

1 **Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis (ALS)**

2
3 Frederik J. Steyn^{1,2,3,4}, Siobhan E. Kirk¹, Tesfaye W. Tefera¹, Teresa Y. Xie⁴, Timothy J. Tracey¹,
4 Dean Kelk¹, Elyse Wimberger¹, Fleur C. Garton⁵, Llion Roberts^{6,7}, Sarah Chapman⁸, Jeff S.
5 Coombes⁶, W. Matthew Leevy⁸, Alberto Ferri^{9,10}, Cristiana Valle^{9,10}, Frédérique René^{11,12}, Jean-
6 Philippe Loeffler^{11,12}, Pamela A. McCombe^{2,3}, Robert D. Henderson^{3,13}, Shyuan T. Ngo^{1,2,3,13*}

7 1. *The Australian Institute for Bioengineering and Nanotechnology, The University of
8 Queensland, St Lucia, Brisbane, Australia.*

9 2. *Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia.*

10 3. *Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia.*

11 4. *School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia.*

12 5. *Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane,
13 Australia.*

14 6. *School of Human Movements and Nutrition Sciences, The University of Queensland, St
15 Lucia, Brisbane, Australia.*

16 7. *School of Allied Health Sciences, Griffith University, Gold Coast, Australia*

17 8. *Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana,
18 USA*

19 9. *IRCCS Fondazione Santa Lucia, Rome, Italy*

20 10. *National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy*

21 11. *INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence,
22 Strasbourg, France.*

23 12. *Université de Strasbourg, UMRS1118, Strasbourg, France.*

24 13. *Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.*

25 ***To whom correspondence should be addressed:** Dr Shyuan Ngo, The Australian Institute
26 for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane,
27 4072, Australia. Email: s.ngo@uq.edu.au

28 **Running title: Altered glucose-fatty acid flux in ALS**

30 **Keywords:** Amyotrophic lateral sclerosis, hypermetabolism, metabolism, skeletal muscle,
31 glucose oxidation, fatty acid oxidation

34 **Abstract**

35 Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower
36 motor neurons, yet an increasing number of studies in both mouse models and patients with
37 ALS suggest that altered metabolic homeostasis is a feature of disease. Pre-clinical and clinical
38 studies have shown that modulation of energy balance can be beneficial in ALS. However, our
39 capacity to target specific metabolic pathways or mechanisms requires detailed understanding
40 of metabolic dysregulation in ALS. Here, using the SOD1^{G93A} mouse model of ALS, we
41 demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle
42 exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle
43 of ALS patients, we also show that increased dependence on fatty acid oxidation is associated
44 with increased whole-body energy expenditure. In the present study, increased fatty acid
45 oxidation was associated with slower disease progression. However, we observed considerable
46 heterogeneity in whole-body metabolism and fuel oxidation profiles across our patient cohort.
47 Thus, future studies that decipher specific metabolic changes at an individual patient level are
48 essential for the development of treatments that aim to target metabolic pathways in ALS.

49 **Introduction**

50 Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized
51 by the degeneration of motor neurons in the brain, brainstem and spinal cord. The progressive
52 loss of neurons in ALS results in muscle denervation, weakness and paralysis. Death usually
53 occurs within 3-5 years from diagnosis (Brown and Al-Chalabi, 2017). ALS is a highly variable
54 disease in terms of age of onset, site of symptom onset, and rate and pattern of disease
55 progression. Superimposed on the clinical variability of ALS is the underlying complexity of
56 genetic contribution and the pathogenic pathways that lead to the death of neurons (Brown and
57 Al-Chalabi, 2017; Ghasemi and Brown, 2017).

58 While multiple pathogenic mechanisms, including neuronal hyperexcitability (Vucic *et al.*,
59 2008; Kiernan, 2009), glutamate excitotoxicity (Rothstein *et al.*, 1992), protein aggregation (Arai
60 *et al.*, 2006), and oxidative stress (Blasco *et al.*, 2017), are proposed to underpin disease
61 pathology, there are an increasing number of studies that emphasize a negative role of
62 metabolic dysfunction on disease progression (Dupuis *et al.*, 2004; Ahmed *et al.*, 2016;
63 Ioannides *et al.*, 2016). In human ALS, an increase in resting energy expenditure (i.e.
64 hypermetabolism) has been observed in approximately one third to more than half of all patients
65 (Desport *et al.*, 2001; Desport *et al.*, 2005; Bouteloup *et al.*, 2009; Funalot *et al.*, 2009; Vaisman
66 *et al.*, 2009; Jesus *et al.*, 2018; Steyn *et al.*, 2018a). More recently, we have shown that
67 hypermetabolism in patients with ALS is associated with greater clinical evidence of lower motor
68 neuron dysfunction, more aggressive disease progression, and increased risk of earlier death
69 (Steyn *et al.*, 2018a). Despite this clear evidence of the importance of metabolism, the capacity
70 to target metabolism to slow disease progression is restricted by our limited understanding of
71 the underlying biochemistry of metabolism in ALS.

72 Previous studies in SOD1^{G93A} and SOD1^{G86R} mouse models of ALS suggest that altered
73 metabolic balance is a feature of the disease (Dupuis *et al.*, 2004), with early and persistent
74 perturbations in the blood levels of metabolic hormones such as leptin, the presence of
75 circulating ketone bodies, and increased energy expenditure (Dupuis *et al.*, 2004). Reports of
76 increased peripheral clearance of circulating lipids (Fergani *et al.*, 2007), and increased

77 expression of fatty acid metabolism genes in glycolytic muscle (Palamiuc *et al.*, 2015) point
78 towards altered skeletal muscle metabolism as a potential contributor to the metabolic
79 phenotypes observed in ALS. However, whether this altered profile of gene expression
80 translates into functional changes in glucose-fatty acid metabolism in the muscle of ALS mice,
81 and how this might relate to metabolic changes at the whole-body level remains to be
82 determined. Moreover, whether similar metabolic changes occur in the skeletal muscle of ALS
83 patients, and the relevance of these changes to the clinical and metabolic presentations in
84 human ALS is unknown.

85 In this study, we aimed to address this gap in knowledge by characterizing whole-body
86 metabolism in the SOD1^{G93A} mouse model of ALS throughout the course of disease, and by
87 assessing energy substrate utilization in intact glycolytic muscle fibers isolated from SOD1^{G93A}
88 mice when compared to wild-type (WT) controls. We also assessed fatty acid and glucose
89 oxidation in myotubes derived from well characterized ALS patients and healthy controls to
90 determine whether substrate metabolism in ALS muscle is linked to the energy expenditure
91 profiles and clinical features. We report evidence of a functional alteration in glucose-fatty flux
92 in glycolytic muscle of SOD1^{G93A} mice. In ALS patient-derived myotubes, changes in glucose-
93 fatty acid oxidation are associated with whole-body energy expenditure and disease
94 progression, but not hypermetabolism.

95 **Methods**

96 *Animal studies*

97 *Mice*

98 Experiments at the University of Queensland were approved by the University of Queensland
99 Animal Ethics Committee and conducted in accordance with the Queensland Government
100 Animal Care and Protection Act 2001, associated Animal Care and Protection Regulations
101 (2002 and 2008), and the Australian Code of Practice for the Care and Use of Animals for
102 Scientific Purposes (2004). Experiments at the University of Notre Dame were conducted in

103 accordance with the FLSC Guidelines and the Notre Dame IACUC Policy on Humane Endpoints
104 for animal use.

105 Transgenic mice overexpressing the human *SOD1* G93A mutation (B6-Cg-Tg (*SOD1*-
106 G93A) 1Gur/J) (Gurney *et al.*, 1994) were purchased from the Jackson Laboratory (Bar Harbor,
107 ME, USA) and bred on a C57BL/6J background. Male *SOD1*^{G93A} mice and litter- or age-matched
108 WT control mice were used for experiments at ages that correspond to pre-defined stages of
109 disease in *SOD1*^{G93A} mice; presymptomatic (5 weeks of age, no symptoms), onset (9-11 weeks
110 of age, early signs of hindlimb tremor and weakness), mid-stage (16-19 weeks of age, pronounced
111 hindlimb weakness), and end-stage (21-25 weeks of age, significant hindlimb
112 weakness leading to paralysis and euthanasia due to loss of the righting reflex) (Ngo *et al.*,
113 2012; Lee *et al.*, 2013). Mice were randomly assigned to experiments and matched by litter, or
114 by age. All mice were group-housed (3-4 mice per cage) in filter top cages or in individually
115 ventilated cages (IVC) when maintained in a specific pathogen free environment. 12h light, 12h
116 dark cycle (on at 0600h and off at 1800h) and had free access to food (20% protein, 4.8% fat;
117 Specialty Feeds, WA, AUS) and water. Room temperature was maintained at 22 ± 2°C. Prior to
118 the tissue collection, all mice were anesthetized with an intraperitoneal injection of sodium
119 pentobarbitone (32.5 mg/kg, Virbac Animal Health, NSW, AUS). Following complete loss of the
120 pedal withdrawal reflex and eye-blink reflex, mice were killed by cervical dislocation. All animal
121 work was conducted in accordance with the ARRIVE guidelines (Kilkenny *et al.*, 2010).

122 *EchoMRI assessment of fat and fat free mass*

123 All imaging took place in the Notre Dame Integrated Imaging Facility Friemann Life Sciences
124 Center. Whole body fat and fat free mass was measured with an EchoMRI-130™ QMR
125 (EchoMRI, TX, USA) (Metzinger *et al.*, 2014). Two X-ray images were taken at different energy
126 levels to assess soft tissue density and bone. Mass measurements for fat and fat free tissue
127 were produced for all scans in the EchoMRI Body Composition Analyzer EMR-184 software
128 (EchoMRI).

129 *Indirect calorimetry*

130 Energy expenditure was measured with a Phenomaster open-circuit indirect calorimetry system
131 housed within a temperature (22°C) and 12h light, 12h dark cycle (on at 0600h and off at 1800h)
132 controlled chamber (TSE-Systems, Bad Homburg, DEU), as we have done previously (Steyn *et*
133 *al.*, 2018c). Experimental cages (n=16) were sampled at 60min intervals for 3.5 min/cage, with
134 concentrations of O₂ and CO₂ in the outgoing air being measured sequentially within each
135 interval. One vacant cage was included to obtain a reference concentration for ambient gas.
136 Activity (x- and y-plane), food intake, and body weight was recorded synchronously with
137 metabolic data. Measurements were performed continuously over 72h, with analysis restricted
138 to the final 24h assessment period (allowing 48h of acclimation). For data analysis, measures
139 of total energy expenditure and food intake were adjusted for body weight.

140 *¹⁸F-deoxyglucose (FDG) PET/Single-photon emission computed tomography (SPECT)/CT*
141 *imaging*

142 Animals were anesthetized using isoflurane inhalation for 2-5min in a vaporized-controlled tank.
143 Animal breathing was checked once every minute by visual inspection. ¹⁸F-deoxyglucose (FDG)
144 at a dose of 0.200mCi activity was administered to mice intravenously through tail vein (volume
145 <100µl). PET images were acquired on a trimodal Alibra PET/SPECT/CT image station
146 (Carestream Health, Woodbridge, CT) to produce high-resolution PET images that were
147 reconstructed for analysis. FDG uptake in brown adipose tissue was quantified as the mean
148 voxel value within a visually determined volume of interest as described previously (van der
149 Veen *et al.*, 2012).

150 *Ex vivo lipolysis*

151 Epididymal white adipose tissue (WAT) was excised and rinsed in 1 x PBS supplemented with
152 0.1% fatty acid-free BSA (FAF-BSA). All epididymal WAT explants were placed in plastic vials
153 containing 1mL of modified Kreb's-Henseleit buffer (in mM): 4.7 KCL, 1.2 KH₂PO₄, 1.2
154 MgSO₄.7H₂O, 1.25 CaCl₂.2H₂O, 25 NaHCO₃, 5 Glucose, 118 NaCl and 4% FAF-BSA. Buffer

155 was gassed with 95% O₂/5% CO₂ for 45min to reach a pH of 7.4. All procedures were conducted
156 in a shaking water bath at 37°C. For the assessment of non-esterified fatty acids (NEFA), 6µl of
157 buffer was collected at 0, 30, 60, 90 and 120min time points, placed immediately on dry ice, and
158 stored at -80°C. Samples were assayed on a NEFA-C kit (Wako Chemicals, Osaka, JPN). For
159 glycerol, buffer was collected after 2h of incubation. Glycerol content was assessed using a free
160 glycerol determination kit with glycerol standard solution (Sigma-Aldrich, MO, USA). Final
161 glycerol content and NEFA-C levels were expressed relative to the weight of the respective
162 epididymal WAT explant.

163 *Plasma NEFA*

164 Following sacrifice, terminal blood samples were collected from mice via cardiac puncture.
165 Samples were transferred into EDTA-precoated tubes and centrifuged for 3min. Plasma was
166 aliquoted and stored at -80°C until use. NEFA levels in plasma were determined using a NEFA
167 C-test kit (Wako Chemicals).

168 *Oil Red O staining*

169 Extensor digitorum longus (EDL) muscles were embedded in optimum cutting temperature
170 compound and rapidly frozen in liquid nitrogen cooled isopentane. Oil Red O (ORO) staining
171 was performed on muscle cryosections (10µm) to visualize neutral lipids using an ORO kit
172 (Abcam, Cambridge, GBR). Briefly, sections were fixed with 10% neutral buffered formalin for
173 15min and rinsed three times with distilled water for 30s at room temperature. ORO solution
174 was added onto the sections and incubated for 10min, and the slides were differentiated in 85%
175 propylene glycol solution for 1min at room temperature. After two rinses, slides were air dried
176 and mounted with aqueous mounting agent (Aquatex, EMD Millipore, CA, USA). Bright-field
177 images (20× magnification) were taken with an Aperio ScanScope system (Leica, Mannheim,
178 DEU). ORO labeling was quantified using 10+ randomly selected sections of muscle per animal
179 (n=5 per group). Representative images of the muscle section were processed using ImageJ to

180 identify the mean ORO intensity for each animal, following thresholding to remove non-specific
181 labeling (threshold set to 225 (0-255)).

182 *Assessment of cellular respiration in muscle fiber bundles*

183 EDL muscle fiber bundles were chemically dissociated as previously described (Li *et al.*, 2016).
184 Muscle fiber bundles were seeded onto Seahorse XF^e96 microplates in culture media (low
185 glucose DMEM supplemented with 10% FBS and 1% Antibiotic-Antimycotic; ThermoFisher, MA,
186 USA), and maintained overnight at 37°C with 5% CO₂. Prior to the commencement of metabolic
187 assays, muscle fiber viability was assessed using an alamarBlue cell viability assay
188 (ThermoFisher) and used for the data normalization. Real-time assessment of bioenergetic
189 parameters in EDL fiber bundles was performed on the XF^e96 Extracellular Flux Analyzer
190 (Agilent Technologies, CA, USA).

191 The dependence and capacity of EDL fibers to use glucose and fatty acid as fuel
192 substrates was determined using the Seahorse XF Mito Fuel Flex Test Kit (Agilent
193 Technologies). Prior to the assay, culture media was replaced with pre-warmed assay media
194 (pH 7.4) consisting of XF base media (Agilent Technologies), 10mM D-glucose (Sigma-Aldrich),
195 1mM sodium pyruvate (Sigma-Aldrich) and 2mM L-glutamine (ThermoFisher). Carnitine
196 palmitoyltransferase 1A inhibitor etomoxir (ETO, 4.0μM), mitochondrial pyruvate carrier inhibitor
197 UK5099 (2.0μM) and glutaminase inhibitor BPTES (3.0μM) were prepared with assay media
198 and loaded into the XF^e96 sensor cartridge following the manufacturer guidelines. Following the
199 first 3 cycles of baseline measurement of oxygen consumption rate (OCR), the decrease of
200 OCR levels upon inhibition of one or more pathways was continuously recorded for the following
201 6 cycles. Each cycle consisted of 3min mix, 30s wait and 3min measurement. The dependence
202 and capacity of each fuel pathway relative to total fuel oxidation was calculated according to the
203 manufacturer guidelines.

204 Substrate induced maximal respiration was tested in EDL fiber bundles as previously
205 described (Li *et al.*, 2016). Briefly, plates containing muscles fibers were changed into assay
206 media (pH 7.4) containing 120mM NaCl, 3.5mM KCl, 1.3mM CaCl₂, 0.4mM KH₂PO₄, 1mM

207 MgCl₂, 2.5mM D-glucose and 0.5mM L-carnitine prior to the assay run. OCR was continuously
208 measured for 6 cycles after sequential injections of sodium pyruvate (10mM) or palmitate-BSA
209 (100μM) with carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, 0.4μM), followed
210 with antimycin/rotenone (1μM). Quantitation of Seahorse data were conducted over 8-24
211 technical replicates for n= 5-12 animals per group.

212 *Patient Studies*

213 *Subjects*

214 Eighteen ALS patients who met the revised El-Escorial criteria for ALS (Brooks *et al.*, 2000)
215 were enrolled from the Royal Brisbane and Women's Hospital (RBWH) ALS clinic for the
216 collection of skeletal muscle biopsies. Eleven healthy control participants were also enrolled.
217 These control individuals were the spouses, friends or family members of ALS participants. For
218 all participants, exclusion criteria were history of a metabolic condition (e.g. Hashimoto's
219 disease) and diabetes mellitus. Participant details are shown in Table 1 and Supplementary
220 Table 1. For ALS patients, the ALS Functional Rating Scale-Revised (ALSFRS-R) score, King's
221 stage, and ΔFRS were obtained from clinical records. All participants provided written informed
222 consent; participant consent was obtained according to the Declaration of Helsinki. Work
223 performed in this study was approved by the RBWH and University of Queensland human
224 research ethics committees.

225 *Assessment of body composition and energy expenditure*

226 Body composition (fat mass and fat free mass) was determined by whole body air displacement
227 plethysmography using the BodPod system (Cosmed USA, Rome, ITA). Values of fat mass and
228 fat free mass were used to predict resting energy expenditure (Steyn *et al.*, 2018a). Resting
229 energy expenditure in ALS and control participants was then measured by indirect calorimetry
230 using a Quark RM respirometer (Cosmed) as per our established methodology (Steyn *et al.*,
231 2018a). Controls were matched to patients with ALS by age, sex, weight, BMI and body
232 composition. The metabolic index of each individual was derived by calculating measured

233 resting energy expenditure as a percentage of predicted resting energy expenditure. A
234 metabolic index of $\geq 120\%$ was defined as hypermetabolism (Steyn *et al.*, 2018a).

235 *Muscle biopsy and culture*

236 Muscle biopsies were collected from the vastus lateralis of one leg. Lignocaine (1%; 5ml) was
237 injected to anaesthetize the skin and underlying fat and muscle tissue. A 10mm incision was
238 made and advanced through the fascia of the muscle. A ~200mg sample of muscle was
239 collected using a sterile 6mm hollow Bergstrom biopsy needle (Pelomi, Albertslund, Denmark)
240 modified for suction (Tarnopolsky *et al.*, 2011) and placed in holding media (DMEM/F12 with
241 0.5% gentamicin; ThermoFisher).

242 Primary myoblasts were isolated and cultured using a modified muscle tissue explant
243 method (Tarnopolsky *et al.*, 2011) and frozen as low passage cell stocks. Primary myogenic
244 cells were maintained in DMEM/F12 medium supplemented with 20% FBS, 10% AmnioMAX C-
245 100 and 0.5% gentamicin (ThermoFisher). Culture media was changed every second day and
246 cells were passaged when they reached ~70% confluence. For experiments, primary myogenic
247 cells were seeded at a density of 15000 cells/well into Seahorse XF^e96 cell culture microplates.
248 At 80% confluence, cells were differentiated into myotubes by replacing maintenance media
249 with differentiation media consisting of DMEM/F12 medium with 2% non-inactivated horse
250 serum and 0.5% gentamicin (ThermoFisher). Fresh differentiation medium was fed every 2 days
251 until mature multinucleated myotubes formed. Primary myotubes underwent assessment of key
252 parameters of glucose and fatty acid oxidation dependency and capacity using the Seahorse
253 Mito Fuel Flex Test Kit (Agilent Technologies).

254 *Statistical analysis*

255 Statistical differences were assessed using Prism 8.0a. (GraphPad Software Inc., La Jolla, CA,
256 USA). Statistical comparisons, unless otherwise indicated, were performed with unpaired
257 Student's t-test, non-parametric t-test, or two-way ANOVA followed by Bonferroni multiple
258 comparison. Linear relationships were assessed by Pearson correlation. All graphical data are

259 presented as mean \pm SEM or as a Pearson correlation. Values of $P<0.05$ were considered to be
260 statistically significant.

261 **Results**

262 *Disease progression in SOD1^{G93A} mice is associated with a decline in both fat free mass and fat*
263 *mass*

264 To determine the impact of disease progression on body composition and total body weight in
265 SOD1^{G93A} mice, we conducted a serial assessment of body weight, and whole-body fat free
266 mass and fat by EchoMRI. Total body weight in SOD1^{G93A} mice was significantly lower than that
267 of litter-matched WT controls by 19 weeks of age (Figure 1A). Loss of body weight was due, in
268 part, to a loss in total fat free mass (Figure 1B). Tibialis anterior (TA) and gastrocnemius
269 (Gastroc) weight was reduced by disease onset (Figure 1D and E), and extensor digitorum
270 longus (EDL) mass was reduced by the mid-stage of disease (Figure 1F). When compared to
271 age-matched WT controls, fat accumulation in SOD1^{G93A} mice slowed following disease onset,
272 and whole-body fat mass was significantly lower from 15 weeks of age (Figure 1C). Epididymal
273 and inguinal fat mass was lower in SOD1^{G93A} mice from the mid-stage of disease (Figure 1G
274 and H). Consistent with the slowing in the accumulation of, and the eventual decline in adipose
275 mass, circulating levels of leptin did not increase in SOD1^{G93A} mice throughout the disease
276 course while the WT controls showed increased levels of leptin with age (Figure 1I).

277 *Total energy expenditure in SOD1^{G93A} mice increases by the mid-stage of disease*

278 We next sought to determine whether energy expenditure in SOD1^{G93A} mice increases relative
279 to disease progression. When compared to WT controls, SOD1^{G93A} mice at the mid-stage of
280 disease had higher levels of energy expenditure during the light and dark cycle, resulting in an
281 overall increase in 24h total energy expenditure (Figure 2A and B). SOD1^{G93A} mice had
282 decreased activity by disease onset (Figure 2C and D).

283 We also investigated whether reductions in body weight and fat mass in SOD1^{G93A} mice
284 were due to a decline in food intake. We observed no change in food intake between SOD1^{G93A}

285 and litter-matched WT controls at disease onset. SOD1^{G93A} mice at the mid-stage of disease
286 consumed more food than litter-matched WT controls (Figure 2E and F). Thus we find that
287 reductions in weight are not associated with decreased food consumption, and that despite an
288 increase in food intake and a decline in activity-dependent energy expenditure, SOD1^{G93A} mice
289 are unable to offset increased energy expenditure to prevent the depletion of energy stores.

290 *Lipolytic rate is maintained in SOD1^{G93A} mice*

291 Brown adipose tissue (BAT) regulates non-shivering thermogenesis, which itself can contribute
292 to total energy expenditure in mice (Even and Blais, 2016). We found no difference in BAT
293 weight (Figure 3A) or glucose uptake in BAT between SOD1^{G93A} and WT control mice (Figure
294 3B). Thus, the increase in energy expenditure in SOD1^{G93A} at the mid-stage of disease is
295 unlikely to be due to increases in non-shivering thermogenesis.

296 White adipose tissue (WAT) stores lipids, providing energy reserves that are available
297 during periods of increased energy demand. Given the slowing of accumulation and eventual
298 reduction of fat mass in SOD1^{G93A} mice, we assessed the release of lipids (a proxy measure for
299 lipolysis) from epididymal WAT explants. The lipolytic rate of *ex vivo* explants of epididymal
300 WAT decreased over the lifespan of WT mice, whilst the lipolytic rate in SOD1^{G93A} mice was
301 maintained throughout the course of disease. As such, the lipolytic rate in SOD1^{G93A} mice was
302 significantly higher by the mid-stage of disease when compared to WT controls (Figure 3C).
303 This corresponded to a sustained rate of appearance of cumulative non-esterified fatty acids
304 (NEFA) and glycerol from WAT explants (Figure 3D). Circulating plasma NEFA in WT and
305 SOD1^{G93A} mice did not differ (Figure 3E). Overall, the sustained rate of lipolysis in epididymal
306 WAT explants from SOD1^{G93A} mice suggest that there is greater rate of turnover of lipids
307 throughout the course of disease.

308 *SOD1^{G93A} mice exhibit a functional preference for fat oxidation in glycolytic EDL muscle*

309 Previously, a decrease in the expression of glucose handling genes, and an increase in the
310 expression of lipid handling genes in glycolytic muscle of SOD1^{G86R} mice has been suggested

311 to drive a switch towards the use of lipid as an energy substrate (Palamiuc *et al.*, 2015). Thus,
312 sustained lipolysis in SOD1^{G93A} mice could serve to mobilize fatty acids for use as an energy
313 source in skeletal muscle. We used oil-red O staining to quantify intramuscular lipid
314 accumulation in the glycolytic EDL muscle, and conducted real-time assessment of substrate
315 utilization in EDL muscle fiber bundles isolated from SOD1^{G93A} and age-matched WT mice.
316 There was no difference in intramuscular lipid content in the EDL muscle of SOD1^{G93A} mice
317 when compared to WT controls (Figure 4A). We observed no difference in glucose oxidation
318 dependency (Figure 4B and C), and following the inhibition of mitochondrial fatty acid and
319 glutamine uptake, EDL muscle fibers from SOD1^{G93A} mice exhibited similar levels of glucose
320 oxidation capacity across all disease stages (Figure 4D and E). However, we observed
321 increased dependence on fat oxidation in isolated EDL muscle fiber bundles from SOD1^{G93A}
322 mice by the mid-stage of disease (Figure 4F and G). Moreover, the capacity for fat oxidation to
323 sustain mitochondrial respiration after inhibition of pyruvate and glutamine entry into
324 mitochondria was also increased in EDL muscle fibers bundles from SOD1^{G93A} mice at the mid-
325 stage of disease (Figure 4H and I).

326 To determine the capacity of glucose and fatty acid oxidation pathways to sustain
327 mitochondrial respiration in the absence of substrate competition, and to study substrate
328 utilization in the presence of increased energy demand, we measured the capacity of
329 mitochondria in EDL fiber bundles to oxidize pyruvate or palmitate in the presence of the
330 mitochondrial uncoupler, carbonyl cyanide-4-phenylhydrazone (FCCP; Figure 5A and B). The
331 basal oxygen consumption rate (OCR) of EDL muscles from WT and SOD1^{G93A} mice was similar
332 (Figure 5C). In the presence of pyruvate, we observed a significant elevation in maximal peak
333 OCR in EDL muscle fiber bundles from SOD1^{G93A} mice at the onset stage of disease (Figure
334 5A). In the presence of palmitate, we observed no difference in maximal OCR in EDL muscle
335 fiber bundles between SOD1^{G93A} and WT controls (Figure 5B). Compared to WT mice, total
336 oxygen consumption in the EDL muscle fibers from SOD1^{G93A} mice was significantly higher at
337 the mid-stage of disease when pyruvate was provided as the external energy substrate (Figure
338 5D). However, oxygen consumption between EDL muscle fibers from SOD1^{G93A} mice and WT

339 mice was comparable when palmitate-BSA was provided as the external energy substrate
340 (Figure 5E). Thus, despite exhibiting a functional preference towards fatty acid oxidation,
341 glycolytic EDL muscle fibers from SOD1^{G93A} mice are capable of utilizing glucose metabolism
342 pathways to sustain mitochondrial function when there are no competing fatty acid substrates.

343 *ALS patient-derived myotubes have increased dependence on fat oxidation*

344 We next aimed to determine whether mitochondrial fuel selection preference observed in
345 SOD1^{G93A} mice was present in human ALS subjects. We generated primary myotubes from
346 skeletal muscle biopsies obtained from ALS patients and age-matched healthy controls and
347 conducted real-time assessment of substrate utilization. Demographics of our study population
348 are detailed in Table 1. Sex, age, and clinical demographics of ALS patients are detailed in
349 Supplementary Table 1. When compared to myotubes derived from healthy controls, myotubes
350 from patients with ALS had similar levels of glucose oxidation dependency and capacity (Figure
351 6A). ALS patient derived myotubes also had similar levels of fat oxidation capacity when
352 compared to myotubes derived from healthy controls. However, they exhibited an increased
353 dependence on fat oxidation (Figure 6B).

354 We next assessed the relationships between substrate oxidation in myotubes and the
355 metabolic and clinical characteristics of our ALS cohort. The metabolic measures were resting
356 energy expenditure and the metabolic index, which we have previously used to define
357 hypermetabolism in ALS patients (Supplementary Table 2) (Steyn *et al.*, 2018a). We found that
358 glucose oxidation capacity was negatively correlated with resting energy expenditure, and that
359 fat oxidation dependency was greater in myotubes derived from ALS patients with higher resting
360 energy expenditure. Substrate oxidation was not correlated with the metabolic index.

361 We observed no relationship between substrate oxidation in ALS patient derived
362 myotubes relative to the severity of disability as determined by the ALSFRS-R at the time of
363 metabolic assessment (Supplementary Table 2). However, glucose oxidation capacity was
364 greater, and fat oxidation dependence was lower in patients with a more rapidly progressing
365 disease (indicated by a faster decline in ALSFRS-R scores (Δ FRS); Supplementary Table 2,

366 Figure 7). Collectively, this data indicates that substrate utilization in myotubes is not related to
367 hypermetabolism in ALS, but rather, it appears to be linked to the resting energy expenditure of
368 ALS patients. Moreover, our data also suggest that substrate utilization in myotubes is
369 associated with the rate of functional decline in patients with ALS.

370 **Discussion**

371 The primary aim of this study was to explore potential mechanisms underpinning altered whole
372 body metabolic balance in ALS (Ahmed *et al.*, 2018; Steyn *et al.*, 2018a; Vandoorne *et al.*, 2018).
373 We show that an increase in whole-body energy expenditure in symptomatic SOD1^{G93A} mice is
374 associated with a decline in both fat mass and fat free mass. We also find that glycolytic muscle
375 from symptomatic SOD1^{G93A} mice exhibit an increased dependence on fatty acids as an energy
376 substrate, as well as an increased capacity to utilize fatty acids. In myotubes derived from
377 patients with ALS, we show a similar association between dependence on fatty acid oxidation
378 and resting energy expenditure. Further there was an association between muscle cellular
379 metabolism and rate of disease progression.

380 Compared to WT littermates, SOD1^{G93A} mice exhibited an increase in total whole-body
381 oxygen consumption (a proxy for energy expenditure) alongside a concomitant decline in body
382 mass, fat mass and fat free mass over the course of disease. These observations are in line
383 with the notion that increased energy expenditure in ALS contributes to weight loss (Dupuis *et*
384 *al.*, 2011). However, given that hypermetabolism has not been shown to be associated with
385 weight loss in human ALS (Steyn *et al.*, 2018b), these divergent observations between ALS
386 mice and patients highlight that multiple factors contribute to weight loss in patients with ALS.
387 In patients with ALS, weight loss is likely to occur due to a combination of factors, including
388 reduced capacity to meet energy requirements (Ngo *et al.*, 2017) (including loss of appetite
389 resulting in loss of fat mass (Ngo *et al.*, 2019; Mezoian *et al.*, 2020)), as well as neurogenic
390 wasting (Al-Sarraj *et al.*, 2014).

391 A failure to accumulate fat mass was an early feature of disease in SOD1^{G93A} mice, and
392 this is associated with sustained lipolysis rather than reduced food intake. Why high levels of

393 lipolysis is maintained throughout disease course in SOD1^{G93A} mice remains to be determined.
394 It is well established that lipolysis and fatty acid mobilization are upregulated in response to
395 increased muscle energy requirements, for example, during exercise (Goodpaster and Sparks,
396 2017). Thus, it has been proposed that increased mobilization of lipids in ALS mice could sustain
397 metabolic requirements in peripheral skeletal muscle (Dupuis *et al.*, 2004; Fergani *et al.*, 2007).
398 Expanding on previous reports of increased expression of genes associated with fatty acid
399 oxidation in skeletal muscle of SOD1^{G86R} mice (Palamiuc *et al.*, 2015), we have now generated
400 the first evidence to show that there is a greater functional dependence and capacity of glycolytic
401 skeletal muscle from symptomatic SOD1^{G93A} mice to utilize fatty acids as a fuel substrate. This
402 increased dependence and capacity for fatty acid oxidation could be an adaptive response of
403 the muscle due to reduced muscle glucose uptake and glucose intolerance (Pradat *et al.*, 2010;
404 Desseille *et al.*, 2017). Yet, we found that glycolytic muscle fibers were able to utilize pyruvate,
405 a product of glucose oxidation, following inhibition of fatty acid and glutamine pathways. While
406 providing evidence to suggest that glucose oxidation mechanisms remain intact in glycolytic
407 SOD1^{G93A} muscle, our data lend further support to the notion that increased utilization of fatty
408 acids could inhibit the use of glucose in ALS (Palamiuc *et al.*, 2015), presumably via the Randle
409 cycle (Hue and Taegtmeyer, 2009).

410 In order to understand whether the metabolic changes observed in isolated SOD1^{G93A}
411 mouse muscle fibers occur in human ALS, we investigated substrate oxidation capacity and
412 dependence in myotubes derived from patients with ALS. Similar to SOD1^{G93A} mouse muscle,
413 we observed an increase in fatty acid oxidation dependence in ALS patient myotubes, although
414 fatty acid oxidation capacity remained unchanged. In addition, we found that myotubes with
415 higher fat oxidation dependence were derived from ALS patients with higher resting energy
416 expenditure. These results are congruent with the known ability for skeletal muscle to adapt to
417 changes in energy supply and requirement to maintain energy homeostasis (Horowitz, 2003). It
418 is well known that fatty acid metabolism provides more ATP when compared to glucose
419 metabolism (Turner *et al.*, 2014). As such, an increase in the need for fatty acid oxidation in

420 myotubes obtained from patients with higher resting energy expenditure may function to
421 increase ATP availability. Moreover, the correlation observed between resting energy
422 expenditure and fatty acid oxidation dependence aligns with physiological processes wherein
423 continued dependence on fatty acid metabolism requires greater levels of oxygen consumption
424 when compared to glucose metabolism (Turner *et al.*, 2014).

425 We did not observe any relationship between the metabolic index or any substrate
426 oxidation parameters in ALS patient myotubes. We assume that the findings in myotubes reflect
427 the situation in intact muscle. Hypermetabolism in ALS could arise from other tissues such as
428 the brain. Previous investigation using [¹⁸F]fluorodeoxyglucose positron emission tomography
429 supports such a hypothesis, as increased energy use has been observed across a number of
430 brain regions in ALS patients (Cistaro *et al.*, 2012). In those ALS patient who show
431 hypermetabolism, the metabolic changes could reflect a whole-body response to disease.
432 Indeed, hypermetabolism is a feature of critical illness, wherein the degree of hypermetabolism
433 varies with the severity and duration of illness (McClave and Snider, 1994).

434 We found that myotubes with higher fatty acid oxidation dependence were derived from
435 patients with slower clinical decline, indicating that substrate availability and/or use could be a
436 factor that determines disease progression in ALS. Previous studies linking higher levels of
437 serum lipids and fat mass with longer survival (Marin *et al.*, 2011; Lindauer *et al.*, 2013; Huang
438 *et al.*, 2015) provide some evidence to suggest that lipids are beneficial in ALS.

439 Although we have used both mouse and human-derived models to investigate aspects
440 of muscle metabolism in ALS, there are some limitations to our study. First, the SOD1^{G93A} mouse,
441 albeit an accepted pre-clinical model of ALS, is representative of only a small proportion of ALS
442 patients. However we found similar alterations in substrate oxidation in the myotubes derived
443 from some ALS patients, indicating that muscle metabolic changes are possibly present widely
444 in the disease. Second, while we conducted assessment of energy expenditure in ALS patients
445 using indirect calorimetry (Haugen *et al.*, 2007), and assessed substrate oxidation in real-time

446 using Seahorse technology, our use of primary human myotubes is a caveat. Previously, it has
447 been shown that human primary myotubes mirror the metabolic phenotypes of their donors
448 (Ukropcova *et al.*, 2005). Regardless, as primary myotubes are grown from cells which have
449 been isolated from muscle biopsies that were removed from their physiological milieu, future
450 studies assessing substrate oxidation in muscle *in vivo* are needed.

451 In summary, we demonstrate that an increase in fatty acid oxidation dependence and
452 capacity occurs in glycolytic muscle of SOD1^{G93A} mice during the symptomatic stages of disease
453 when they exhibit increased energy expenditure. In myotubes derived from ALS patients, a
454 similar increase in fatty acid oxidation dependence occurs. While this change in fatty acid
455 oxidation appears be associated with the progression of disease, it is not linked to
456 hypermetabolism in human ALS. Given the heterogeneity of disease in ALS, there remains an
457 important need for further studies that delineate mechanisms of metabolic imbalance and the
458 link between substrate utilization and energy expenditure throughout the course of the disease.
459 A comprehensive understanding of specific metabolic changes at an individual patient level will
460 be essential for the development of treatments that aim to target metabolic pathways in ALS.

461 **Author contributions**

462 FJS, TYX, DK, FG, SC, and STN conducted the experiments. TJT and SEK generated and
463 maintained human myoblasts. EW and LR collected skeletal muscle biopsies. JSC provided
464 infrastructure and materials. FJS and STN recruited ALS patients. PAM and RDH confirmed
465 diagnoses of ALS patients. FJS, SEK, TWT, TYX, SC, WML, AF, CV, FR, JPL, and STN
466 analyzed and interpreted the data. FJS and STN conceived and designed the study. FJS, SEK,
467 TWT, and STN wrote and conducted the final review of the manuscript. All authors revised the
468 manuscript.

469

470 **Acknowledgements**

471 The authors gratefully acknowledge the assistance and support of staff at the University of
472 Queensland Biological Resources (UQBR), and The Centre for Integrated Physiology at the
473 School of Biomedical Sciences, University of Queensland. This work was funded by grants from
474 The University of Queensland (NSRFS 2012002126 to STN), the Motor Neurone Disease
475 Research Institute of Australia (Grant-in-aid, Graham Smith MND Research Grant (to FJS, PAM,
476 and STN) and Charcot MND Research Grant to FJS, JSC, PAM, RDH and STN), the National
477 Health and Medical Research Council (1101085 to FJS and STN, 1121962 to FCG), and AriSLA
478 Foundation and AFM-Telethon (HyperALS and AFM-Telethon #22509 to AF, JPL, FR and CV).
479 TYX was supported by international postgraduate research scholarships from the Australian
480 Government, and University of Queensland centennial scholarships. STN was funded by the
481 Scott Sullivan MND Research Fellowship (Queensland Brain Institute, the Royal Brisbane &
482 Women's Hospital Foundation, The MND and Me Foundation), and the Australian Institute for
483 Bioengineering and Nanotechnology.

484 **Conflicts of interest**

485 The authors have no conflicts to declare.

486 **References:**

487 Ahmed RM, Dupuis L, Kiernan MC. Paradox of amyotrophic lateral sclerosis and energy
488 metabolism. *J Neurol Neurosurg Psychiatry* 2018; 89(10): 1013-4.

489 Ahmed RM, Irish M, Piguet O, Halliday GM, Ittner LM, Farooqi S, et al. Amyotrophic lateral
490 sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour
491 and metabolism. *The Lancet Neurology* 2016; 15(3): 332-42.

492 Al-Sarraj S, King A, Cleveland M, Pradat PF, Corse A, Rothstein JD, et al. Mitochondrial
493 abnormalities and low grade inflammation are present in the skeletal muscle of a minority of
494 patients with amyotrophic lateral sclerosis; an observational myopathology study. *Acta
495 Neuropathol Commun* 2014; 2: 165.

496 Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of
497 ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and
498 amyotrophic lateral sclerosis. *Biochemical and biophysical research communications* 2006;
499 351(3): 602-11.

500 Blasco H, Garcon G, Patin F, Veyrat-Durebex C, Boyer J, Devos D, et al. Panel of Oxidative
501 Stress and Inflammatory Biomarkers in ALS: A Pilot Study. *Can J Neurol Sci* 2017; 44(1): 90-
502 5.

503 Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A, et al.
504 Hypermetabolism in ALS patients: an early and persistent phenomenon. *J Neurol* 2009;
505 256(8): 1236-42.

506 Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group
507 on Motor Neuron D. El Escorial revisited: revised criteria for the diagnosis of amyotrophic
508 lateral sclerosis. *Amyotrophic lateral sclerosis and other motor neuron disorders : official
509 publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases*
510 2000; 1(5): 293-9.

511 Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. *The New England journal of medicine*
512 2017; 377(2): 162-72.

513 Cistaro A, Valentini MC, Chio A, Nobili F, Calvo A, Moglia C, et al. Brain hypermetabolism in
514 amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. *Eur J Nucl
515 Med Mol Imaging* 2012; 39(2): 251-9.

516 Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufre B, et al. Factors correlated with
517 hypermetabolism in patients with amyotrophic lateral sclerosis. *Am J Clin Nutr* 2001; 74(3):
518 328-34.

519 Desport JC, Torny F, Lacoste M, Preux PM, Couratier P. Hypermetabolism in ALS:
520 correlations with clinical and paraclinical parameters. *Neuro-degenerative diseases* 2005; 2(3-
521 4): 202-7.

522 Desseille C, Deforges S, Biondi O, Houdebine L, D'Amico D, Lamaziere A, et al. Specific
523 Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-
524 Lateral-Sclerosis Mice. *Front Mol Neurosci* 2017; 10: 332.

525 Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP. Evidence for defective
526 energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a
527 transgenic mouse model. *Proc Natl Acad Sci U S A* 2004; 101(30): 11159-64.

528 Dupuis L, Pradat PF, Ludolph AC, Loeffler JP. Energy metabolism in amyotrophic lateral
529 sclerosis. *The Lancet Neurology* 2011; 10(1): 75-82.

530 Even PC, Blais A. Increased Cost of Motor Activity and Heat Transfer between Non-Shivering
531 Thermogenesis, Motor Activity, and Thermic Effect of Feeding in Mice Housed at Room
532 Temperature - Implications in Pre-Clinical Studies. *Front Nutr* 2016; 3: 43.

533 Fergani A, Oudart H, Gonzalez De Aguilar JL, Fricker B, Rene F, Hocquette JF, et al.
534 Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis. *J
535 Lipid Res* 2007; 48(7): 1571-80.

536 Funalot B, Desport JC, Sturtz F, Camu W, Couratier P. High metabolic level in patients with
537 familial amyotrophic lateral sclerosis. *Amyotroph Lateral Scler* 2009; 10(2): 113-7.

538 Ghasemi M, Brown RH, Jr. Genetics of Amyotrophic Lateral Sclerosis. *Cold Spring Harbor
539 perspectives in medicine* 2017.

540 Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. *Cell Metab* 2017;
541 25(5): 1027-36.

542 Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, *et al.* Motor neuron
543 degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. *Science*
544 1994; 264(5166): 1772-5.

545 Haugen HA, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. *Nutr Clin Pract*
546 2007; 22(4): 377-88.

547 Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. *Trends Endocrinol
548 Metab* 2003; 14(8): 386-92.

549 Huang R, Guo X, Chen X, Zheng Z, Wei Q, Cao B, *et al.* The serum lipid profiles of
550 amyotrophic lateral sclerosis patients: A study from south-west China and a meta-analysis.
551 *Amyotroph Lateral Scler Frontotemporal Degener* 2015; 16(5-6): 359-65.

552 Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. *Am J Physiol
553 Endocrinol Metab* 2009; 297(3): E578-91.

554 Ioannides ZA, Ngo ST, Henderson RD, McCombe PA, Steyn FJ. Altered Metabolic
555 Homeostasis in Amyotrophic Lateral Sclerosis: Mechanisms of Energy Imbalance and
556 Contribution to Disease Progression. *Neuro-degenerative diseases* 2016; 16(5-6): 382-97.

557 Jesus P, Fayemendy P, Nicol M, Lautrette G, Sourisseau H, Preux PM, *et al.*
558 Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral
559 sclerosis. *Eur J Neurol* 2018; 25(1): 97-104.

560 Kiernan MC. Hyperexcitability, persistent Na⁺ conductances and neurodegeneration in
561 amyotrophic lateral sclerosis. *Experimental neurology* 2009; 218(1): 1-4.

562 Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research
563 reporting: the ARRIVE guidelines for reporting animal research. *PLoS Biol* 2010; 8(6):
564 e1000412.

565 Lee JD, Kamaruzaman NA, Fung JN, Taylor SM, Turner BJ, Atkin JD, *et al.* Dysregulation of
566 the complement cascade in the hsod1G93A transgenic mouse model of amyotrophic lateral
567 sclerosis. *Journal of neuroinflammation* 2013; 10(1): 119.

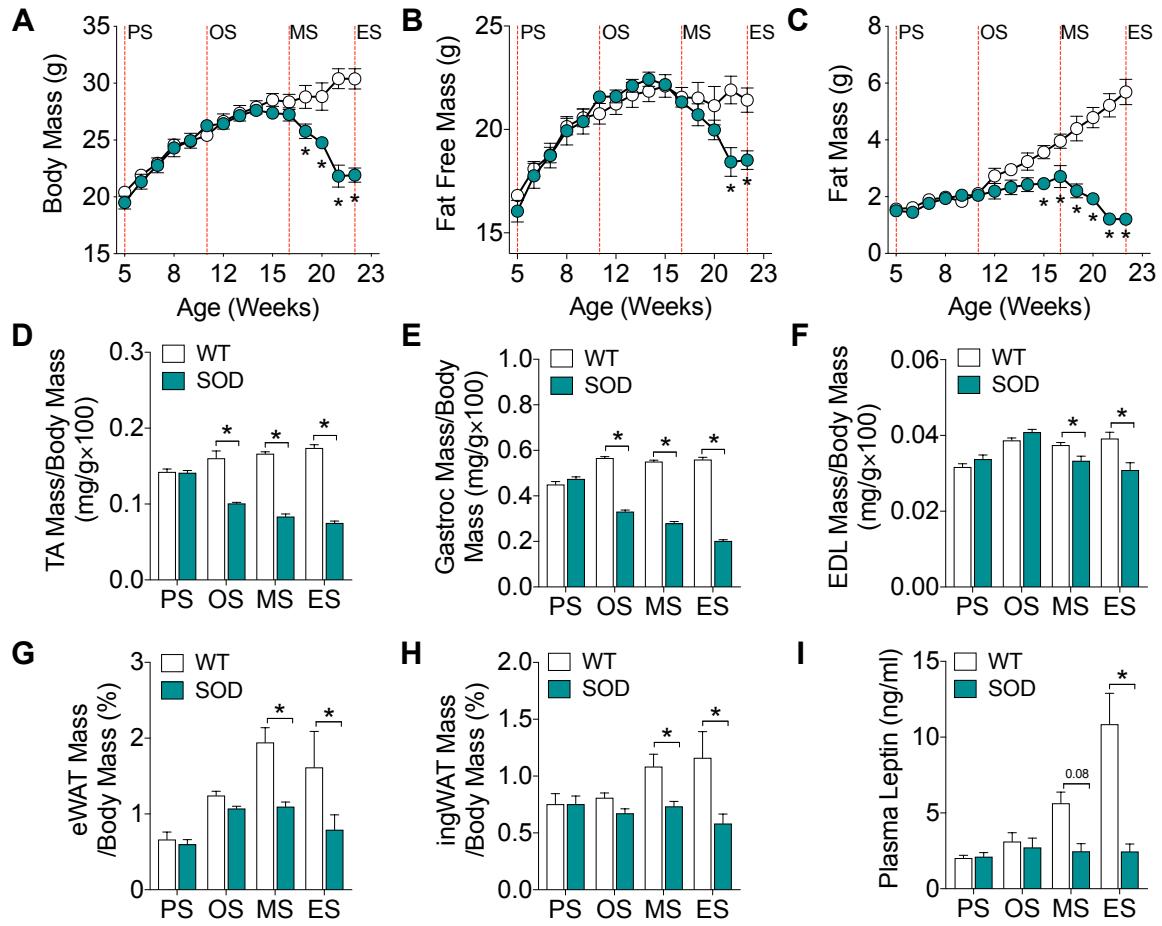
568 Li R, Steyn FJ, Stout MB, Lee K, Cully TR, Calderon JC, *et al.* Development of a high-
569 throughput method for real-time assessment of cellular metabolism in intact long skeletal
570 muscle fibre bundles. *The Journal of physiology* 2016; 594(24): 7197-213.

571 Lindauer E, Dupuis L, Muller HP, Neumann H, Ludolph AC, Kassubek J. Adipose Tissue
572 Distribution Predicts Survival in Amyotrophic Lateral Sclerosis. *PLoS One* 2013; 8(6): e67783.

573 Marin B, Desport JC, Kajeu P, Jesus P, Nicolaud B, Nicol M, *et al.* Alteration of nutritional
574 status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. *J
575 Neurol Neurosur Ps* 2011; 82(6): 628-34.

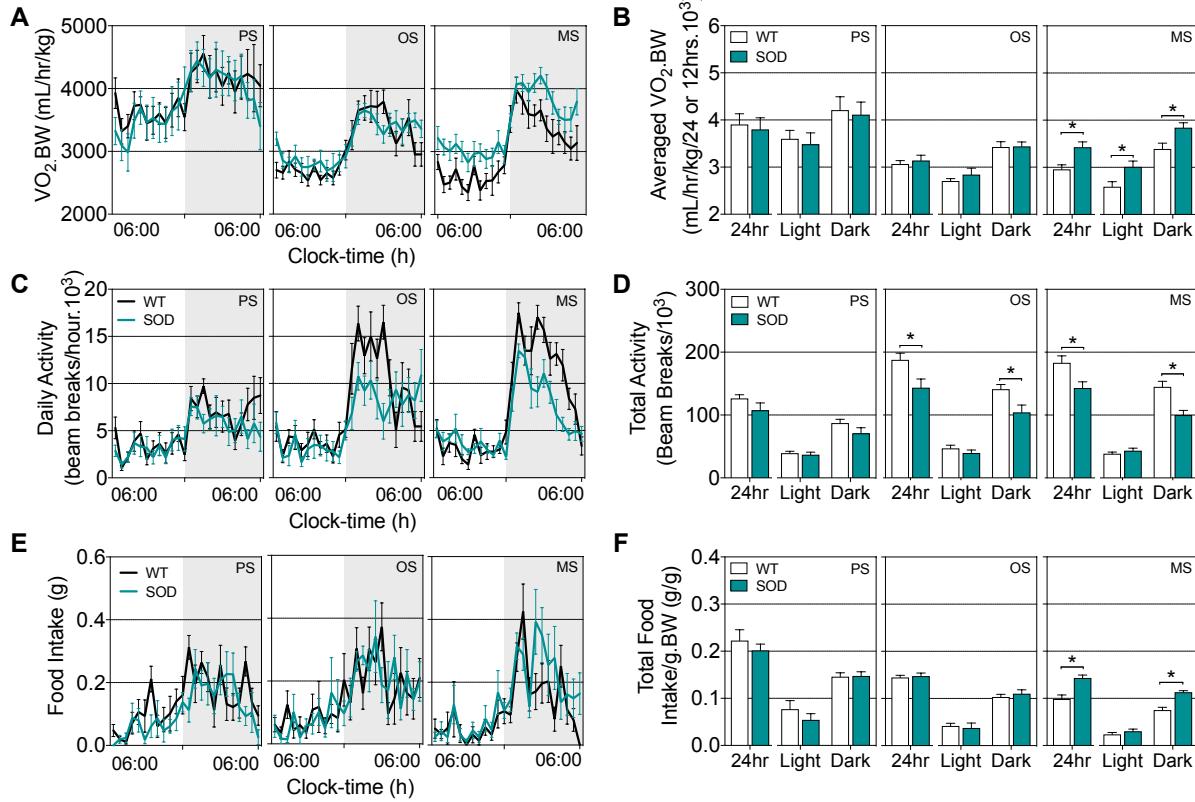
576 McClave SA, Snider HL. Understanding the metabolic response to critical illness: factors that
577 cause patients to deviate from the expected pattern of hypermetabolism. *New Horiz* 1994;
578 2(2): 139-46.

579 Metzinger MN, Miramontes B, Zhou P, Liu Y, Chapman S, Sun L, *et al.* Correlation of X-ray
580 computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical
581 measurement of adipose and lean tissues in living mice. *Sensors* 2014; 14(10): 18526-42.

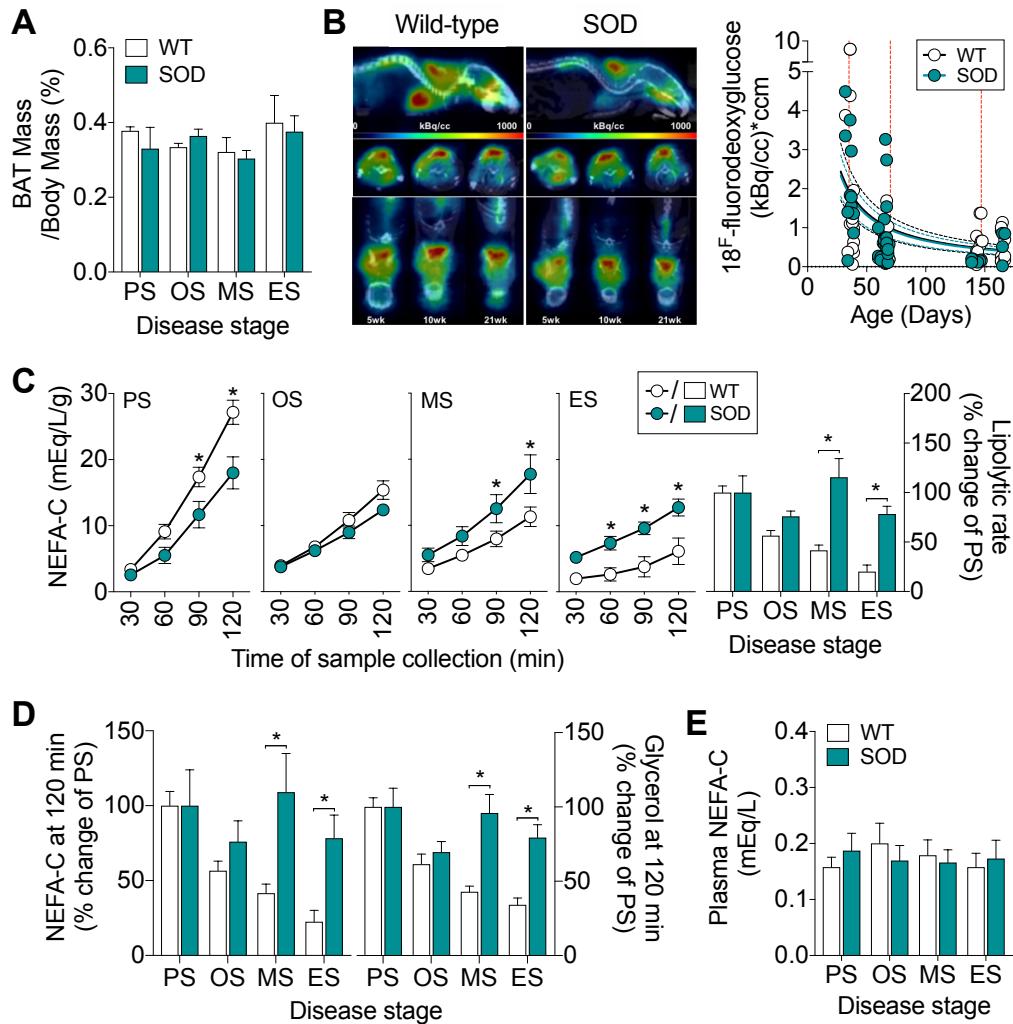

582 Mezoian T, Belt E, Garry J, Hubbard J, Breen CT, Miller L, *et al.* Loss of appetite in
583 amyotrophic lateral sclerosis is associated with weight loss and decreased calorie
584 consumption independent of dysphagia. *Muscle & nerve* 2020; 61(2): 230-4.

585 Ngo ST, Baumann F, Ridall PG, Pettitt AN, Henderson RD, Bellingham MC, *et al.* The
586 relationship between Bayesian motor unit number estimation and histological measurements
587 of motor neurons in wild-type and SOD1G93A mice. *Clin Neurophysiol* 2012; 123(8): 2080-91.

588 Ngo ST, Mi JD, Henderson RD, McCombe PA, Steyn FJ. Exploring targets and therapies for
589 amyotrophic lateral sclerosis: current insights into dietary interventions. *Degener Neurol
590 Neuromuscul Dis* 2017; 7: 95-108.

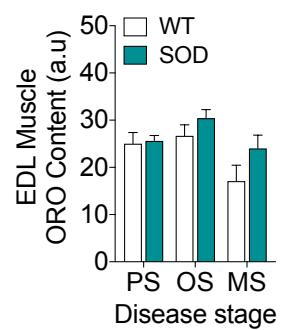
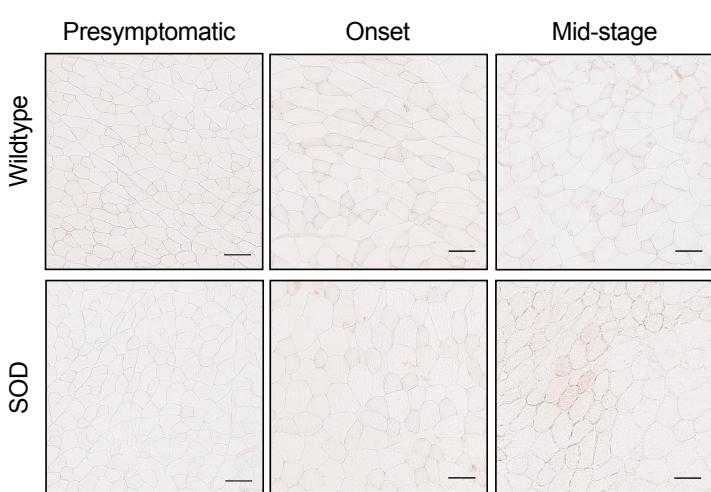

591 Ngo ST, van Eijk RPA, Chachay V, van den Berg LH, McCombe PA, Henderson RD, *et al.*
592 Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic
593 lateral sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener* 2019; 1-9.

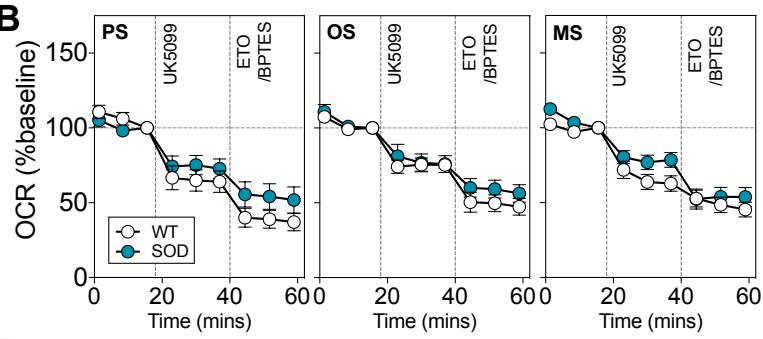
594 Palamiuc L, Schlagowski A, Ngo ST, Vernay A, Grosch S, Henriques A, *et al.* A metabolic
595 switch towards lipid use in glycolytic muscle is an early pathologic event in a mouse model of
596 Amyotrophic Lateral Sclerosis. *EMBO Mol Med* 2015; 7: 526-46.
597 Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, *et al.*
598 Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. *Amyotroph Lateral*
599 *Scler* 2010; 11(1-2): 166-71.
600 Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal
601 cord in amyotrophic lateral sclerosis. *The New England journal of medicine* 1992; 326(22):
602 1464-8.
603 Steyn FJ, Ioannides ZA, van Eijk RPA, Heggie S, Thorpe KA, Ceslis A, *et al.*
604 Hypermetabolism in ALS is associated with greater functional decline and shorter survival. *J*
605 *Neurol Neurosurg Psychiatry* 2018a; 89(10): 1016-23.
606 Steyn FJ, Ioannides ZA, van Eijk RPA, Heggie S, Thorpe KA, Ceslis A, *et al.*
607 Hypermetabolism in ALS is associated with greater functional decline and shorter survival. *J*
608 *Neurol Neurosurg Psychiatry* 2018b; 89(10): 1016-23.
609 Steyn FJ, Ngo ST, Chen VP, Bailey-Downs LC, Xie TY, Ghadami M, *et al.* 17alpha-estradiol
610 acts through hypothalamic pro-opiomelanocortin expressing neurons to reduce feeding
611 behavior. *Aging Cell* 2018c; 17(1).
612 Tarnopolsky MA, Pearce E, Smith K, Lach B. Suction-modified Bergstrom muscle biopsy
613 technique: experience with 13,500 procedures. *Muscle & nerve* 2011; 43(5): 717-25.
614 Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure
615 and insulin resistance in muscle. *J Endocrinol* 2014; 220(2): T61-79.
616 Ukropcova B, McNeil M, Sereda O, de Jonge L, Xie H, Bray GA, *et al.* Dynamic changes in fat
617 oxidation in human primary myocytes mirror metabolic characteristics of the donor. *J Clin*
618 *Invest* 2005; 115(7): 1934-41.
619 Vaisman N, Lusaus M, Nefussy B, Niv E, Comaneshter D, Hallack R, *et al.* Do patients with
620 amyotrophic lateral sclerosis (ALS) have increased energy needs? *J Neurol Sci* 2009; 279(1-
621 2): 26-9.
622 van der Veen DR, Shao J, Chapman S, Leevy WM, Duffield GE. A diurnal rhythm in glucose
623 uptake in brown adipose tissue revealed by in vivo PET-FDG imaging. *Obesity (Silver Spring)*
624 2012; 20(7): 1527-9.
625 Vandoorne T, De Bock K, Van Den Bosch L. Energy metabolism in ALS: an underappreciated
626 opportunity? *Acta Neuropathol* 2018; 135(4): 489-509.
627 Vucic S, Nicholson GA, Kiernan MC. Cortical hyperexcitability may precede the onset of
628 familial amyotrophic lateral sclerosis. *Brain : a journal of neurology* 2008; 131(Pt 6): 1540-50.
629


630

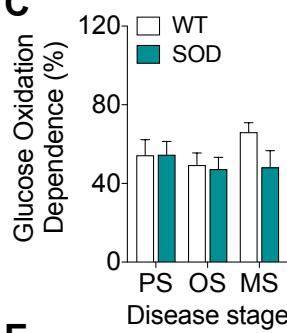
631 **Figure 1: Body weight, fat free mass, and fat mass decreases in SOD1^{G93A} mice over the**
 632 **course of disease.** (A) Total body weight (B) fat free mass and (C) fat mass in SOD1^{G93A} mice
 633 and wild-type (WT) age-matched controls (n=9-10/group). Total (D) tibialis anterior (TA), (E)
 634 gastrocnemius (Gastroc), and (F) extensor digitorum longus (EDL) muscle mass in SOD1^{G93A}
 635 mice and age-matched WT controls (n=10-26/group). Total weight of (G) epididymal white
 636 adipose tissue (eWAT) and (H) inguinal white adipose tissue (ingWAT) in SOD1^{G93A} mice and
 637 age-matched WT controls (n=5-12/group). (I) Circulating levels of leptin in SOD1^{G93A} mice and
 638 age-matched WT controls (n=5-6/group). White circles and columns represent WT mice; blue
 639 circles and columns represent SOD1^{G93A} transgenic mice. All data presented as mean \pm SEM.
 640 *P<0.05, two-way ANOVA with Bonferroni's post-doc test. PS, presymptomatic; OS, onset; MS,
 641 mid-stage; ES, end-stage.

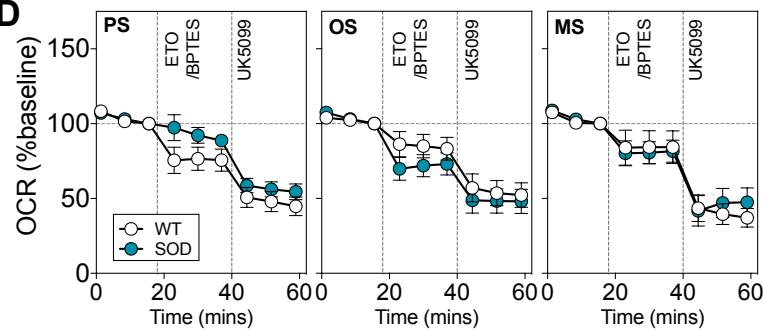
642 **Figure 2: Increased energy expenditure occurs in parallel with increased food intake in**
 643 **symptomatic SOD1^{G93A} mice. (A)** Representative data trace of oxygen consumption over 24h
 644 in SOD1^{G93A} mice and wild-type (WT) litter-matched controls. **(B)** Average VO₂ consumption in
 645 these mice during the light and dark cycle, and over a 24h period. **(C)** Representative data trace
 646 of daily activity over 24h. **(D)** Average total activity during the light and dark cycle, and over a
 647 24h period in SOD1^{G93A} mice and WT litter-matched controls. **(E)** Representative data trace of
 648 food intake over 24h. **(F)** Average food intake during the light and dark cycle, and over a 24h
 649 period in SOD1^{G93A} mice and WT litter-matched controls. Black lines and white columns
 650 represent WT mice; blue lines and columns represent SOD1^{G93A} transgenic mice. Data
 651 presented as mean \pm SEM for n=8/group. *P<0.05, two-way ANOVA with Bonferroni's post-doc
 652 test. PS, presymptomatic; OS, onset; MS, mid-stage.

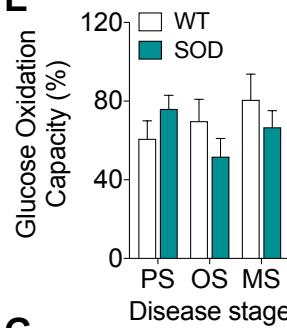


653

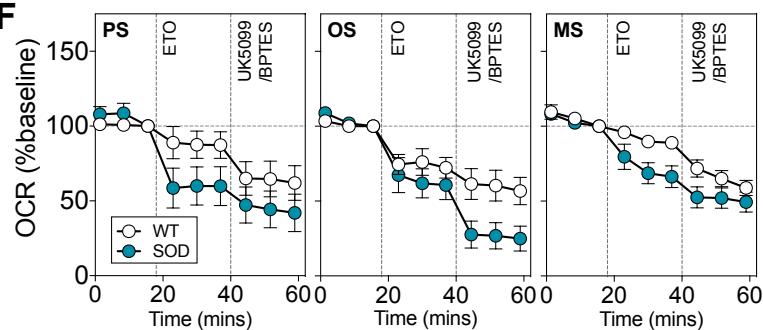

654 **Figure 3: Lipolysis is maintained throughout disease course in SOD1^{G93A} mice.** (A) Brown
 655 adipose tissue (BAT) weight (n=5-12/group) and (B) glucose uptake in BAT in SOD1^{G93A} mice
 656 and age-matched wild-type WT controls (n=9-11/group). (C) Levels of non-esterified fatty acids
 657 (NEFA-C) in Kreb's-Henseleit buffer as an indicator of lipolytic rate of epididymal white adipose
 658 tissue explants from SOD1^{G93A} mice and WT controls (n=6-17/group). Lipolytic rate is expressed
 659 as a percent of that observed at PS stage. (D) Cumulative NEFA (n=6-17/group) and glycerol
 660 (n=8-17/group) in Kreb's-Henseleit buffer. (E) Circulating plasma NEFA in SOD1^{G93A} mice and
 661 WT age-matched controls (n=12/group). White circles and columns represent WT mice; blue
 662 circles and columns represent SOD1^{G93A} transgenic mice. All data presented as mean \pm SEM.
 663 *P<0.05, two-way ANOVA with Bonferroni's post-doc test. PS, presymptomatic; OS, onset; MS,
 664 mid-stage; ES, end-stage.

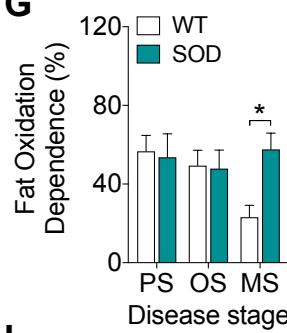
665

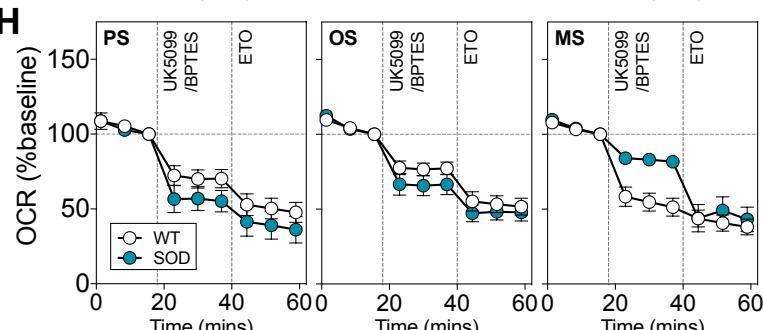

A

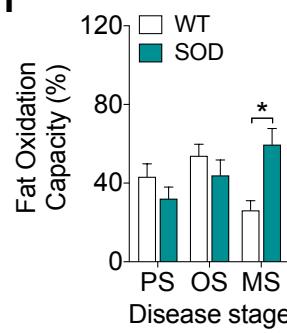

B


C

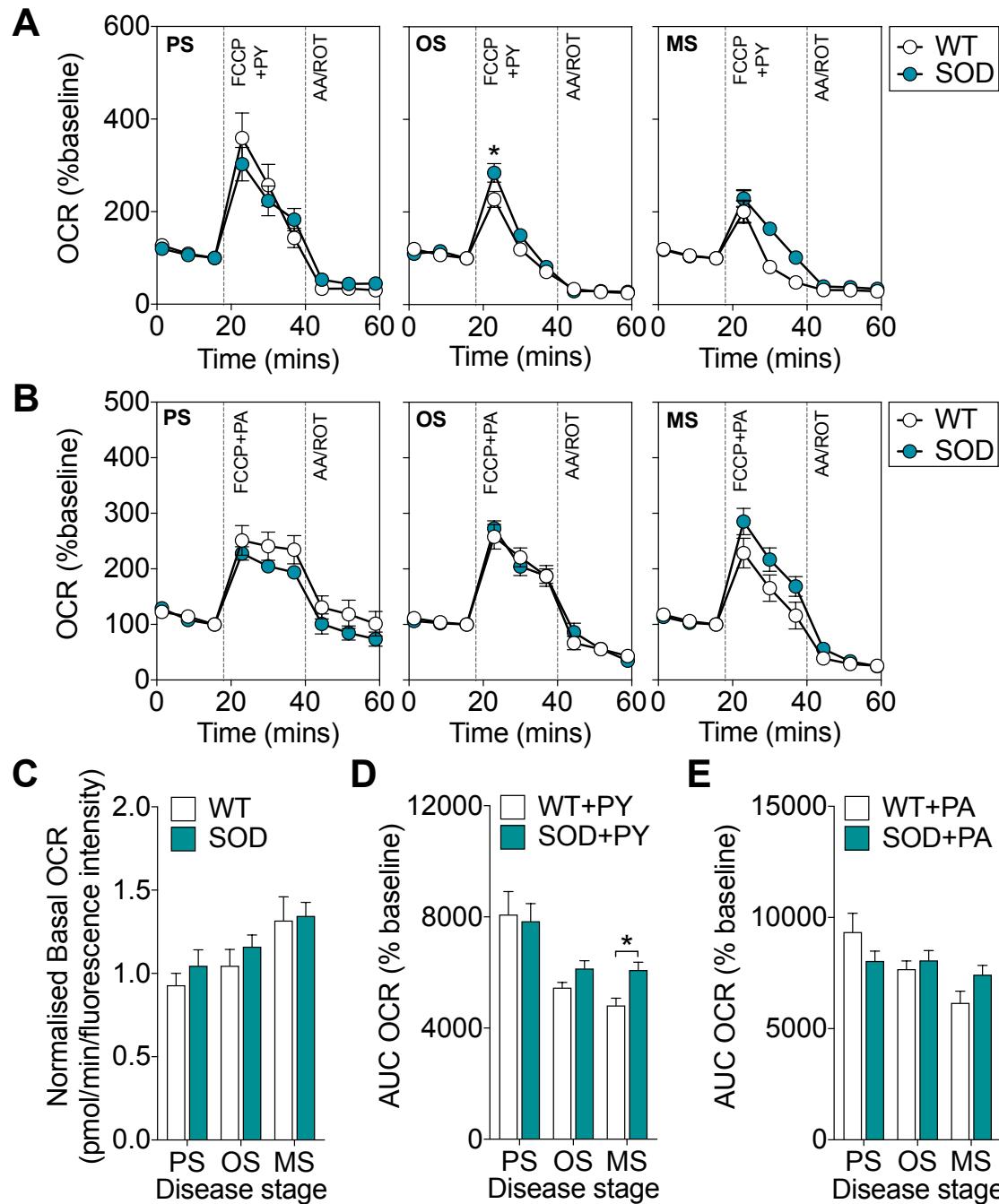

D


E


F

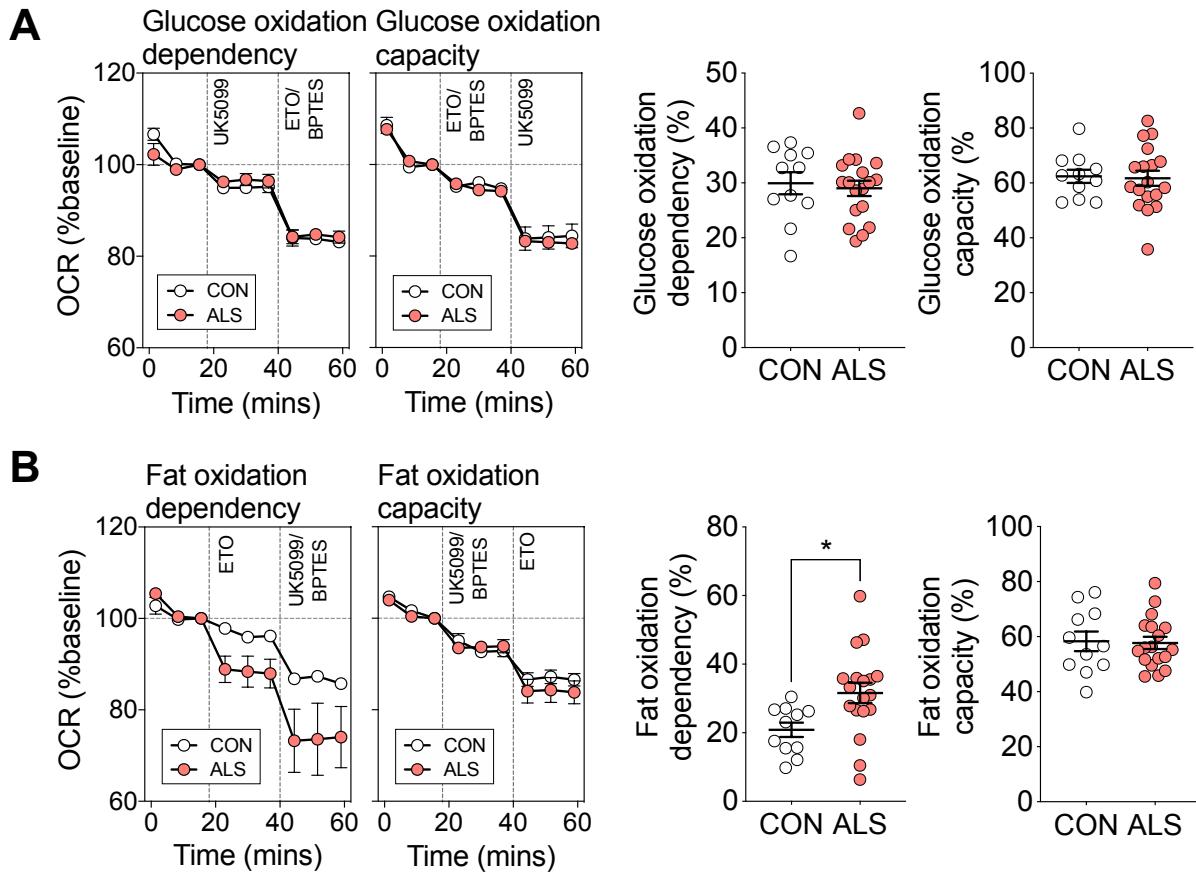

G

H



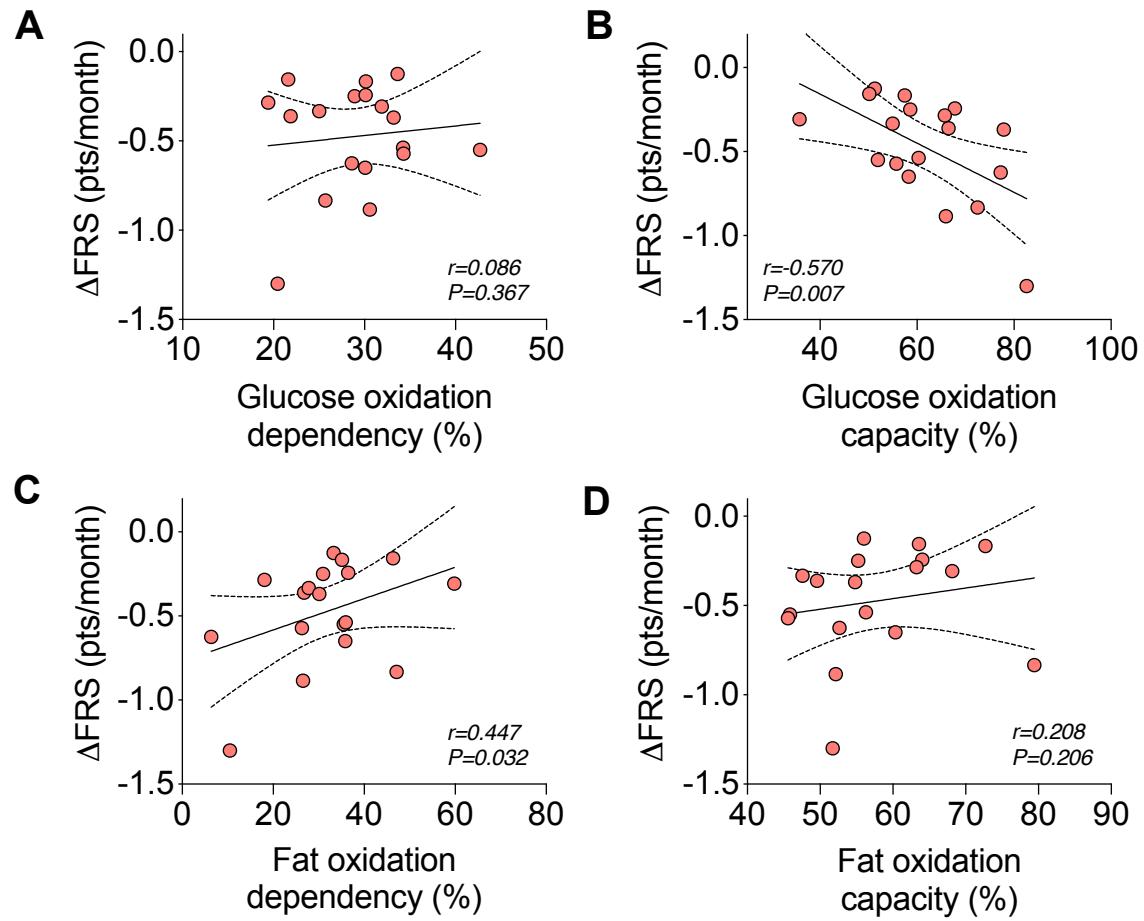
I

666 **Figure 4: A functional shift in mitochondrial fuel preference from glucose to fat occurs**
667 **in glycolytic extensor digitorum longus (EDL) muscle of SOD1^{G93A} mice.** (A) Oil Red O
668 staining and quantification of intramuscular lipid in the glycolytic EDL muscle of SOD1^{G93A} and
669 age-matched wild-type (WT) mice (n=5/group), scale bar = 50 μ m. (B) Data trace of
670 mitochondrial oxygen consumption rate (OCR, % baseline) contributed to by glucose oxidation
671 dependence. (C) Quantification of glucose oxidation dependence in isolated EDL muscle fiber
672 bundles from SOD1^{G93A} mice and WT controls. (D) Data trace of mitochondrial OCR (% baseline)
673 contributed to by glucose oxidation capacity. (E) Quantification of glucose oxidation capacity in
674 isolated EDL muscle fiber bundles from SOD1^{G93A} mice and WT controls. (F) Data trace of
675 mitochondrial OCR (% baseline) contributed to by fat oxidation dependence. (G) Quantification
676 of fat oxidation dependence in SOD1^{G93A} mice and WT control mice. (H) Data trace of
677 mitochondrial OCR (% baseline) contributed to by fat oxidation capacity. (I) Quantification of fat
678 oxidation capacity in SOD1^{G93A} mice and WT controls. White circles and columns represent WT
679 mice; blue circles and columns represent SOD1^{G93A} transgenic mice. All data presented as
680 mean \pm SEM for n=5-12/group. *P<0.05, two-way ANOVA with Bonferroni's post-doc test. PS,
681 presymptomatic; OS, onset; MS, mid-stage.


682

683 **Figure 5: Glycolytic extensor digitorum longus (EDL) muscle fiber bundles from**
684 **SOD1^{G93A} mice are capable of utilizing glucose metabolism pathways.** (A) Data traces of
685 mitochondrial oxygen consumption rate (OCR, % of baseline) when carbonylcyanide-p-
686 trifluoromethoxyphenylhydrazone (FCCP) was used to induce maximal mitochondrial
687 respiration in the presence of (A) pyruvate (PY) or (B) palmitate (PA). (C) Quantification of basal
688 OCR in EDL muscle fiber bundles from SOD1^{G93A} mice and wild-type (WT) age-matched control

689 mice. (D) Quantification of area under the curve (AUC) of OCR in muscle fiber bundles from
690 SOD1^{G93A} and WT control mice in the presence of FCCP and pyruvate. (E) Quantification of
691 area under the curve (AUC) of OCR in muscle fiber bundles from SOD1^{G93A} and WT controls in
692 the presence of FCCP and palmitate. White circles and columns represent WT mice; blue circles
693 and columns represent SOD1^{G93A} transgenic mice. All data presented as mean ± SEM for n=5-
694 12/group. *P<0.05, two-way ANOVA with Bonferroni's post-doc test. PS, presymptomatic; OS,
695 onset; MS, mid-stage.


696

697 **Figure 6: Myotubes derived from patients with amyotrophic lateral sclerosis (ALS) have**
698 **increased dependence on fat oxidation.** (A) Data traces, and quantification of mitochondrial
699 oxygen consumption rate (OCR, % baseline) contributed to by glucose oxidation dependency
700 and capacity in ALS and control myotubes. (B) Data traces, and quantification of mitochondrial
701 OCR (% baseline) contributed to by fat oxidation dependency and capacity in ALS and control
702 myotubes. All data presented as mean \pm SEM for n=11 control and n=18 ALS individuals.

703 *P<0.05, Mann Whitney t-test.

704

705 **Figure 7: Resting energy expenditure and rate of functional decline in patients with**
706 **amyotrophic lateral sclerosis (ALS) is linked to substrate utilization in myotubes derived**
707 **from respective donors.** Correlation analyses between rate of disease progression (ΔFRS)
708 and (A) glucose oxidation dependency, (B) glucose oxidation capacity, (C) fat oxidation
709 dependency, and (D) fat oxidation capacity. ΔFRS, rate of functional decline as defined by
710 (amyotrophic lateral sclerosis function rating scale-revised score-48)/disease duration (in
711 months) from symptom onset. Data presented as Pearson correlations for n=18 ALS patients.
712

713 **Table 1:**

Table 1: Characteristics of ALS patients and healthy controls at the time of muscle biopsy collection

	Control (n=11)	ALS (n=18)	P
Demographics			
Age (years)	58.9±10.1	54.9±7.2	0.214
Sex, female	3 (27.27)	4 (22.2)	0.758
Anthropometric and metabolic measures			
BMI (kg/m ²)	25.9±2.7	26.6±4.2	0.644
Fat Free Mass (kg)	53.4±10.5	54.7±10.8	0.745
Fat mass (%)	31.1±9.4	32.4±11.5	0.759
EEkc (kcal/day)	1596±331.1	1809±336.2	0.107
MI (%)	108.4±15.41	119.5±9.6	0.025
Clinical scores			
Time since onset		29.2±21.5	
ALSFRS-R		36.7±6.1	
ΔFRS		-0.5±0.3	
King's Stage		2.4±1.0	
FVC (% of predicted)		88.5±22.1	

Data presented as mean (SD) and n (%) for categorical data.

Means were compared by independent t-test and proportions with the chi-square test; BMI - Body Mass Index, EEkc - Energy expenditure kilocalories, MI - metabolic index (measured EEkc/predicted EEkc), ALSFRS-R - ALS Functional Rating Scale Revised, ΔFRS - Change in ALSFRS-R since symptom onset, FVC - Forced Vital Capacity.

714

715

716 **Supplementary Table 1:**

Supplementary Table 1: Sex and age for study participants. For ALS patients, metabolic and clinical demographics are included.

	Sex	Age	Sporadic /Familial	Mutation (if known)	EEkc (kcal/day)	MI (% of pEEkc)	King's Stage	ALSFRS-R	ΔFRS (pts/month)
Control									
CON 1	F	53			1367	114			
CON 2	M	47			2064	110			
CON 3	M	65			1738	132			
CON 4	F	64			1406	128			
CON 5	M	61			1595	97			
CON 6	M	54			1620	94			
CON 7	F	65			849	78			
CON 8	M	70			1802	116			
CON 9	M	44			1423	101			
CON 10	M	57			1925	114			
CON 11	M	76			1767	111			
ALS									
ALS 1	M	48	Sporadic		2121	113	4B	32	-0.31
ALS 2	M	53	Sporadic		1655	112	2	40	-0.25
ALS 3	F	58	Sporadic		1181	113	3	35	-0.36
ALS 4	M	65	Sporadic		1773	116	3	25	-0.88
ALS 5	M	57	Sporadic		1617	113	4B	37	-0.55
ALS 6	M	47	Familial	C9orf72	1917	111	1	41	-0.54
ALS 7	M	52	Sporadic		2130	137	2	39	-0.24
ALS 8	M	47	Sporadic		1943	108	3	42	-0.33
ALS 9	M	54	Sporadic		1673	117	1	47	-0.13
ALS 10	M	62	Sporadic		2101	120	3	33	-0.83
ALS 11	M	49	Sporadic		1690	117	1	42	-0.29
ALS 12	M	46	Familial	C9orf72	1866	109	1	41	-0.37
ALS 13	M	51	Familial	SOD1	2269	133	2	40	-0.57
ALS 14	F	70	Sporadic		1226	127	3	38	-0.63
ALS 15	M	54	Sporadic		2053	114	2	33	-0.16
ALS 16	F	66	Sporadic		1206	129	4B	22	-1.3
ALS 17	F	60	Sporadic		2068	124	2	38	-0.17
ALS 18	M	57	Sporadic		2079	137	3	35	-0.65

EEkc - Energy expenditure kilocalories, MI - metabolic index (measured EEkc/predicted EEkc x 100), ALSFRS-R

R - ALS Functional Rating Scale Revised, ΔFRS = (ALSFRS-R-48)/disease duration from symptom onset.

717

718

719 **Supplementary Table 2:**

Supplementary Table 2: Correlations between cellular bioenergetic parameters and patient resting energy expenditure, metabolic index and clinical demographics.

	r	95% confidence interval	P value
Resting energy expenditure (mEEkc)			
Glucose oxidation dependence	0.281	-0.214 to 0.661	0.129
Glucose oxidation capacity	-0.486	-0.777 to -0.025	0.020
Fat oxidation dependence	0.685	0.320 to 0.873	0.001
Fat oxidation capacity	0.458	-0.011 to 0.762	0.028
Metabolic Index (mEEkc/pEEkc)			
Glucose oxidation dependence	-0.030	-0.4898 to 0.4433"	0.454
Glucose oxidation capacity	0.252	-0.2435 to 0.6432"	0.157
Fat oxidation dependence	-0.228	-0.6277 to 0.2678"	0.182
Fat oxidation capacity	0.130	-0.3585 to 0.5628"	0.303
ALSFRS-R			
Glucose oxidation dependence	0.300	-0.194 to 0.673	0.113
Glucose oxidation capacity	-0.246	-0.639 to 0.250	0.163
Fat oxidation dependence	0.021	-0.450 to 0.483	0.466
Fat oxidation capacity	-0.075	-0.524 to 0.406	0.383
ΔFRS (pts/month)			
Glucose oxidation dependence	0.086	-0.397 to 0.531	0.367
Glucose oxidation capacity	-0.570	-0.819 to -0.141	0.007
Fat oxidation dependence	0.447	-0.026 to 0.756	0.032
Fat oxidation capacity	0.208	-0.287 to 0.615	0.206

mEEkc - measured energy expenditure as kilocalories/day, pEEkc - predicted energy expenditure as kilocalories/day, ALSFRS-R - ALS Functional Rating Scale Revised, ΔFRS = (ALSFRS-R-48)/disease duration (in months) from symptom onset.