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Abstract 

Enhancer-promoter dynamics are critical for the spatiotemporal control of gene expression, but it remains 

unclear how these dynamics are controlled by chromatin regulators, such as the nucleosome remodelling and 

deacetylase (NuRD) complex. Here, we use Hi-C experiments to show that the intact NuRD complex increases 

CTCF/Cohesin binding and the probability of the interaction of intermediate-range (~1Mb) genomic sequences. 

To understand how NuRD alters 3D genome structure in this way, we developed an approach to segment and 

extract key biophysical parameters from trajectories of the NuRD complex determined using live-cell 3D single-

molecule imaging. Unexpectedly, this revealed that the intact NuRD complex decompacts chromatin structure 

and makes NuRD-bound sequences move faster, thus increasing the overall volume of the nucleus that these 

sequences explore. Interestingly, we also uncovered a rare fast-diffusing state of chromatin that exhibits directed 

motion. The intact NuRD complex reduces the amount of time that enhancers/promoters remain in this fast-

diffusing state, which we propose would otherwise re-organise enhancer-promoter proximity. Thus, we uncover 

an intimate connection between a chromatin remodeller and the spatial dynamics of the local region of the 

genome to which it binds.  
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Introduction 

3D genome organisation is thought to be critical for the spatiotemporal control of gene expression. However, 

little is known about the multi-scale chromatin dynamics of cis-regulatory elements or how they relate to 

genome organisation. To probe these dynamics at the single-cell level, one of two complementary methods are 

typically used: either live-cell imaging1-4 or single nucleus versions of chromosome conformation capture 

experiments (such as Hi-C), which reveal the proximity of DNA sequences in different individual fixed cells5-

16. For example, live-cell tracking of enhancers and promoters has revealed fast diffusion (or ‘stirring’) during 

transcription4, but the mechanisms underlying these changes in enhancer dynamics or how they relate to Hi-C 

measurements of enhancer-promoter proximity remain unclear.  

The nucleosome remodelling and deacetylase (NuRD) complex is a highly conserved 1 MDa multi-

subunit protein complex that we have previously shown clusters in 3D space in the nucleus with active 

enhancers and promoters16. It combines two key enzymatic activities – nucleosome remodelling via its helicase-

containing ATPase (predominantly CHD4 in ES cells) and lysine deacetylation via its HDAC1/2 subunits16-22. 

These activities are thought to be present in two sub-complexes (Figure 1a). HDAC1/2 associates, along with 

the histone chaperones RBBP4/7, with the core scaffold proteins MTA1/2/3 (metastasis tumour antigens) to 

form a stable sub-complex with deacetylase activity23. The nucleosome remodeller CHD4 interacts with 

chromatin by itself and may also form a second sub-complex with GATAD2A/B and DOC1 (CDK2AP1)23-25. 

The methyl-CpG DNA binding domain proteins MBD2/3 interact directly with both the deacetylase sub-

complex and GATAD2A/B23,26,27, and thus play a critical role in linking the CHD4 remodeller and HDAC sub-

complexes together to assemble the holo-NuRD complex. 

Assembly of the intact holo-NuRD complex is critical for controlling cell fate transitions. Knockout of 

Mbd3, which disrupts intact NuRD complex assembly, leads to moderate up- or down-regulation (‘fine-tuning’) 

of transcription levels, but this modulation is sufficient to prevent ES cell lineage commitment28-31. Nucleosome 

remodelling by CHD4 requires the MBD subunit (and presumably the deacetylase sub-complex) to evict 

transcription factors and RNA polymerase II from chromatin22. Whether this impacts enhancer-promoter 

dynamics has remained unclear. Here, to understand how enhancer/promoter proximity and dynamics are 
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regulated by this crucial chromatin remodeller, we combine Hi-C and live-cell single-molecule tracking. 

Specifically, we exploit the ability to unlink the chromatin remodelling and deacetylase subunits of intact NuRD 

by deleting Mbd3 to explore the function of the intact NuRD complex. 
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Intact holo-NuRD complex assembly increases the proximity of intermediate-range genomic sequences  

We initially set out to understand whether assembly of the intact NuRD complex, mediated by MBD3, might 

affect genome architecture by carrying out chromosome conformation capture (in-nucleus Hi-C) experiments 

on wild-type and Mbd3 knockout ES cells. This strategy, which exploits the fact that MBD2 (and thus the 

MBD2-linked holo-NuRD complex) is only expressed at low levels in ES cells, allowed us to perturb the 

majority of NuRD complex function without killing the cells. We sequenced 178-181 million paired end reads 

and obtained a total of 50-60 million high-quality Hi-C contacts (Extended Data Figure 1). As previously 

observed, these contact maps show that the genome is segregated into: 1) A and B compartments (broadly 

regions containing more or fewer genes respectively); 2) megabase-scale topologically associating domains 

(TADs), which have a higher frequency of intra-domain chromatin interactions; and 3) loops where specific 

genomic regions contact each other, such as loops mediated via CTCF/Cohesin binding5-16. 

Although there is little change in A/B compartments or TAD formation when comparing wild-type vs 

Mbd3-ko cells (Extended Data Figures 2a,b), analysis of the Hi-C contacts revealed that removal of MBD3 

leads to a small increase in short-range contacts (at the scale of genes, < 250 kb), and to a more significant 

decrease in intermediate-range contacts at the scale of TADs (500 kb to 3 Mb) (Figure 1b). This trend occurred 

regardless of the contacts being within the A, the B, or between the A and B compartments, although most 

change occurred in the latter (Extended Data Figure 2c). The loss in intermediate-range interactions in the 

Mbd3-ko was also observed in enhancer and active promoter interactions that we had previously defined in 

wild-type mouse ES cells16 (Extended Data Figure 2d) – with interactions of enhancers showing a greater 

change in contact frequency than interactions of active promoters (Extended Data Figure 2e). 

Consistent with the decrease in intermediate-range enhancer-promoter interactions in Mbd3-ko cells, 

we also observed a decrease in the intensity of intermediate- to long-range ES cell-specific CTCF-Cohesin loops 

(Extended Data Figure 2d), which are thought to influence enhancer-promoter proximity33-35. In addition, there 

were fewer interactions between adjacent TADs in Mbd3-ko cells (Extended Data Figure 2f). We used ChIP-

seq experiments to show that in Mbd3-ko cells there is a decrease in binding of CTCF and/or SMC3 (a subunit 

of the Cohesin complex) – two proteins that are known to be responsible for loop and TAD formation12,33,36-40. 

Notably, however, the decrease in levels of CTCF and SMC3 binding largely occurred without any change in 
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the sequences bound by these proteins (Extended Data Figure 3). In summary, the results suggest that 

formation of the intact NuRD complex increases intermediate-range chromatin interactions (Figure 1c), such 

as enhancer-promoter interactions within and between adjacent TADs, and this may be related to the increased 

CTCF/Cohesin binding seen in the presence of intact NuRD. 

 
A novel trajectory segmentation algorithm for extracting NuRD complex dynamics and chromatin 

movement 

To provide a mechanistic understanding of how assembly of the intact NuRD complex increases mixing of 

intermediate-range genome sequences, we carried out live-cell 3D single-molecule tracking of NuRD complex 

subunits in the presence and absence of MBD3. We generated knock-in ES cell lines expressing HaloTag- 

CHD4, MBD3 and MTA2 fusions and confirmed that the tags did not affect NuRD complex expression or 

assembly (Extended Data Figure 4). We then used a double-helix point spread function microscope24 to 

generate tracks of single JF549-HaloTag-NuRD complexes in 3D over a 4 µm depth of focus, so that we could 

reliably determine biophysical parameters. (Tracking in 2D reduces the length of trajectories of fast-moving 

molecules because they can move out of the imaging plane during the experiment.) We recorded trajectories at 

two distinct temporal regimes, 20 ms and 500 ms (Figure 1d)2. Recording at 20 ms time resolution allows the 

detection of both freely diffusing and chromatin bound proteins24, and can thus be used to extract the chromatin 

binding kinetics of NuRD complexes (Figure 1e). In contrast, at 500 ms time resolution, ‘motion blurring’ 

substantially reduces the detection of freely diffusing molecules, allowing us to focus on the slower sub-

diffusive chromatin bound NuRD complexes1 (Figure 1f). 

To extract dynamic biophysical parameters, we developed a machine learning method (a Gaussian 

mixture model) to segment the single molecule trajectories into different classes by studying their behaviour 

over a sliding window of 11 consecutive images (Figure 1d and Extended Data Figure 5; further details of 

the approach, and of the simulations we carried out to test the algorithm, are described in the Online Methods 

and in Extended Data Figures 6,7). To understand how NuRD affects chromatin structure, we estimated from 

each sub-trajectory not just the diffusion coefficient but also the anomalous exponent a, the localisation length 

Lc, and the drift magnitude V41. The anomalous exponent a, defined as the power of the mean squared 
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displacement against time curve [Mean squared displacement ∝ 𝑇𝑖𝑚𝑒!], is particularly informative: diffusing 

proteins are characterised by an anomalous exponent close to 1 whereas chromatin bound proteins exhibit a 

lower anomalous exponent4,41,42. In addition, for chromatin bound proteins, lower anomalous exponents 

represent a more condensed chromatin state43 and higher values can represent energy-dependent directed 

motion. The localisation length Lc of chromatin bound proteins is also informative as it reflects the spatial scale 

that the molecule explores within the nucleus. The localisation length Lc is dependent on a range of parameters 

such as nucleosome density and CTCF/Cohesin-mediated looping interactions – for example, Lc is larger at 

lower nucleosome densities when the linker length between nucleosomes is longer43,44. 

Analysis of the 20 ms exposure trajectories of single CHD4 molecules using our approach revealed two 

diffusion states (Figure 1e). We identified a fast unconfined state that was freely diffusing with an a of 0.94 ± 

0.12 and a diffusion coefficient of 0.7 ± 0.2 µm"𝑠#$ , matching previous observations23,24, and a confined 

chromatin bound state characterised by sub-diffusive motion with an a of 0.51 ± 0.15 and an apparent diffusion 

coefficient of 0.43 ± 0.17 µm"𝑠#$. Similar results were obtained when segmenting the trajectories of the other 

NuRD complex components, MBD3 and MTA2 (Extended Data Figure 8). By determining similar parameters 

for fixed dye molecules, we found that the apparent diffusion coefficient of the chromatin bound state was 

within our precision limit and so represents molecules that are essentially immobile (Extended Data Figure 

8). We conclude that we can use 20 ms exposure trajectories to distinguish unconfined freely diffusing 

molecules from confined chromatin bound proteins. 
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Figure 1. MBD3-dependent holo-NuRD complex assembly increases intermediate-range genome 

interactions. (a) Schematic representation of the NuRD complex interacting with chromatin in the presence 

and absence of MBD3. (b) In-nucleus Hi-C of wild-type (purple) and Mbd3 knockout ES cells (red), represented 

as log-scale plots of contact probability as a function of genomic sequence separation, averaged across the 

genome. (c) Schematic interpretation of the results of the Hi-C experiment, showing that in the Mbd3 knockout 

there are more short range and fewer intermediate range chromatin interactions. (d) Approach for studying 

NuRD complex binding kinetics and function: (Left) Single JF549-HaloTagged NuRD complex molecules are 

tracked in 3D using a double-helix point spread function microscope – two puncta are recorded for each 

fluorophore with their midpoint providing the lateral x, y position and the angle between them representing the 

axial position in z relative to the nominal focal plane. (Middle) Examples of extracted single particle trajectories 

from 20 ms exposure imaging show periods of free unconfined and confined diffusion. (Right) Example 

trajectory of a single CHD4 molecule from 20 ms exposure imaging showing a sliding window of 11 frames 

(shaded green) from which the biophysical parameters are calculated. The resulting segmentation, into confined 

chromatin bound (blue) and unconfined freely diffusing (orange) sub-trajectories, has been used to colour the 

trajectory. 500 ms exposure imaging, on the other hand, can be used to extract slow and fast sub-diffusive 

motion of chromatin-bound CHD4 molecules. (e, f) Distribution of the four biophysical parameters extracted 

from sliding windows within the single-molecule trajectories of CHD4 taken with (e) 20 ms and (f) 500 ms 

exposures – (top) before and (bottom) after classification based on the anomalous exponent α, the effective 

diffusion coefficient D, the length of confinement Lc, and the drift magnitude, norm∥V∥ of the mean velocity. 

Each dataset was produced by imaging 30 cells, and the parameters were extracted from 5,557 and 15,528 

trajectories, respectively (see Extended Data Figure 5 and the Online Methods for more detail). 
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Chromatin association of the deacetylase sub-complex requires assembly into the intact holo-NuRD 

complex in ES cells 

Having developed an approach to segment the 20 ms exposure trajectories of the NuRD complex into chromatin 

bound and freely diffusing molecules (Figure 2a,b), we investigated how the chromatin binding kinetics were 

affected by removal of MBD3, which disrupts the interaction between the HDAC- and CHD4-containing NuRD 

sub-complexes.  

Single-molecule tracking of CHD4 in live ES cells revealed a small but significant increase in the 

diffusion coefficient of freely diffusing CHD4 in the absence of MBD3 (median increases 1.05-fold, p = 0.009), 

consistent with the formation of smaller CHD4 sub-complexes22-24 (Figure 2c, Extended Data Figure 8). A 

larger increase might have been expected to arise from the disassembly of the holo-NuRD complex, but ES cells 

also contain a substantial amount of CHD4 that is not in NuRD complexes45. 

To explore whether the two sub-complexes are pre-assembled before binding to chromatin, we imaged 

the HDAC-containing sub-complex using tagged MTA2 molecules. This revealed a more substantial increase 

in diffusion coefficient for freely diffusing MTA2 in the absence of MBD3 (1.7-fold, p < 10-5), consistent with 

the idea that the deacetylase subunit is normally associated with CHD4 in the intact holo-NuRD complex. We 

also imaged tagged MBD3 and showed that both freely diffusing MBD3 and MTA2 molecules have a similar 

diffusion coefficient, arguing that these two proteins are also normally associated (Figure 2c, Extended Data 

Figure 8). Finally, we showed that MBD3 does indeed interact with CHD4 via GATAD2A, both in vitro using 

purified GATAD2A in pull-down reconstitution experiments (Extended Data Figure 8b), and in ES cells 

where knock-down of GATAD2A and GATAD2B increased the diffusion coefficient of CHD4 (1.05-fold, p < 

10-4) (Extended Data Figures 8c-e). We conclude that NuRD normally exists as the intact complex in vivo and 

that, as with the removal of MBD3, depletion of GATAD2A/B is sufficient to unlink CHD4 from the HDAC-

containing sub-complex in ES cells. 

We then examined how the NuRD complex interacts with chromatin by comparing the percentage of 

freely diffusing versus chromatin bound CHD4 and MTA2 molecules in the presence and absence of MBD3. 

We observed a small decrease in the percentage of CHD4 molecules bound to chromatin in the absence of 

MBD3, but there was a much more significant decrease (2.4-fold) in the percentage of chromatin bound MTA2 
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molecules upon MBD3 depletion, suggesting that CHD4 rather than the deacetylase subunit is primarily 

responsible for the association of NuRD with chromatin (Figure 2c). This is consistent with the in vitro 

experiments which show that, in comparison to CHD4, the deacetylase subunit by itself does not bind strongly 

to nucleosomes (Extended Data Figure 9a).  

To investigate the chromatin binding kinetics of the CHD4 remodeller and the MTA2 deacetylase sub-

complex in the presence and absence of MBD3, we next determined association times from the time spent freely 

diffusing between confined chromatin-bound states. We also attempted to determine dissociation times from 

the time spent bound to chromatin between unconfined freely diffusing states (Figure 2d and Extended Data 

Figure 5 – see also the Online Methods). The distribution of association and dissociation times were well 

approximated by a single exponential, suggesting a Poissonian process. Consistent with our conclusion that 

CHD4 is primarily responsible for recruitment of NuRD to chromatin, we found no increase in the association 

time of CHD4 upon removal of MBD3. (Instead, we found a small decrease consistent with the faster diffusion 

of the smaller CHD4 sub-complex.) However, we did find a significant increase in the association time of MTA2 

upon MBD3 depletion (Figure 2d), consistent with the fact that the deacetylase subunit does not strongly 

associate with chromatin in the absence of CHD4 (Extended Data Figure 9a). Although no changes in 

dissociation time were observed (Extended Data Figures 9b,c), trajectories were likely truncated by 

photobleaching (our mean trajectory lengths were 8-11 frames). We therefore took advantage of ‘motion 

blurring’ when recording 500 ms trajectories (see below) to detect only chromatin bound proteins1,46, and 

combined this with time-lapse imaging for different lengths of time, in an attempt to determine the dissociation 

time of the NuRD complex. To our surprise this showed that the dissociation times were much longer than we 

expected (greater than 100 seconds for MBD3, Extended Data Figure 9d), such that it proved impossible to 

track individual molecules for long enough in order to determine reliable rates. We conclude that, once bound 

to a target site the intact NuRD complex binds for unexpectedly long times. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.03.003178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.003178
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2. Live-cell single-molecule tracking reveals that the assembly of the intact holo-NuRD complex 

increases chromatin association of its deacetylase sub-complex. (a) Segmentation of an example 20 ms 

trajectory into confined chromatin bound (C) (blue) and unconfined freely diffusing (F) states (orange). (b) 

Percentage of molecules and distribution of apparent diffusion coefficients for chromatin bound and freely 

diffusing CHD4 molecules. (c) (Left) Box plot of apparent diffusion coefficients for chromatin bound and freely 

diffusing CHD4 and MTA2 molecules compared to CHD4 and MTA2 in the absence of MBD3, and to MBD3 

itself [*p < 0.01, **p < 0.001 (Kolmogorov-Smirnov test)]. The grey dotted line indicates the upper bound of 

the precision limit calculated at the 95 % confidence interval for immobilised JF549 dye molecules (Right) 

Percentage of freely diffusing and chromatin bound CHD4 and MTA2 molecules in the presence and absence 

of MBD3 [from Gaussian fitting, *p < 0.01, **p < 0.001 (2-way ANOVA)]. [The number of cells/trajectories 

used in the analysis were: 30/5,557 (CHD4), 25/2,337 (CHD4-MBD3), 10/336 (MTA2), 10/652 (MTA2-

MBD3) and 30/2,224 (MBD3).] (d) (Left) A plot of the confinement probability allows determination of the 

association TA and dissociation TD times – defined respectively as the time a trajectory spends between periods 

of confined or unconfined motion. (Middle) A single exponential curve of rate lambda=1/TA is then fit to e.g. 

the distribution of association times. (Right) The association times extracted for CHD4 and MTA2 were then 

compared to those in the absence of MBD3, and to those for MBD3 itself [error bars show 95 % confidence 

intervals, *p < 0.01 (2-way ANOVA)]. (e) Schematic representation of a model in which MBD3-dependent 

holo-NuRD complex assembly increases the association rate of the deacetylase sub-complex. 
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The Holo-NuRD complex modulates chromatin movement at enhancers and promoters 

Analysis of the chromatin bound NuRD complex protein molecules in 500 ms exposure trajectories initially 

revealed two states of chromatin bound CHD4 (Figure 1f): both the slow and fast states were primarily sub-

diffusive (with an anomalous exponent a of around 0.5), but were characterised by different confinement 

lengths of 62 ± 12 nm and 110 ± 30 nm and apparent diffusion coefficients of 0.006 ± 0.002 µm"𝑠#$ and 0.018 

± 0.006 µm"𝑠#$. These experiments thus reveal for the first time dynamics below the 200-250 nm length scale 

that had previously been observed43,47. By determining similar parameters for fixed dye molecules, we found 

that the slow-diffusing state was within our precision limit and so represents molecules that are essentially 

immobile (Extended Data Figure 10). 

Interestingly, visualisation of the fast state trajectories revealed a proportion of molecules exhibiting 

periods of directed motion (Figure 3a). We used Gaussian fitting to characterise the distributions in anomalous 

exponent for both the slow- and fast-states of chromatin bound CHD4 (in separate calculations). This revealed 

a single slow state (S) with as of 0.59 ± 0.01 (67 % of sub-trajectories) and two fast states (F1 and F2) with 

different anomalous exponents: aF1 of 0.60 ± 0.01 (26 %) and aF2 of 0.89 ± 0.02 (7 %) (Figure 3b, Extended 

Data Figure 10). Molecules in the fast F1 state have the same distribution of anomalous exponents as in the 

slow state, and therefore explore the same chromatin environment, but they diffuse faster and have a larger 

length of confinement (and thus move further within the nucleus). The molecules in the fast F2 state have a 

higher anomalous exponent and explore a larger area of the nucleus than those in both the slow and the fast F1 

states. Moreover, they have higher drift, indicative of movement in a directed manner, which is also consistent 

with the higher anomalous exponent (Figures 3b,c). Importantly, visualisation of the trajectories identified 

individual molecules that switch between the three states; S, F1 and F2 (see Figure 3a) – thus, the three states 

are unlikely to represent NuRD complex molecules binding to different regions of chromatin in the cell. 

We then compared the dynamics of the MBD3 component to that of chromatin bound CHD4 and found 

that it also exhibited the one slow and two fast states. Both chromatin bound MBD3 and CHD4 molecules 

exhibited motion in the fast F1 and F2 states in around 22-26% and 7-8 % of trajectories, respectively, 
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confirming that these states are a property of the intact NuRD complex and not just of CHD4 (Figure 3c, 

Extended Data Figure 10).  

We next asked whether loss of MBD3 (and thus disconnecting the remodeller and deacetylase sub-

complexes) affects chromatin condensation and the fast chromatin states. Surprisingly, we found that the 

anomalous exponent, length of confinement and apparent diffusion coefficient of chromatin bound CHD4 all 

decreased in the fast F1 and F2 states (Figure 3c). The decrease in anomalous exponent unexpectedly suggests 

that in the absence of the intact NuRD complex chromatin is more condensed, whilst the diffusion coefficient 

and length of confinement show that CHD4 molecules diffuse more slowly and explore a smaller nuclear 

volume. We had expected to find that in the absence of deacetylation by NuRD, that the more acetylated 

chromatin would be decondensed48-52 and that CHD4 would explore a greater nuclear volume. Notably, 

however, in the absence of MBD3 we observed a significant increase in the proportion of CHD4 molecules in 

the fast F2 state exhibiting directed motion (18 % vs 7.4 %, see Figure 3d, Extended Data Figure 10). 

The fast F1 and F2 states of chromatin bound NuRD could result from movement on DNA due to 

chromatin remodelling or, bearing in mind the long dissociation times we determined for CHD4 (see above), 

from movement of NuRD-bound chromatin. To distinguish between these possibilities, we used the CARGO-

dCas9 system4 to track the dynamics of a well-characterised NuRD-bound enhancer near the Tbx3 gene. A 1 kb 

region of the enhancer was labelled by expressing 36 gRNAs to target GFP-tagged inactive dCas9 molecules to 

this site4 (Figure 4a, Extended Data Figure 11). We imaged the enhancer in cells showing bright undivided 

foci to reduce the likelihood of using data from cells undergoing DNA replication (which exhibit blurred foci 

or doublets). Because the background fluorescence from freely diffusing dCas9-GFP prevented 3D tracking of 

specific genomic loci on our DH-PSF microscope, we tracked the Tbx3 enhancer locus in 2D. Although this 

meant that we could not directly compare the parameters obtained in the 2D (CARGO-dCas9) and 3D (NuRD 

single molecule) tracking experiments, classification of the sub-trajectories using our Gaussian mixture model 

and subsequent Gaussian fitting analysis of the anomalous exponent distributions once again revealed one slow 

and two fast chromatin states. In particular, as was the case when tracking CHD4, removal of MBD3 

significantly decreased the rate of diffusion of the Tbx3 enhancer in the fast-diffusing F1 and F2 states and 

increased the proportion of sub-trajectories in the fast decondensed F2 state (Figure 4b, Extended Data Figure 

11). Whilst we cannot rule out that some of the fast motions we observe when imaging the NuRD complex 
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might result from movement of the complex along DNA due to chromatin remodelling, given that NuRD 

associates predominantly with active enhancer and promoters in ES cells, and that similar movements were seen 

for NuRD-bound foci and the Tbx3 enhancer, these results suggest that single molecule tracking of chromatin-

bound NuRD largely monitors the spatial dynamics of active enhancers and promoters. Further, our data indicate 

that the assembly of the intact holo-NuRD complex increases the search space that enhancers/promoters can 

explore in the nucleus, changing the length scale at which interactions can occur (see Figure 3c). This increase 

in search space of enhancers and promoters in the presence of the intact NuRD complex is consistent with and 

provides a molecular explanation for the increase in intermediate-range Hi-C contacts that we observe in wild-

type compared to Mbd3-ko ES cells (Figure 1b). 

How might the fast sub-diffusive states of the bound NuRD complex (F1 and F2) relate to the previous 

enhancer/promoter tracking experiments of Gu et al. (2018), and their transcription-dependent enhancer 

‘stirring’ model? The similarity in both the diffusion parameters and anomalous exponents of their slow/fast 

and our S/F1 states suggests that these correspond to either inactive (slow/S) or actively transcribed (fast/F1) 

enhancers and promoters. In our experiments, however, we additionally observe a fast F2 state which exhibits 

directed motion and we wondered whether this was due to chromatin movement resulting from transcriptional 

elongation. We therefore tracked bound CHD4 molecules after adding a small molecule inhibitor of 

transcriptional elongation (DRB53). Consistent with the results of Gu et al. (2018), premature termination by 

DRB led to a reduction in the proportion of bound CHD4 molecules exhibiting the fast transcription dependent 

F1 motion (from 26 % to 19 %). However, there was no significant change in the proportion of molecules in 

the fast decondensed F2 state nor in the chromatin environment (i.e. in the anomalous exponent or length of 

confinement) in the presence of a block on transcriptional elongation (Extended Data Figures 10, 12a). Finally, 

we tracked MBD3 molecules while blocking HDAC1/2 deacetylase activity with FK22854. As was the case 

when we prevented the association of the deacetylase subunit with CHD4 (see Figure 3c) we observed a 

decrease in the anomalous exponent (reflecting a more condensed state), but again there was no significant 

change in the proportion of molecules in the fast decondensed F2 state (Extended Data Figures 10, 12b). We 

conclude that the fast F2 state is not dependent on transcriptional elongation or deacetylation activity. Instead 

the results suggest that the assembly of the intact holo-NuRD complex (from both the chromatin remodelling 
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and deacetylase subunits) modulates the dynamics of active enhancers/promoters, affecting their conversion 

between the slow S, fast F1 and fast F2 states (Figure 4c). 
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Figure 3. Assembly of the intact NuRD complex reduces directed motion and decondenses chromatin. 

(a) (Left) Example trajectory of a chromatin bound CHD4 molecule showing periods of both slow (dark 

green) and fast sub-diffusive motion (light green). Two fast states (F1 and F2) are observed, with the F2 state 

showing periods of directed motion. (Right) The four biophysical parameters calculated along this trajectory 

with the fast F2 sub-trajectories showing a higher anomalous exponent, increased length of confinement and 

increased drift. (b) (Left) Gaussian fitting to the distribution of the anomalous exponents identifies a single α 

for slow confined NuRD complex molecules (dark blue), and two α values for molecules in the faster 

confined state (light blue). The resulting distribution of the lengths of confinement (Middle) and apparent 

diffusion coefficients (Right) are also shown. (c) Comparison of biophysical parameters for the CHD4 

remodeller in the presence and absence of MBD3, and for MBD3 itself [the number of cells/trajectories used 

in the analysis were: 30/3,059 (CHD4), 15/2,111 (CHD4-MBD3), and 30/1,816 (MBD3)]. (Left) The 

anomalous exponents resulting from Gaussian fitting (error bars show 95 % confidence intervals, *p < 0.01, 

2-way ANOVA). Boxplots of the lengths of confinement (Middle) and of the apparent diffusion coefficients 

(Right) are also shown, with the precision limit of the single molecule imaging indicated by a grey dotted line 

(*p < 0.01, Kolmogorov-Smirnov test). (We imaged JF549 dye fixed on a coverslip and found that all three 

biophysical parameters were significantly lower than the S, F1 and F2 states.) (d) (Left) Percentage of 

molecules in the slow or fast chromatin bound states (from the Gaussian fitting, *p < 0.01, 2-way ANOVA). 

(Right) Schematic representation of the three states of chromatin-bound NuRD: a slow sub-diffusive S state 

with small exploration radius, one fast sub-diffusive F1 state with a larger length of confinement (exploration 

radius) and another fast sub-diffusive F2 state exhibiting directed motion. 
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Figure 4. The intact complex modulates the movement of NuRD-regulated enhancers. (a) Image of dCas9-

GFP targeted to the Tbx3 Enhancer locus via CARGO plasmids expressing 36 gRNAs. (b) The four biophysical 

parameters were calculated along the trajectories after tracking the position of the Tbx3 enhancer in the presence 

and absence of MBD3 [the number of trajectories: 237 (+MBD3) and 287 (- MBD3) with 1-4 enhancers labelled 

per cell]. (Left) Gaussian fitting to the distribution of the anomalous exponents identifies a single α for slow 

confined Tbx3 loci, and two α values for molecules in the faster confined state (error bars show 95 % confidence 

intervals from the Gaussian fitting, *p < 0.01, 2-way ANOVA). (Middle) Boxplots of localisation length and 

apparent diffusion coefficient (*p < 0.01, Kolmogorov-Smirnov test). (Right) Percentage of sub-trajectories of 

the Tbx3 enhancer loci exhibiting slow or fast chromatin motion (from the Gaussian fitting, *p < 0.01, 2-way 

ANOVA). (c) Schematic model depicting: (Left) a molecular level view of how the deacetylase subunit is 

required for NuRD complex remodelling; and (Right) a chromatin level view of how NuRD increases the 

volume explored by an enhancer while at the same time reducing its likelihood of entering the F2 state in which 

the directed motion of chromatin might re-organise enhancer-promoter proximity. 
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The NuRD complex modulates the dynamics of enhancers and promoters to control transcription 

By tracking the dynamics of the Tbx3 enhancer we were able to show that movement of the chromatin bound 

NuRD complex reflects enhancer/promoter dynamics. How might the NuRD complex influence transcription? 

Histone acetylation is thought to lead to a looser packing between nucleosomes and chromatin decompaction48-

52, but here, by studying compaction in the immediate vicinity of the stably bound NuRD complex, we 

unexpectedly find that recruitment of the deacetylase subunit leads to a more open chromatin structure where 

regulatory elements can diffuse faster and explore more of the nucleus (Figure 3c). In addition, however, we 

found that assembly of the intact chromatin-bound NuRD complex reduces the time NuRD-regulated 

enhancers/promoters spend in a decondensed chromatin state undergoing directed motion, and we propose that 

this may limit the re-organisation of enhancer/promoter interactions leading to their being maintained for longer. 

We also found that the intact NuRD complex leads to an increase in both CTCF and (more particularly) Cohesin 

binding, suggesting a possible mechanism for our findings. Our results suggest that the intact NuRD complex 

may increase or stabilise CTCF/Cohesin binding to promote a chromatin environment whereby enhancers and 

promoters can contact each other over longer distances. This increased CTCF/Cohesin binding might also 

increase cross-linking between different enhancer and promoter containing regions of chromatin, thereby 

reducing the fast F2 motions that our imaging approach has uncovered. 
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Methods 

A) In-nucleus chromosome conformation capture (Hi-C) 

In-nucleus Hi-C was carried out on E14 wild-type and 7g9 Mbd3-ko ES cells as previously described16,29. 50 bp 

paired-end sequencing was carried out on a HiSeq4000 instrument. Sequences were mapped to the genome 

using NucProcess (https://github.com/tjs23/nuc_processing) and analysed further using NucTools 

(https://github.com/tjs23/nuc_tools). Enhancer-promoter interactions were analysed using active enhancers 

previously defined in mouse ES cells by the presence of H3K27Ac, H3K4me1, p300 and lack of H3K4me3, 

whilst active promoters were defined by the presence of H3K4me316. CTCF/SMC3-mediated looping was 

analysed using loops previously defined in mouse ES cells by Pekowska et al55. 

 

B) CTCF and SMC3 ChIP-seq in wild-type and Mbd3 knockout ES cells 

ChIPseq was carried out as previously described22 with DNA fragmentation in the presence of 0.6% SDS. The 

antibodies used were: 

 

ANTIBODY 
 

RAISED 
IN 

COMPANY CATALOGUE 
NUMBER 

WESTERN 
BLOT 

ChIP Clonality 

aCTCF Rabbit Millipore 07-729 - 5µl Polyclonal 
aSMC3 Rabbit Abcam ab9263 - 5µl Polyclonal 

 

50 bp single-end sequencing was carried out on a HiSeq4000 instrument – two biological replicates per sample 

were obtained with 38-45 million total and 20-32 million mapped reads, respectively, whilst the input samples 

had 38-40 million total and 11-14 million mapped reads, respectively. All ChIP-seq data was trimmed using 

trim_galore and then aligned using standard BWA parameters to the Mus Musculus reference genome (mm10) 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)56. Pie charts and heatmaps of ChIP-seq 

enrichment were made using Deeptools v2.5.057. ChIP-seq bigwig tracks were calculated from the bamCompare 

output with options --extendReads 200 --binSize 1 --ratio log2. The coverage was calculated with 

computeMatrix reference-point with options --binSize 10. The heatmap of standardised signal was then plotted 
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using plotHeatmap in R version 3.6.0. Peaks were called using MACS2 so as to give a False Discovery Rate of 

5% and above 5-fold enrichment. 

 

C) Mouse embryonic stem cell line generation 

Mouse embryonic stem (ES) cell lines were cultured in standard serum and mouse leukemia inhibitory factor 

(mLIF) conditions: Glasgow minimum essential medium (Sigma-Aldrich G5154) containing 100 mM 2-

mercaptoethanol (Life tech, cat. 21985023), 1x minimum essential medium non-essential amino acids (Sigma-

Aldrich, M7145), 2 mM L-glutamine (Life tech, cat. 25030024), 1 mM sodium pyruvate (Sigma-Aldrich, 

S8636-100ML), 10 % fetal bovine serum (HyClone FBS, Lot nr SZB20006, GE Healthcare Austria 

SV30180.03) and 10 ng/ml mLIF (provided by the Biochemistry Department, University of Cambridge). They 

were passaged every two days by washing in PBS (Sigma-Aldrich, D8537), adding Trypsin-EDTA 0.25 % (Life 

tech, cat. 25200072) to detach the cells, and then washing in media before re-plating in fresh media. To help 

the cells attach to the surface, plates were incubated for 15 minutes at room temperature in PBS containing 0.1 

% gelatin (Sigma Aldrich, G1890). The background E14tg2a ES cell lines (available from Sigma Aldrich, 

08021401) were characterized by qPCR, RNA-seq, ChIP-seq, and potency assays, and they were routinely 

screened for mycoplasma contamination and tested negative. 

 ES cells expressing CHD4 tagged at the C-terminus with HaloTag were generated in the presence and 

absence of MBD3, as previously described16,23,24. Briefly, this was achieved by CRISPR/Cas9 based knock-in 

of a cassette containing mEos3.2-HaloTag-FLAG and a puromycin selection gene into one CHD4 allele of the 

ES cells (Extended Data Fig 4a). The puromycin cassette was then removed using Dre recombinase to generate 

the CHD4 allele with a C-terminal HaloTag fusion. Since knockout of CHD4 is lethal, we used cell viability 

assays to verify that the function of the tagged CHD4 was unaffected. We similarly generated knock-in ES cells 

in an E14Tg2a (XY) background expressing MBD3 and MTA2 tagged at the C-terminus with HaloTag 

(Extended Data Fig 4b-c). MTA2-HaloTag knock-in cell lines were generated in MBD3-inducible ES cells22 

(Extended Data Fig 4c), in which MBD3 is fused to oestrogen receptor at the N- and C-termini so that it 

initially localises at the cytoplasm but then translocates to the nucleus when induced for 48 hours with 4-

hydroxytamoxifen added directly to the culture media to a final concentration of 0.4 nM. Western blots and 
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immunoprecipitation experiments were carried out on nuclear lysates, as previously described 22, to confirm the 

expression and assembly of the NuRD complex (Extended Data Fig 4). The antibodies used were: 

 

ANTIBODY 
 

RAISED 
IN 

COMPANY CATALOGUE 
NUMBER 

WESTERN 
BLOT 

Clonality 

aCHD4 Mouse Abcam ab70469 1:5000 Monoclonal 
[3F2/4]  

aFlag Mouse Sigma F1804 1:5000 Monoclonal 
M2 

aGATAD2A Rabbit Abcam ab87663 1:2000 Polyclonal 
aHDAC1 Rabbit Abcam ab7028 1:2000 Polyclonal 
aMBD3 Rabbit Abcam ab157464 1:5000 Monoclonal 

[EPR9913] 
aMTA2 Mouse Abcam ab50209 1:5000 Monoclonal 

[MTA2-
276] 

aPCNA Mouse Santa cruz Sc56 1:2000 Monoclonal 
[PC10] 

 

D) Mouse ES cell live-cell 3D single-molecule imaging 

ES cells expressing HaloTag-tagged MBD3, CHD4 and MTA2 were passaged two days before imaging onto 

35 mm glass bottom dishes No 1.0 (MatTek Corporation P35G-1.0-14-C Case) in serum/LIF imaging medium: 

FluorobriteTM DMEM (Thermo Fisher Scientific, A1896701) containing 100 mM 2-mercaptoethanol (Life tech, 

cat. 21985023), 1x minimum essential medium non-essential amino acids (Sigma-Aldrich, M7145), 2 mM L-

glutamine (Life tech, cat. 25030024), 1 mM sodium pyruvate (Sigma-Aldrich, S8636-100ML), 10 % fetal 

bovine serum (HyClone FBS, Lot nr SZB20006, GE Healthcare Austria SV30180.03) and 10 ng/ml mLIF 

(provided by the Biochemistry Department, University of Cambridge). Just before single-molecule imaging 

experiments, cells were labelled with 0.5 nM HaloTag®-JF549 ligand for 15 minutes, followed by two washes in 

PBS and a 30 minute incubation at 37 °C in imaging medium, before imaging the cells in fresh serum/LIF 

imaging medium. Cells were under-labelled to prevent overlap of fluorophores during single-molecule tracking 

experiments. The HaloTag dyes were a kind gift from Luke D. Lavis (HHMI). 

 Transcription elongation was inhibited using 100 μM 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole 

(DRB) and deacetylase activity using 10 nM FK228 (TOCRIS Bioscience, UK) both for two hours prior to 

imaging54,58. qPCR experiments confirmed inhibition of transcription upon addition of DRB (data not shown). 
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 A custom-made double-helix point spread function (DHPSF) microscope was then used for 3D single-

molecule tracking as previously described24. The setup incorporates an index-matched 1.2 NA water immersion 

objective lens (Plan Apo VC 60×, Nikon, Tokyo, Japan) to facilitate imaging above the coverslip surface. The 

DHPSF transformation was achieved by the use of a 580 nm optimized double-helix phase mask (PM) 

(DoubleHelix, Boulder, CO) placed in the Fourier domain of the emission path of a fluorescence microscope 

(Eclipse Ti-U, Nikon). The objective lens was mounted onto a scanning piezo stage (P-726 PIFOC, PI, 

Karlsruhe, Germany) to calibrate the rotation rate of the DHPSF. A 4f system of lenses placed at the image 

plane relayed the image onto an EMCCD detector (Evolve Delta 512, Photometrics, Tucson, AZ). Excitation 

and activation illumination was provided by 561 nm (200 mW, Cobolt Jive 100, Cobolt, Solna, Sweden) and 

405 nm (120 mW, iBeam smart-405-s, Toptica, Munich, Germany) lasers, respectively, that were circularly 

polarized, collimated, and focused to the back focal plane of the objective lens. Oblique-angle illumination 

imaging was achieved by aligning the laser off axis such that the emergent beam at the sample interface was 

near-collimated and incident at an angle less than the critical angle θc ~ 67° for a glass/water interface. The 

fluorescence signal was then separated from the excitation beams into the emission path by a quad-band dichroic 

mirror (Di01-R405/488/561/635-25x36, Semrock, Rochester, NY) before being focused into the image plane 

by a tube lens. Finally, long-pass and band-pass filters (BLP02-561R-25 and FF01-580/14-25, respectively; 

Semrock) placed immediately before the camera isolated the fluorescence emission. Using 561 nm excitation, 

fluorescence images were collected as movies of 60,000 frames at 20 ms or 4,000 frames at 500 ms exposure. 

A continuous 561 nm excitation beam at ∼1 kW/cm2 was used for 20 ms exposure imaging and at ~40 

W/cm2 for 500 ms exposure imaging. Each experiment was carried out with at least 3 biological replicates (3 

fields of view, each containing around 3 cells). 

 

E) Residence time analysis from time-lapse 500 ms exposure imaging 

Since photobleaching is related to the number of exposures, and the residence time is related to the time a 

molecule spends bound to chromatin, it is possible to change the time-lapse between exposures and use the data 

to extract both the residence time1 and photobleaching rate. However, when we imaged at time intervals of 0.5 

s, 2.5 s, 8 s and 32 s, we discovered that at the longest time lapse (32 s) we could see no decrease in the mean 

number of frames imaged before photobleaching, implying the residence time had no impact on the 
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measurement, which was thus dominated by photobleaching (Extended Data Figure 8d). To estimate the 

residence time would likely require imaging at much longer time-lapses, but because chromosomes and the cell 

itself move significantly during periods longer than this, it becomes unreliable to track individual chromatin 

bound NuRD complex subunits.  

 

F) 3D single-molecule image processing and generation of trajectories 

Single molecules were localized from 3D movies using the easy-DHPSF software59 with a relative localization 

threshold of 100 in all 6 angles for 20 ms data and relative thresholds of 116, 127, 119, 99, 73 and 92 for the 

500 ms data. Trajectories of individual molecules were then determined using custom Python code for 

connecting molecules in subsequent frames if they were within 800 nm for 20 ms trajectories and within 500 

nm for 500 ms trajectories (https://github.com/wb104/trajectory-analysis).  

 

G) Single-molecule trajectory analysis 

In Section 1, below, we describe a switching model for a stochastic process between two or more states, 

characterized by different diffusion coefficients. We initially used this approach to justify the use of a two-state 

diffusion model to classify the distribution of displacements measured along single molecule trajectories. In 

later work we went on to develop an improved and novel method/algorithm to classify sub-trajectories into 

confined and unconfined states based on four physical parameters using a Gaussian mixture model. This 

approach is described in Section 2. However, the original classification based on diffusion coefficients provided 

a complementary analysis which justifies the results we obtained later and which we include here. The algorithm 

using the Gaussian mixture model was then tested on simulated trajectories before being applied to our live-cell 

single-molecule imaging data. In Section 3, we describe how we applied this classification algorithm to single 

particle trajectories to estimate the diffusion coefficients in confined and unconfined states for various molecular 

constructs. 
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1. Switching dynamics analysis 

The motion of a particle can be described as switching between different states characterized by 

different diffusion coefficients60,61. We first used this description to develop a method to identify the best 

number of switching states, based on the distribution of instantaneous displacements ∆X = X(t+∆t)−X(t). First, 

we describe the switching dynamics and fitting procedure, and then how we used the Bayesian Information 

Criterion (BIC) to select the optimal model. 

 

1.1 Diffusion model 

The dynamics of a chromatin-binding protein complex such as NuRD, or some component of it, can be 

described by Langevin’s equation62,63 in the classical overdamped limit, where the position X(t) satisfies: 

 (1) 

The force f depends on the position X and the second term corresponds to steady-state diffusion in a crowded 

medium, characterized by a diffusion coefficient D. Here η is a Gaussian variable with mean 0 and variance 1. 

When the protein binds to its molecular partners or chromatin, the diffusion coefficient changes, and the motion 

can become restricted, e.g. to that along the path of the DNA. 

Experimental trajectories consist of a series of points (X(k∆t) k = 1... and in the absence of any additional 

localization error noise, or an external force f = 0, the displacement dynamics at the sampling rate interval ∆t, 

is given by: 

 (2) 
 

where η is a vector of Gaussian values of mean 0 and variance 1. In two dimensions, the distribution of 

displacements is: 

, (3) 

where σ2 = 2D∆t [5]. 
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1.2 Modelling switching behaviour 

A switching model for a chromatin-binding protein can be modelled by a Markov chain with several 

states i, characterized by a rate constant λij between states i and j. For two states, it is characterized by the 

diffusion coefficients D1 and D2, and the associated jump process is: 

  (4) 

  (5) 

 

where λ (resp. µ) are the transition rates from states 1 to 2: 

 (6) 

The probability density function (pdf) pd for the displacement of a molecule depends on the state of the process 

and can be computed using Bayes’ law: 

Prd {|∆X| = u} = Pr{|∆X| = u|X(t) and X(t + ∆t)in state 1}q1(t) 

+Pr{|∆X| = u|X(t) and X(t + ∆t) in state 2}q2(t),  (7) 

where using Bayes relation, for state i = 1 or 2, 

qi(t) = Pr{X(t) and X(t + ∆t) in state i} = Pr{X(t + ∆t)in state i|X(t) in state i} 

× Pr{X(t) in state i}. 

Because pi(t) = Pr{X(t) in state i} is the solution to the Master equation: 

 (8) 

 (9) 
And 
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where  and C depend on the initial distribution and 

Pr{X(t + ∆t)in state 1|X(t) in state 1} = 1 − λ∆t, and 

Pr{X(t + ∆t)in state 2|X(t) in state 2} = 1 − µ∆t. 

We conclude that in two-dimensions, for a long-time t and a short-time ∆t, using Eqs. 7 and 3, the pdf can be 

written as: 

  (10) 
 
where σk = 2Dk∆t and k = 1,2. In the case of a three-state model, the pdf for the displacement of a molecule is: 

 

  (11) 

where σk = 2Dk∆t with k = 1, 2, and 3 and D1, D2, and D3 are the three diffusion coefficients. We applied this 

method to analyse two sets of data acquired at either 500 ms or 20 ms, and came to the conclusion that a two-

state diffusion model is optimal for both cases. 

A steady-state displacement analysis of the 20 ms trajectories revealed that the data are best characterized 

by a two or three state model, consisting of a confined and either one or two unconfined states. To test the 

appropriateness of a one-, two- or three-state model, we extracted the diffusion coefficients from Eqs. 10-11 

and the associated rate constants (Extended Data Figure 6a). We later also carried out a principle component 

analysis (PCA) after classifying the sub-trajectories using the four biophysical parameters as described in detail 

in Section 2, below. Although this showed that a three-state model could best describe the data, that analysis 

also revealed that the second unconfined state represented less than 20% of the data and thus we decided to 

develop a classification algorithm to segment trajectories into just two classes: confined and unconfined. 

Similarly, we evaluated 1, 2 and 3 state models for analysis of the 500 ms data (Extended Data Figure 6b). 

In summary, the displacement analysis showed that a two-state diffusion model was appropriate to analyse 

NuRD complex dynamics, suggesting that the 20 ms trajectories can be characterised by confined (low diffusion 
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coefficient D) and unconfined (high diffusion coefficient D) states, whilst the 500 ms data can be characterised 

by slow and fast sub-diffusive chromatin bound states. 

2. Classification of trajectories into two diffusion states 

We describe here a novel method to classify a trajectory into two states – when analysing 20 ms data these sub-

trajectories are labeled as confined (C) and unconfined (U). The method is based on a generalized Gaussian 

mixture model64, where the input data is an ensemble of trajectories and the output is two ensembles of confined 

and unconfined sub-trajectories. 

 

2.1 Input data 

We used an ensemble of N trajectories Xi(k∆t), i = 1,...N, k = 0,1,...,ni, obtained at an acquisition time step ∆t, 

such that each trajectory consists of ni discrete points in three dimensions. 

2.2 Statistical features are extracted in a sliding window along the trajectories 

To classify sub-trajectories as confined C or unconfined U, we used four physical parameters, computed along 

single trajectories41,65. For a trajectory given by the successive points Xi(k∆t), we used a sliding window Wk 

containing 2l + 1 points, centered at X(k∆t), and defined as: 

 (12) 

where d is the dimension. The sliding window Wk(m∆t) is applied for k = 1,...ni along a trajectory containing ni 

points. We now briefly discuss the four parameters we used for the classification: 

Anomalous exponent α: The anomalous exponent characterizes the motion of a stochastic particle on a 

particular time scale41. It is computed from the Mean-Square-Displacement (MSD) á|X(t + ∆t) − X(t)|2ñ that 

behaves like Atα when ∆t is small compared to the time of the process. A value of α = 1 reflects Brownian 

motion, and an α > 1 is called super-diffusion, which may represent dynamics containing an element of 
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deterministic (ballistic) directed motion. Finally, an α < 1 is sub-diffusive motion41,66,67. To estimate α for each 

point X, we first compute the MSD Sk over the sliding window Wk(m∆t) defined by: 

 (13) 

Where  denotes the average where we use the intermediate point from 1 to m. To estimate the exponent αi(k) 

for point X(k∆t), we fitted the function Sk(m) defined in Eq. (13) by 

 (14) 

with an additional parameter βi(k) > 0. For the fit, we constrain the variable t in the ensemble [0,∆t,...,(2l+1)∆t]. 

 

Effective Diffusion coefficient: We estimate the effective diffusion coefficient65,68 by computing the second 

statistical moment along the trajectories. We use the empirical estimator to estimate for each sub-trajectory in 

Wk(m∆t)41 

. (15) 

 

Length of confinement Lc. The length of confinement estimates the size of a domain where a trajectory is 

confined. We use the sub-trajectory , located inside the window Wk 

41. The length of confinement Lc is then computed empirically in the window Wk by 

 (16) 

where 

  (17) 

It is the standard deviation of the sub-trajectory Wk, where the average position is (  
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Magnitude of the drift vector kVik. To characterize the displacement of a trajectory between the beginning 

and the end of the sliding window Wk, we compute the magnitude kVik of the drift vector Vi  for each dimension 

d = 1,2,3, 68 using the formula: 

. (18) 

The norm of the drift kVik is: 

 (19) 
 

In summary, we compute four parameters: the anomalous exponent α, the diffusion coefficient D, the 

length of confinement Lc, and the magnitude of the drift vector kVik. These are all computed for each point 

along a trajectory using a sliding window.  The sliding window of 11 was chosen by trial and error. Below this 

value, the anomalous exponent distributions for confined and unconfined molecules tended to merge suggesting 

that long trajectories are essential for reliable estimation of this parameter. Above this value, the diffusion 

coefficient histograms for confined and unconfined molecules tended to merge suggesting that transitions 

between these populations occur leading to averaging of the diffusion coefficients. In the next section, we use 

these four parameters for classification.  

2.3 Classification of a point into either a confined (C) or an unconfined (U) state 

To classify each time point X((k − 1)∆t) for k = 1,...,ni of all trajectories indexed by i = 1,...,N into C and 

U classes, we first collected all the values from Eqs. 14-19, computed from each sliding window Wk (Eq. 12). 

This led to a total of ni × 4 parameters, that we organized in a matrix Ri associated with trajectory i: 

  (20) 

where T is the transpose operator, and ri(k∆t) are four dimensional vectors of the parameters (Eqs. 14, 15, 16, 

19). 
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We then concatenate all feature matrices Ri (Eq. 20), i = 1,...N into the  general matrices 

R, defined by: 

  (21) 

We normalize each column (feature) in R(j),j = 1,...,4 by subtracting its mean and dividing by its 

standard-deviation. 

To separate the histograms of the four parameters into two independent classes, we constructed an 

unsupervised binary classifier using a two-component Gaussian mixture model in a four-dimensional space, 

corresponding to the four parameters Eqs. 14-19. The Gaussian mixture distribution p is a weighted sum of two 

multivariate Gaussian densities, defined as: 

p(r|wC,U,µC,U,ΣC,U) = wCg(r|µC,ΣC) + wUg(r|µU,ΣU), (22) 

where wC,wU are the mixing weights, such that wC + wU = 1, g(r|µ,Σ) are the Gaussian densities 

,          (23) 

and ΣC,ΣU and µC,µU are the four-dimensional covariance matrices and mean vectors for components C and U, 

respectively. We then find the values of the parameters µC,µU,ΣC,ΣU and wC,wU of Eq. 22 which best separate 

the data as the maximal likelihood estimators of the density Eq. 23, given the observed statistics in R (Eq. 21), 

by using the Expectation-Maximization algorithm69. 

For each point Xi(k∆t), with its associated feature vector ri(k∆t) (Eq. 21), we assign a label n ∈ {C,U}, 

based on the posterior probability P of the density Eq. 23, given by: 

  (24) 

such that for each point: 

(25) 
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In practice, if a point Xi(k∆t) ∈ C or U and consists in an isolated class, e.g. C between two neighbouring 

U classes, then we relabel it as the class of its two immediate neighbours (k − 1)∆t,(k + 1)∆t. 

2.4 Accuracy of the classification algorithm 

We estimated the accuracy of the classification algorithm (subsections 2.2-2.3) using simulated (synthetic) 

trajectories, switching between two states C and U. The dynamics was described by an Ornstein-Uhlenbeck 

equation65, and the generated trajectories were considered a ground-truth ensemble, which could be used to 

estimate the accuracy of the classification procedure developed in the previous section. 

 

3. Simulations to validate the classification algorithm 

3.1 Simulation of a ground-truth ensemble 

We generated N trajectories Xi(t), i = 1,...,ni, which can switch between the confined C and unconfined U state 

at any time t. The stochastic switching process is defined by: 

 (26) 

where DC, and DU are the diffusion coefficients for the confined C and unconfined U states respectively, dω/dt 

are standard three-dimensional Brownian motions, with a mean of zero and a standard-deviation of one, while 

κ is the strength of a potential well that attracts the trajectory X(t) ∈ C to a fixed point X(τ), which is the last 

position, before time t where the trajectory was in state U prior to switching to C: 

 (27) 

The transition probability between states (C, U) is defined by a Markov chain: The transient probability matrix 

Pij between state j at time s + ∆s and state i at time s, is given by: 
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 (28) 

The probabilities PC(s) and (PU(s)) satisfy70: 

. (29) 
and the solution of Eq. 29 is: 

. (30) 

The simulation procedure was as follows: we initialized Xi(0) in one of the states C or U. We used Euler’s 

scheme to discretize Eq. 26 at a time step ∆t. For each consecutive step k∆t, k = 1,...ni, we determined the state 

of the trajectory from the probabilities PC(∆t),PU(∆t) (Eq. 30), using the previous state as the initial condition: 

 (31) 

3.2 Comparing the classifier and ground-truth classes 

To measure the accuracy of our classification (Sections 2.2-2.3), we used synthetic trajectories generated by the 

stochastic process described above. We generated N = 100 trajectories Yi(k∆t), i = 1,...,N, k = 1,...,ni from Eq. 

27, where the length of a trajectory ni was chosen randomly from a Poisson distribution with average length n 

= 100 time points, ∆t = 0.02s, κ = 2, DC = 0.008µm2/s, DU = 0.1µm2/s, and for twenty equally spaced values of 

λ, µ ∈ [0,1] to obtain the ground-truth states Si(k∆t) ∈ [C,U] associated with each trajectory Yi(k∆t). 

We used the four-parameter classifier (section 2.3) to classify the trajectories Yi(k∆t) and add a label Ci(k∆t) 

∈ [C, U]. To evaluate the similarity between the true class set Si and the output of the classification classes Ci, 

we used an indicator function δi(k∆t), defined by: 

 (32) 
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and then used Eq.32 to define a parameter M that measures the accuracy of the classification along all 

trajectories. It was defined by: 

. (33) 

We evaluated the accuracy matrix M (Eq. 32, computed for 20 values of the diffusion coefficient DC ∈ [0.002, 

0.1] and DU ∈ [0.2, 1] µm2/s, where we set the switching rates to be λ = 0.8, µ = 0.9). We find that the classifier 

achieved above 90% accuracy in the majority of the parameter space, dropping to 76% for confined and 

unconfined diffusion constant where Dc ∈ [0.02, 0.1], DU ∈ [0.1, 0.2]. In addition, to test the robustness of the 

classification algorithm on the switching rates, we evaluated M (Eq. 33 for 20 values of the switching rates λ, 

μ ∈ [0, 1] for DC = 8 × 10−3, DU = 0.01 μm2/s and obtained a very good accuracy – above 90% for all values of 

λ, μ in that range (see Extended Data Figure 6). 

In summary, when tested on simulated data, the classification algorithm was able to robustly classify 

trajectories into confined and unconfined states. 

 

4. Estimation of association and dissociation times from trajectories 

After classifying the trajectories into two classes C and U (see section 2.3), we estimated the association and 

dissociation time constants as follows. The association time τA for trajectory Xi is defined as the first time the 

trajectory reaches the state C given that it was previously in U 

 

 (34) 
 

The dissociation time τD is the first time the trajectory reaches a state U given it was initially in state C 

 (35) 
 

To construct the histogram of these times, we reset the origin of time to zero after each association or 

dissociation event. In practice, for each partition of a trajectory Xi in a given ensemble, we collected the sequence 

τA
i of association times as the consecutive time points for which the trajectory spends in class U between being 

confined, as determined by the posterior probability P (Eq. 24). Equivalently, 
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dissociation times τD are those times in which the trajectory spends in confined state C between being 

unconfined. We fitted the histogram of association times and dissociation times with a single exponential71: 

fA(t) = βD exp(−µt), and  (36) 

fD(t) = βA exp(−λt).  (37) 

The mean times are then obtained by  and . 

 

5. Estimation of other parameters 

5.1 Estimation of rate and diffusion parameters from the displacements 

The classification algorithm decomposes the ensemble of trajectories X into two sub-ensembles: C and U, of 

confined and unconfined trajectories, respectively. In both the two- and three-state diffusion model, when using 

Eq. 10, state 1 always corresponds to the distribution of confined displacements for which: 

    (38) 

where |.| is the cardinal of the ensemble. The diffusion coefficient D1 is obtained by fitting it to the data XC. For 

the two-state diffusion model, we fitted the coefficient D2 to XU. For the three-state diffusion model, we 

considered only the distribution of displacements from XU and fitted the two-state diffusion model to estimate 

the parameters κ2, D2 and D3. The fitting procedure uses the fit function from MATLAB 9.2 (MathWorks), and 

the fits were repeated 50 times with randomly selected starting parameter values. The fit with the highest 

adjusted R2 coefficient was kept. 

5.2 Quantification of the biophysical model using the BIC index 

We estimate the quality of fit of the different models by using the Bayesian Information Criterion (BIC) defined 

as: 

   (39) 
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where p is the number of parameters of the model from Eq. 10, n is the number of data points, and RSS is the 

residual sum of squares between the model and the data. 

 

6. Application of the classification algorithm to NuRD single particle trajectories 

To understand how well the four-parameter algorithm performs, we used the displacement histograms 

and determined diffusion coefficients either before or after (Extended Data Figure 6b, c) applying the 

classification algorithm. The algorithm provides a precise segmentation along trajectories, and necessarily has 

to discard short segments, but interestingly we found that the diffusion coefficients extracted either before or 

after using the algorithm are not that different. When we assume a single diffusion coefficient (left column in 

Extended Data Figure 7), we can see that the four-parameter algorithm discards some data. However, in both 

cases, the estimated diffusion coefficients are quite similar. More interestingly, when using the two-state 

diffusion model (Confined vs. Unconfined), we found that the slow diffusion coefficients are higher after the 

use of the algorithm – probably because short segments were discarded and the fraction confined was higher, 

and thus more of the trajectories were considered to be confined. As a consequence, the diffusion coefficient in 

the unconfined state was lower, as more displacements were probably used in the computation of the confined 

state. 

7. Classification performance tested on ground truth simulated data 

To evaluate the performance of the parameter estimation method, described in Section 2, we use the 

displacement histogram, as explained in Section 1. We find that the displacement histogram can indeed be used 

to classify the confined and unconfined trajectories for various ranges of parameters. Diffusion coefficients and 

the confined and unconfined rate constants after analysis of the 20 ms and 500 ms data are shown in Extended 

Data Figure 7. Finally, we summarize the parameters estimated from ∆t = 500 ms trajectories after applying 

the classification algorithm (Extended Data Figure 6c), confirming that it can be applied robustly for the 

classification of trajectories. 

 

8. Gaussian fitting of 500 ms exposure anomalous exponents 
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Although the algorithm we designed segments 500 ms exposure trajectories into slow-diffusing and fast-

diffusing components, the distribution of the anomalous exponents in the fast-diffusing component showed that 

two peaks can be identified by Gaussian fitting. Indeed, when we fitted 1, 2 or 3 Gaussians to the anomalous 

exponent distributions for chromatin bound NuRD complex subunits such as CHD4, MBD3 and MTA2 in wild-

type ES cells, we found that 2 Gaussians were the best minimal model to account for the data – having the 

lowest BIC value (Extended Data Figure 9c). 

Next, we assessed the reproducibility of analysing the anomalous exponent distributions of the fast-

diffusing chromatin bound CHD4. Data was collated from 3 fields of view with around 6 cells in each field of 

view imaged, leading to a total of around 18 cells per condition. To ensure enough data was collected to account 

for cell-to-cell heterogeneity, an additional 3 fields of view containing around 18 cells were collected for 

chromatin bound CHD4 and shown to have a similar anomalous exponent distribution (data not shown). In 

contrast, CHD4 in the absence of MBD3 showed a different distribution from CHD4 in wild-type ES cells when 

compared to either the first or second day CHD4 was imaged (p = 0.005 and p = 0.02 respectively), thus showing 

the reproducibility of the changes observed.  

 

H) In vitro biochemical assays of NuRD complex with and without nucleosomes 

Drosophila PMMR, Human CHD4 and Human GATAD2A-MBP were expressed in Sf21 cells and purified as 

described23 with the following modifications: Cells were resuspended in 50 mM Tris-HCl pH 7.5, 1 M NaCl, 5 

mM DTT, 1× complete EDTA-free protease inhibitor cocktail (Roche), lysed by sonication and cleared by 

centrifugation at 50 000 g for 1 h. The supernatant was applied to amylose resin pre-equilibrated with lysis 

buffer and incubated for 2 h with rotation at 4 °C. The resin was washed with 20 X column volumes (CV) of 

lysis buffer and then eluted with 10mM maltose in lysis buffer. Fractions containing hGATAD2A-MBP protein 

were concentrated and further purified by size exclusion chromatography using a Superose 6 Increase 3.2/300 

column (GE Healthcare) equilibrated with 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 % glycerol, 1 mM DTT.  

For pull-down experiments, purified protein was immobilised on MBP-Trap resin (ChromoTek) which 

was pre-equilibrated in pull-down buffer (50 mM HEPES, pH7.5 300 mM NaCl, 1 mM DTT, 5 % glycerol) 

followed by incubation for 1 h with rotation at 4 °C. A sample of the 6% protein:bead mixture was retained as 
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‘Input’. The resin was washed 3 times with pull-down buffer, then a washed ‘beads’ sample was retained for 

analysis on a 4-12% NuPAGE gel (-Invitrogen).  

Electrophoretic mobility shift assays (EMSAs) were performed on n3-Widom-78bp DNA or 

recombinant nucleosomes with this template72,73 in 10 µL of binding buffer (20 mM Hepes pH7.5, 2mM MgCl2, 

5% Glycerol, 1mM TCEP) with varying concentrations of the indicated proteins. The reaction mixtures were 

incubated at 300C for 30 min followed by centrifugation at 1000 x g. The resulting reaction mixtures were 

loaded onto 5% native polyacrylamide gels and run in 0.2 × TBE. Gels were stained with SYBR Gold 

(Invitrogen) and imaged using a Typhoon FLA 9000 (GE healthcare). 

 

I) CARGO-dCas9-GFP imaging of Tbx3 enhancer loci 

ES cells expressing dCas9 tagged with GFP were generated as previously described4. Briefly, MBD3-inducible 

ES cells were transfected by the PB-TRE3G-dCas9-eGFP-WPRE-ubcp-rtTA-IRES-puroR vector containing a 

dual promoter backbone, with a TRE3G (Tet-on) promoter expressing GFP-tagged inactive dCas9 and the 

ubiquitin C promoter expressing the reverse tetracycline-controlled transactivator, rtTA and a puromycin 

cassette via an IRES sequence. Puromycin-resistant ES cells were then selected for 7 days and doxycycline 

added for 24 hours to induce expression of dCas9-GFP (through activation of the rtTA). Stable transfectants 

were then sorted for low levels of GFP expression (to ensure that only a few copies of the plasmid were 

integrated stably into the genome). 

 Prior to imaging, Doxycycline was added to ES cells for 24 hours to induce expression of low levels of 

dCas9-GFP. CARGO vectors expressing 36 gRNAs targeting the Tbx3 enhancer were then transfected using 

lipofectamine 2000 (Invitrogen) into these ES cells. Cells were transfected during passaging straight onto 

imaging dishes in Fluorobrite imaging medium as described above. After 24 hours, fresh media was added and 

after 48 hours, imaging was carried out. The CARGO and dCas9-GFP expressing plasmids were kind gifts from 

the J. Wysocka lab. 

 2D tracking of genomic loci was carried out using oblique illumination on a custom built 2D single-

molecule tracking microscope as previously described74. Briefly, an IX73 Olympus inverted microscope was 

used with circularly polarized laser beams aligned and focused at the back aperture of an Olympus 1.40 NA 

100´ oil objective (Universal Plan Super Apochromat, 100´, NA 1.40, UPLSAPO100XO/1.4). A 561 nm laser 
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was used as a continuous wavelength diode laser light source. Oblique-angle illumination imaging was achieved 

by aligning the laser off axis such that the emergent beam at the sample interface was near-collimated and 

incident at an angle less than the critical angle θc ~ 67° for a glass/water interface. This generated a ~50 μm 

diameter excitation footprint. The power of the collimated 488 nm beam at the back aperture of the microscope 

was 100 W/cm2. The lasers were reflected by dichroic mirrors which also separated the collected fluorescence 

emission from the TIR beam (Semrock, Di01- R405/488/561/635). The fluorescence emission was collected 

through the same objective and then further filtered using a combination of long-pass and band-pass filters 

(BLP01-561R and FF01-587/35). The emission signal was projected onto an EMCCD (Photometrics, Evolve 

512 Delta) with an electron multiplication gain of 250 ADU/photon operating in a frame transfer mode. The 

instrument was automated using the open-source software micro-manager (https://www.micro-manager.org) 

and the data displayed using the ImageJ software75,76. 

 For image processing, PeakFit77 was used to localise genomic loci from these images using the filter 

settings: "shiftFactor":1.0, "signalStrength":5.0, "minPhotons":30.0, "precisionThreshold":40.0, 

"minWidthFactor":0.5, "maxWidthFactor":0.5, "precisionMethod":"MORTENSEN". Trajectories were then 

tracked in 2D using custom python code for connecting molecules in subsequent frames if they were within 500 

nm (https://github.com/wb104/trajectory-analysis). Molecules were again classified using a Gaussian mixture 

model (see Single molecule trajectory analysis, above). 

 

J) Software and code 

1. Data collection 

Microscope image acquisition  Micro-manager (https://www.micro-manager.org) 

ImageJ software75,76 

 

2. Data analysis 

Hi-C analysis    Python 

NucProcess (https://github.com/tjs23/nuc_processing)  

NucTools (https://github.com/tjs23/nuc_tools) 

ChIP-seq analysis   R version 3.6.0 
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     (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 

     Read alignment56.  

Deeptools v2.5.057. 

2D single-molecule peak fitting  PeakFit77 

3D single-molecule peak fitting  easy-DHPSF software59 

Trajectory analysis    (https://github.com/wb104/trajectory-analysis) 

Gaussian mixture classification/fitting MATLAB v2016 
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Data Availability 

The Hi-C and ChIP-seq datasets reported in this study are available from the Gene Expression Omnibus 

(GEO) repository under accession code GSE147789. The single-molecule imaging movies are available from 

the authors upon request. 
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Extended Data 

Extended Data Figure 1. Processing of the sequencing data for in-nucleus Hi-C experiments of mouse ES 

cells in the presence and absence of MBD3. In-nucleus Hi-C was carried out and analysed as previously 

described16 for wild-type E14 ES cells and Mbd3 knockout 7g9 ES cells29. 
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Extended Data Figure 2. MBD3-dependent holo-NuRD complex assembly increases intermediate-range 

chromosomal interactions. (a) Normalised 25 kb resolution contact maps from in nucleus Hi-C of wild-type 

(bottom left of diagonal) and Mbd3 knockout ES cells (top right of diagonal); represented at the scale of inter-

chromosomal contacts (left), intra-chromosomal contacts in chromosome 5 (middle) and looping interactions 

near the Tbx3 gene (right). The boxes show regions where there is an increase in inter-compartmental contacts, 

whilst the circles show a decrease in looping interactions in the Mbd3 knockout (red) vs wild-type ES cells 

(purple). (b) A differential correlation map shows more inter-compartmental interactions in wild-type ES cells 

and more intra-compartment interactions in Mbd3 knockout ES cells. (c) Contact probability as a function of 

genomic distance in the A/B compartments, averaged across the genome for wild-type (purple) and Mbd3 

knockout ES cells (red). Removal of MBD3 results in a decrease in TAD scale (500 kb – 2 Mb) cis-contacts. 

(d) (Top) Using active enhancers and promoters defined in wild-type ES cells (Stevens et al, 2017)16, a decrease 

was observed in interactions between active promoters and nearby enhancers. (Bottom) The normalised number 

of contacts in the Mbd3 knockout vs wild-type ES cells at CTCF/cohesin-mediated loop regions defined by 

Pekowska et al. 55. The data are represented as the log-ratio of normalised median counts in Mbd3 knockout vs 

wild-type ES cells (error bars are the standard error of the mean). (e) Boxplot of normalised contacts in 100 kb 

bins centred at indicated distances either side of enhancers and promoters shows a greater loss in contacts at 

enhancers than promoters in Mbd3 knockout versus wild-type ES cells. (Top) Enhancers show a significant 

decrease in normalised contacts for all bins in the absence of MBD3 (p < 0.001, t-test and Kolmogorov-Smirnov 

test). (Middle) Highly active promoters show significant decrease only at the central 100 kb bin (p < 0.001, t-

test and Kolmogorov-Smirnov test), and (Bottom) active promoters show no significant change in normalised 

contacts for all bins (p > 0.05, t-test and Kolmogorov-Smirnov test). (f) Using TADs defined by Dixon et al.10, 

and insulation scores derived from the contacts in our Hi-C data, a global increase in TAD insulation was 

observed upon knockout of MBD3. 
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Extended Data Figure 3. ChIP-seq experiments upon removal of MBD3 reveal a loss in CTCF and SMC3 

(a cohesin subunit) near MBD3-regulated genes in ES cells. (a) Sequencing statistics for ChIP-seq 

experiment replicates. (b) Venn diagrams showing the number of CTCF and SMC3 peaks in replicate samples 

for wild-type and Mbd3 knockout ES cells. (c) Venn diagrams comparing the number of CTCF and SMC3 

peaks in wild-type versus Mbd3 knockout ES cells. (d) (Top) Average peak profile and (Bottom) heatmap of 

CTCF and SMC3 signal 3 kb either side of identified peaks shows a loss in cohesin signal intensity (and to a 

lesser extent CTCF) upon removal of MBD3.  
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Extended Data Figure 4. Mouse embryonic stem cell lines expressing mEos3.2-HaloTag-FLAG tagged 

NuRD complex subunits. Schematic of the (a) MBD3, (b) CHD4 and (c) MTA2 cell lines generated. CHD4 

was tagged as previously described23. MTA2 was tagged in ES cells expressing the ER-MBD3-ER (estrogen 

receptor-MBD3-estrogen receptor) fusion protein so that nuclear localisation of MBD3 is tamoxifen-

inducible22. (Left) Expression of NuRD complex subunits was confirmed by western blot. Note that the stability 

of MTA2 and GATAD2A are both dependent upon MBD3, but that of CHD4 is not78.  (Right) 

Immunoprecipitation of MTA2 and CHD4 confirm that the Eos-Halo tags do not prevent association with other 

NuRD components, and that NuRD complex integrity is dependent upon the presence of MBD3.  
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Extended Data Figure 5. Segmentation of single-molecule trajectories of JF549-HaloTag-tagged NuRD 

complex subunits. (a) (Left) A single molecule trajectory, where we show an example sliding window (blue). 

(Right) Four biophysical parameters are extracted from sliding windows within this trajectory: the anomalous 

exponent α, the effective diffusion coefficient D, the norm∥V∥ of the mean velocity, and the length of 

confinement Lc, were all estimated from a sliding window of size w=10 Delta t (see Supplementary Methods). 

(b) (Left) Several trajectories with example sliding windows (blue). (Right) Histograms of the biophysical 

parameters extracted in (a) from individual sub-trajectories are computed over the ensemble of all the recorded 

trajectories. (c) (Left) Scheme of the Gaussian mixture model (GMM) used to separate the histograms of the 

four parameters (four-dimensional feature space) into confined (C) and unconfined (U) populations (for 20 ms 

trajectories).  The mean vectors μC, μU and covariance matrices ΣC, ΣU are estimated from the maximum 

likelihood. (Right) Separation of histograms in (b) into confined (blue) and unconfined (orange) populations. 

(d) Classification procedure applied to each trajectory, resulting in confined (blue) and unconfined (orange) 

sub-trajectories. The posterior probability P of the GMM (panel b) is computed on the four parameters for each 

point [Xi(k∆t) ∈ C with  P(k∆t) > 1 − P(k∆t) (blue); otherwise X(k∆t) ∈ U (orange)] (see Supplementary 

Methods.  The result is a segmented trajectory where each time point is assigned as confined (C) or unconfined 

(U).  
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Extended Data Figure 6. Measuring the accuracy of the classification algorithm using synthetic 

trajectories. a. Parameter estimation from trajectories with Δt = 20ms. b. Parameter estimation from 

trajectories with Δt = 500 ms. c. Parameter estimation from trajectories with Δt = 500 ms after applying 

the four-parameter classification algorithm. In a, b and c, the blue boxes indicate the preferred model 

based on BIC analysis. d. We generated synthetic trajectories with known classes (confined- C and 

unconfined U) to form a ground-truth set on which the classification algorithm could be tested. The 

switching behaviour is described in Eq. 26 of the Online Methods, where the class (C, U) is determined 

at each time point using a Markov chain (left) with switching rates λ, µ for the transition between C 

and U and vice-verse, respectively (right). e. After the ground truth set of trajectories was generated, 

we applied the classification procedure as described in the Online Methods, and computed the accuracy 

measure M (Eq. 33) defined as the fraction of correctly assigned classes by the segmentation algorithm 

according to the known classes in the ground-truth set. We computed M for trajectories generated by 

Eq. 28 with diffusion coefficients Dc ∈ [0.02,0.1] µm2/s for class C and DU ∈ [0.1,1] µm2/s (Left) for 

U. We find that M > 0.76 for all tested values of DC, DU, where a well separated DC, DU resulted in M 

> 0.9. The accuracy M for switching rates λ, µ ∈ [0,1] and DC = 0.008, DU = 0.01µm2/s, M, resulted in 

M > 0.85 for all tested λ, µ (Right). 
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Extended Data Figure 7. Parameter estimation from displacement histograms. Displacement distributions 

(left column) determined when fitting the confined and unconfined distributions obtained using the four 

parameter classification algorithm (right column). We fitted either one (left) or two (right) diffusion coefficients. 

a. Effect of varying a single diffusion coefficient: for D = 0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15 µm2/s and ∆t 

= 20 (top) or 500 ms (bottom). b. Effect of varying Dc for two state diffusion when D = 

0.005,0.01,0.015,0.02,0.025 µm2/s with Du = 0.1µm2/s, κc→u = 0.4, κu→c = 0.6 for ∆t = 20 (top) or 500 ms 

(bottom). c. Effect of varying Du for two state diffusion when D = 0.05,0.1,0.15,0.2,0.25 µm2/s and with Dc = 

0.015µm2/s, κc→u = 0.4, κu→c = 0.6 for ∆t = 20 (top) or 500 ms (bottom). d Diffusion coefficients and proportions 

when varying the transition coefficients [κc→u,κu→c] = [0.2,0.8], [0.75,0.25], [0.7,0.3], [0.65,0.35], [0.6,0.4], 

[0.55,0.45], [0.5,0.5], [0.45,0.55], [0.4,0.6], [0.35,0.65], [0.3,0.7], [0.25,0.75] ,[0.8,0.2] with Dc = 0.01µm2/s, Du 

= 0.1µm2/s for ∆t = 20 (top) or 500 ms (bottom). 
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Extended Data Figure 8. In vitro and live cell single-molecule imaging experiments delineate holo-NuRD 

complex assembly. (a) Schematic of holo-NuRD complex assembly with GATAD2A linking MBD3 to the 

CHD4 remodeller. (b) Pull-down experiments of MBP-tagged MBD-like with and without GATAD2A confirm 

that GATAD2A is required for CHD4 to interact with the deacetylase sub-complex. (c) Distribution of the four 

biophysical parameters described in Figure 1 for 20ms exposure tracking of MBD3 and CHD4 in wild-type ES 

cells, as well as CHD4 in the absence of either MBD3 or GATAD2A/B. The data for MTA2 in the presence 

and absence of nuclear localised MBD3 are also shown. The grey dotted line indicates the upper bound of the 

precision limit calculated at the 95 % confidence interval for an immobilised JF549 dye control sample. (d) Box 

plot of diffusion coefficients extracted from chromatin bound (C) and freely diffusing (F) CHD4 molecules in 

wild-type, Mbd3 knockout and GATAD2A/B knock-down ES cells (*p < 0.01, **p < 0.001, Kolmogorov-

Smirnov test). The grey dotted line indicates the upper bound of the precision limit calculated at the 95 % 

confidence interval for an immobilised JF549 dye control sample. (e) Cumulative distribution functions showing 

a higher diffusion coefficient for freely diffusing unconfined CHD4 upon removal of GATAD2A/B, and for 

freely diffusing MTA2 molecules upon removal of MBD3 from the nucleus (see Extended Data Figure 4). (f) 

Table showing the number of chromatin bound and freely diffusing sub-trajectories and total number of 

trajectories analysed (many trajectories discarded as they were either too short for analysis or had a low 

probability of being classified as confined or unconfined). 
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Extended Data Figure 9. The NuRD complex interacts with both DNA and nucleosomes, but only forms 

tight interactions through the CHD4 remodeller.  (a) In vitro electrophoretic mobility shift assays confirm 

that CHD4 binds to both DNA and nucleosome core particles (NCPs) to form large complexes that only just 

enter the gel. GATAD2A alone shows low affinity binding to NCPs whilst the deacetylase complex interacts 

with DNA, but does not bind stably to NCPs. (b) (Left) Confinement probability allows collection of the 

association TA or dissociation TD times – defined respectively as the time a trajectory spends between periods 

of confined or unconfined motion. (Right) Dissociation times calculated using transitioning trajectories as 

periods of confined motion between two periods of unconfined motion (see also Figure 2). Error bars show 95 

% confidence intervals. (c) Table with the number of single molecule tracks that could be used to determine the 

association and dissociation times. (d) Table with mean track length in frames and mean signal intensity per 

localised molecule in photons detected. (e) (Top) Example images demonstrating how long 500 ms exposures 

motion blur freely diffusing molecules, but allow detection and tracking of those that are chromatin-bound. 

Images of single chromatin-bound CHD4 molecules during time-lapse imaging with various dark times. Error 

bars show 95 % confidence intervals, ns = not significant, p > 0.05, 2-way ANOVA. (Bottom) Exponential 

fitting of time-lapse residence time histograms to extract the photobleaching rate kb and the effective 

dissociation rate keff. Dissociation times (toff = 1/koff) of CHD4 were then compared to those of MBD3 and 

CHD4 in the absence of MBD3. 
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Extended Data Figure 10. Live cell single-molecule imaging experiments to study chromatin-bound 

NuRD complex. (a) Schematic of the approach used for analysing the 500 ms exposure trajectories of 

chromatin-bound NuRD complex subunits. First, a Gaussian mixture model is used to distinguish slow-

moving/immobile and fast-moving chromatin bound sub-trajectories based on the 4 biophysical parameters (see 

also Figure 1 and Extended Data Figure 5). Then, Gaussian fitting of the anomalous exponent distribution of 

the fast-moving chromatin bound sub-trajectories revealed two fast-moving populations (F1 and F2) 

characterised by distinct anomalous exponents. (b) Distribution of the four biophysical parameters for 500 ms 

exposure tracking of: (i) chromatin bound CHD4 in wild-type ES cells, in the absence of MBD3, and in the 

presence of DRB (an inhibitor of transcriptional elongation); (ii) chromatin bound MBD3 in wild-type ES cells, 

and in the presence of the HDAC1/2-specific inhibitor FK228; (iii) JF549 dye bound at the coverslip. The grey 

dotted line indicates the upper bound of the precision limit calculated at the 95 % confidence interval for an 

immobilised JF549 dye control sample.  (c) (Left) Fitting of 1, 2 or 3 Gaussians to the anomalous exponent 

distributions for chromatin bound CHD4 in wild-type ES cells – the R2 values above indicate the goodness of 

fit. (Right) The Bayesian information criterion (BIC) was calculated for all the datasets shown in (b) to 

determine that 2 Gaussians are the best minimal model to account for  the data – have the lowest BIC value 

(light blue box). (d) Table summarising the changes in anomalous exponent of the slow and fast chromatin 

bound NuRD complex subunits in the presence and absence of MBD3, or in the presence of specific inhibitors. 

Errors given are for 95 % confidence intervals. 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.03.003178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.003178
http://creativecommons.org/licenses/by-nd/4.0/


   
  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.04.03.003178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.003178
http://creativecommons.org/licenses/by-nd/4.0/


Extended Data Figure 11. 2D dCas9-GFP tracking of the Tbx3 enhancer. (a) Genomic location of the Tbx3 

super-enhancer (orange box) to which dCas9-GFP was targeted using CARGO vectors4. The corresponding 

ChIP-seq profiles indicate the location of active enhancers (determined from the profiles for H3K27ac, p300 

and H3K4me1), active promoters (H3K4me3), and CTCF/Cohesin (SMC3) in wild-type ES cells and in the 

absence of MBD3. (b) Representative images of 36 gRNAs targeted to the Tbx3 enhancer in the presence or 

absence of MBD3 with a negative control expressing no gRNAs. (Right) Example of cell excluded from analysis 

with doublets indicating cell is in S phase. (c) Distribution of the four biophysical parameters extracted from 

sliding windows within the 2D single-molecule trajectories of bound dCas9-GFP at the Tbx3 enhancer in wild-

type ES cells imaged using 500 ms exposures – (top) before and (middle) after classification based on the 

anomalous exponent α, the effective diffusion coefficient D, the length of confinement Lc, and the drift 

magnitude, norm∥V∥ of the mean velocity. (Bottom) Distribution of the four biophysical parameters after 

classification for Tbx3 enhancer in Mbd3-ko cells. (d) (Left) Fitting of 1, 2 or 3 Gaussians to the anomalous 

exponent distributions of the Tbx3 enhancer in either wild-type ES (Top) or Mbd3-ko cells (Bottom) – the R2 

values above indicate the goodness of fit. (Right) The Bayesian information criterion (BIC) was calculated for 

both the datasets shown in (c) to determine which number of Gaussians best modelled the data – that with the 

lowest BIC value (light blue box). (e) Table showing the Gaussian fitted anomalous exponent values for slow- 

and the fast-moving chromatin bound dCas9-GFP at the Tbx3 enhancer in the presence and absence of MBD3. 
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Extended Data Figure 12. Live cell single-molecule imaging experiments of chromatin-bound NuRD in 

the presence of inhibitors. (a) Biophysical parameters of chromatin-bound CHD4 in wild-type ES cells, both 

before and two hours after adding the transcription elongation inhibitor DRB. (Left) The anomalous exponents 

(error bars show 95 % confidence intervals from Gaussian fitting) (Middle) Boxplot of the localisation lengths 

(*p < 0.01, **p < 0.001, Kolmogorov-Smirnov test). (Right) Percentage of molecules in the slow or fast 

chromatin bound states (from Gaussian fitting, *p < 0.01, 2-way ANOVA). (b) Biophysical parameters of 

chromatin-bound MBD3 in wild-type ES cells, both before and 2 hours after adding the HDAC1/2-specific 

inhibitor FK228. (Left) The anomalous exponents (error bars show 95 % confidence intervals from Gaussian 

fitting, *p < 0.01, 2-way ANOVA). (Middle) Boxplot of localisation lengths (*p < 0.01, **p < 0.001, 

Kolmogorov-Smirnov test). (Right) Percentage of molecules in the slow or fast chromatin bound states (from 

Gaussian fitting, *p < 0.01, 2-way ANOVA). In (a) and (b), the grey dotted line indicates the upper bound of 

the precision limit calculated at the 95 % confidence interval for an immobilised JF549 dye control sample. 
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