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Abstract

Genomic epidemiology is an established tool for investigation of outbreaks of
infectious diseases and wider public health applications. It traces transmission of
pathogens based on whole-genome sequencing of colony picks from culture plates
enriching the target organism(s). In this article, we introduce the mGEMS pipeline
for performing genomic epidemiology directly with plate sweeps representing
mixed samples of the target pathogen in a culture plate, skipping the colony pick
step entirely. By requiring only a single culturing and library preparation step per
analyzed sample, we address several key issues in the current approach relating to
its cost, practical application and sensitivity. Our pipeline significantly improves
upon the state-of-the-art in analysing mixed short-read sequencing data from
bacteria, reaching accuracy levels in downstream analyses closely resembling
colony pick sequencing data that allow reliable SNP calling and subsequent
phylogenetic analyses. The fundamental novel parts enabling these analyses are
the mGEMS read binner for probabilistic assignments of sequencing reads and the
high-throughput exact pseudoaligner Themisto. In conjunction with recent
advances in probabilistic modelling of mixed bacterial samples and genome
assembly techniques, these tools form the mGEMS pipeline. We demonstrate the
effectiveness of our approach using closely related samples in a nosocomial setting
for the three major pathogens Enterococcus faecalis, Escherichia coli and
Staphylococcus aureus. Our results lend firm support to more widespread
consideration of genomic epidemiology with mixed infection samples.
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Introduction

Public health epidemiology for bacterial infections has been transformed by the
use of high-throughput sequencing data to analyze and identify the source of an
outbreak and to trace circulating pathogenic strains based on routine surveillance
(Deng et al. 2016; Tang et al. 2017; Van Goethem et al. 2019; Grad and Lipsitch
2014; Kwong et al. 2015). Standard genome-based epidemiological linking of cases
requires accurate genome sequences for the pathogens derived from high coverage
sequencing data for pure-colony isolates. The isolates are obtained by an
enrichment and separation step in the form of a plate culture and subsequent
colony picks based e.g. on morphology and colour. Typical workflow of genomic
epidemiology may thus necessitate multiple colony picks per sample and the
corresponding DNA library preparation and sequencing steps for each of them.
Combined, these steps require a significant amount of laboratory effort and time,
and lead to increased costs since the price of library preparation is becoming
comparable to the cost of sequencing itself (Rossen et al. 2018). This can act as a
barrier to more widespread genomic pathogen surveillance even in well-resourced
public health laboratories, and prevent application of genomic epidemiology
altogether in poorer settings.

Whole-genome shotgun metagenomics has been proposed as a solution for getting
rid of the culturing step entirely. In this approach, sequencing is performed directly
on the DNA extracted from the original sample and the resulting reads
computationally binned or assembled. While tools capable of pangenome-based
analyses (Scholz et al. 2016), metagenome assembly (Nurk et al. 2017; Li et al.
2016, 2015; Peng et al. 2012), or taxonomic binning (Sieber et al. 2018; Kang et al.
2019; Wu et al. 2016) from metagenomic short-read sequencing data have been
developed, these methods typically require that the samples do not contain many
closely related organisms. In particular the strain-variation within a species is
assumed to be large enough not to be confused with sequencing errors or variation
in the assembly graph (Breitwieser et al. 2019). When more complex strain-level
diversity is present, benchmarking these tools shows reduced performance in both
taxonomic binning and metagenomic assembly (Sczyrba et al. 2017; McIntyre et al.
2017; Vollmers et al. 2017; Meyer et al. 2018). In practice, natural strain-level
variation is harbored ubiquitously in epidemiologically relevant samples
(Greenblum et al. 2015; The Human Microbiome Project Consortium 2012;
Ellegaard and Engel 2016) and it is reflected by the transmission events occurring
between individuals and their environment (Stoesser et al. 2015). Although some
sample types may be dominated by one or two strains (Truong et al. 2017), direct
environmental sequencing may result in an overabundance of host DNA (Whelan
et al. 2020; Ivy et al. 2018; Gu et al. 2019), or lack detection power for strains with
low abundance in environments with high species diversity (Whelan et al. 2020;
Quince et al. 2017; Vollmers et al. 2017). These challenges are overcome in
genomic epidemiology by enriching the target species through the use of plate
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cultures. Since established protocols and growth media are available for most
bacteria of clinical relevance (Lagier et al. 2015), enrichment provides an effective
means to deplete the host DNA and increase the sequencing depth for target
organisms when working with well-characterized species.

In this article, we introduce the mGEMS pipeline for performing genomic
epidemiology with mixed cultures from samples that may harbor multiple closely
related bacterial lineages. mGEMS requires only a single culturing and library
preparation step per sample, which can significantly reduce the cost of performing
genomic epidemiology in the standard public health setting and make the whole
process more streamlined. We demonstrate the effectiveness of our approach in
SNP calling and phylogenetic analyses by using synthetic mixed culture samples of
closely related samples from previous genomic epidemiology studies (Brodrick et
al. 2017; Raven et al. 2016; Paterson et al. 2015) executed in a standard manner in
nosocomial settings for the three major pathogens E. faecalis, E. coli and S. aureus.
Our results illustrate that accurate transmission and case-linking analyses are
possible at reduced cost levels by enabling sample de-mixing and subsequent
variant calling.

Key parts of our pipeline presented in this paper are the mGEMS binner for
short-read sequencing data, and the scalable pseudoaligner Themisto, which
provides an exact version of the kallisto pseudoalignment algorithm (Bray et al.
2016) for large reference databases of single-clone sequenced bacterial pathogens.
Together with recent advances in both probabilistic modelling of mixed bacterial
samples (Maklin et al. 2020) and genome assembly techniques (Seemann 2018),
these methods form the mGEMS pipeline. A central step in mGEMS is an
application of the recent mSWEEP method (Maklin et al. 2020), which estimates
the relative abundance of reference bacterial lineages in mixed samples using
pseudoalignment and Bayesian mixture modelling. While Themisto enables
upscaling of mSWEEP to significantly larger reference databases, the mGEMS
binner is a novel sequencing read binning approach. Our binner is based on
leveraging probabilistic sequencing read classifications to reference lineages from
mSWEEP, and notably allowing a single read to be assigned to multiple bins. Using
mGEMS to bin the reads in the original mixed samples produces sets of reads
closely resembling standard isolate sequencing data and additionally acts as a
denoising step for removing possible contaminant DNA. These advances allow a
subsequent efficient use of the existing leading tools for genomic epidemiology in
the analysis of mixed culture samples, which can pave way to a more widespread
consideration of genomic epidemiology for public health applications.
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Results

Read binning and genome assembly from mixed samples with mGEMS
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Figure 1 Flowchart describing a genomic epidemiology workflow with the mGEMS pipeline.
The figure shows the various steps of the pipeline. Steps with program names in brackets
constitute the parts of the mGEMS pipeline. Presented values from mSWEEP and mGEMS binner
are the actual results of running the pipeline with the described input.

Our mGEMS read binning algorithm, part of the mGEMS pipeline (Figure 1),
requires probabilistic assignments of sequencing reads to reference taxonomic
units (lineages or sequences) and an estimate of the relative sequence abundance
of these same references in the full set of reads. mGEMS then bins the reads by
assigning a read to a bin (corresponding to a target sequence from a given
reference lineage) if the read-level probabilistic assignment value of the lineage is
greater or equal to the sequence abundance of that particular lineage in the full set
of reads. Notably, this algorithm allows a single sequencing read to be assigned to
multiple bins which is a crucial feature for considering strain-level variation. As
shown in the Methods section, this algorithm assigns reads to reference lineages
only if the sequence represented by a read is likely contained in a target sequence
that belongs to the reference lineage. In the rest of the pipeline (Figure 1), we use
our own more efficient and accurate implementation of the pseudoalignment
algorithm in kallisto (Bray et al. 2016), called Themisto, to pseudoalign the
sequencing reads against the reference sequences. Themisto is based on using
colored de Bruijn graphs to represent the reference sequences and disk storage to
control the amount of memory required in constructing the pseudoalignment
index. These choices lead to Themisto aligning a similar number of reads per hour
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as kallisto, while being 70 times faster to load in an example pseudoalignment
index consisting of 3682 E. coli sequences (28 minutes for kallisto and 0.55 minutes
for Themisto; Supplementary Methods 1). Implementation of the method is
described in more detail in Supplementary Methods 1. The pseudoalignments from
Themisto are used as input to the mSWEEP method (Maklin et al. 2020) to estimate
the probabilistic read assignments and whole-sample relative sequence
abundances. These values provide the necessary input to the mGEMS binner which
assigns the sequencing reads to the bins. Finally, we use the shovill (Seemann
2018) assembly optimizer for the SPAdes assembler (Bankevich et al. 2012; Nurk et
al. 2013) to assemble the bins. On an example synthetic mixed sample (the E. coli
sample with the most reads), the full mGEMS pipeline took 112 minutes to run
(Themisto 26 min, mSWEEP 4 min, mGEMS binner 16 min, and shovill 66 min)
using two threads on a laptop computer with two processor cores and 16 gigabytes
of memory. C++ implementations of both the mGEMS binner and the Themisto
pseudoaligner are freely available on GitHub (https://github.com/PROBIC/mGEMS,
MIT license, and https://github.com/algbio/themisto, GPLv2 license).

Overview of the experiments used in benchmarking mGEMS

We assessed the accuracy and effectiveness of mGEMS by considering data from
three genomic epidemiological studies (Brodrick et al. 2017; Raven et al. 2016;
Paterson et al. 2015). We mixed colony pick isolate sequencing data from these
studies synthetically and compared the pipeline outputs against the benchmark of
having non-mixed data available for the epidemiological analysis. The synthetic
experiments presented are: 1) mixing reads from three clones of E. coli sequence
type (ST) 131 sublineages obtained from a study of multidrug-resistant E. coli
ST131 strains circulating in a long-term care facility in the UK (Brodrick et al.
2017), 2) mixing reads from seven E. faecalis STs identified in a study of the
population structure of hospital-acquired vancomycin-resistant E. faecalis lineages
in the UK and Ireland (Raven et al. 2016), and 3) mixing reads from three S. aureus
ST22 sublineages from a study of the transmission network of methicillin-resistant
S. aureus (MRSA) among staff and patients at an UK veterinary hospital (Paterson
et al. 2015). We also provide three different approaches to constructing the
reference datasets for the pseudoalignment step: 1) a national (UK) collection of E.
coli ST131 isolates associated with bacteremia (Kallonen et al. 2017), 2) a global
collection of all available E. faecalis genome assemblies from the NCBI as of 2
February 2020, and 3) a local collection of S. aureus sequencing data from the staff
members at the veterinary hospital at the earliest possible time point in the same
study (Paterson et al. 2015). A detailed description of the generated experiments
and the accession numbers of the isolate sequencing and reference data used is
presented in the Methods section.
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SNPs from binned reads match SNPs called from isolate data

First, we compared the accuracy of SNP calling with the snippy software (version
4.4.5) (Seemann 2014) from the bins obtained by processing the abundance
estimation results from the mixed samples with the mGEMS binner with the results
of the same analyses from the isolate sequencing data (Figure 2). In the E. coli and
E. faecalis experiments (Figure 2 panels a and b respectively), the SNPs were called
from assembled contigs while in the S. aureus experiment (Figure 2 panel c), we
called the SNPs directly from the sequencing reads because calling the SNPs from
the contigs resulted in poorer performance (Supplementary Figure 1). In all
experiments, the SNPs called from the mixed samples closely resemble the results
of isolate sequencing data in both the samples that are similar and dissimilar to the
reference sample. Although in the E. coli experiment using mGEMS produced more
SNPs on average, the results were consistently higher for all samples and did not
affect the results of the analyses presented further in this article.

We suspected that the observed differences in the SNP counts may have been
caused by issues in the sequence assembly due to mGEMS allowing a read to belong
to multiple bins, which results in variable coverage between the regions with and
without the clade-specific SNPs. We tested this assumption by replacing the shovill
assembler in the mGEMS pipeline with metagenomic assemblers, which naturally
handle variable coverage. However, while using the metagenomic assemblers
marginally improved the results in some of the experiments (Figure 2 panel d,
Supplementary Figure 2), the improvements were not drastic enough to decisively
confirm our suspicions about the accuracy of the SNP calling being limited by the
choice of the assembler. We did observe that when measured by
reference-independent assembly statistics (sum of all contig lengths, total number
of contigs, sequence length of the shortest contig at 50% genome length N50, and
the smallest number of contigs whose sum is at least 50% of the genome length
L50), the statistics obtained from the standard configuration of mGEMS with the
shovill assembler resemble those from isolate sequencing data.

Further assessment of the accuracy of our called SNPs was done by fitting a
Bayesian linear regression model to the same SNP data with the isolate results as
the sole explanatory variable and the results from the bins or the metagenomic
assemblers as the response variable (Figure 2 and Supplementary Figure 2) using
the brms R package (Biirkner 2017, 2018; Carpenter et al. 2017). In both the E. coli
ST131 sublineage and the E. faecalis experiments, the 95% posterior credible
interval for the slope from mGEMS with all assembler choices except metaSPAdes
contains the correct value of 1.0. The S. aureus experiments produce worse 95%
credible intervals for the slope with none of the intervals containing the correct
value. However, the number of SNPs between the clades is three to four orders of
magnitude less than in the E. coli and E. faecalis experiment and the practical
differences in the values are quite small.
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Figure 2 Comparing mGEMS with isolate sequencing data. Panels a, b, and ¢ compare the
results of SNP calling from mixed samples with the mGEMS pipeline against the results from
isolate sequencing data. Panel d compares reference-free assembly statistics from mGEMS
pipeline with different assemblers against the results from assembling the isolate sequencing data
with shovill. The results in panel a are for the E. coli ST131 isolates, panel b the E. faecalis
isolates, and panel ¢ the S. aureus ST22 isolates. In panels a and b, SNPs were called from
contigs after assembling the reads. In panel ¢, the SNPs were called directly from the reads.
Points are colored according to the lineage within the species. The dashed gray line represents a
hypothetical perfect match between the binned and isolate reads. The blue line is the posterior
mean while the shaded area contains the 95% posterior credible region calculated from 10 000
posterior samples from a Bayesian regression model with the SNPs from the binned reads as the
response and the SNPs from the isolate sequencing data as the sole explanatory variable. In
panel d, the boxes are colored according to the type of assembly. The presented statistics are the
summed lengths of all contigs (total length), the number of contigs, the sequence length of the
shortest contig at 50% genome length (N50), and the smallest number of contigs whose sum of
lengths is at least 50% of the genome length (L50).

Split-k-mer comparison between isolate reads and mGEMS bins

We also examined the accuracy of the mGEMS binner without assembling by using
the split k-mer analysis provided by the SKA software (version 1.0) (Harris 2018). In
a split-k-mer analysis, each basepair in the read is flanked by two k-mers. The base


https://www.zotero.org/google-docs/?bK9UI7
https://doi.org/10.1101/2020.04.03.021501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.021501; this version posted April 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

pair in the middle position plus the flanking k-mers constitute a single split-k-mer.
If the split-k-mers are calculated for all base pairs in two samples, they can be used
to compare the samples on the basis of matching or mismatching split-k-mers or to
call SNPs by comparing two split-k-mers where the flanking k-mers match but the
base pair in between does not.

We first used SKA to call split-15-mer-SNPs in the three reference sequences from
the binned sequencing reads, and calculated the difference in the count of SNPs
called in the reference sequence between the isolate and the binned reads
(Supplementary Figure 3). Since the results in Figure 2 for S. aureus were obtained
without assembly, there is no notable difference when compared to the SKA
results. However, the SKA results for E. coli and E. faecalis contain fewer SNPs
called from the binned reads, implying that binning with mGEMS acts as filtering
for the sequencing data, since the results from the assemblies display no stark
differences. Next, we performed pairwise comparisons within the separate sets of
1) all isolate reads and 2) the binned reads by calculating the pairwise matching
and mismatching split-15-mers and calling pairwise split- 15-mer-SNPs. Then, we
compared the pairwise results from the isolate reads to the results from the binned
reads. While comparing these pairwise differences shows more discrepancy
(Supplementary Figure 4) than the comparison considering only SNPs called in the
reference genome, the pairwise SNP counts are still relatively well preserved in all
three experiments.

Phylogenetic analysis of Escherichia coli ST131 sublineages in a
long-term care facility

We used a set of 30 multidrug-resistant E. coli ST131 strains sequenced from the
residents of a long-term care facility in the UK (Brodrick et al. 2017) to produce a
total of 10 synthetic mixed samples. Each sample was the result of mixing isolate
sequencing data from three E. coli ST131 sublineages (one from each of the main
lineages A, B, or C) together. We attempted to preserve the potential sequencing
errors and biases by using all available reads from each of the isolate samples. We
applied the mGEMS pipeline to the 10 synthetic mixed samples with a national
(from the UK) collection of E. coli ST131 strains as the reference data (Kallonen et
al. 2017), and used RAXML-NG (version 0.8.1) (Kozlov et al. 2019) to infer a
phylogenetic tree from both assemblies obtained from the isolate sequencing data
(ground truth) and the assemblies from the mGEMS pipeline. Comparing these two
trees (Figure 2), shows that the overall structure of the trees is remarkably similar,
with the global structure between the clades completely recovered and, locally,
most leaves having the same neighbors. While the phylogeny inferred with the
mGEMS pipeline tends to contain longer branch lengths within the clades, the
bootstrap support values do not show overly confident predictions — instead being
in line with the values from the isolate data.
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Figure 3 Midpoint-rooted maximum likelihood trees from core SNP alignment of
Escherichia coli ST131 strains. The phylogeny in panel a was constructed from isolate
sequencing data from 30 E. coli ST131 strains, and the phylogeny in panel b with the mGEMS
pipeline from 10 synthetic plate sweep samples, each mixing three isolate samples from the
three main ST131 lineages (A, B, and C; one strain from each per sample). Both phylogenies
were inferred with RAXML-NG. Numbers below the edges are the Felsenstein bootstrap support
values from RAXML-NG for the next branch. Leaves are coloured according to the E. coli ST131
sublineage (A, B, B0, C1, or C2), and branch lengths in the tree scale with the mean number of
nucleotide substitutions per site on the respective branch (GTR+G4 model). Leaves are labeled
with the ENA accession number and the leaf labeled NTCC13411 corresponds to the reference
strain used in calling the core SNPs.
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Population structure of nosocomial Enterococcus faecalis infections in
the UK

Our next experiment was performed on sequencing data from
bloodstream-infection-associated E. faecalis strains with a high prevalence of
vancomycin-resistance circulating in hospitals in the UK (Raven et al. 2016). In this
experiment, we mixed together isolate sequencing data from seven distinct E.
faecalis STs (Ruiz-Garbajosa et al. 2006), producing a total of 12 synthetic mixed
samples with seven clones present in each. Each synthetic mixed sample included
all sequencing reads from the mixed isolate sequencing data similarly to the E. coli
experiment. We used a global collection of E. faecalis strains (all E. faecalis genome
assemblies submitted to the NCBI as of 2 February 2020) as the reference data for
the mGEMS pipeline, and again inferred the phylogenies for assemblies from both
the isolate sequencing data and the results of the mGEMS pipeline. The more
complex structure of these phylogenies was compared by plotting the two
phylogenies against each other in a tanglegram (Figure 4). Apart from a few
structural mismatches in branches with poor bootstrap support values in both
phylogenies (indicating uncertainty in the structure to begin with), the tree
structure is strikingly well-recovered from the binned reads.

In fact, the tree inferred with the mGEMS pipeline has better bootstrap support
values in the lower parts of the tree, suggesting that using mGEMS provides a
better phylogeny than using the isolate sequencing data alone. We suspect this
improvement in the bootstrap support values was caused by contamination in the
isolate sequencing data for BSAC ec750, which produces an assembly 5.8Mb long —
nearly twice the length of the reference E. faecalis strain V583 (3.2Mb). Similar
changes in the bootstrap support values and additional structural changes occur in
the parts of the tree containing the isolates BSAC ec294 and BSAC ec655 which
both produce abnormally long assemblies (4.8Mb and 4.4Mb, respectively). The
assembly lengths for both the isolate and mGEMS-binned sequencing reads are
provided in Supplementary Table 1.
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Figure 4 Tanglegram of two midpoint-rooted maximum likelihood trees from core SNP
alignment of Enterococcus faecalis strains. The phylogeny labelled Isolate samples was
inferred with RAXML-NG from assembling the isolate sequencing data from 84 E. faecalis
strains. The phylogeny labelled Mixed samples was inferred from 12 synthetic mixed samples,
each containing sequencing data from seven different E. faecalis STs randomly chosen from the
isolate sequencing data. Numbers below the edges indicate Felsenstein bootstrap support
values from RAXML-NG for the next branch towards the leaves of the tree. Only support values
less than 90 are shown. Branches are coloured according to the E. faecalis STs, and branch
lengths in the tree scale with the mean number of nucleotide substitutions per site on the
respective branch (GTR+G4 model). Leaves are labeled with the strain name from NCBI and the
leaf labeled V583 corresponds to the reference strain for calling the core SNPs.
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Methicillin-resistant Staphylococcus aureus transmission patterns
among staff and patients at a veterinary hospital
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Figure 5 Midpoint-rooted maximum likelihood tree from core SNP alignment of
Staphylococcus aureus ST22 showing the clade 1 strains. The phylogeny was inferred from a
combined set of assemblies from 60 isolate sequencing samples (leaves labelled Staff A-G 1 A-T,
corresponding to the temporally first samples from each staff member) and 312 assemblies
obtained from the mGEMS pipeline applied to synthetic mixed samples of sequencing data from
each of the three different S. aureus ST22 clades (1, 2, and 3). The mixed samples were produced
from the isolate sequencing data collected from the patients, or from the staff members after the
first sampling time. The branch labelled Outgroup leads to clades 2 and 3, which are not shown.
Branch labels are coloured according to the plate the isolate sequencing data was picked from.
Branch lengths in the phylogeny scale with the mean number of SNPs obtained by multiplying the
mean nucleotide substitutions per site on the respective branch (GTR+G4 model) with the total
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number of alignment sites. Leaves are labeled with the format: staff or patient, a letter indicating
the donor, plate number (ascending in time), and a letter indicating the colony pick id.

In our last experiment, we used a dataset containing S. aureus ST22 sublineages
(clade 1, clade 2, and clade 3) circulating among the staff and patients at a
veterinary hospital in the UK (Paterson et al. 2015) and separated by less than 150
SNPs. Because of the minimal differences between the clades, and a lack of isolates
from these clades in published sources, we decided to use the isolates from the
temporally first sample from the staff members as the reference data (representing
a local reference collection). We separated the reference isolates from our
experiment cases, and proceeded to mix the remaining isolate sequencing data
together. We generated a total of 312 synthetic mixed samples, each containing the
sequencing data from three isolate samples from each of the three clades. Because
the numbers of samples in each clade were not equal, the data from some of the
isolate samples was contained in multiple mixed samples. Since we wanted to
represent each isolate with only a single instance in the phylogeny, we randomly
chose one corresponding bin from mGEMS as the representative for an isolate that
was included in multiple mixed samples.
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Figure 6 Midpoint-rooted maximum likelihood trees from core SNP alignment of
Staphylococcus aureus ST22 showing clade 2 and clade 3 strains. The underlying phylogeny
is the same as in Figure 3. The phylogeny in panel a contains the clade 2 strains, and panel b the
clade 3 strains. Branches leading to clade 1 were removed. Branch labels are coloured according
to the plate the isolate sequencing data was originally picked from with darker shades indicating
later sampling times. Branch lengths in the phylogeny scale with the mean number of SNPs
obtained by multiplying the mean nucleotide substitutions per site on the respective branch
(GTR+G4 model) with the total number of alignment sites. Leaves are labeled with the format: staff
or patient, a letter indicating the donor, plate number (ascending in time), and a letter indicating
the colony pick id.


https://www.zotero.org/google-docs/?sAvOQn
https://doi.org/10.1101/2020.04.03.021501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.021501; this version posted April 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

The phylogenies in Figures 5 and 6 were inferred with RAXML-NG (version 0.8.1)
(Kozlov et al. 2019) from the results of the mGEMS pipeline. We plotted the
phylogenies separately for the clade 1 isolates (Figure 5) and clade 2 and 3 isolates
(Figure 6) without changing the underlying tree structure. Phylogenies inferred
from the isolate sequencing data using the same pipeline are available in
Supplementary Figure 5 and Supplementary Figure 6. In the original study
(Paterson et al. 2015), Staff member A was inferred as having introduced the MRSA
strain from Clade 1 into the veterinary hospital. In our phylogeny, Staff member
A's initial samples (timepoints labels 1 and 2) are indeed contained at the root of
the tree inferred from the mGEMS pipeline, although the placement of the strains
further up the tree vary when compared to the results presented in the original
study. The original study performed manual quality control of the SNP data by
removing transposable elements which was not replicated in our experiment,
possibly explaining some of the observed differences between the tree structures.
The phylogenies for clades 2 and 3 (Figure 6) follow the results of the original study
more closely with most subclades found in both the isolate and the mixed sample
phylogenies. Importantly, in all three clades no assembly from the mGEMS pipeline
was assigned to the wrong clade in the phylogeny despite the minimal distances
between the clades.

Comparison with metagenomic assemblers

We benchmarked our method against three metagenomic assemblers: IDBA-UD
(v1.1.3) (Peng et al. 2012), MEGAHIT (v1.2.9) (Li et al. 2016, 2015), and
metaSPAdes (v3.14.0) (Nurk et al. 2017). These tools represent the state-of-the-art
in metagenomic assembly based on their performance in benchmarking studies
(Sczyrba et al. 2017; McIntyre et al. 2017; Vollmers et al. 2017; Meyer et al. 2018).
We compared the results of assembling the synthetic mixed E. coli, E. faecalis, and
S. aureus sample with these three methods with assemblies obtained from the
mGEMS pipeline. The reference-dependent assembly statistics (Figure 7) were
obtained by comparing both the mGEMS assemblies, with the standard
configuration using shovill as the assembler, and the metagenomic assemblies
against reference genomes constructed by assembling the isolate sequencing data
contributing to the mixed samples. We used metaQUAST (v5.0.2) (Mikheenko et al.
2016) to calculate the comparison statistics. Based on the results from running the
metagenomic assemblers, we opted not to run taxonomic contig binners since their
performance on alignment-based statistics will necessarily be worse than that of
the metagenomic assembler used as the input.

Our results (Figure 7) show that the metagenomic assemblers struggle in all three
experiment sets on all four presented statistics (fraction of bases in the reference
assembly that a base from the compared assembly aligns to, the sequence length of
the shortest contig at 50% of total reference genome length, difference in the total
number of bases in the reference genome minus the total number of aligned bases
in the compared sequence, and the number of mismatches per 1000 aligned base
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pairs). In contrast, assembling the bins from mGEMS produces significantly better
results in nearly all experiments and assembly statistics (p < 10* in the cases where
mGEMS is better, Wilcoxon rank-sum test, rejecting the hypotheses: 1) the values
of genome fraction or NGA50 from mGEMS are less than those from the compared
methods, or 2) absolute values of the length difference or mismatches per 1000 bp
from mGEMS are greater than those from the compared methods), with the
exception of the NGA50 value in the E. coli experiments where MEGAHIT and
metaSPAdes outperform mGEMS (p < 10, Wilcoxon rank-sum test, rejecting the
hypothesis: the values from metaSPAdes or MEGAHIT for NGA5O0 are less than
from mGEMS).
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Figure 7 Comparison between mGEMS and other methods on three sets of synthetic mixed
samples. The figure shows four assembly statistics: percentage of aligned bases in the reference
genome (genome fraction), the sequence length of the shortest contig at 50% of total reference
genome length (NGAS50), the difference between the total number of bases in the reference
genome and the total number of aligned bases in the compared genome (length difference), and
the number of mismatches in aligned bases per 1000 base pairs (mismatches). The dashed gray
line shows the location of zero in each of the subplots. The statistics were calculated by
assembling either the bins obtained with the mGEMS pipeline or the full mixed sample with
MEGAHIT, metaSPAdes, or IDBA-UD. We used metaQUAST to align the resulting contigs against
ground-truth genomes obtained by assembling the isolate reads contained in the mixed samples.
The boxplots are grouped based on the species contained in the sample, and the colors indicate
the four different methods used for obtaining the assemblies.

Discussion

Adopting a plate-sweep approach, where DNA from the individual bacteria growing
on the same plate is prepared and sequenced en masse, shows clear promise in
reducing the amount of manual and costly laboratory work that has been identified
as an emerging bottleneck for epidemiological analyses at many public health
laboratories (Rossen et al. 2018). In this article we have introduced the mGEMS
pipeline, which includes novel pseudoalignment and read binning methods, for
genomic epidemiological analyses of plate sweeps. Our pipeline provides means to
accurately recover the genomes, or corresponding sequencing reads, from mixed
samples with extremely closely related strains separated by less than a few dozen
SNPs. In these settings, where the differences between the strains are at or under
the sequence type level, isolate sequencing is traditionally required to draw
epidemiological conclusions. We have demonstrated that the same conclusions can
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be robustly made from plate sweeps by using mGEMS. Additionally, since the
pipeline relies on modelling pseudoalignments against reference sequences,
mGEMS acts as quality control for sequencing reads from samples that
inadvertently contain multiple lineages or contamination, which can disrupt
downstream analyses like SNP calling (Goig et al. 2020). Our pipeline also
significantly outperforms the current state-of-the-art in analysing sequencing data
from closely related mixed samples, reaching accuracy levels likely constrained by
technical variation in the sequencing data and limitations in assembling
sequencing data with variable coverage. To our knowledge, mGEMS is the first tool
capable of reliable recovery of the full strain variety in complex mixed samples.

mGEMS demonstrates the power of plate sweep sequencing in genomic
epidemiology and enables a change in the currently dominant framework that
confers multiple benefits over both whole-genome shotgun metagenomics and
isolate sequencing. Studies of the population structures of opportunistic pathogens
have revealed extensive strain-level within-host variation (Stoesser et al. 2015;
Golubchik et al. 2013; Paterson et al. 2015; Greenblum et al. 2015; Brodrick et al.
2017; Lieberman et al. 2014) with adverse implications for transmission analyses
relying solely on isolate sequencing (Worby et al. 2014; Stoesser et al. 2015) and
longitudinal studies reporting the absence or re-emergence of strains in a host
based on colony picks (Paterson et al. 2015; Brodrick et al. 2016, 2017). While
whole-genome shotgun metagenomics solves these issues to some extent (Gu et al.
2019; Forbes et al. 2017), the culture-free nature suffers from issues with both
bacterial and host DNA contamination particularly affecting the sensitivity for
detecting strains in low abundance (Whelan et al. 2020; Ivy et al. 2018; McArdle
and Kaforou 2020; Salter et al. 2014). Using mGEMS in conjunction with plate
sweep sequencing data avoids these issues altogether, paving way for more
representative studies of pathogen population structure and providing
higher-resolution data for more complex models of transmission dynamics
incorporating within-host variation and evolution (Maio et al. 2018; Worby et al.
2017; Skums et al. 2018).

Since our method relies on available single-clone genomic reference data and plate
cultures of the bacteria to sequence them at a sufficient depth for assembly, it
obviously cannot be applied to the study of uncharacterized or unculturable
species. However, culture media do exist for most human pathogens of public
health relevance (Lagier et al. 2015) or can be developed for some of the allegedly
unculturable bacteria (Stewart 2012; Vartoukian et al. 2010; Ito et al. 2019).
Moreover, the availability of single-clone genome sequences is still increasing at a
high rate, such that for many of them plenty of sufficiently representative
reference sequences would be available (Forster et al. 2019; Zou et al. 2019). In
these cases, the drastic reduction in the costs of library preparation, and the better
capture of the underlying genomic variation between closely related bacteria in a
set of mixed samples provided by mGEMS is extremely valuable. We hope that by
enabling significant streamlining of the process of producing data for public health
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genomic epidemiology, our approach inspires both applications and further
method development within this exciting research area.

Methods
mGEMS workflow

Our pipeline for performing genomic epidemiology with short-read sequencing
data from mixed samples, mGEMS, requires as input the sequencing reads and a
reference database representing the clonal variation in the organisms likely
contained in these reads. The reference database must additionally be grouped
accordingly into clonal groups representing lineages within the species. We used
either the multilocus sequence types (E. faecalis experiments) or sublineages
within the sequence types (E. coli and S. aureus experiments) as the clonal
grouping. With these preprocessing steps performed, the first step in the mGEMS
pipeline is to pseudoalign the sequencing reads against the reference database
using our scalable implementation of (exact) pseudoalignment with the Themisto
software (in this article we used v0.1.1 with the optional setting to also align the
reverse complement of the reads enabled). The pseudoalignments and the clonal
grouping are then supplied as input to the mSWEEP software (v1.3.2; doi:
10.5281/zenodo.3631062, with default settings) (Maklin et al. 2020) which
estimates the relative sequence abundances of the clonal groups in the mixed
sample. Consequently, mSWEEP produces a probabilistic classification of the
sequencing reads to the different reference clonal groups. This classification is
subsequently processed by the mGEMS binner (v0.1.1, default settings), which
assigns the sequencing reads to bins that correspond to a single reference clonal
group — with a possibility for a sequencing read to belong to multiple bins. As the
last step, the bins are (optionally) assembled with the shovill (v0.9.0, with default
settings) (Seemann 2018) assembly pipeline. mGEMS and Themisto are freely
available on GitHub (https://github.com/PROBIC/mGEMS and
https://github.com/algbio/themisto).

Reference data

We used three different sets of sequencing data as the reference for the three
different experiments presented. The three different reference datasets represent a
local (S. aureus experiment), a national (E. coli), and a global collection (E. faecalis)
of strains from these species. Accession numbers and multilocus sequence types
for the reference data are available in Supplementary Table 2 accompanied with
rudimentary assembly statistics from both the isolate sequencing data and the
assemblies from the mGEMS pipeline. In each experiment, we only aligned against
the reference sequences from the relevant species.

In the E. coli experiments, our collection of 218 E. coli ST131 isolates originated
from the British Society for Antimicrobial Chemotherapy's bacteraemia resistance
surveillance program and were originally isolated from 11 hospitals across England
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(Kallonen et al. 2017) . These isolates were assigned to five ST131 sublineages (A,
B0, B, C1, or C2) as described previously (Kallonen et al. 2017) . As the reference
sequence for calling the SNPs in building the phylogeny, we used the ST131 strain
NCTC13441 (European Nucleotide Archive [ENA] sequence set UFZF01000000).

The global collection of E. faecalis reference data was obtained by downloading all
available E. faecalis assemblies (1484 as of 2 February 2020) from the NCBI, which
were assigned to STs with the mlst software (version 2.18.1) (Jolley et al. 2018;
Seemann 2015; Ruiz-Garbajosa et al. 2006). Sequence type could not be
determined for 177 assemblies. These were discarded, leaving a total of 1307
assemblies assigned to 203 distinct sequence types. We used the ST6 strain V583
(Paulsen et al. 2003) as the reference for SNP calling (NCBI RefSeq sequences
NC_004668.1-NC_004671.1).

The S. aureus reference data was obtained from the same study as the experiment
data (Paterson et al. 2015). We used shovill (version 0.9.0 with default settings)
(Seemann 2018) to assemble the isolate sequencing reads from the first sampling
of the staff members at the veterinary hospital, and assigned the assembled
sequences to the ST22 sublineages according to the information provided in
original study (Paterson et al. 2015). The reference sequence used in calling the
SNPs was the ST22 strain HO 5096 0412 (Holden et al. 2013) (ENA sequence
HE681097.1)

If the reference sequence in any of the experiments consisted of multiple contigs,
we concatenated the contigs together by adding a 100-base gap between them. The
final reference file that was used as input for Themisto indexing was produced by
concatenating all reference sequences processed in this way together.

Synthetic experiment generation

We produced our three synthetic experiment sets by synthetically mixing together
the isolate sequencing data from distinct lineages in each of the three studies. In
the E. coli experiments, we produced 10 mixed samples with one strain from each
of the three main ST131 lineages (A, B, or C) in each sample. In the E. faecalis
experiments, we mixed together seven strains from seven different sequence types
to produce a total of 12 mixed samples. The strains included in each sample were
chosen at random without replacement in the E. coli and E. faecalis experiments.
The S. aureus mixed samples were produced by randomly mixing together one
strain from each of the three sublineages with replacement while ensuring that
each strain appears at least once. The sequencing data that was used in the
reference dataset was not included in any of the experiments. In all three
experiment sets, we used all available sequencing data in the mixed samples,
resulting in 8-15 million reads in the experiments. Supplementary Table 1 contains
the accession numbers and lineage assignments of the isolate sequencing data in
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each sample, as well as the assembly statistics from both isolate sequencing and
the synthetic mixed samples processed with mGEMS.

Pseudoalignment

We used Themisto (v0.1.1) with the default settings. Themisto is a k-mer-based
pseudoalignment tool which encodes sets of k-mers as a succinct colored de Bruijn
graph. A read is considered to pseudoalign against a reference sequence if at least
one k-mer of the read is found in the reference, and each k-mer of the read is either
found in the reference or not found at all in the database of all references. This can
be seen as an exact version of the pseudoalignment algorithm implemented by the
tool Kallisto (Bray et al. 2016).

The index was constructed using 31-mers. Themisto does not distinguish between
paired-end reads and single reads, so we decided to consider a paired-end read as
pseudoaligned only when both fragments pseudoaligned. We have included this
functionality for supporting paired-end reads in both the mSWEEP and mGEMS
software implementations.

Abundance estimation and probabilistic read assignment

We used the mSWEEP (Miklin et al. 2020) software (v1.3.2; doi:
10.5281/zenodo.3631062) with default settings. The program was altered to
support pseudoalignments from Themisto, and to output the read-level
probabilistic assignments to the reference lineages. We also improved the
scalability of mSWEEP by parallelizing the abundance estimation part and reducing
memory consumption. These alterations have been included in versions v1.3.2
(Themisto and mGEMS support) and v1.4.0 (parallelization and memory usage
improvements) of the software.

Read binning

In order to collect all reads in a mixed sample that likely originate from the same
target lineage, we consider a binning strategy that allows associating the same read
with multiple reference lineages. We assume that each reference lineage is
represented by, at most, only one target sequence in the mixed sample, and that
the sets of reference sequences capture the variation in the reference lineages
sufficiently to use them as a substitute for the target sequence which may not be
included in the reference sequences. In our formal treatment of the task of binning
a set of sequencing reads, we define the task in terms of finding K subsets (bins),
one for each reference lineage &£ = 1,...,K, of the full sets of reads R = {r,...,ry}
denoted by G, C R that contain reads likely originating from the target sequence

belonging to the reference lineage k. The reads assigned to each subset G, are
K
determined based on read-level probabilities vy, ,, > y,, = 1, n=1,.,N to
k=1
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classify the read r, into the reference lineage & by defining the subsets G, such
that

G, = {rn Yok 2 qk},

Equation 1

holds for some threshold ¢, € [0, 1] which may vary between the lineages k. The
formulation in Equation (1) has the benefit of allowing the read r, to possibly
belong to several subsets G, , which is an important property for dealing with
multiple closely related lineages in the same mixed sample.

In order to find a suitable value for the threshold ¢, , and to determine the
corresponding assignment rule, we consider two binary events: 1) 7, , : the
reference lineage k generated the read r,, and 2) J, , : the true nucleotide
sequence represented by the read r, is part of the target sequence belonging to the
reference lineage k. Knowing the probability of the event J, , would directly enable
us to assess the plausibility of assigning the read r, to the reference lineage & but

its value is difficult to estimate directly. However, we can determine and write down
the values of the conditional probabilities P[/, , = 1]J,, = 0] and

Pll,, =1[J,, = 1] as

Pl =1]J,, = 0] =0,and

Equation 2

where 6, is the proportion of reads from the reference lineage k,and Y 6. is
c:Jne=1

the proportion of reads from any reference lineages {c : J,. = 1} which contain
the sequence represented by the read r, . The conditional probabilities in Equation
(2) allow us to write the unconditional probability P[/, , = 1] as

Pll,,=11=Pl,,=1J,,=0PJ,,=0+P[ ,=1J,,= 1P, = 1]
ek

DI

¢ Ime=1

&P, = 1]= PlJ,, = 11.

Equation 3

Using the formulation in Equation (3) and the fact that we can approximate
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0

DINE

c:Jnc=1

~ 0, if we assume that the mixed sample is mostly composed of closely

related organisms (the denominator Y. 6, approaches 1), we can rewrite
c:Jne=1

Equation (3) as
Pll,, = 11 =6,P[J,, = 1].

Equation 4

Equations (4) and (3) together imply that if the value of the probability P[/, , = 1]
that the read r, was generated from the lineage & exceeds the relative abundance
0, of that lineage in whole sample (P[/, , = 1] >0,), then the value of the
probability P[J, , = 1] that the nucleotide sequence represented by the read r, is

contained in the target sequence from the reference lineage & must be "large" (
P[J, = 1] — 1). This statement about the magnitude of P[J, , = 1] derives

from our assumption that the denominator in Equation (3) is close to 1.

Since we have an estimate of the probabilities P[/, , = 1] available in the form of
the read-level probabilistic assignments vy, , = P[/, , = 1], we can plug these
values in Equation (4) and use the result to derive the assignment rule

if y, , >0,,assign the read r, to G,.

Equation 5

The assignment rule in Equation (5) gives us a way to assess the validity of the
statement contained in the probability P[J, , = 1] which we could not estimate

directly.

Because of computational accuracy, we cannot obtain meaningful relative

abundance estimates 0, for lineages with a relative abundance less than + (less

than one read from the lineage & in the sample). Since there are K lineages in total,
in the worst-case scenario K = units of the relative abundance fall into this
meaningless range. Therefore only a fraction of the total relative abundance of 1
can be considered to be accurately determined when using computed values of 6, ,
and this fraction d is determined in the worst-case scenario through the formula

— 1
d=1-K%.

Equation 6


https://doi.org/10.1101/2020.04.03.021501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.021501; this version posted April 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Equation (6) means that when evaluating the validity of the assignment rule
presented in Equation (5) with computed values, we have to replace 6, with the
value 46, which depends on the value of d in Equation (6). Merging the result from
Equations (5) and (6) leads us to the final assignment rule (Equation 7) of

if y, , > d9,, assign the read r, to G,.

Equation 7

In practice, reads which pseudoalign to exactly the same reference sequences have
identical values v, , . The reads can thus be assigned to equivalence classes defined

by their pseudoalignments, which enables a speedup in the implementation of the
binning algorithm by considering each equivalence class as a single read. Due to this
speedup and the computational simplicity of evaluating the assignment rule in
Equation (7), the memory footprint of the mGEMS binner is determined by the
number of equivalence classes and reference lineages in the input pseudoalignment
and the runtime limited by disk I/O performance.

Genome assembly

After binning the sequencing reads in our experiments with the aforementioned
assignment rule, we assembled the sequencing reads assigned to the bins using the
shovill (version 0.9.0, default settings) (Seemann 2018) assembly optimizer for the
SPAdes assembler (Bankevich et al. 2012; Nurk et al. 2013). This step concludes
what we in this article call the mGEMS pipeline.

SNP calling and phylogeny reconstruction

We used snippy (version 4.4.5) (Seemann 2014) to produce a core SNP
multiple-sequence alignment from the assembled contigs. Since the E. coli and S.
aureus strains used were from the same sequence type, the core alignment for
these two species contained almost the whole genome. After running snippy,
RAXML-NG (version 0.8.1) (Kozlov et al. 2019) was used to infer the
maximum-likelihood phylogeny from the alignment. Since some of the S. aureus
strains from the same clade were identical, we changed the default value of the
minimum branch length parameter in RAXML-NG to 10'° in the S. aureus
experiments and printed the branch length with eight decimal precision to identify
branches of length zero. In all experiments, we ran RAXML-NG with 100 random
and 100 maximum parsimony starting trees, and performed 1000 bootstrapping
iterations to infer Felsenstein bootstrap support values for the branches. We used
the phytools R package (v0.6-99) (Revell 2012) to perform midpoint rooting for the
tree, and the ape R package (v5.3) (Paradis and Schliep 2019) to create the
visualizations.

Data Access
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Source code and precompiled binaries (generic Linux and macOS) for both mGEMS
and Themisto are freely available in GitHub at https://github.com/PROBIC/mGEMS
(MIT license) and at https://github.com/algbio/themisto (GPLv2.0 license). A
tutorial describing how to reproduce the synthetic mixed samples, bin the mixed
reads, and infer the phylogenies is available in the mGEMS GitHub repository. The
reference data used is available from Zenodo (E. coli doi: 10.5281/zenodo.3724111,
E. faecalis doi: 10.5281/zenodo.3724101, S. aureus doi: 10.5281/zenodo.3724135).
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Pseudoalignment in the mGEMS pipeline

Tommi Maklin Teemu Kallonen Jarno Alanko
Veli Méakinen Jukka Corander Antti Honkela

In this supplement we describe the pseudoalignment algorithm and implementa-
tion used in the mGEMS pipeline. The implementation is called Themisto, and
is freely available at https://github.com/algbio/themisto under the GPLv2.0 li-
cense. Pseudoalignment is an approximate form of alignment that reports only
whether a read matches to a reference sequence or not, without necessarily re-
turning the genomic coordinates of the match. Pseudoalignment can be much
cheaper computationally than regular alignment.

1 The pseudoalignment criterion

Our pseudoalignment is based on the pseudoalignment algorithm used in the
transcript abundance quantification tool Kallisto [1]. The pseudoalignment cri-
terion we use is defined as follows. Suppose we want to pseudoalign a read
against a set of reference sequences 11, ...,T,,. The read is considered to pseu-
doalign against reference T; if at least one k-mer of the read is found in T; and
for each k-mer x of the read, one of the following holds:

1. z is a k-mer of T;

2. x is not a k-mer of any of T1,...,Ty,

This criterion closely replicates the pseudoalignment of Kallisto, with the dif-
ference that Kallisto uses a heuristic based on the topology of the de Bruijn
graph of T1,...,T,, to skip over some k-mers of the read for efficiency. More
specifically, if the current k-mer is in a non-branching path of the graph, Kallisto
skips a number of k-mers of the read equal to the distance to reach the next
branching node. If the k-mers before and after the skip are found in the same
reference sequences, the skip is considered valid, and otherwise Kallisto falls
back to checking all k-mers of the read individually. However, even if the skip
is considered valid, it could be the case that a skipped k-mer would have af-
fected the result of the pseudoalignment. On the other hand, we implement the
described pseudoalignment criterion exactly, and observe a very slight improve-
ment in accuracy compared to using Kallisto’s pseudoalignments. The difference
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in accuracy could also be due to small implementation differences, since we de-
signed our tool around the high-level description in Kallisto’s manuscript [1]
rather than the source code itself.

2 Implementation overview

The pseudoalignment criterion we have chosen effectively reduces each reference
sequence and each read into unordereded sets of k-mers. This loses some infor-
mation, but in turn it allows for more efficient data structures and algorithms.
The pseudoalignment could in principle be implemented on top of any data
structure for indexing k-mer sets.

Indexing k-mer sets efficiently is currently a very active field of research
[2]. In k-mer data structures, each reference sequence is usually given a unique
identifier, called the color of the sequence. Each k-mer is associated with a
color set, which is defined to be the set of colors of the reference sequences that
contain that k-mer. The basic query on a k-mer data structure is to retrieve
the color set of a given k-mer. Our pseudoalignment criterion can be computed
against all references at once by intersecting the non-empty color sets of all
k-mers in a read.

We chose to implement our own k-mer index. The main design goal was that
the index should be memory-efficient to build and use, because the size of the
reference dataset can be large. To this end, we index the k-mer sets as a succinct
colored de Bruijn graph. The nodes of the graph represent k-mers and the edges
represent (k + 1)-mers. The graph is encoded with a variant of the BOSS
representation [3] and each node is linked to the corresponding color set with a
separate coloring data structure which is unique to our implementation. Each
query read is aligned as both the reverse complement string and the forward
string, and we return the union of the pseudoalignments of both directions.
Figure [1] illustrates the approach.

A speciality of our implementation is that the construction can be done
almost entirely on disk, using only a minimal amount of RAM. This is made
possible by designing the construction pipeline around two well-studied primi-
tive operations: k-mer counting and disk-based sorting. The next section gives
the technical details of the index and the construction pipeline.

3 Implementation details

The reference sequences are modeled as strings from an alphabet ¥ of size o
(for DNA, ¥ = {A,C,G,T} and 0 = 4). Let us denote the set of references with
Ty,...,Ty. First, we build the BOSS data structure of the de Bruijn graph,
implemented in terms of the generic Wheeler graph framework introduced by
Gagie et al. [4].

Let T = T1$1%$ - - - T,,,$ be a dollar-separated concatenation of the reference
sequences, where the dollar is a special symbol such that $ ¢ X. Let fo(x) be
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QUERY: GGTGGCGACCTA
ANSWER: mms N s () moms () moems = =

Figure 1: A colored de Bruijn graph of order & = 4. Each reference sequence in
the graph is assigned a unique color. The color sets of nodes are drawn above
the nodes. In the example, the query GGTGGCTGACCTA is pseudoaligned
against the graph. Four of the k-mers of the query are found in the graph.
The representative nodes of those k-mers are highlighted with green. The pseu-
doalignment returns the intersection of the color sets of the highlighted nodes.

the set of distinct characters that are found to the left of k-mer x in T and let
fr(x) be the set of distinct characters that are found to the right of x in T.

To build the Wheeler graph data structure, we iterate the sets fy(x) and
fr(x) in colexicographicﬂ order of the k-mers x of T. To do this, we first list all
distinct (k4 2)-mers of T' to disk. Then we sort the (k+ 2)-mers x in increasing
order of the colexicographic rank of the middle k-mer x[2..(k 4+ 1)] using a disk-
based sorting algorithm. Next, we stream the sorted (k+2)-mers from disk. For
every run of (k 4 2)-mers with an identical middle k-mer y, we collect the sets
fe(y) and f,.(y) by looking at the first and last characters of the (k + 2)-mers
in the run. Building the Wheeler graph data structure is straightforward from
this information.

After this, we have a working index of the de Bruijn graph (V, E) of the
references T1,...,Ty. If (u,v) € E, we call u a predecessor of v, and v a
successor of u. Next, we add the colors to nodes of the graph. To eliminate
redundancy, we only store colors for a subset V' C V, where v € V' iff at least
one of the following conditions hold:

1. Node v represents the first k-mer of a reference sequence.
2. A predecessor of v represents the last k-mer of a reference sequence.
3. Node v has multiple predecessors

4. Node v has a predecessor that has multiple successors.

IThe colexicographic order of strings is like the standard lexicographic order, but characters
are compared starting starting from the end. The index can be build with either lexicographic
or colexicographic sorting, but we choose to follow the colexicographic convention of the
Wheeler graph framework. The indexed graph can be traversed in both directions.
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If v € V', then its color set has to be the same as its predecessor’s color set. We
can find out the color set of v by walking backward to the nearest node u € V.
Node u is guaranteed to exist because the first node of every reference sequence
is always in V'. The nodes in V’ can be found and marked by using the BOSS
index.

However, with this setup, finding node uw might take a long time if we are
in the middle of a long unitig (non-branching path), so we also store the color
sets for some nodes inside long unitigs. Let S be the set of nodes such that
the distance backward to the nearest node in V' is an integer multiple of s for
some global integer parameter s. We also store the color sets for all nodes in S.
This way, we can find a color set of a node in at most s backward steps. The
sampling parameter s can be tuned to obtain different time-space tradeoffs.

The color sets are computed with two disk-based sortings as follows. Assume
we have marked all nodes in V' U S. Assign the reference sequences 11, ..., T,
colors such that the color of sequence T; is i. For each ¢ = 1,..., m, walk the de
Bruijn graph according to 7; using the constructed BOSS index, and for each
node v € V' U S encountered, print to disk a pair (v,4). After all sequences T;
have been processed, sort the pairs on disk by the node identifiers v, and scan
the sorted list, writing to another file pairs (v, C,,), where C, is the list of colors
of node v. Then, sort the new pairs by the color sets and scan the resulting
sorted list to obtain a list of pairs (X,,C,), where X, is the set of nodes with
color set C,,. Finally, store all distinct color sets to a file, and for each node in
the sets X, store a pointer to the corresponding color set.

It remains to be described how the color sets are stored in a succinct and ac-
cessible way. Let us denote the set of distinct color sets with C = {C1,...,Cj¢}.
The color sets are stored in a concatenated form Cf ---Cjc|. We mark with a
bit vector all positions in the concatenation where a new color set starts, and
index the bit vector for constant-time select queries to be able to locate the i-th
distinct color set in constant time. A pointer to color set C; is just the integer 1,
which can be represented in [log|C|] bits. By choosing the sampling parameter
s = [log|C|], the size of S is at most |V|/log|C|, so the total size taken by the
sampling pointers is only |V| bits, and we obtain a worst-case color set lookup
time of O(log s) = O(log |C|). With this, the whole coloring data structure takes
on the order of |[V'|log|C| + |V| + > cc |Cllogm bits of space. The Wheeler
graph data-structure takes |V |logo + 2|V |+ olog |V| 4 o(|V]log o) bits space,
where o is the size of the alphabet.

Most of the heavy work is done by the subroutines for k-mer listing and for
disk-based sorting. In our implementation, we used the highly optimized parallel
tool KMC3 for k-mer listing, and a custom ¢-way disk-streaming mergesort with
parallel merges for the sorting. The sorting implementation first divides the
input into blocks that fit in the given RAM limit, sorts the blocks in RAM to
disk, and then merges the blocks. Extra memory can speed up the sorting.

Any general purpose tool for the sorting and k-mer listing subroutines could
be plugged into the pipeline with no changes to the rest of the pipeline. We
believe this property could allow our construction pipeline to scale even to a
distributed cluster of machines, as there are distributed implementations for
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both k-mer counting and sorting.

4 Performance

We benchmarked the construction performance of our implementation on a
dataset of 3682 Escherichia coli genomes downloaded from the NCBI archives?|
There were 19.0 billion nucleotides in this dataset.

Given 20GiB of RAM, Themisto builds the E. coli index for k¥ = 32 in 6
hours and 16 minutes®] The main drawback is that the construction takes 375
GiB of disk space. Large disk usage is a common problem with sorting-based
de Bruijn graph construction algorithms, such as the VARI-merge construction
algorithm [5].

The final size of our index was 7.8GiB. The BOSS component of the index
takes only 364MiB, and the rest of the space is taken by the coloring data
structure. The concatenation of distinct color sets takes 6.6GiB of space. The
distribution of the sizes of the color sets is shown in Figure[2] The index contains
325 million distinct k-mers.

Our implementation pseudoaligns reads from E. coli strains collected from
across England [6] against the index at a rate of 1.4 billion nucleotides per
hour using 8 threads, after loading the index into memory in 33 seconds. The
alignment speed depends on the number matching k-mers and sizes of the color
sets of the k-mers.

In comparison, Kallisto takes 4 hours and 57 minutes to construct an index
for the same dataset, requiring as much as 287 GiB of memory. The index size
on disk is 83 GiB, and 128 GiB in memory. The pseudoalignment throughput is
approximately 2.1 billion nucleotides per hour using 8 threads, after loading the
index to memory in 28 minutes. Table [I| summarizes key performance metrics
for both Kallisto and Themisto on our benchmark.

Index Index Indexing | Indexing | Indexing | Pseudoalignment

in disk | in RAM time RAM disk throughput
Themisto | 7.8GiB | 7.8GiB | 6h 16min | 20GiB 375GiB (1.4-10°) nt/h
Kallisto | 83GiB | 142GiB | 4h 57min | 287GiB - (2.1-10%) nt/h

Table 1: Themisto versus Kallisto on our benchmark dataset.
throughput is nucleotides per hour.

The unit of

2 Assemblies from ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly _summary.txt
with the organism name ” Escherichia coli”.
3Hardware: Intel Xeon E7-8890 CPU (2.2GHz, 60M Cache, 9.6GT/s QPI 24C/48T, HT,
Turbo 165W) with 48 x 64GB LRDIMM memory (2400MT/s, Quad Rank, x4 Data Width),
running on top of a distributed Lustre file system.
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Color set size distribution in the E. Coli dataset
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Figure 2: Color set size distribution for the dataset of 3682 E. Coli genomes
each having a unique color.


https://doi.org/10.1101/2020.04.03.021501
http://creativecommons.org/licenses/by/4.0/

References

1]

Nicolas L Bray, Harold Pimentel, Pall Melsted, and Lior Pachter.
Near-optimal probabilistic RNA-seq quantification. Nature biotechnology,
34(5):525-527, 2016.

Camille Marchet, Christina Boucher, Simon J Puglisi, Paul Medvedev,
Mikaél Salson, and Rayan Chikhi. Data structures based on k-mers for
querying large collections of sequencing datasets. bioRziv, page 866756,
2019.

Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya.
Succinct de Bruijn graphs. In International workshop on algorithms in bioin-
formatics, pages 225-235. Springer, 2012.

Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A frame-
work for BWT-based data structures. Theoretical computer science, 698:67—
78, 2017.

Martin D Muggli, Bahar Alipanahi, and Christina Boucher. Building large
updatable colored de Bruijn graphs via merging. Bioinformatics, 35(14):i51—
i60, 2019.

Teemu Kallonen, Hayley J Brodrick, Simon R Harris, Jukka Corander,
Nicholas M Brown, Veronique Martin, Sharon J Peacock, and Julian
Parkhill. Systematic longitudinal survey of invasive Escherichia coli in Eng-
land demonstrates a stable population structure only transiently disturbed
by the emergence of ST131. Genome research, 27(8):1437-1449, 2017.


https://doi.org/10.1101/2020.04.03.021501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.021501; this version posted April 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

S. aureus SNPs from reads S. aureus SNPs from assemblies
B - B - e
— Al (V]
2]
= 8- g -
(\D_/ Al . Al °
[ ]
8 B - 8 -
a 3 T
g ,
T S s | /
w — —
D
>_< Q - 8 — y:X
= —— Posterior mean
o o Posterior samples
I I I I I I I I I I I I
0 50 100 150 200 250 0 50 100 150 200 250
Isolate data (SNPs) Isolate data (SNPs)

Supplementary Figure 1 S. aureus SNPs called from reads vs. assemblies from the
MGEMS pipeline.
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Supplementary Figure 5 Midpoint-rooted maximum likelihood tree from core SNP

alignment of Staphylococcus aureus ST22 isolate sequencing data showing the clade
1 strains.
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Supplementary Figure 6 Midpoint-rooted maximum likelihood trees from core SNP alignment of
Staphylococcus aureus ST22 isolate sequencing datashowing clade 2 and clade 3 strains.
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