{-/-}; *R26*^{ERG} organoids, orange circle and light blue circle represent chromatin interactions of *Pten*^{-/-}; *R26*^{ERG} and *Pten*^{-/-} respectively. **(B)** Circos plot depicting chromosomes 1-19, X and Y on the basis of BL-Hi-C data and RNA-seq data, indicating DIs including *Pten*^{-/-}; *R26*^{ERG}-specific DIs(orange) and *Pten*^{-/-}-specific DIs(light blue), DEGs including up-regulated DEGs of *Pten*^{-/-}; *R26*^{ERG} (red) and down-regulated DEGs of *Pten*^{-/-}; *R26*^{ERG} (green), respectively. **(C)** Pie plots showing the percentage of down-regulated DEGs with DIs (top) and up-regulated DEGs with DIs (bottom). **(D)** The normalized interaction heatmaps of *Pten*^{-/-}; *R26*^{ERG} (left), *Pten*^{-/-} (middle), and the difference (right) at 20 kb resolution (top) and 1 kb resolution (bottom) of chromosome 15, including *Krt8* and *Krt18* gene loci. **(E)** Plot showing the density of ERG binding (Kb) at each of the ranked (N) differential interacting chromatin loci of 1-Mb intervals. **(F)** Correlation plot showing the significant positive relationship between ERG binding density and the number of DIs in 1-Mb intervals.

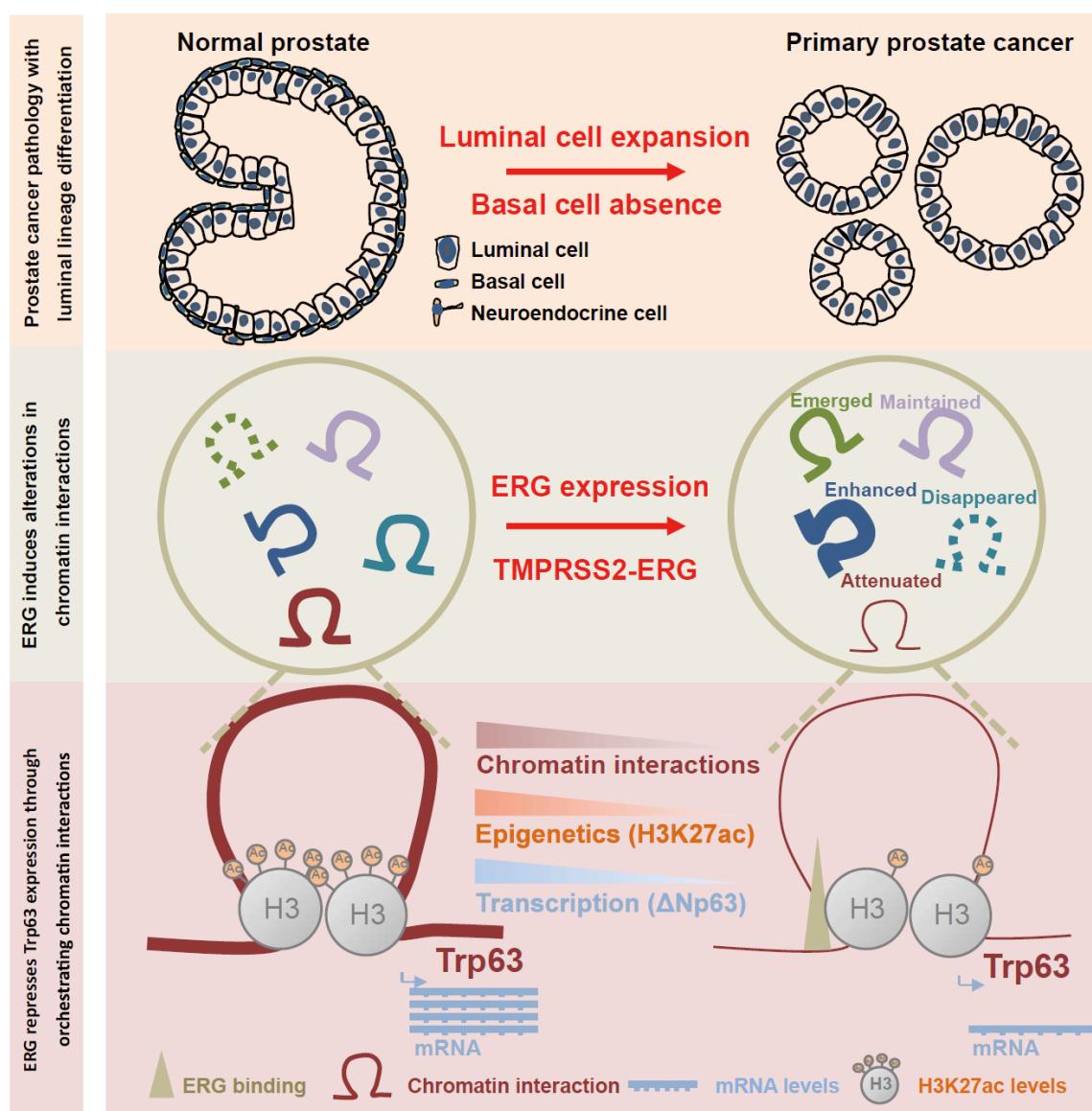

Figure. 6

Figure 6. Deletion of a specific ERG binding site impaired the function of ERG in prostate lineage regulation. **(A)** 3D signal of BL-Hi-C showing chromatin interactions of *Trp63* loci and its neighboring gene *Lepre1* loci in *Pten*^{-/-} (top) and *Pten*^{-/-}; *R26*^{ERG} (bottom) organoids respectively, red box indicates the highly interacting region of *Trp63* loci, blue box indicates the highly interacting region of *Lepre1* loci. **(B)** 3D signal of BL-Hi-C showing chromatin interactions between the distal ERG binding site and *Trp63* gene body region in *Pten*^{-/-} (top) and *Pten*^{-/-}; *R26*^{ERG} (bottom) organoids respectively. Red arrow indicates the distal ERG binding site. **(C)** Pearson's Chi-squared test to evaluate the differences of interaction loops density between *Pten*^{-/-} and *Pten*^{-/-}; *R26*^{ERG} organoids. **(D)** QRT-PCR analysis of *Trp63*, *Krt8* and *Krt18* mRNA expression in EB-KO and Control of *Pten*^{-/-}; *R26*^{ERG} organoids (two-tailed t-test, mean \pm sem). **(E)** Heatmap of RNA-seq for EB-KO and Control of *Pten*^{-/-}; *R26*^{ERG} organoids using differentially expressed prostate cell lineage signature genes. **(F)** GSEA enrichment plot of EB-KO organoids versus Control organoids using ERG-downregulating basal cell signature genes (left) and ERG-upregulating luminal cell signature genes (right) respectively. **(G)** ERG, Krt5 and DAPI IF staining for allografts of UGSM tissue recombination assays derived from EB-KO and Control organoids, arrows indicate ERG⁺/Trp63⁺ cells. **(H)** ERG, Trp63 and DAPI IF staining of allografts from UGSM tissue recombination assays derived from EB-KO and Control organoids, arrows indicate ERG⁺/Trp63⁺ cells. Scale bars, 50 μ m.

Figure. 7

A

Figure 7. Schematic diagram for ERG drives prostate cell fate reprogramming through orchestrating chromatin interactions. (A) Most of prostate cancers are characterized by luminal cells expansion and basal cells absence, compared to normal prostate architecture that are composed of both luminal cells and basal cells (top). ERG overexpression driven by TMPRSS2-ERG fusion is one of the most common genetic alteration events in prostate cancer, which can alter chromatin interactions (middle). Since chromatin architecture is closely associated with epigenetic modifications and mRNA transcription, ERG-induced alterations in chromatin interactions may cause dysregulation of genes including Trp63. ERG overexpression reduces chromatin interactions and H3K27ac levels across the region from a distal ERG binding site to Trp63 gene body, which further causes decreased mRNA levels of Trp63 to facilitate the function of ERG in promoting luminal lineage differentiation (bottom).