

1 **Paxillin Promotes ATP-induced Activation of P2X7 Receptor and NLRP3 Inflammasome**

2

3 Wenbiao Wang¹, Dingwen Hu², Yuqian Feng¹, Caifeng Wu¹, Yunting Song², Weiyong Liu³, Aixin Li²,
4 Yingchong Wang², Keli Chen², Mingfu Tian², Feng Xiao², Qi Zhang², Weijie Chen¹, Pan Pan¹, Pin
5 Wan¹, Yingle Liu^{1,2}, Kailang Wu²**, and Jianguo Wu^{1,2*}

6 ¹Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan

7 University, Guangzhou 510632, China. ²State Key Laboratory of Virology, College of Life Sciences,

8 Wuhan University, Wuhan 430072, China. ³Department of Clinical Laboratory, Tongji Hospital,

9 Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

10

11 ***Correspondence:** Jianguo Wu, Guangdong Provincial Key Laboratory of Virology, Institute of
12 Medical Microbiology, Jinan University, Guangzhou 510632, China, Tel.: +86-20-85220949, Fax:
13 +86-20-85220949, E-mail: jwu898@jnu.edu.cn

14 ****Co-correspondence:** Kailang Wu, wukailang@whu.edu.cn

15

16

17 **Running title:** Paxillin activates P2X7 and NLRP3

18

19 **Word counts of the Abstract:** 149

20 **Word counts for Text:** 4,119

21

22 **Abstract**

23

24 The stimulation of P2X7 receptor by extracellular ATP leads to activation of NLRP3 inflammasome
25 and release of pro-inflammatory cytokines. Here, we reveal a distinct mechanism by which Paxillin
26 promotes ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. Extracellular ATP
27 induces Paxillin phosphorylation and facilitates Paxillin-NLRP3 interaction. Interestingly, Paxillin
28 enhances NLRP3 deubiquitination and activates NLRP3 inflammasome upon ATP treatment and K⁺
29 efflux. Moreover, we reveal that UPS13 is a key enzyme for Paxillin-mediated NLRP3
30 deubiquitination upon ATP treatment. Notably, extracellular ATP promotes Paxillin and NLRP3
31 migration from cytosol to plasma membrane and facilitates P2X7-Paxillin interaction and
32 Paxillin-NLRP3 association, resulting in the formation of P2X7-Paxillin-NLRP3 complex.
33 Functionally, Paxillin is essential for ATP-induced NLRP3 inflammasome activation in mouse
34 BMDMs and BMDCs as well as in human PBMCs and THP-1-differentiated macrophages. Thus,
35 Paxillin plays key roles in ATP-induced activation of P2X7 receptor and NLRP3 inflammasome by
36 facilitating the formation of the P2X7-Paxillin-NLRP3 complex.

37

38 **Keywords:** Adenosine triphosphate, ATP; P2X7 receptor; Paxillin; The NACHT, LRR and PYD
39 domains-containing protein 3, NALP3; Ubiquitin proteasome system 13, UPS13.

40 **Introduction**

41

42 The NACHT, LRR and PYD domains-containing protein 3 (NLRP3), one of the host pattern
43 recognition receptors (PRRs), recognizes pathogen-associated molecular patterns (PAMPs) and
44 danger associated molecular patterns (DAMPs). NLRP3 controls maturation and secretion of
45 interleukin-1 β (IL-1 β) and IL-18, two pleiotropic cytokines playing crucial roles in innate immune
46 and inflammatory responses as well as instructing adaptive immune responses (Schroder and
47 Tschopp, 2010). NLRP3 (the cytoplasmic sensor molecular) together with apoptosis-associated
48 speck-like protein with CARD domain (ASC) (the adaptor protein) promote the cleavage of the
49 pro-Caspase-1 (the effector protein) to generate active subunits p20 and p10, which regulate the
50 maturation of IL-1 β (Martinon et al., 2004). NLRP3 requires two signals for canonical activation and
51 for IL-1 β secretion: the first signal primes the cell to express NLRP3 and pro-IL-1 β mRNAs, and the
52 second signal induces inflammasome assembly and activation (Martinon et al., 2009). NLRP3 forms
53 a scaffold with ASC to provide a molecular platform for activation of pro-Caspase-1, which
54 collectively comprises the inflammasome (Martinon et al., 2002). Activated Caspase-1 cleaves
55 pro-IL-1 β into active IL-1 β , which is then secreted.

56 Extracellular adenosine triphosphate (ATP), a key DAMP, is released during inflammation by
57 injured parenchymal cells, dying leukocytes, and activated platelets (Di Virgilio, 2007). Activation of
58 NLRP3 inflammasome requires the activation of P2X7 receptor (P2X7R), a plasma membrane
59 channel that is directly activated by extracellular ATP (Latz et al., 2013; Surprenant and North, 2009).
60 After binding with ATP, the channel opens and induces transmembrane ion fluxes of K $^+$, which is a
61 key trigger of the NLRP3 inflammasome activation (Di Virgilio et al., 2017; Franceschini et al.,

62 2015). However, the mechanism underlying this regulation is not fully understood and the molecule
63 connecting P2X7 receptor and NLRP3 inflammasome is not identified.

64 Paxillin is a multi-domain protein that localizes to the extracellular matrix (ECM) and plays
65 important roles in cell motility, adhesion, migration, and growth control (Christopher, 1998). The
66 primary function of Paxillin is as a molecular adapter or scaffold protein that provides multiple
67 docking sites at the plasma membrane for many proteins, such as Focal adhesion kinase (FAK)
68 (Hanks et al., 2003) and extracellular signal-regulated kinase (ERK) (Ishibe et al., 2003). It is also
69 involved in the efficient processing of Integrin- and growth factor-mediated signals derived from the
70 extracellular environment (Nicholas and Christopher, 2008).

71 This study reveals a distinct mechanism underlying ATP-induced activation of P2X7 receptor
72 and NLRP3 inflammasome mediated by Paxillin. Extracellular ATP induces Paxillin phosphorylation,
73 facilitates Paxillin-NLRP3 interaction, and promotes NLRP3 deubiquitination, thereby activating
74 NLRP3 inflammasome. Additionally, ATP promotes Paxillin and NLRP3 membrane migration and
75 facilitates P2X7-Paxillin interaction, resulting in the formation of P2X7-Paxillin-NLRP3 complex.
76 Moreover, ubiquitin proteasome system 13 (UPS13) is key enzyme for Paxillin-mediated NLRP3
77 deubiquitination (Liu et al., 2011). Paxillin functionally is essential for ATP- and Nigericin-induced
78 NLRP3 inflammasome activation. Taken together, these results demonstrate that Paxillin promotes
79 ATP-induced activation of P2X7 receptor and NLRP3 inflammasome by facilitating the formation of
80 the P2X7-Paxillin-NLRP3 complex.

81

82 **Results**

83

84 **Paxillin binds directly to LRR domain of NLRP3 in the cytosol.**

85 We have recently revealed that several proteins control the NLRP3 inflammasome activation

86 through different mechanisms (Pan et al., 2019; Wan et al., 2019; Wang et al., 2017; Wang et al.,

87 2018). Here, we further showed that Paxillin interacted with NLRP3 based on a yeast two-hybrid

88 screen (Fig 1A). Co-immunoprecipitation (Co-IP) assays revealed that Paxillin interacted with

89 NLRP3, but not with ASC or pro-Caspase-1 (Fig 1B). NLRP3 contains several prototypic domains,

90 including a PYRIN domain, an NACHT domain, and seven LRR domains (Ye and Ting, 2008).

91 Paxillin was co-precipitated with NLRP3, NACHT, and LRR, but not with PYRIN (Fig 1C).

92 Glutathione S-transferase (GST) pull-down assays showed that GST-LRR was pulled down with

93 Paxillin (Fig 1D) and GST-Paxillin was pulled down with NLRP3 (Fig 1E), suggesting that Paxillin

94 directly binds to NLRP3 LRR domain. Confocal microscopy revealed that NLRP3 alone or Paxillin

95 alone was diffusely distributed in the cytosol, whereas NLRP3 and Paxillin together were

96 co-localized in the cytosol (Fig 1F). Collectively, these data demonstrate that Paxillin binds directly

97 to LRR domain of NLRP3 in the cytosol.

98

99 **ATP promotes Paxillin phosphorylation and Paxillin-NLRP3 interaction.**

100 ATP and Nigericin are common activators of the NLRP3 inflammasome (Mariathasan et al.,

101 2006). Human acute monocytic leukemia cells (THP-1) that stably expressed Paxillin were generated

102 by infection with Paxillin-Lentivirus, which were then treated with ATP or Nigericin. ATP-induced

103 Inflammasome activation, as indicated by IL-1 β secretion, IL-1 β maturation, and Caspase-1 cleavage,

104 was further promoted by Paxillin, whereas Nigericin-induced inflammasome activation was not
105 affected by Paxillin (Fig 2A, B), suggesting that Paxillin specifically promotes ATP-induced NLRP3
106 inflammasome activation. As ATP stimulates P2X7 ATP-gated ion channel and triggers K⁺ efflux,
107 leading to inflammasome activation (Kahlenberg and Dubyak, 2004), we evaluated the effect of
108 Paxillin on NLRP3 inflammasome activation. In Paxillin stable THP-1 cells, IL-1 β secretion, IL-1 β
109 maturation, and Caspase-1 cleavage were induced by ATP and further facilitated by Paxillin in the
110 presence of Dimethylsulphoxide (DMSO) or BAPTA-AM (Ca²⁺ chelator), whereas activations of
111 IL-1 β and Caspase-1 were not induced by ATP or Paxillin in the presence of YVAD (Caspase-1
112 inhibitor), Glybenclamide (K⁺ efflux inhibitor), A438079 (P2X7 antagonist), or AZ10606120 (P2X7
113 antagonist) (Fig 2C, D). These results indicate that like ATP, Paxillin promotes IL-1 β and Caspase-1
114 activation depending on P2X7, K⁺ efflux, and Casp-1, and suggest that Paxillin facilitates
115 ATP-induced NLRP3 inflammasome activation.

116 The mechanism by which Paxillin regulates ATP-induced NLRP3 inflammasome was
117 investigated. As Paxillin interacts with NLRP3, we explored whether ATP affects this interaction.
118 Paxillin-NLRP3 interaction was enhanced by ATP in TPA-differentiated THP-1 macrophages (Fig
119 2E), and LPS-primed mouse bone marrow derived macrophages (BMDMs) (Fig 2F). Paxillin is a
120 phosphorylated molecule and plays an important role in cell adhesion and migration (Schaller, 2001),
121 and phosphorylations of Paxillin at Y31 and Y118 were essential for the generation of protein
122 binding module (Hanks et al., 2003). We revealed that Paxillin Y31 and Y118 phosphorylations were
123 promoted by ATP in THP-1 differentiated macrophages (Fig 2G) and LPS-primed BMDMs (Fig 2H).
124 Like Paxillin, Paxillin(Y31A) interacted with NLRP3, whereas Paxillin(Y118A) failed to interact
125 with NLRP3 (Fig 2I), suggesting an essential role of Y118 in Paxillin-NLRP3 interaction. Moreover,

126 ATP-induced Paxillin Y118 phosphorylation was attenuated by P2X7 antagonists (A438079 and
127 AZ10606120) (Fig 2J), indicating that P2X7 is involved in Paxillin Y118 phosphorylation. Therefore,
128 ATP- and P2X7-induced Paxillin Y118 phosphorylation is essential for Paxillin-NLRP3 interaction.

129

130 **ATP stimulates P2X7-Paxillin interaction.**

131 Extracellular ATP stimulates P2X7 ATP-gated ion channel and inducing gradual recruitment of
132 Pannexin-1 membrane pore (Kanneganti et al., 2007). As the downstream adaptor of Integrin,
133 Paxillin functions as a scaffold for the recruitment of proteins into a complex (Franceschini et al.,
134 2015), we thus explored whether Paxillin interacts with P2X7. The result revealed that Paxillin
135 interacted with P2X7 and Pannexin-1 (Fig 3A), and P2X7-Paxillin interaction was promoted by ATP
136 (Fig 3B, C). Like Paxillin, Paxillin(Y31A) and Paxillin(Y118A) interacted with P2X7 (Fig 3D).
137 Notably, P2X7-Paxillin(Y31A) interaction was not facilitated by ATP (Fig 3E), whereas
138 P2X7-Paxillin(Y118A) interaction was promoted by ATP (Fig 3F). These results reveal that
139 phosphorylation site Y31 is involved in ATP-induced P2X7-Paxillin interaction.

140 P2X7 subunit contains intracellular N-termini (1–25aa), C-termini (357–595aa), and two
141 transmembrane domains (TM1 and TM2) (47–334) (Schaller, 2001). Accordingly, five plasmids
142 expressing P2X7 and deletion mutants were constructed (Fig 3G). Paxillin interacted with P2X7 and
143 P2X7(26–595), whereas Paxillin failed to interact with P2X7(47–595), P2X7(335–595), or
144 P2X7(356–595), suggesting that Paxillin interacts with 26aa–46aa of P2X7 (Fig 3H). To narrow
145 down the interaction region, ten plasmids expressing truncated P2X7 proteins were constructed (Fig
146 3I). Paxillin interacted with P2X7(26–595), P2X7(27–595), P2X7(29–595), and P2X7(30–595), but
147 it failed to associate with P2X7(31–595), P2X7(32–595), P2X7(33–595), P2X7(34–595),

148 P2X7(35–595), or P2X7(36–595) (Fig 3J, K), indicating that P2X7 K30 is required for Paxillin
149 interaction. To confirm this result, K30 was mutated to A30 to generate mutant P2X7(K30A).
150 Notably, unlike P2X7, P2X7(K30A) failed to interact with Paxillin (Fig 3L), confirming that K30 is
151 essential for the interaction with Paxillin. Therefore, ATP stimulates P2X7-Paxillin interaction, and
152 promotes Paxillin-NLRP3 interaction, and thus Paxillin plays an essential role in
153 P2X7-Paxillin-NLRP3 complex assembly upon ATP induction.

154

155 **Paxillin promotes NLRP3 deubiquitination depending on extracellular ATP and K⁺ efflux.**

156 As NLRP3 deubiquitination is important for the inflammasome activation (Py et al., 2013), here,
157 the roles of ATP and Paxillin in NLRP3 deubiquitination were evaluated. The level of NLRP3
158 ubiquitination was attenuated by ATP in THP-1 differentiated macrophages, and LPS-primed
159 BMDMs (Fig 4A, B). Similarly, the abundance of NLRP3 ubiquitination was reduced by Paxillin in
160 HEK293T cells and HeLa cells (Fig 4C, D). In addition, ATP-induced NLRP3 deubiquitination was
161 detected in the absence of sh-Paxillin, whereas it was repressed by sh-Paxillin in THP-1 cells and
162 BMDMs (Fig 4E, F). Collectively, these results reveal that Paxillin promotes ATP-induced NLRP3
163 deubiquitination.

164 To determine the nature of NLRP3 ubiquitination, two ubiquitin mutants that retains only a
165 single lysine residue (KO) and two ubiquitin mutants in which only one lysine residue is mutated
166 (KR) were generated. NLRP3 was ubiquitinated by UB, UB(K63O), and UB(K48R), whereas it
167 failed to be ubiquitinated by UB(K48O) or UB(K63R), and NLRP3 K63-linked ubiquitination was
168 attenuated by Paxillin (Fig 4G, H), indicating that NLRP3 ubiquitination is K63-linked and Paxillin
169 facilitates the removal of NLRP3 K63-linked ubiquitination.

170 Moreover, the site of NLPR3 ubiquitination was determined by constructing and analyzing four
171 only one lysine residual mutants (KR) of NLPR3 (Fig 4I, top). Ubiquitinations of NLRP3,
172 NLRP3(K194R), and NLRP3(K430R) were attenuated by Paxillin, ubiquitination of NLRP3(K324R)
173 was down-regulated by Paxillin, whereas ubiquitination of NLRP3(K689R) was not affected by
174 Paxillin (Fig 4I, bottom), and Paxillin attenuated NLRP3 ubiquitination but failed to reduce
175 NLRP3(K689R) ubiquitination (Fig 4J), revealing that Paxillin specifically removes NLRP3
176 ubiquitination at K689. As Paxillin Y118 phosphorylation is required for Paxillin-NLRP3 interaction,
177 we evaluated its effect on NLRP3 deubiquitination. NLRP3 ubiquitination was notably attenuated by
178 Paxillin, whereas it was not affected by Paxillin(Y118A) (Fig 4K), indicating that Paxillin Y118
179 phosphorylation is required for NLRP3 deubiquitination.

180 As ATP-induced Paxillin Y118 phosphorylation is essential for Paxillin-NLRP3 interaction and
181 deubiquitination, we further explored the effect of K⁺ efflux on Paxillin Y118 phosphorylation.
182 Paxillin Y118 phosphorylation was induced by ATP, but such induction was attenuated by KCl
183 treatment (Fig 4L). Furthermore, the role of K⁺ efflux in NLRP3 deubiquitination was revealed.
184 Notably, ATP attenuated NLRP3 ubiquitination, but such attenuation was suppressed by KCl (Fig
185 4M), demonstrating that K⁺ efflux is important for Paxillin- and ATP-induced deubiquitination of
186 NLRP3. Together, we reveal that Paxillin facilitates the remove NLRP3 K63-linked ubiquitination at
187 K689 and that ATP and K⁺ efflux are critical for Paxillin-mediated NLRP3 deubiquitination.

188

189 **UPS13 is essential for Paxillin-mediated NLRP3 deubiquitination upon ATP treatment.**

190 Next, the enzyme required for Paxillin-mediated NLRP3 deubiquitination was then determined.
191 As deubiquitinating enzymes, such as eukaryotic translation initiation factor 3, subunit 5 (EIF3S5),

192 ubiquitin proteasome system 13 (UPS13), and OTU domain-containing ubiquitin aldehyde-binding
193 protein 1 (OTUB1), were potentially involved in the deubiquitination of NLRP3 (Py et al., 2013)
194 [25]. Here, we explored the roles of these enzymes in NLRP3 deubiquitination. Paxillin interacted
195 with EIF3S5, UPS13 (Fig 5A), revealing that EIF3S5 and UPS13 might be participated in
196 Paxillin-mediated NLRP3 deubiquitination. To confirm the roles of EIF3S5 and UPS13 in the
197 regulation of NLRP3 activation, Hela cells stably expressing sh-RNA targeting human EIF3S5
198 (sh-EIF3S5) and human UPS13 (sh-UPS13) were generated and analyzed (Fig 5B). NLRP3
199 ubiquitination was attenuated by Paxillin in the presence of sh-NC and sh-EIF3S5, whereas it was
200 relatively unaffected by Paxillin in the presence of sh-UPS13 (Fig 5C), indicating that UPS13 is
201 required for Paxillin-mediated NLRP3 deubiquitination. Moreover, co-IP assays revealed that
202 Paxillin and UPS13 interacted with each other (Fig 5D–G). Like NLRP3, NLRP3 NACHT domain
203 and LRR domain interacted with UPS13, but NLRP3 PYRIN domain failed to interact with UPS13
204 (Fig 5H).

205 In another hand, the domains of UPS13 required for UPS13-NLRP3 interaction and
206 UPS13-Paxillin association were assessed by constructing and analyzing plasmids encoding for WT
207 UPS13(1–863) and four truncated proteins (Fig 5I). Like WT UPS13(1–863), UPS13(301–863) and
208 UPS13(625–863) interacted with NLRP3, but UPS13(1–300) or UPS13(301–624) failed to interact
209 with NLRP3 (Fig 5J), indicating that 625aa–863aa of UPS13 are involved in UPS13-NLRP3
210 interaction. Additionally, UPS13(1–863) and UPS13(1–300) interacted with Paxillin, but
211 UPS13(301–624), UPS13(301–863), and UPS13(625–863) could not interact with Paxillin (Fig 5K),
212 indicating that 1aa–300aa of UPS13 is involved in UPS13-Paxillin interaction. Furthermore, Paxillin

213 and Paxillin(Y118A) interacted with UPS13, but Paxillin(Y31A) failed to associate with UPS13 (Fig
214 5L), implicating that Paxillin Y31 phosphorylation is important for UPS13-Paxillin interaction.

215 To determine the role of UPS13 in the regulation of NLRP3 ubiquitination, we generated
216 HEK293T cells stably expressing sh-UPS13. The level of NLRP3 ubiquitination was promoted by
217 sh-UPS13 (Fig 5M), facilitated by Spautin-1 (an inhibitor of deubiquitinating enzyme activity of
218 UPS13) (Fig 5N), attenuated by Paxillin, whereas Paxillin-mediated attenuation of NLRP3
219 ubiquitination was repressed by Spautin-1 (Fig 5O), indicating that UPS13 is required for NLRP3
220 deubiquitination. Moreover, IL-1 β secretion, IL-1 β maturation, and Casp-1 cleavage induced by ATP
221 were repressed by Spautin-1 (Fig 5P, Q), suggesting that UPS13 deubiquitinating enzyme activity is
222 critical for ATP-induced NLRP3 inflammasome activation. Taken together, these data reveal that
223 UPS13 is essential for Paxillin-mediated deubiquitination of NLRP3 upon ATP treatment.

224

225 **ATP induces Paxillin and NLRP3 membrane migration to facilitate P2X7-Paxillin-NLRP3
226 complex formation.**

227 As Paxillin is a scaffold for the recruitment of proteins into a complex apposing to the plasma
228 membrane (Martinon et al., 2004), and Paxillin facilitates the P2X7-Paxillin-NLRP3 complex
229 assembly, we thus explored whether Paxillin recruits NLRP3 to plasma membrane. In Hela cells,
230 NLRP3 alone and Paxillin alone diffusely distributed in the cytosol in the absence of ATP; NLRP3
231 forms small spots in the cytosol and Paxillin localized in the membrane, whereas NLRP3 and
232 Paxillin together co-localized and formed membrane blebbing in the presence of ATP (Fig 6A),
233 similar to that described previously (Pelegrin and Surprenant, 2006). In TPA-differentiated THP-1
234 macrophages, endogenous NLRP3 was diffusely distributed in the cytosol without ATP but formed

235 spots in the membrane as indicated by Dil (red) (a dye of cell membrane) in the presence of ATP (Fig
236 6B); endogenous phosphorylated Paxillin was hardly detected without ATP, whereas it was detected
237 in the membrane upon ATP treatment (Fig 6C); and notably, endogenous NLRP3 and phosphorylated
238 Paxillin co-localized and formed spots in the membrane upon ATP treatment (Fig 6D). Moreover, in
239 LPS-primed BMDMs, endogenous NLRP3 was diffusely distributed in the cytosol without ATP, but
240 localized and formed spots in the membrane upon ATP treatment (Fig 6E); endogenous
241 phosphorylated Paxillin was hardly detected without ATP, but localized in the membrane after ATP
242 treatment (Fig 6F); and endogenous NLRP3 and phosphorylated Paxillin co-localized and formed
243 spots in the membrane after treated with ATP (Fig 6G). Collectively, these results suggest that ATP
244 induces NLRP3 and Paxillin translocation from cytosol to plasma membrane.

245 The distribution of NLRP3 in TPA-differentiated THP-1 macrophages upon ATP treatment was
246 examined. Fractionation fidelity was verified by Caspase-3 in the cytosolic fraction and Calnexin in
247 the membrane fraction. Without ATP treatment, NLRP3, Paxillin, and P2X7 localized in the cytosolic
248 fraction and membrane fraction, Caspase-3 localized in the cytosolic fraction, and Calnexin
249 distributed in membrane fraction; upon ATP treatment, NLRP3, Paxillin, and P2X7 distributed in the
250 membrane fraction (Fig 6H), suggesting that NLRP3 and Paxillin migrate from the cytosol to
251 membrane upon ATP stimulation. Membrane flotation assay can indicate that membrane-bound
252 organelles migrate from dense to light fractions (Barnett et al., 2019), and membrane-bound
253 organelles are sensitive to Triton X-100 except plasma membrane (Brown and Rose, 1992;
254 Lingwood and Simons, 2010). We thus performed membrane flotation assays on Optiprep gradients
255 bottom-loaded with lysate supernatants of TPA-differentiated THP-1 macrophages. Without
256 treatments, NLRP3 floated from the bottom fractions (21–24) into the membrane fractions (12–20),

257 Paxillin floated from the bottom fractions (21–24) into the membrane fractions (14–20), and P2X7
258 floated from the bottom fractions (21–24) into the lighter fractions (15–20), while Calnexin remained
259 in the lighter membrane fraction (12–18) and Caspase-3 stayed in the bottom fractions (22–24) (Fig
260 6I). Notably, after Triton X-100 treatment, NLRP3, Paxillin, Calnexin, and Caspase-3 remained in
261 the bottom fractions (22–24), whereas P2X7 floated from the bottom fractions (22–24) into the
262 lighter fractions (17–21) (Fig 6J). Notably, upon ATP stimulation, NLRP3 floated from the bottom
263 fractions (21–24) into the membrane fractions (12–20), Paxillin floated from the bottom fractions
264 (21–24) in to the lighter fractions (13–20), and P2X7 floated from the bottom fractions (21–24) into
265 the membrane fractions (17–20); while Calnexin remained in the membrane fraction (12–19) and
266 Caspase-3 retained in the bottom fractions (22–24) (Fig 6K). Interestingly, upon ATP stimulation and
267 Triton X-100 treatment, NLRP3, Paxillin, and P2X7 floated from the bottom fractions (21–24) into
268 the membrane fractions (18–20), Calnexin retained the bottom fractions (21–24), and Caspase-3
269 remained in the bottom fractions (22–24) (Fig 6L). Together, the results demonstrate that NLRP3,
270 Paxillin, and P2X7 colocalized on plasma membrane upon ATP treatment, and suggest that ATP
271 induces Paxillin and NLRP3 membrane migration to facilitate P2X7-Paxillin-NLRP3 complex
272 formation.

273

274 **Paxillin is required for ATP- and Nigericin-induced NLRP3 inflammasome activation.**

275 At least three NLRP family members (NLRP1, NLRP3, and NLRC4/IPAF) and one HIN-200
276 family member (Absent in Melanoma 2, AIM2) have been reported to exhibit inflammasome activity
277 (Schroder and Tschopp, 2010). The NLRP1 inflammasome is activated by mycobacterial
278 DNA-binding protein (MDP) (Faustin et al., 2007). The NLRP3 inflammasome is induced by ATP

279 (Mariathasan et al., 2006), monosodium urate (MSU) (Martinton et al., 2006), Nigericin (Mariathasan
280 et al., 2006), and Alum (Al) (Hornung et al., 2008). The NLRC4 inflammasome is stimulated by
281 bacteria (Franchi et al., 2006). AIM2 senses cytosolic double-stranded DNA (dsDNA) (Hornung et
282 al., 2009). Here, we determined the biological roles of Paxillin in the regulation of the four
283 inflammasomes. BMDMs stably expressed sh-Paxillin were generated by infected with lentivirus
284 expressing sh-Paxillin. The stable BMDMs were treated with four inflammasome activators, MDP
285 for NLRP1 inflammasome, ATP for NLRP3 inflammasome, dA:dT for AIM2 inflammasome, and
286 Salmonella for NLRC4 inflammasome. ATP-induced IL-1 β secretion, IL-1 β maturation, and
287 Caspase-1 cleavage were attenuated by sh-Paxillin, whereas MDP-, dA:dT-, or Salmonella-induced
288 IL-1 β secretion, IL-1 β maturation, and Caspase-1 cleavage were not affected by sh-Paxillin (Fig 7A,
289 B), demonstrating that Paxillin is essential for the NLRP3 inflammasome activation.

290 Stable BMDMs were then treated with ATP, Nigericin, monosodium urate (MSU), and alum
291 (Al). The results showed that ATP- and Nigericin-induced IL-1 β secretion, IL-1 β maturation, and
292 Caspase-1 cleavage were attenuated by sh-Paxillin, whereas MSU- or Al-mediated IL-1 β secretion,
293 IL-1 β maturation, and Caspase-1 cleavage were not affected by sh-Paxillin (Fig 7C, D). In addition,
294 mouse bone marrow dendritic cells (BMDCs) stably expressed sh-Paxillin were constructed. Stable
295 BMDCs were treated with ATP, Nigericin, and MSU. Similarly, ATP- and Nigericin-induced IL-1 β
296 secretion, IL-1 β maturation, and Caspase-1 cleavage were reduced by sh-Paxillin, but
297 MSU-mediated IL-1 β secretion, IL-1 β maturation, and Casp-1 cleavage were not affected by
298 sh-Paxillin (Fig 7E, F). Moreover, human peripheral blood mononuclear cells (PBMCs) stably
299 expressed sh-Paxillin were generated. The stable PBMCs were treated with ATP, Nigericin, MSU, Al,
300 or MDP. ATP- and Nigericin-induced IL-1 β secretion was down-regulated by sh-Paxillin, but MSU-,

301 Al-, or MDP-mediated IL-1 β secretion was not affected by sh-Paxillin, and the level of Paxillin was
302 attenuated by sh-Paxillin (Fig 7G, H). Finally, THP-1 cells stably expressed sh-Paxillin were
303 generated. The stable THP-1 cells were differentiated into macrophages, which were then treated
304 with ATP, Nigericin, or MSU. ATP- and Nigericin-induced IL-1 β secretion, IL-1 β maturation and
305 Caspase-1 cleavage were attenuated by sh-Paxillin, but MSU-mediated IL-1 β secretion, IL-1 β
306 maturation, and Casp-1 cleavage were not affected by sh-Paxillin (Fig 7I, J). Collectively, these
307 results demonstrate that Paxillin is essential for ATP- and Nigericin-induced NLRP3 inflammasome
308 activation. Taken together, we reveal that Paxillin plays key roles in ATP-induced activation of P2X7
309 receptor and NLRP3 inflammasome by formatting the P2X7-Paxillin-NLRP3 complex (Fig 8).
310

311 **Discussion**

312

313 NLRP3 inflammasome activation requires P2X7 receptor stimulation mediated by ATP (Di
314 Virgilio et al., 2017; Latz et al., 2013; Surprenant and North, 2009). Upon ATP treatment, P2X7
315 induces transmembrane K⁺ ion efflux and Pannex-1 hemichannel to form large pore for
316 inflammasome activation (Pelegrin and Surprenant, 2006; Pelegrin and Surprenant, 2007). However,
317 the molecule connecting P2X7 receptor and NLRP3 inflammasome has not been revealed. This study
318 identifies that Paxillin plays key roles in ATP-induced activation of P2X7 receptor and NLRP3
319 inflammasome by promoting the formation of P2X7-Paxillin-NLRP3 complex. The primary function
320 of Paxillin is a molecular adapter or scaffold protein that provides multiple docking sites at the
321 plasma membrane for processing of Integrin- and growth factor-mediated signals (Ishibe et al., 2003).
322 Initially, we revealed a direct interaction between Paxillin and NLRP3. The function and localization
323 of Paxillin is tightly modulated by phosphorylation (Webb et al., 2005). Phosphorylations at Y31 and
324 Y118 sites in FAK- and Src-dependent manners (Schaller and Parsons, 1995) are essential for
325 interaction between Paxillin and downstream effectors, such as ERK (Hanks et al., 2003) and Crk2
326 (Valles et al., 2004). Tyrosine phosphorylation of Paxillin regulates the assembly and turnover of
327 adhesion complexes (Lopez-Colome et al., 2017). Here, we demonstrate that ATP-induced Paxillin
328 Y118 phosphorylation is essential for Paxillin-NLRP3 interaction and Paxillin promotes NLRP3
329 inflammasome activation upon ATP treatment.

330 Extracellular ATP stimulates the P2X7 ATP-gated ion channel, triggers K⁺ efflux, and induces
331 gradual recruitment of the Pannexin-1 membrane pore, leading to inflammasome activation
332 (Kahlenberg and Dubyak, 2004; Kanneganti et al., 2007; Mariathasan et al., 2006). Interestingly,

333 Paxillin interacts with P2X7, ATP promotes P2X7-Paxillin interaction, Paxillin Y31 phosphorylation
334 is required for such interaction, P2X7 K30 is essential for P2X7-Paxillin association. Thus, we reveal
335 that ATP stimulates P2X7-Paxillin interaction, induces K⁺ efflux, activates Paxillin phosphorylation,
336 and promotes Paxillin-NLRP3 interaction, and suggest that Paxillin plays a key role in the
337 P2X7-Paxillin-NLRP3 complex assembly. Paxillin is a downstream adaptor of Integrin and functions
338 as a scaffold for protein recruitment into a complex (Franceschini et al., 2015). Our finding reveals a
339 new function of Paxillin in the recruitment of proteins involved in ATP-induced activation of P2X7
340 receptor and NLRP3 inflammasome.

341 The molecular mechanism underlying the function of Paxillin in activation of P2X7 receptor
342 and NLRP3 inflammasome is determined. As NLRP3 deubiquitination is important for the
343 inflammasome activation (Py et al., 2013), the roles of ATP and Paxillin in NLRP3 deubiquitination
344 were evaluated. Notably, Paxillin facilitates the remove of NLRP3 K63-linked ubiquitination at
345 K689, and ATP as well as K⁺ efflux are critical for this regulation. The importance of K⁺ efflux in
346 NLRP3 inflammasome activation has been revealed (Piccini et al., 2008). The drop of K⁺
347 concentration triggers NLRP3 inflammasome, whereas a high concentration of K⁺ blocks NLRP3
348 inflammasome (Munoz-Planillo et al., 2013). However, the molecular mechanism between decreased
349 levels of intracellular K⁺ and NLRP3 activation remains largely unknown. Recent study has showed
350 that intracellular K⁺ reduction mediated by P2X7 enhances NLRP3 interaction with NEK7 (He et al.,
351 2016). The present study identifies that Paxillin is essential for ATP-induced NLRP3 inflammasome
352 activation and for NLRP3 recruitment in the plasma membrane.

353 Post-translational modifications (PTMs), including ubiquitination (Py et al., 2013),
354 phosphorylation (Song and Li, 2018), and Sumoylation (Barry et al., 2018) are critical for

355 inflammasome activation. NLRP3 deubiquitination is required for NLRP3 inflammasome activation
356 and pharmacological inhibition of NLRP3 deubiquitination impairs the inflammasome activation (Py
357 et al., 2013). ATP and Nigericin induce NLRP3 deubiquitination and inflammasome activation
358 (Juliana et al., 2012). We demonstrate that ATP-induced Paxillin Y118 phosphorylation promotes the
359 remove of NLRP3 K63-linked ubiquitination at K689. Additionally, we discovered that UPS13 is the
360 deubiquitinating enzyme required for Paxillin-mediated NLRP3 deubiquitination. UPS13 interacts
361 with Paxillin and NLRP3, phosphorylation of Paxillin at Y31 is important for Paxillin-UPS13
362 interaction, and UPS13 is essential for Paxillin-mediated NLRP3 deubiquitination upon ATP
363 treatment.

364 ATP induces Paxillin-containing membrane protrusions (Silber et al., 2012) and Paxillin acts as
365 a scaffold for protein recruitments into a complex apposing to the plasma membrane (Franceschini et
366 al., 2015). Confocal microscopy analysis show that ATP induces the translocation of endogenous
367 NLRP3 and endogenous Paxillin from the cytosol to the plasma membrane. Membrane flotation
368 assay indicate that NLRP3, Paxillin, and P2X7 colocalize to the plasma membrane upon ATP
369 treatment. Therefore, we suggest that ATP induces Paxillin and NLRP3 membrane migration to
370 facilitate P2X7-Paxillin-NLRP3 complex formation.

371 The biological role of Paxillin in NLRP3 inflammasome activation is determined. We reveal
372 that Paxillin is essential for ATP-induced NLRP3 inflammasome activation, including IL-1 β
373 secretion, IL-1 β maturation, and Caspase-1 cleavage. After the response to tissue damage and
374 cellular stress, ATP released to enhance tissue repair and promote the recruitment of immune
375 phagocytes and dendritic cells (Stagg and Smyth, 2010). ATP-P2X7 receptor signaling is involved in
376 many pathological conditions, including infectious diseases, inflammatory diseases, and

377 neurodegenerative disorders (Savio et al., 2018). We demonstrate that Paxillin is a molecular adaptor
378 that recruits UPS13 and NLRP3 on plasma membrane for NLRP3 inflammasome activation, and
379 thereby may act as a potential target of therapeutics to inflammatory diseases.

380

381 **Materials and Methods**

382

383 **Animal study**

384 Mouse BMDCs were differentiated from fresh bone marrow cells of C57BL/6 WT mice in
385 RPMI 1640 medium containing 10% heat-inactive fetal bovine serum (FBS) in the presence of
386 granulocyte macrophage colony-stimulating factor (GM-CSF) in six-well plates for 6 days. The
387 culture medium was replaced every other day.

388 Mouse BMDMs were differentiated from fresh bone marrow cells of C57BL/6 WT mice. The
389 bone marrow cells were incubated in six-well plates for 6 days with 10% L929-conditioned, 10%
390 heat-inactive FBS in RPMI 1640 medium. The culture medium was replaced every 2 days. The
391 animal study was approved by the Institutional Review Board of the College of Life Sciences,
392 Wuhan University, and was conducted in accordance with the guidelines for the protection of animal
393 subjects.

394

395 **Cell lines and cultures**

396 Hela and human embryonic kidney cells (HEK 293T) were purchased from American Type
397 Culture Collection (ATCC) (Manassas, VA, USA). Human acute monocytic leukemia cell line
398 (THP-1) was a gift from Dr. Jun Cui of State Key Laboratory of Biocontrol, School of Life Sciences,
399 Sun Yat-sen University, Guangzhou 510275, PRC. THP-1 cells were cultured in RPMI 1640 medium
400 supplemented with 10% heat-inactivated FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin
401 sulfate. Hela and HEK293T cells were cultured in Dulbecco modified Eagle medium (DMEM)
402 purchased from Gibco (Grand Island, NY, USA) supplemented with 10% FBS, 100 U/ml penicillin,

403 and 100 µg/ml streptomycin sulfate. Hela, HEK293T and THP-1 cells were maintained in an
404 incubator at 37°C in a humidified atmosphere of 5% CO₂.

405

406 **Reagents**

407 phorbol-12-myristate-13-acetate (TPA) (P1585), OptiPrep™ (D1556) and DMSO (D8418)
408 were purchased from Sigma-Aldrich (St. Louis, MO, USA). RPMI 1640 and Dulbecco modified
409 Eagle medium (DMEM) were obtained from Gibco (Grand Island, NY, USA). Lipopolysaccharide
410 (LPS) (tlrl-b5lps), adenosine triphosphate (ATP) (987-65-5), Nigericin (28643-80-3),
411 dA:dT(86828-69-5), MDP (53678-77-6), Glybenclamide (10238-21-8), MSU (1198-77-2), Alum
412 Crystals (7784-24-9) and Ac-YVAD-cmk (178603-78-6) were obtained from InvivoGene Biotech
413 Co., Ltd. (San Diego, CA, USA). A438079 (899431-18-6), AZ10606120 (607378-18-7) and
414 BAPTA-AM (126150-97-8) were purchased from Tocris Bioscience. Antibody against Flag (F3165),
415 HA (H6908) and monoclonal mouse anti-GAPDH (G9295) were purchased from Sigma (St. Louis,
416 MO, USA). Monoclonal rabbit anti-NLRP3 (D2P5E), Ubiquitin mouse mAb (P4D1), Monoclonal
417 rabbit anti-K63-linkage Specific Polyubiquitin (D7A11), Monoclonal rabbit anti-caspase-3 (13809S),
418 Monoclonal rabbit anti-P2X7 (9662S), Monoclonal rabbit anti-p-paxillin(Tyr118) (2541S),
419 Monoclonal rabbit anti-calnexin (C5C9), monoclonal rabbit anti-IL-1β (D3U3E), IL-1β mouse mAb
420 (3A6) and monoclonal rabbit anti-caspase-1 (catalog no. 2225) were purchased from Cell Signaling
421 Technology (Beverly, MA, USA). Monoclonal mouse anti-ASC (sc-271054), polyclonal rabbit
422 anti-caspase-1 p10 (sc-515) and polyclonal rabbit anti-IL-1β (sc-7884) were purchased from Santa
423 Cruz Biotechnology (Santa Cruz, CA, USA). Polyclonal Goat anti-mouse IL-1β (p17) (AF-401-NA)
424 was from R&D Systems. Monoclonal mouse anti-paxillin (7019741) was purchased from BD

425 Biosciences. Polyclonal rabbit anti-p-paxillin (Tyr31) (1690606A) was purchased from life
426 technologiex. Monoclonal mouse anti-NLRP3 (AG-20B-0014-C100) was purchased from adipogen
427 to detection endogenous NLRP3 in THP1 cells, BMDC and BMDM. Lipofectamine 2000, normal
428 rabbit IgG and normal mouse IgG were purchased from Invitrogen Corporation (Carlsbad, CA,
429 USA).

430

431 **Plasmid construction**

432 The cDNAs encoding human paxillin, NLRP3, ASC, pro-Casp-1 and IL-1 β were obtained by
433 reverse transcription of total RNA from TPA-differentiated THP-1 cells, followed by PCR using
434 specific primers. The cDNAs were sub-cloned into pcDNA3.1(+) and pcagg-HA vector. The
435 pcDNA3.1(+)3 \times Flag vector was constructed from pcDNA3.1(+) vector through inserting the
436 3 \times Flag sequence between the NheI and HindIII site. Following are the primers used in this study.

437 Flag-NLRP3: 5'-CGCGGATCCATGAAGATGGCAAGCACCCGC-3';

438 5'-CCGCTCGAGCTACCAAGAAGGCTCAAAGAC-3'; Flag-ASC:

439 5'-CCGAATTCATGGGCGCGCGCGACGCCAT-3',

440 5'-CCGCTCGAGTCAGCTCCGCTCCAGGTCC-3'; Flag-Casp-1:

441 5'-CGCGGATCCATGGCCGACAAGGTCTGAAG-3',

442 5'-CCGCTCGAGTTAATGTCCTGGAAAGAGGTA-3'; Flag-paxillin:

443 5'-CCGAATTCTATGGACGACCTCGACGCCCT-3',

444 5'-CCGCTCGAGCTAGCAGAAGAGCTTGAGGAA-3'; Myc-paxillin:

445 5'-CCGAATTCTATGGACGACCTCGAC-3', 5'-CCGCTCGAGCTAGCAGAAGAGCTTG-3';

446 Myc-paxillin(y118a): 5'-GTGAGGAGGAGCACGTCGCAAGCTTCCCCAACAAAGCAGAA-3',

447 5'-ATTCTGCTTGGGAAAGCTGCGACGTGCTCCTCCTC-3'; HA-paxillin:
448 5'-CCGAATTCATGGACGACCTCGACGCCCTG-3',
449 5'-CGCTCGAGGCAGAAGAGCTTGAGGAAGCA-3'; HA-paxillin(y31a):
450 5'-GCCTGTGTTCTTCGGAGGAGACCCCCGCATCATACCCA-3',
451 5'-GTGTGGTTCCAGTTGGGTATGATGCGGGGGTCTCCTCCG-3'; HA-paxillin(y118a):
452 5'-GTGAGGAGGAGCACGTGCAAGCTTCCCCAACAAAGCAGAA-3',
453 5'-ATTCTGCTTGGGAAAGCTGCGACGTGCTCCTCCTC-3'; HA-NLRP3:
454 5'-TACGAGCTCATGAAGATGGCAAGCACCCGC-3',
455 5'-CCGCTCGAGCCAAGAAGGCTCAAAGACGAC-3'; pGEX-6p-1-paxillin:
456 5'-CCGAATTCATGGACGACCTCGACGCCCTG-3',
457 5'-CGCTCGAGGCAGAAGAGCTTGAGGAAGCA-3'; pGEX-6p-1-LRR:
458 5'-CGCGGATCCATGTCTCAGCAAATCAGGCTG-3',
459 5'-CCGCTCGAGCTACCAAGAAGGCTCAAAGAC-3'; AD-paxillin:
460 5'-CCGAATTCATGGACGACCTCGACGCCCTG-3',
461 5'-CGCTCGAGGCAGAAGAGCTTGAGGAAGCA-3'; pGBKT7-LRR:
462 5'-CGCGGATCCATATGTCTCAGCAAATCAGGC-3',
463 5'-CCGCTCGAGCTACCAAGAAGGCTCAAAGAC-3';
464 The P2X7 and usp13 truncates was cloned into pcDNA3.1(+) and the PYRIN, NACHT, and
465 LRR domain of NLRP3 protein was cloned into pcDNA3.1(+) and pcaggs-HA vector using specific
466 primers. Following are the primers used in this study.
467 Flag-PYRIN: 5'-AAAGGATCCATGAAGATGGCAAGCACCCGC-3',
468 5'-CGGCTCGAGCTATAACCCATCCACTCCTCTTC-3'; Flag-NACHT:

469 5'-AAAGGATCCCTGGAGTACCTTCGAGAATCTC-3',
470 5'-CCCCTCGAGCTAGATCTGCAACTTAATTCTTC-3'; Flag-LRR:
471 5'-AAAGGATCCTCTCAGCAAATCAGGCTGGAG-3',
472 5'-CGGCTCGAGCTACCAAGAAGGCTAAAGACG-3'; Flag-P2X7:
473 5'-ATTGGTACCATGCCGGCCTGCTGCAGCTGCAGT-3',
474 5'-CCGCTCGAGTCAGTAAGGACTCTGAAGCCACT-3'; Flag-P2X7(26-595):
475 5'-CAAGATATCATGTATGGCACCATTAAGTGG-3',
476 5'-CCGCTCGAGTCAGTAAGGACTCTGAAGCC-3'; Flag-P2X7(47-595):
477 5'-AATGATATCATGAGTGACAAGCTGTACCAAG-3',
478 5'-CCGCTCGAGTCAGTAAGGACTCTGAAGCC-3'; Flag-P2X7(335-595):
479 5'-CCGGAATTCTATGGTGTACATCGGCTAAC-3',
480 5'-CCGCTCGAGTCAGTAAGGACTCTGAAGCC-3'; Flag-P2X7(356-595):
481 5'-CCGGAATTCTATGGACACTTACTCCAGTAA-3',
482 5'-CCGCTCGAGTCAGTAAGGACTCTGAAGCC-3'; Flag-P2X7(27-595):
483 5'-CGGGGTACCATGGGCACCATTAAAGTGGTTC-3',
484 5'-CTAGTCTAGATCAGTAAGGACTCTGAAGC-3'; Flag-P2X7(29-595):
485 5'-CGGGGTACCATGATTAAGTGGTTCTTCCAC-3',
486 5'-CTAGTCTAGATCAGTAAGGACTCTGAAGC-3'; Flag-P2X7(30-595):
487 5'-CGGGGTACCATGAAGTGGTTCTTCCACGTG-3',
488 5'-CTAGTCTAGATCAGTAAGGACTCTGAAGC-3'; Flag-P2X7(31-595):
489 5'-CGGGGTACCATGTGGTTCTTCCACGTGATC-3',
490 5'-CTAGTCTAGATCAGTAAGGACTCTGAAGC-3'; Flag-P2X7(32-595):

491 5'-CGGGGTACCATGTTCTTCCACGTGATCATC-3',
492 5'-CTAGTCTAGATCAGTAAGGACTCTTGAAGC-3'; Flag-P2X7(33-595):
493 5'-CGGGGTACCATGTTCCACGTGATCATCTT-3', 5'
494 -CTAGTCTAGATCAGTAAGGACTCTTGAAGC-3'; Flag-P2X7(34-595):
495 5'-CGGGTACCATGCACGTGATCATCTTTCC-3',
496 5'-CTAGTCTAGATCAGTAAGGACTCTTGAAGC-3'; Flag-P2X7(35-595):
497 5'-CGGGTACCATGGTGATCATCTTTCCTAC-3',
498 5'-CTAGTCTAGATCAGTAAGGACTCTTGAAGC-3'; Flag-P2X7(36-595):
499 5'-CGGGTACCATGATCATCTTTCCTACGTT-3',
500 5'-CTAGTCTAGATCAGTAAGGACTCTTGAAGC-3'; Flag-P2X7(k30a):
501 5'-AATTATGGCACCATTGCGTGGTTCTTCCACGTGAT-3',
502 5'-ATGATCACGTGGAAGAACCAACGCAATGGTGCCATA-3'; Flag-USP13:
503 5'-CGGGTACCATGCAGGCCGGGGCGCCCTG-3',
504 5'-CCGCTCGAGTTAGCTTGGTATCCTGCGGTA-3'; Flag-usp13(1-300):
505 5'-CGGGTACCATGCAGGCCGGGGCGCCCTG-3',
506 5'-CCGCTCGAGTTACCCATGCATATGAAGCAT-3'; Flag-usp13(301-624):
507 5'-CGGGTACCATGACAGAGAATGGGCTCCAG-3',
508 5'-CCGCTCGAGTTATTCCCTCCTGGCTGTAA-3'; Flag-usp13(301-863):
509 5'-CGGGTACCATGACAGAGAATGGGCTCCAG-3',
510 5'-CCGCTCGAGTTAGCTTGGTATCCTGCGGTA-3'; Flag-usp13(625-863):
511 5'-CGGGTACCATGGAACCTCCAGACATCAGC-3',
512 5'-CCGCTCGAGTTAGCTTGGTATCCTGCGGTA-3'. HA-PYRIN:

513 5'-CCGGAATTCATGAAGATGGCAAGCACCCGC-3',
514 5'-CCGCTCGAGTAAACCCATCCACTCCTCTTC-3'; HA-NACHT:
515 5'-CCGGAATTCATGCTGGAGTACCTTCGAGA-3',
516 5'-CCGCTCGAGGATCTGCAACTTAATTCTT-3'; HA-LRR:
517 5'-ATCGAGCTCATGTCTCAGCAAATCAGGCTG-3',
518 5'-CCGCTCGAGCCAAGAAGGCTCAAAGACGAC-3';
519

520 **Lentivirus Production and Infection**

521 The targeting sequences of shRNAs for the human Paxillin and mouse paxillin were as follows:
522 Human sh-Paxillin: 5'-CCCGACCTAATTGTCTTGTT-3'; Mouse sh-Paxillin:
523 5'-TCTGAACTTGACCGGCTGTTA-3'. A PLKO.1 vector encoding shRNA for a negative control
524 (Sigma-Aldrich, St. Louis, MO, USA) or a specific target molecule (Sigma-Aldrich) was transfected
525 into HEK293T cells together with psPAX2 and pMD2.G with Lipofectamine 2000. Culture
526 supernatants were harvested 36 and 60 h after transfection and then centrifuged at 2,200 rpm for 15
527 min. THP-1 cells were infected with the supernatants contain lentiviral particles in the presence of 4
528 µg/ml polybrene (Sigma). After 48 h of culture, cells were selected by 1.5 µg/ml puromycin (Sigma)
529 for 5days. The BMDM and BMDCs cells were infected with lentiviral particles for 1day and treated
530 with 1.5 µg/ml puromycin (Sigma) for 2 days. The results of each sh-RNA-targeted protein were
531 detected by immunoblot analysis.

532 We using the 3*Flag sequence to replace the GFP protein in the pLenti CMV GFP Puro vector
533 (Addgene, 658-5) for adding some Restriction Enzyme cutting site (XbaI-EcoRV-BstBI-BamHI)
534 before the 3×Flag tag. Then the pLenti vector encoding paxillin protein was transfected into

535 HEK293T cells together with psPAX2 and pMD2.G with Lipofectamine 2000. Following are the
536 primers used in this study. pLenti-paxillin: 5'-CTAGTCTAGAATGGACGACCTCGACGCCCT-3',
537 5'-GATTCGAAGCAGAAGAGCTTGAGGAAGCA-3'. Culture supernatants were harvested 36
538 and 60 h after transfection and then centrifuged at 2,200 rpm for 15 min. THP-1 cells were infected
539 with the supernatants contain lentiviral particles in the presence of 4 µg/ml polybrene (Sigma). After
540 48 h of culture, cells were selected by 1.5 µg/ml puromycin (Sigma) for 5 days. The results of
541 paxillin protein was detected by immunoblot analysis.

542

543 **Enzyme-linked immunosorbent assay (ELISA)**

544 The concentrations of human IL-1 β in culture supernatants were measured by ELISA kit (BD
545 Biosciences, San Jose, CA, USA). The mouse IL-1 β ELISA Kit was purchased from R&D.

546

547 **THP-1 macrophages stimulation**

548 THP-1 cells were differentiated to macrophages with 60 nM phorbol-12-myristate-13-acetate
549 (TPA) for 12–14 h, and cells were cultured for 24 h without TPA. And then the differentiated cells
550 were stimulated in 6 cm plates with Nigericin or ATP. Supernatants were collected for measurement
551 of IL-1 β by ELISA. Cells were harvested for immunoblot analysis.

552

553 **Activated caspase-1 and mature IL-1 β measurement**

554 The supernatant of the cultured cells was collected for 1 ml in the cryogenic vials (Corning).
555 The supernatant was frozen in -80°C for 4 h. The Rotational Vacuum concentrator machine which
556 was purchase from Martin Christ was used for the freeze drying. The drying product was dissolved

557 in 100 μ l PBS and mixed with SDS loading buffer for western blotting analysis with antibodies for
558 detection of activated caspase-1 (D5782 1:500, Cell Signaling), mature IL-1 β (Asp116 1:500, Cell
559 Signaling), polyclonal rabbit anti-caspase-1 p10 (sc-515) or Polyclonal Goat anti-mouse IL-1 β (p17)
560 (AF-401-NA). Adherent cells in each well were lysed with the lyses buffer described below,
561 followed by immunoblot analysis to determine the cellular content of various protein.

562

563 **Western blot analysis**

564 HEK293T whole-cell lysates were prepared by lysing cells with buffer (50 mM Tris-HCl, pH7.5,
565 300 mM NaCl, 1% Triton-X, 5 mM EDTA and 10% glycerol). The TPA-differentiated THP-1 cells
566 lysates were prepared by lysing cells with buffer (50 mM Tris-HCl, pH7.5, 150 mM NaCl, 0.1%
567 Nonidetp 40, 5 mM EDTA and 10% glycerol). Protein concentration was determined by Bradford
568 assay (Bio-Rad, Hercules, CA, USA). Cultured cell lysates (30 μ g) were electrophoresed in an
569 8–12% SDS-PAGE gel and transferred to a PVDF membrane (Millipore, MA, USA). PVDF
570 membranes were blocked with 5% skim milk in phosphate buffered saline with 0.1% Tween 20
571 (PBST) before being incubated with the antibody. Protein band were detected using a Luminescent
572 image Analyzer (Fujifilm LAS-4000).

573

574 **Co-immunoprecipitation assays**

575 HEK293T whole-cell lysates were prepared by lysing cells with buffer (50 mM Tris-HCl, pH7.5,
576 300 mM NaCl, 1% Triton-X, 5 mM EDTA and 10% glycerol). TPA-differentiated THP-1 cells
577 lysates were prepared by lysing cells with buffer (50 mM Tris-HCl, pH7.5, 150 mM NaCl, 0.1%
578 Nonidetp40, 5 mM EDTA and 10% glycerol). Lysates were immunoprecipitated with control mouse

579 immunoglobulin G (IgG) (Invitrogen) or anti-Flag antibody (Sigma, F3165) with Protein-G
580 Sepharose (GE Healthcare, Milwaukee, WI, USA).

581

582 **Confocal microscopy**

583 HEK293T cells and Hela cells were transfected with plasmids for 24–36 h. Cells were fixed in
584 4% paraformaldehyde at room temperature for 15 min. After being washed three times with PBS,
585 permeabilized with PBS containing 0.1% Triton X-100 for 5 min, washed three times with PBS, and
586 finally blocked with PBS containing 5% BSA for 1 h. The cells were then incubated with the
587 monoclonal mouse anti-Flag antibody (F3165, Sigma) and Monoclonal rabbit anti-HA (H6908,
588 Sigma) overnight at 4°C, followed by incubation with FITC-conjugate donkey anti-mouse IgG
589 (Abbkine) and Dylight 649-conjugate donkey anti-rabbit IgG (Abbkine) for 1 h. After washing three
590 times, cells were incubated with DAPI solution for 5 min, and then washed three more times with
591 PBS. Finally, the cells were analyzed using a confocal laser scanning microscope (Fluo View
592 FV1000; Olympus, Tokyo, Japan).

593

594 **GST pull down assays**

595 The plasmids pGEX6p-1-paxillin and pGEX6p-1-LRR were transfected into Escherichia coli
596 strain BL21. After growing in LB medium at 37°C until the OD600 reached 0.6–0.8, Isopropyl
597 β-D-1-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM and the cultures
598 grew for an additional 4 h at 37°C for GST-Paxillin and GST-LRR protein. And then the GST protein,
599 GST-paxillin protein and GST-LRR protein were purified from E. coli bacteria. For GST-Paxillin
600 pull-down assay, glutathione-Sepharose beads (Novagen) were incubated with GST-Paxillin or GST

601 protein. After washed with phosphate-buffered saline (PBS), these beads were incubated with cell
602 lysates from HEK293T which were transfected with plasmids encoding Flag-NLRP3 for 4 h at 4°C.
603 The precipitates were washed three times, boiled in 2 × SDS loading buffer, separated by 10%
604 SDS-PAGE, immunoblotted with anti-GST, anti-Flag. It was the same for the GST-LRR pull down
605 assay.

606

607 **Yeast two-hybrid analyses**

608 Saccharomyces cerevisiae strain AH109, control vectors pGADT7, pGBKT7, pGADT7-T,
609 pGBKT7-Lam and pGBKT7-p53 were purchased from Clontech (Mountain View, CA, USA). Yeast
610 strain AH109 was co-transformed with the combination of the pGADT7 and the pGBKT7 plasmids.
611 Transformed yeast cells containing both plasmids were first grown on SD-minus Trp/Leu plates
612 (DDO) to maintain the two plasmids and then were sub-cloned replica plated on SD-minus
613 Trp/Leu/Ade/His plate (QDO).

614

615 **Subcellular Fractionation**

616 To separate cell membranes from the soluble cellular components, cells were washed once in
617 hypotonic buffer (10 mM Tris-HCl, pH7.4, 10 mM KCl, 1.5 mM MgCl) supplemented with a
618 protease inhibitor cocktail (Roche), incubated on ice in hypotonic buffer, and lysed by dounce
619 homogenization. Lysates were centrifuged at 4°C for 5 minutes at 2,500 x g to get the supernatants.
620 Supernatants were centrifuged at 100,000 x g for 1 h at 4°C. The resultant pellets (membrane fraction)
621 were resuspended in lysis buffer 1/5 volumes equal to those of the supernatants (cytosolic fraction),
622 stored with the addition of 6 x Laemmli Buffer, and analyzed by Western blot.

623 For membrane floatation assays, post nuclear supernatants were collected and described above,
624 mixed with Optiprep™-supplemented hypotonic buffer to yield a final concentration of 45%
625 optiprep at laid at the bottom of an Optiprep™ step gradient ranging from 10% (top) to 45%
626 (bottom), and spun at 52,000 x g for 90 minutes. Gradient was then fractionated into 24 fractions and
627 analyzed by western blot. For gradients run in the presence of Triton X-100, post nuclear
628 supernatants were mixed with a 10% Triton X-100 solution to achieve a final concentration of 1%.

629

630 **Statistical analyses**

631 All experiments were reproducible and repeated at least three times with similar results. Parallel
632 samples were analyzed for normal distribution using Kolmogorov-Smirnov tests. Abnormal values
633 were eliminated using a follow-up Grubbs test. Levene's test for equality of variances was performed,
634 which provided information for Student's t-tests to distinguish the equality of means. Means were
635 illustrated using histograms with error bars representing the SD; a P value of <0.05 was considered
636 statistically significant.

637

638 **Acknowledgments**

639

640 This work was supported by National Natural Science Foundation of China (81730061, 81902053
641 and 81471942), National Health and Family Planning Commission of China (National Mega Project
642 on Major Infectious Disease Prevention) (2017ZX10103005 and 2017ZX10202201), and China
643 Postdoctoral Science Foundation (2018T110923).

644

645 **Author Contributions**

646 W.W., D.H., K.W., Y.L., and J.W. contributed to the design of experiments. W.W., D.H., Y.F., C.W.,
647 A.L., W.L., Y.W., K.C., M.T., F.X., Q.Z., W.C., P.P., and P.W. contributed to the conduction of
648 experiments. W.W., D.H., Y.F., W.L., Q.Z., C.W., A.L., W.L., P.P., P.W., K.W., Y.L., and J.W.
649 contributed to the reagents. W.W., D.H., Y.F., and J.W. contributed to the writing the paper. W.W.,
650 and J.W. contributed to the editing the paper.

651

652 **Competing Financial Interests:** The authors have no conflicts of interest to disclose.

653

654 **References**

655

656 Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Krantzsch PJ, Kagan JC (2019)
657 Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient
658 distinction between self- and viral DNA. *Cell* **176**: 1432–1446.

659 Barry R, John SW, Liccardi G, Tenev T, Jaco I, Chen CH, Choi J, Kasperkiewicz P,
660 Fernandes-Alnemri T, Alnemri E, et al (2018) SUMO-mediated regulation of NLRP3
661 modulates inflammasome activity. *Nat Commun* **9**: 3001.

662 Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane
663 subdomains during transport to the apical cell surface. *Cell* **68**: 533–544.

664 Christopher ET (1998) Molecules in focus Paxillin. *The International journal of Biochemistry & Cell
665 Biology* **30**: 955–959.

666 Di Virgilio F (2007) Liaisons dangereuses: P2X(7) and the inflammasome. *Trends Pharmacol Sci* **28**:
667 465–472.

668 Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 Receptor in Infection
669 and Inflammation. *Immunity* **47**: 15–31.

670 Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D,
671 Rouiller I, Reed JC (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism
672 of caspase-1 activation. *Mol Cell* **25**: 713–724.

673 Franceschini A, Capece M, Chiozzi P, Falzoni S, Sanz JM, Sarti AC, Bonora M, Pinton P, Di
674 Virgilio F (2015) The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold
675 protein. *Faseb J* **29**: 2450–2461.

676 Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N,

677 Vandenabeele P, Bertin J, Coyle A, et al (2006) Cytosolic flagellin requires Ipaf for activation

678 of caspase-1 and interleukin 1beta in salmonella-infected macrophages. *Nat Immunol* **7**:

679 576–582.

680 Hanks SK, Ryzhova L, Shin NY, Brabek J (2003) Focal adhesion kinase signaling activities and their

681 implications in the control of cell survival and motility. *Front Biosci* **8**: d982–d996.

682 He Y, Zeng MY, Yang D, Motro B, Nunez G (2016) NEK7 is an essential mediator of NLRP3

683 activation downstream of potassium efflux. *Nature* **530**: 354–357.

684 Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E,

685 Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating

686 inflammasome with ASC. *Nature* **458**: 514–518.

687 Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008)

688 Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal

689 destabilization. *Nat Immunol* **9**: 847–856.

690 Ishibe S, Joly D, Zhu X, Cantley LG (2003) Phosphorylation-dependent paxillin-ERK association

691 mediates hepatocyte growth factor-stimulated epithelial morphogenesis. *Mol Cell* **12**:

692 1275–1285.

693 Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES (2012) Non-transcriptional

694 priming and deubiquitination regulate NLRP3 inflammasome activation. *J Biol Chem* **287**:

695 36617–36622.

696 Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated

697 K⁺ release. *Am J Physiol Cell Physiol* **286**: C1100–C1108.

698 Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G

699 (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin

700 inflammasome independent of Toll-like receptor signaling. *Immunity* **26**: 433–443.

701 Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. *Nat Rev Immunol*

702 **13**: 397–411.

703 Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. *Science* **327**: 46–50.

704 Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T et al (2011)

705 Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and

706 USP13. *Cell* **147**: 223–234.

707 Lopez-Colome AM, Lee-Rivera I, Benavides-Hidalgo R, Lopez E (2017) Paxillin: a crossroad in

708 pathological cell migration. *J Hematol Oncol* **10**: 50.

709 Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch

710 Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins

711 and ATP. *Nature* **440**: 228–232.

712 Martinon F, Agostini L, Meylan E, Tschoopp J (2004) Identification of bacterial muramyl dipeptide as

713 activator of the NALP3/cryopyrin inflammasome. *Curr Biol* **14**: 1929–1934.

714 Martinon F, Burns K, Tschoopp J (2002) The inflammasome: a molecular platform triggering

715 activation of inflammatory caspases and processing of proIL-beta. *Mol Cell* **10**: 417–426.

716 Martinon F, Mayor A, Tschoopp J (2009) The inflammasomes: guardians of the body. *Annu Rev*

717 *Immunol* **27**: 229–265.

718 Martinon F, Petrilli V, Mayor A, Tardivel A, Tschoopp J (2006) Gout-associated uric acid crystals

719 activate the NALP3 inflammasome. *Nature* **440**: 237–241.

720 Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. *Immunity* **38**: 1142–1153.

723 Nicholas OD, Christopher ET (2008) Paxillin comes of age. *J Cell Sci* **121**: 2435–2444.

724 Pan P, Zhang Q, Liu W, Wang W, Lao Z, Zhang W, Shen M, Wan P, Xiao F, Liu F et al (2019) Dengue virus M protein promotes NLRP3 inflammasome activation to induce vascular leakage in mice. *J Virol* **93(21)**: pii: e00996-19.

727 Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. *EMBO J* **25**: 5071–5082.

729 Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. *J Biol Chem* **282**: 2386–2394.

732 Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. *Proc Natl Acad Sci U S A* **105**: 8067–8072.

735 Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. *Mol Cell* **49**: 331–338.

737 Roger S, Mei ZZ, Baldwin JM, Dong L, Bradley H, Baldwin SA, Surprenant A, Jiang LH (2010) Single nucleotide polymorphisms that were identified in affective mood disorders affect 738 ATP-activated P2X7 receptor functions. *J Psychiatr Res* **44**: 347–355.

740 Savio L, de Andrade MP, Da SC, Coutinho-Silva R (2018) The P2X7 Receptor in Inflammatory 741 Diseases: Angel or Demon? *Front Pharmacol* **9**: 52.

742 Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein. *Oncogene* **20**: 6459–6472.

743 Schaller MD, Parsons JT (1995) pp125FAK-dependent tyrosine phosphorylation of paxillin creates a
744 high-affinity binding site for Crk. *Mol Cell Biol* **15**: 2635–2645.

745 Schroder K, Tschopp J (2010) The inflammasomes. *Cell* **140**: 821–832.

746 Silber AS, Pfau B, Tan TW, Jacob R, Jones D, Meyer T (2012) Dynamic redistribution of paxillin in
747 bovine osteoblasts stimulated with adenosine 5'-triphosphate. *J Mol Histol* **43**: 571–580.

748 Song N, Li T (2018) Regulation of NLRP3 Inflammasome by Phosphorylation. *Front Immunol* **9**:
749 2305.

750 Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. *Oncogene*
751 **29**: 5346–5358.

752 Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. *Annu Rev Physiol* **71**:
753 333–359.

754 Valles AM, Beuvin M, Boyer B (2004) Activation of Rac1 by paxillin-Crk-DOCK180 signaling
755 complex is antagonized by Rap1 in migrating NBT-II cells. *J Biol Chem* **279**: 44490–44496.

756 Wan P, Zhang Q, Liu W, Jia Y, Ai S, Wang T, Wang W, Pan P, Yang G, Xiang Q et al (2019)
757 Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome
758 activation. *FASEB J* **33**: 5793–5807.

759 Wang W, Li G, De Wu, Luo Z, Pan P, Tian M, Wang Y, Xiao F, Li A, Wu K et al (2018) Zika virus
760 infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly
761 and interleukin-1beta secretion. *Nat Commun* **9**: 106.

762 Wang W, Xiao F, Wan P, Pan P, Zhang Y, Liu F, Wu K, Liu Y, Wu J (2017) EV71 3D Protein Binds
763 with NLRP3 and Enhances the Assembly of Inflammasome Complex. *PLoS Pathog* **13**:

764 e1006123.

765 Webb DJ, Schroeder MJ, Brame CJ, Whitmore L, Shabanowitz J, Hunt DF, Horwitz AR (2005)

766 Paxillin phosphorylation sites mapped by mass spectrometry. *J Cell Sci* **118**: 4925–4929.

767 Ye Z, Ting JP (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene

768 family. *Curr Opin Immunol* **20**: 3–9.

769

770 **Figure Legends**

771

772 **Figure 1 – Paxillin binds directly to LRR domain of NLRP3 in the cytosol.**

773 **A** Identification of NLRP3 LRR domain-Paxillin interaction by yeast two-hybrid analysis. Yeast

774 strain AH109 cells were transformed with the combination of BD and AD plasmid, as indicated.

775 Transformed yeast cells were first grown on the SD-minus Trp/Leu plates for three days. The colony

776 of yeast was then streaked on SD-minus Trp/Leu/Ade/His plates (QDO). BD-p53 and AD-T was

777 used as a positive control and BD-Lam and AD-T as a negative control.

778 **B** HEK293T cells were co-transfected with pHA-Paxillin and pFlag-Vector, pFlag-NLRP3,

779 pFlag-ASC, and pFlag-Casp-1. Lysates were prepared and subjected to IP using anti-Flag antibody

780 and analyzed by immunoblotting using an anti-HA or anti-Flag antibody (top) or subjected directly to

781 Western blot using an anti-Flag or anti-HA antibody (as input) (bottom).

782 **C** HEK293T cells were co-transfected with pHA-Paxillin and pFlag-Vector, pFlag-NLRP3,

783 pFlag-PYRIN, pFlag-NACHT, and pFlag-LRR. Lysates were prepared and subjected to IP using

784 anti-Flag antibody and analyzed by immunoblotting using an anti-HA or anti-Flag antibody (top) or

785 subjected directly to Western blot using an anti-Flag or anti-HA antibody (as input) (bottom).

786 **D** Extracts from HEK293T cells transfected with Flag-Paxillin were incubated with 10 µg GST

787 proteins or GST-LRR protein that was incubated with glutathione-Sepharose beads. Mixture were

788 washed three times and then analyzed by immunoblotting using anti-Flag and anti-GST antibody

789 (top). Lysates from transfected HEK293T cells were analyzed by immunoblotting using anti-Flag

790 antibody (as input) (bottom).

791 **E** Extracts from HEK293T cells transfected with Flag-NLRP3 were incubated with 10 µg GST

792 proteins or GST-Paxillin protein which was incubated with glutathione-Sepharose beads. Mixture
793 were washed three times and then analyzed by immunoblotting using anti-Flag and anti-GST
794 antibody (top). Lysates from transfected HEK293T cells were analyzed by immunoblotting using
795 anti-Flag antibody (as input) (bottom).

796 **F** HeLa cells were transfected with pFlag-Paxillin, pH-A-NLRP3, or co-transfected with
797 pFlag-Paxillin and pH-A-NLRP3. Subcellular localization of Flag-Paxillin (green), HA-NLRP3 (red)
798 and the nucleus marker DAPI (blue) were examined by confocal microscopy.

799

800 **Figure 2 – ATP promotes Paxillin phosphorylation and Paxillin-NLRP3 interaction.**

801 **A–D** THP-1 cells stably expressing control lentivirus or Paxillin lentivirus were generated and
802 differentiated to macrophages, which were then treated with ATP (5 mM) or Nigericin (2 μ M) for 2 h
803 (A, B), treated with DMSO, YVAD (50 μ M), Glybenclamide (25 μ g/ml), A438079 (100 μ M),
804 AZ10606120 (100 μ M), and BAPTA-AM (30 μ M) for 1 h before the treatment with ATP (5 mM) for
805 2 h (C, D). IL-1 β levels in supernatants were determined by ELISA (A, C). Mature IL-1 β (p17) and
806 cleaved Casp-1 (p22/p20) in supernatants or Paxillin, pro-IL-1 β , and pro-Casp-1 in lysates were
807 determined by Western blot (B, D).

808 **E** TPA-differentiated THP-1 macrophages were treated with DMSO or ATP (5 mM) for 2 h. Lysates
809 were prepared and subjected to IP (top) or subjected to Western blot (as input) (bottom).

810 **F** BMDM cells prepared from C57BL/6 mice bone marrow were treated with LPS (1 μ g/ml) for 6 h,
811 and the primed BMDMs were stimulated by DMSO or ATP (5 mM) for 30 min. Lysates were
812 prepared and subjected to IP (top) or subjected to Western blot (as input) (bottom).

813 **G, H** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 30, 60, and 120 min

814 (G). LPS-primed BMDMs were stimulated by ATP (5 mM) for 5, 15, and 30 min (H). The protein
815 level of p-Paxillin(Y118), p-Paxillin(Y31), Paxillin, and GAPDH was determined by Western blot.
816 **I** HEK293T cells were co-transfected with pFlag-NLRP3 and pHA-Vector, pHA-Paxillin,
817 pHA-Paxillin-(Y31A), and pHA-Paxillin-(Y118A). Lysates were prepared and subjected to IP (top)
818 or subjected to Western blot (as input) (bottom).
819 **J** TPA-differentiated THP-1 macrophages were treated with DMSO, A438079 (100 μ M),
820 AZ10606120 (100 μ M) for 1 h before the treatment with ATP (5 mM) for 2 h. The protein level of
821 p-Paxillin(Y118), Paxillin, and GAPDH was determined by Western blot.
822 Data shown are means \pm SEMs; ***p < 0.0001. ns, no significance.

823

824 **Figure 3 – ATP stimulates P2X7-Paxillin interaction.**

825 **A** HEK293T cells were co-transfected with pFlag-P2X7 and pHA-Paxillin or pFlag-Pannexin-1 and
826 pHA-Paxillin.
827 **B** TPA-differentiated THP-1 macrophages were mock-treated or treated with ATP (5 mM) for 30 and
828 60 min.
829 **C** HEK293T cells were co-transfected with pFlag-P2X7 and pHA-Paxillin, and treated with DMSO
830 or ATP (5 mM) for 2 h.
831 **D** HEK293T cells were co-transfected with pFlag-P2X7 and pHA-vector, pHA-Paxillin,
832 pHA-Paxillin(Y31A), and pHA-Paxillin(Y118A).
833 **E** HEK293T cells were co-transfected with pFlag-P2X7 and pHA-paxillin(Y31A), and treated with
834 DMSO or ATP (5 mM) for 2 h.
835 **F** HEK293T cells were co-transfected with pFlag-P2X7 and pHA-Paxillin(Y118A), and treated with

836 DMSO or ATP (5 mM) for 2 h.

837 **G** The diagrams of P2X7, P2X7(26–595), P2X7(47–595) , P2X7(335–595), and P2X7(356–595)

838 (left).

839 **H** HEK293T cells were co-transfected with pHA-Paxillin and pFlag-P2X7, pFlag-P2X7(26–595),

840 pFlag-P2X7(47–595), pFlag-P2X7(335–595), and pFlag-P2X7(356–595).

841 **I** The diagrams of P2X7(26/27/29/30/31/32/33/34/35/36–595).

842 **J** HEK293T cells were co-transfected with pHA-Paxillin and pFlag-P2X7(26–595)

843 pFlag-P2X7(27–595), pFlag-P2X7(29–595), pFlag-P2X7(30–595) and pFlag-P2X7(31–595).

844 **K** HEK293T cells were co-transfected with pHA-Paxillin and pFlag-P2X7(30–595)

845 pFlag-P2X7(32–595), pFlag-P2X7(33–595), pFlag-P2X7(34–595), pFlag-P2X7(35–595) and

846 pFlag-P2X7(36–595).

847 **L** HEK293T cells were co-transfected with pFlag-P2X7 and pHA-Paxillin or pFlag-P2X7(K30A)

848 and pHA-Paxillin.

849

850 **Figure 4 – Paxillin promotes NLRP3 deubiquitination depending on extracellular ATP and K⁺**

851 **efflux.**

852 **A** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 30, 60, and 120 min.

853 **B** BMDM cells prepared from C57BL/6 mice bone marrow were treated with LPS (1 µg/ml) for 6 h,

854 and the primed BMDM cells were stimulated by ATP (5 mM) for 15 and 30 min.

855 **C, D** HEK293T cells (C) and Hela cells (D) were co-transfected with pFlag-NLRP3, pHA-Ubiquitin,

856 or pMyc-Paxillin.

857 **E** THP-1 cells stably expressing shRNA targeting Paxillin was generated and differentiated to

858 macrophages, which were then treated with ATP (5 mM) for 2 h.

859 **F** BMDMs prepared from C57BL/6 mice bone marrow were infected by lentivirus that express

860 shRNA targeting Paxillin for 3 days. Before stimulation, the BMDMs were treated with LPS (1

861 µg/ml) for 6 h, and the primed BMDMs were stimulated by ATP (5 mM) for 30 min.

862 **G** HEK293T cells were co-transfected with pFlag-NLRP3, pH-A-UB, pH-A-UB(K48O),

863 pH-A-UB(K63O) or pMyc-Paxillin.

864 **H** HEK293T cells were co-transfected with pFlag-NLRP3, pH-A-UB, pH-A-UB(K48R),

865 pH-A-UB(K63R), or pMyc-Paxillin.

866 **I** HEK293T cells were co-transfected with pFlag-NLRP3, pFlag-NLRP3(K194R),

867 pFlag-NLRP3(K324R), pFlag-NLRP3(K403R), pFlag-NLRP3(K689R), pH-A-UB, or pMyc-Paxillin.

868 **J** HEK293T cells were co-transfected with pFlag-NLRP3, pFlag-NLRP3(K689R), pH-A-UB, or

869 pMyc-Paxillin.

870 **K** HEK293T cells were co-transfected with pFlag-NLRP3, pH-A-UB, pMyc-Paxillin, or

871 pMyc-Paxillin(Y118A).

872 **L** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 2 h and with/without 50

873 mM extracellular KCl. The protein level of p-Paxillin-(y118), Paxillin and GAPDH was determined

874 by Western blot.

875 **M** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 2 h in the presence or

876 absence of 50 mM extracellular KCl.

877 Lysates were prepared and subjected to denature-IP (top) or subjected to Western blot (as input)

878 (bottom) (A–M).

879

880 **Figure 5 – UPS13 is essential for Paxillin-mediated NLRP3 deubiquitination upon ATP**

881 **treatment.**

882 **A** HEK293T cells were co-transfected with pHA-Paxillin and pFlag-BRCC3, pFlag-EIF3S5,

883 pFlag-UPS13 or pFlag-OTUB1. Lysates were prepared and subjected to IP (top) or subjected to

884 Western blot (as input) (bottom).

885 **B** Hela cells stably expressing sh-UPS13 or sh-EIF3S5 were generated and analyzed.

886 **C** The stable Hela cells were co-transfected with pFlag-NLRP3, pHA-UB, or pMyc-Paxillin. Lysates

887 were prepared and subjected to denature-IP (top) or subjected to Western blot (bottom).

888 **D, E** HEK293T cells were transfected with pFlag-UPS13 and pHA-Paxillin.

889 **F, G** HEK293T cells were transfected with pFlag-UPS13 and pHA-NLRP3.

890 Lysates were prepared and subjected to IP (top) or subjected to Western blot (bottom) (D–G).

891 **H** HEK293T cells were co-transfected with pFlag-UPS13 and pHA-NLRP3 or pHA-NLRP3

892 mutants.

893 **I** The diagrams of UPS13 and its mutants, as indicated.

894 **J** HEK293T cells were co-transfected with pHA-NLRP3 and pFlag-UPS13 or pFlag-UPS13 mutants.

895 **K** HEK293T cells were co-transfected with pHA-Paxillin and pFlag-UPS13 or pFlag-UPS13

896 mutants.

897 **L** HEK293T cells were co-transfected with pFlag-UPS13 and pHA-Paxillin or pHA-Paxillin mutants.

898 Lysates were prepared and subjected to IP (top) or subjected to Western blot (bottom) (H, j–l).

899 **M** HEK293T cells stably expressing sh-UPS13 were generated. The stable cells were co-transfected

900 with pFlag-NLRP3 and pHA-UB.

901 **N** The stable HEK293T cells were co-transfected with pFlag-NLRP3, or pHA-UB with or without

902 Spautin-1 (20 μ M) for 6 h.

903 **O** The stable HEK293T cells were co-transfected with pFlag-NLRP3, pHA-UB, or pMyc-Paxillin

904 with or without Spautin-1 (20 μ M) for 6 h. Lysates were prepared and subjected to denature-IP (top)

905 or subjected to Western blot (bottom) (m–o).

906 **P, Q** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 2 h with/without

907 Spautin-1 (5, 10, and 20 μ M). IL-1 β in supernatants was determined by ELISA (P). Mature

908 IL-1 β (p17) and cleaved Caspase-1(p22/p20) in supernatants and Paxillin, pro-IL-1 β , and pro-Casp-1

909 in lysates were determined by Western blot (Q).

910 Data shown are means \pm SEMs; ***p < 0.0001.

911

912 **Figure 6 – ATP induces Paxillin and NLRP3 membrane migration to facilitate the formation of**

913 **P2X7-Paxillin-NLRP3 complex.**

914 **A** HeLa cells were transfected with pFlag-Paxillin, pHA-NLRP3, or co-transfected with

915 pFlag-Paxillin and pHA-NLRP3, and treated with ATP (5 mM) for 2 h. Subcellular localization of

916 Flag-Paxillin (green), HA-NLRP3 (red), and the nucleus marker DAPI (blue) were examined by

917 confocal microscopy.

918 **B** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 2 h. Subcellular

919 localization of NLRP3 (green), the membrane marker Dil (red), and DAPI were examined by

920 confocal microscopy.

921 **C** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 2 h. Subcellular

922 localization of Paxillin(Y118) (green), Dil (red), and DAPI (blue) were examined by confocal

923 microscopy.

924 **D** TPA-differentiated THP-1 macrophages were treated with ATP (5 mM) for 2 h. Subcellular
925 localization of NLRP3 (green), Paxillin(Y118) (cyan), and Dil (red) were examined by confocal
926 microscopy.

927 **E** LPS-primed BMDMs were stimulated by ATP (5 mM) for 30 min. Subcellular localization of
928 NLRP3 (green), Dil (red), and DAPI (blue) were examined by confocal microscopy.

929 **F** LPS-primed BMDMs were stimulated by ATP (5 mM) for 30 min. Subcellular localization of
930 Paxillin(Y118) (green), Dil (red), and DAPI (blue) were examined by confocal microscopy.

931 **G** LPS-primed BMDMs were stimulated by ATP (5 mM) for 30 min. Subcellular localization of
932 NLRP3 (green), Paxillin(Y118) (cyan), and Dil (red) were examined by confocal microscopy.

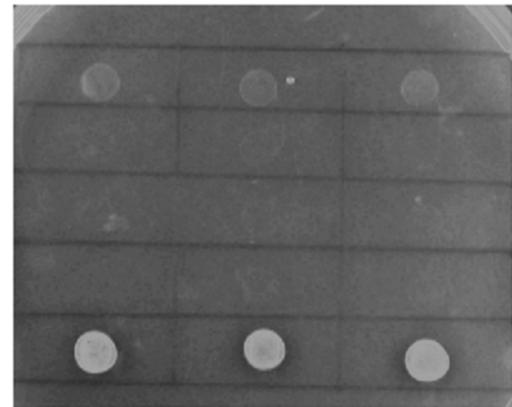
933 **H** Subcellular fractionation of TPA-differentiated THP-1 macrophages in the presence of ATP (5 mM)
934 for 30, 60, and 120 min. The protein levels of NLRP3, Paxillin, P2X7, Caspase-3, and Calnexin in
935 cytosolic fraction (left) and membrane fraction (right) were determined by Western blot.

936 **I–L** Membrane floatation assays of TPA-differentiated THP-1 macrophages post-nuclear lysates on a
937 10–45% Optiprep gradient under the treatment of ATP (5 mM) for 30 min in the presence or absence
938 of 1% Triton X-100. The protein level of NLRP3, Paxillin, P2X7, Caspase-3, and Calnexin was
939 determined by Western blot in each 24 fractions and used as the input.

940

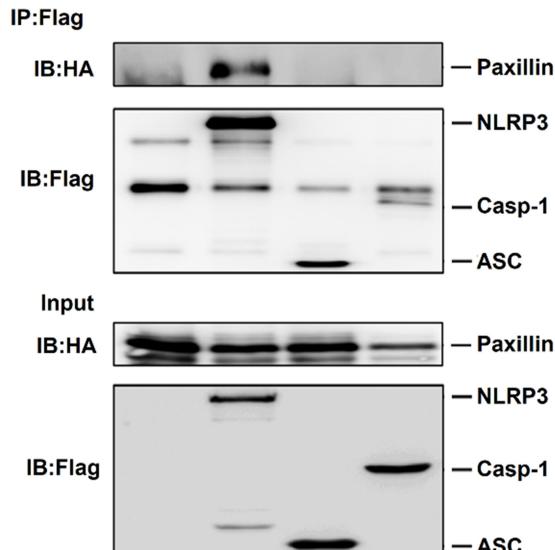
941 **Figure 7 – Paxillin is required for ATP- and Nigericin-induced NLRP3 inflammasome**
942 **activation.**

943 **A, B** BMDMs prepared from C57BL/6 mice bone marrow were infected by lentivirus that expressing
944 sh-Paxillin for 3 days. LPS-primed BMDMs were stimulated by MDP (50 µg/ml) for 6 h, ATP (5
945 mM) for 30 min, poly(dA:dT) (5 µg/ml) for 6 h, or Salmonella for 4 h.

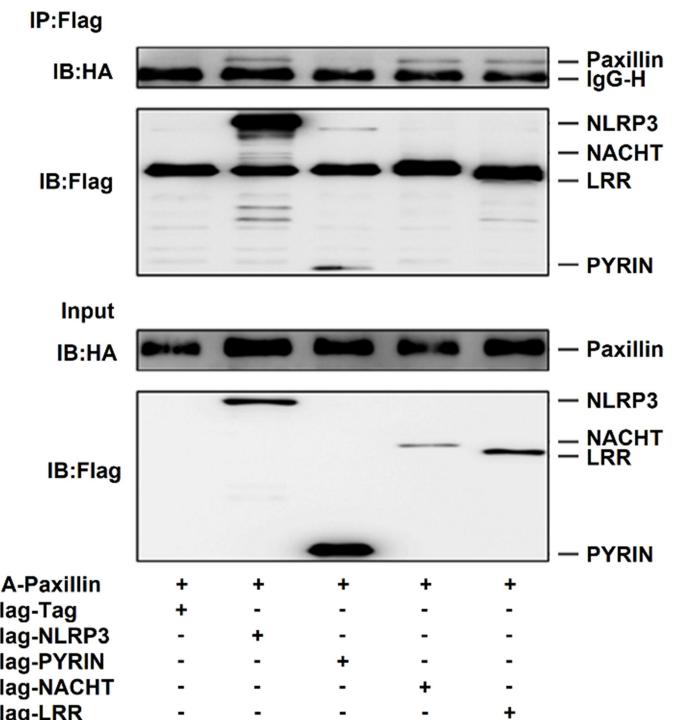

946 **C, D** LPS-primed BMDMs were stimulated by ATP (5 mM) for 30 min, Nigericin (2 μ M) for 2 h,
947 MSU (100 μ g/ml) for 6 h, or Alum crystals (200 mg/ml) for 6 h.
948 **E, F** BMDCs prepared from C57BL/6 mice bone marrow were infected by lentivirus that express
949 sh-Paxillin for 3 days. LPS-primed BMDCs were stimulated by ATP (5 mM) for 30 min, Nigericin (2
950 μ M) for 2 h, or MSU (100 μ g/ml) for 6 h.
951 IL-1 β levels in supernatants were determined by ELISA (A, C, and E). Mature IL-1 β (p17) and
952 cleaved Casp-1 (p10) in supernatants as well as Paxillin, pro-IL-1 β , and pro-Casp-1 in lysates were
953 determined by Western blot (B, D, and F).
954 **G, H** PBMCs isolated from healthy individuals were infected by lentivirus that expresses sh-Paxillin
955 for 2 days. Before stimulation, PBMCs were treated with LPS (1 μ g/ml) for 6 h, and PBMCs were
956 then stimulated by ATP (5 mM) for 30 min, Nigericin (2 μ M) for 2 h, MSU (100 μ g/ml) for 6 h,
957 Alum crystals (200 mg/ml) for 6 h, or MDP (50 μ g/ml) for 6 h. Paxillin in lysates was determined by
958 Western blot (G). IL-1 β levels in supernatants were determined by ELISA (H).
959 **I, J** THP-1 cells stably expressing sh-NC or sh-Paxillin were generated and differentiated to
960 macrophages, which were then treated with ATP (5 mM) for 2 h, Nigericin (2 μ M) for 2 h, or MSU
961 (100 μ g/ml) for 6 h. IL-1 β levels in supernatants were determined by ELISA (I). Mature IL-1 β (p17)
962 and cleaved Casp-1 (p22/p20) in supernatants and Paxillin, pro-IL-1 β and pro-Casp-1 in lysates were
963 determined by Western blot (J).
964 Data shown are means \pm SEMs; ***p < 0.0001. ns, no significance.
965

966 **Figure 8 – Paxillin regulates ATP-induced activation of P2X7 receptor and NLRP3**
967 **inflammasome by formatting the P2X7-Paxillin-NLRP3 complex.**

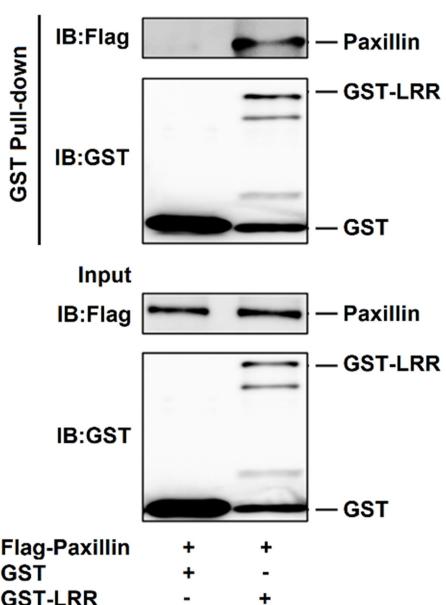
968 In the quiescent condition, the inactive, paxillin and usp13 distribute in the cytoplasm (left).
969 However, in response to extracellular ATP, Paxillin is a molecular adaptor protein, which recruit
970 usp13 and NLRP3 at plasma membrane for the activation of NLRP3 inflammasome for efficient
971 processing of P2X7.

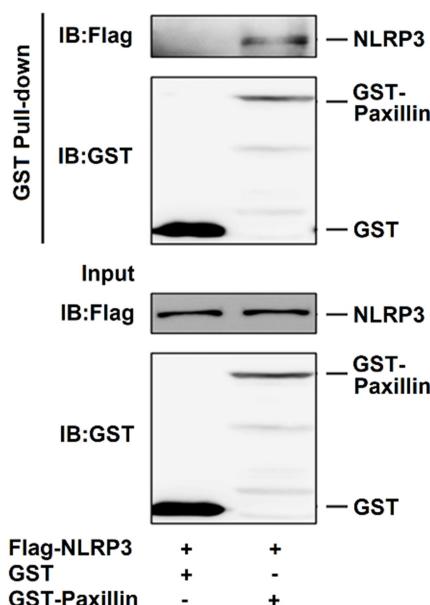

Figure 1

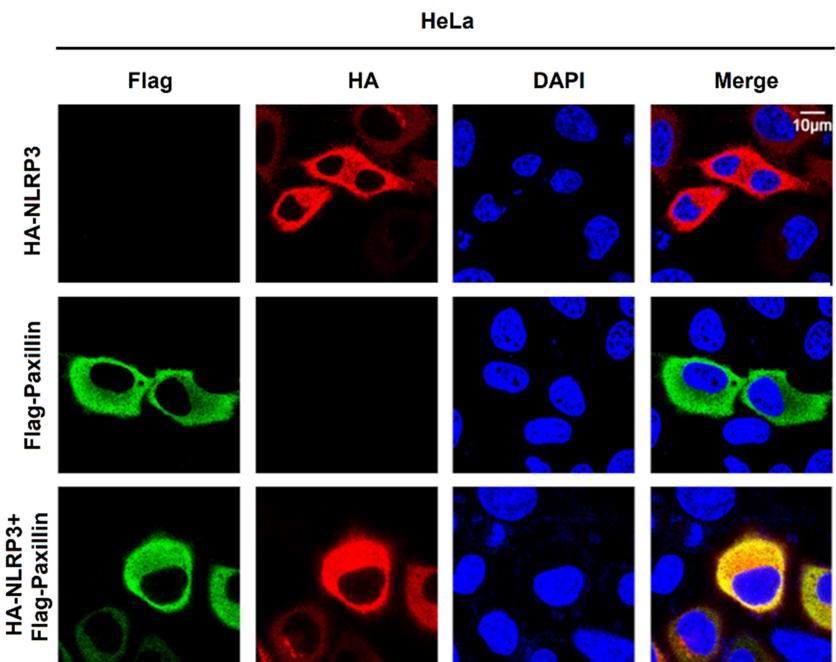
A

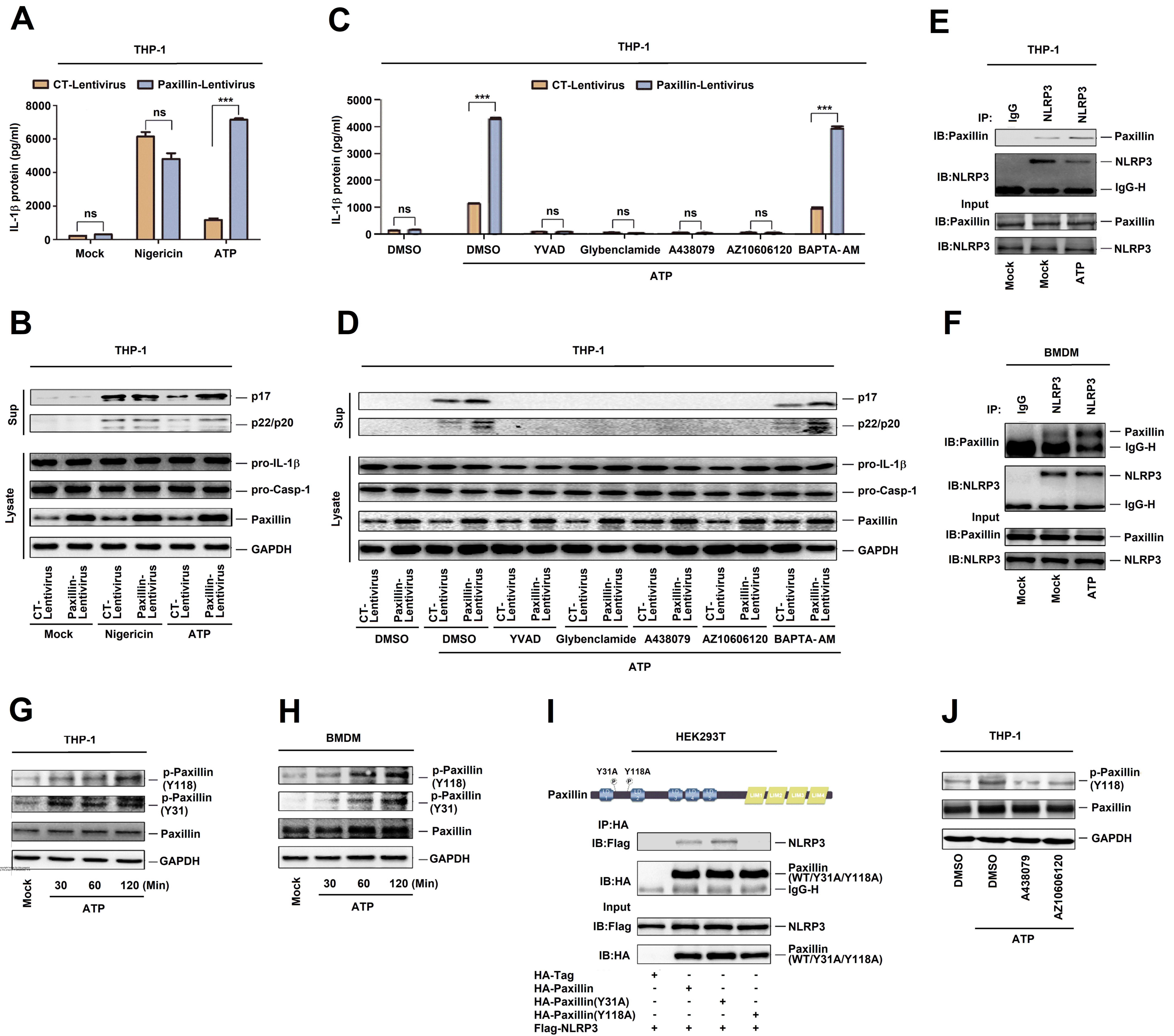


1. BK-LRR + AD-Paxillin
2. BK-LRR + AD-Vector
3. BK-Vector + AD-Paxillin
4. T + Lam
5. T + p53


B


C


D


E

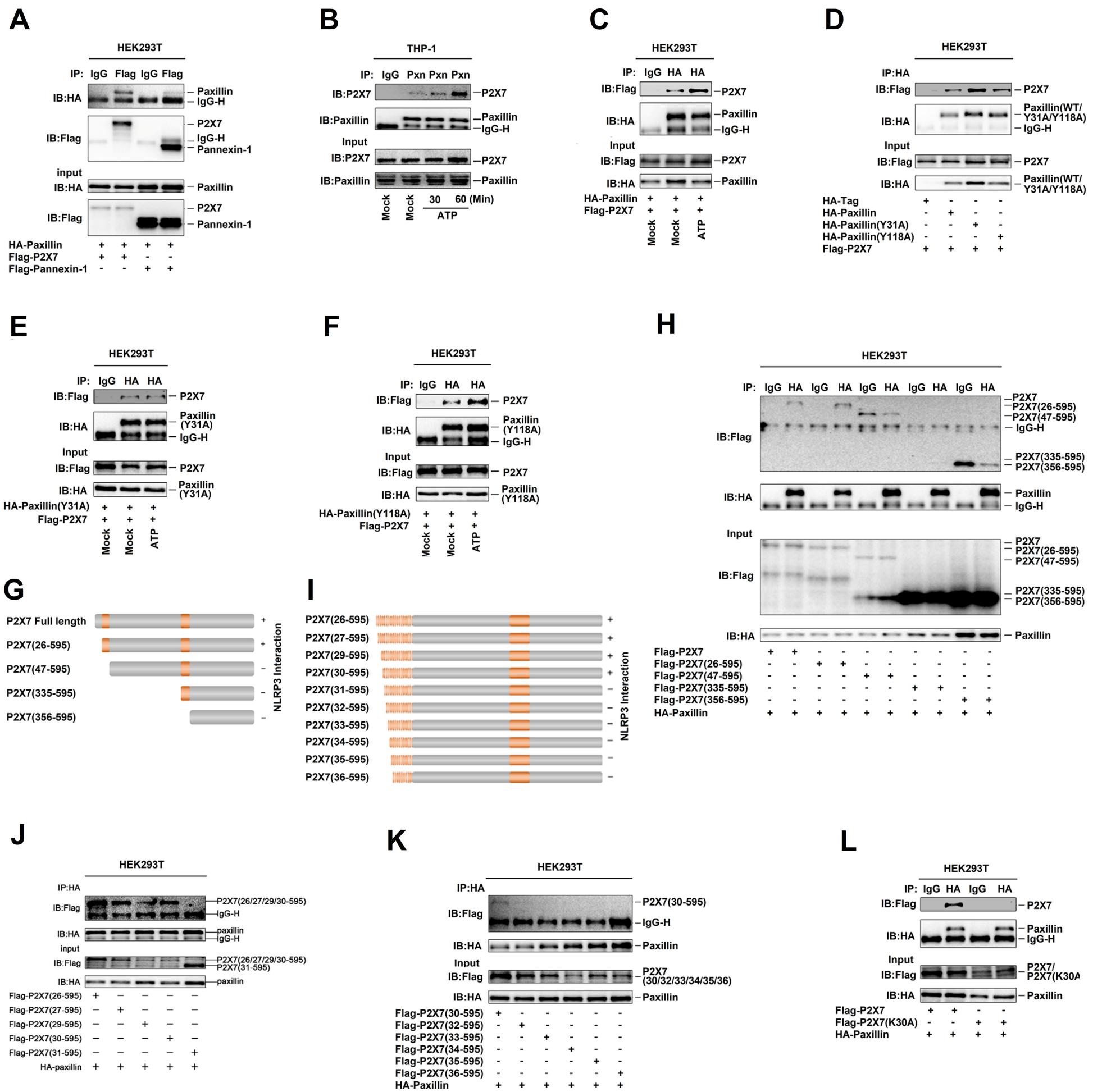

F

Figure 2

Figure 3

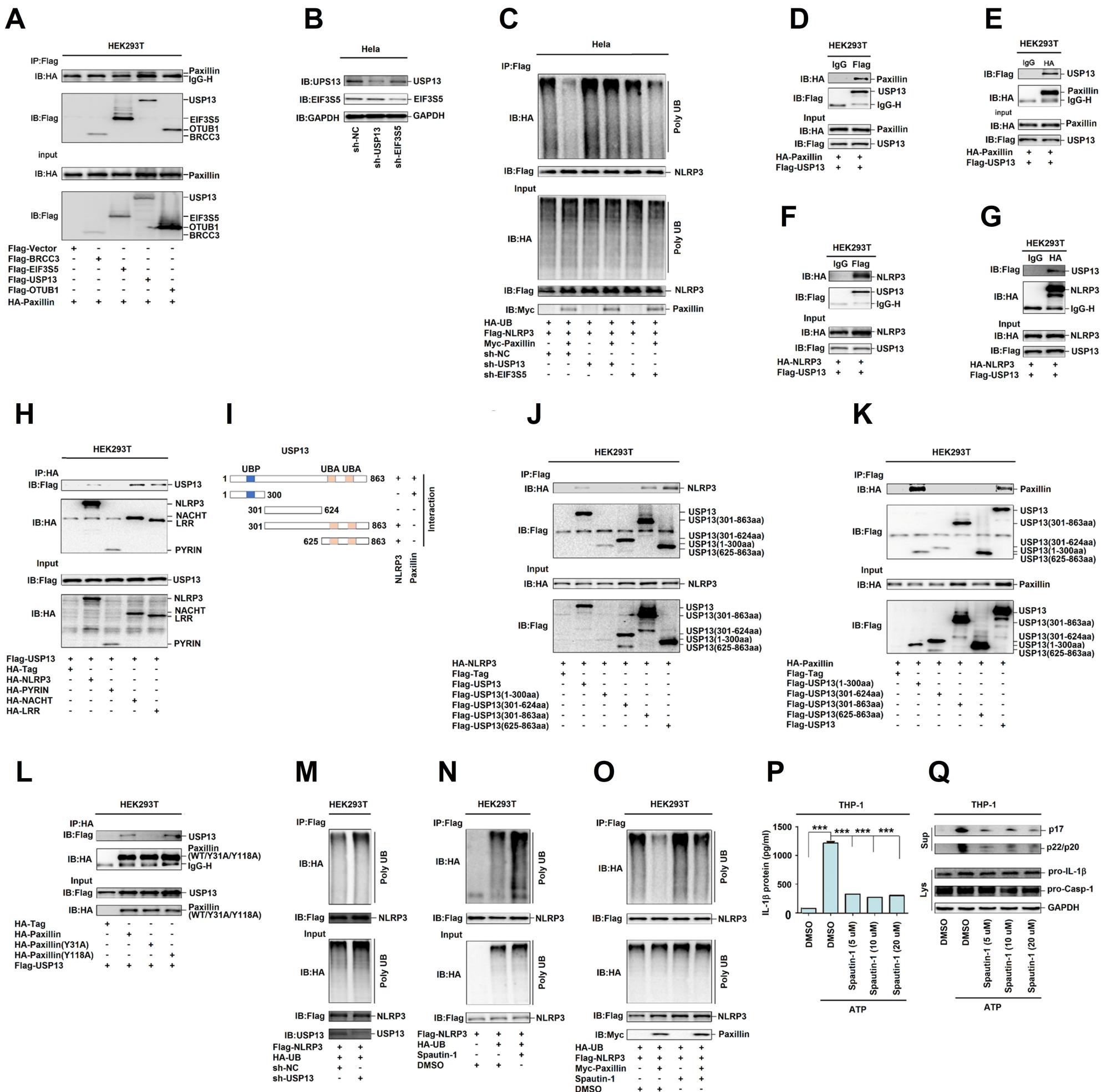


Figure 4

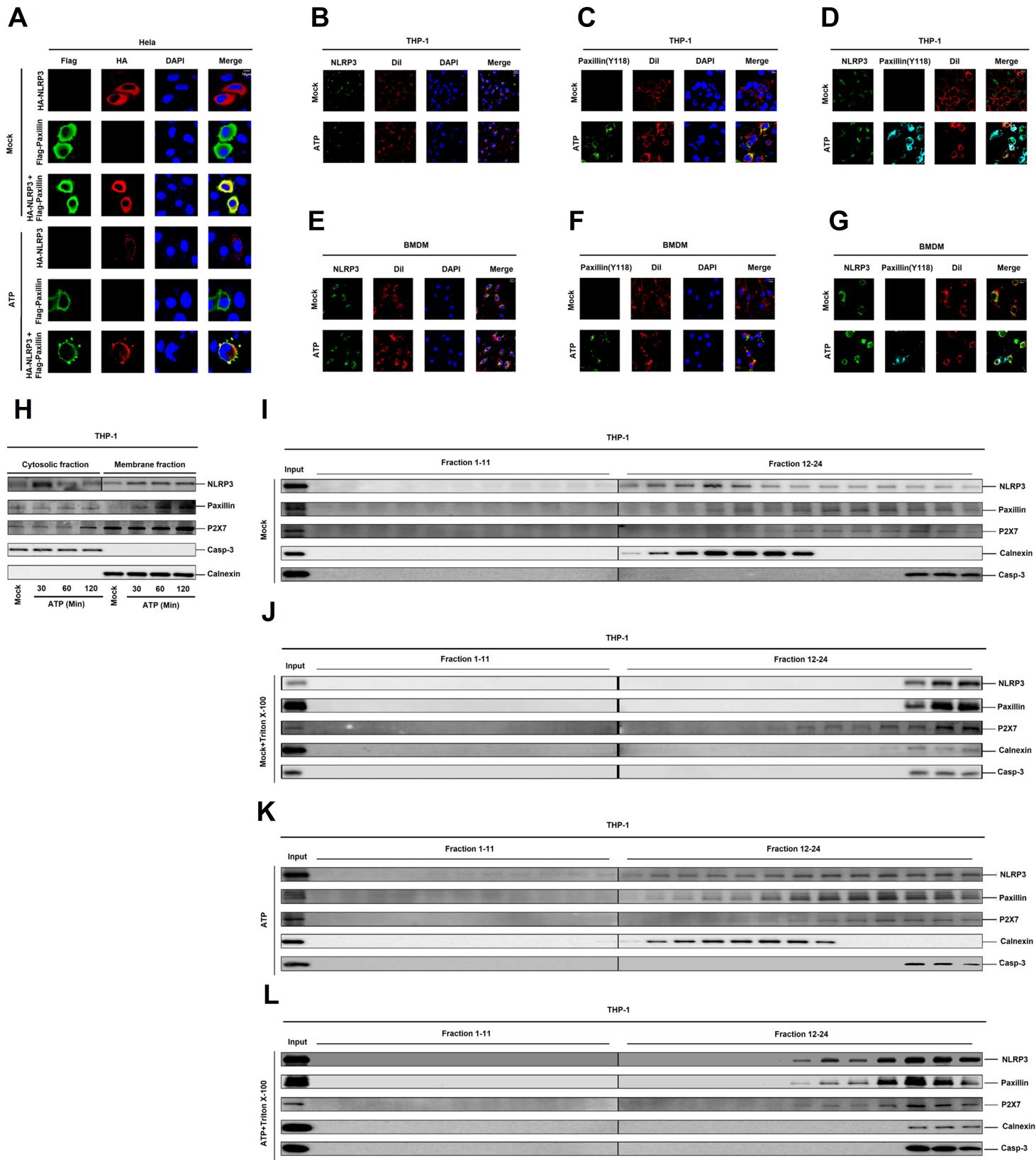


Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/2020.04.03.203721>; this version posted April 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



Figure 6

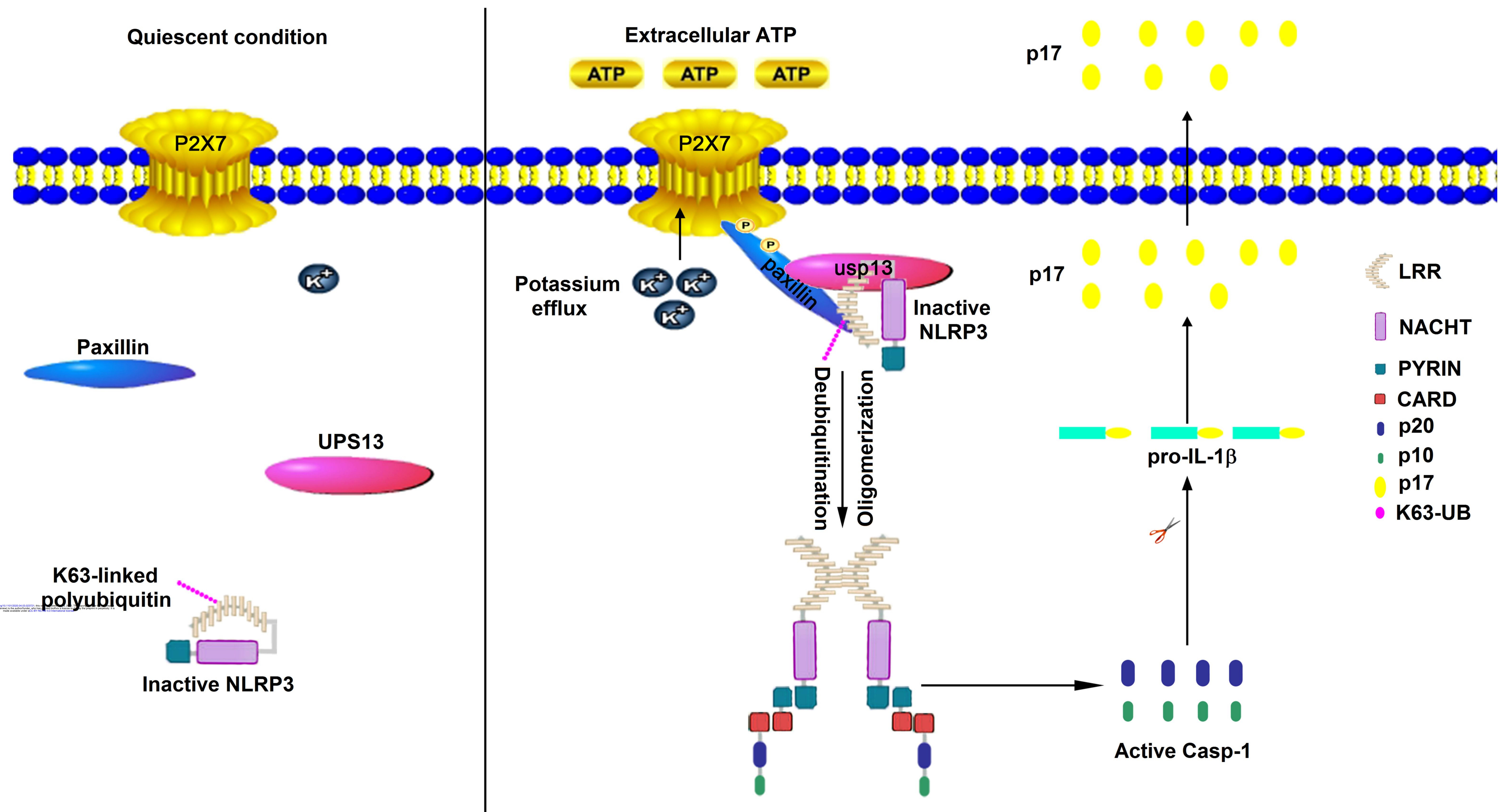


Figure 7

bioRxiv preprint doi: <https://doi.org/10.1101/2020.04.03.203721>; this version posted April 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 8

