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Abstract  1 

 2 

Cervical cancer is caused by carcinogenic human papillomavirus infection and represents one of the 3 

leading causes of cancer death worldwide. Effective means of tumour classification are required for 4 

better disease understanding. We performed an integrated multi-omic  analysis of 655 cervical 5 

cancers, using epigenomic and transcriptomic signatures to discover two distinct cervical cancer 6 

subtypes we named “typical” and “atypical”. Typical tumours were largely HPV16-driven and 7 

frequently displayed an ‘immune-hot’ tumour microenvironment. Atypical tumours were associated 8 

with poor prognosis; they were more likely to be driven by HPVs from the HPV18-containing a7 clade, 9 

displayed distinct genomic aberrations, greater evidence of past immunoediting and a 10 

microenvironment associated with immune-evasion and failure of anti-PD1 checkpoint inhibition.  The 11 

finding that atypical tumours encounter stronger anti-tumour immune responses during development 12 

may explain the lower frequency at which a7 HPV infected-lesions progress from pre-invasive disease. 13 

However those escaping this selection pressure evolve into aggressive tumours (independent of HPV-14 

type) in which more intensive adjuvant treatment may be warranted. 15 

 16 

-- 17 

 18 

Despite screening and the introduction of prophylactic human papillomavirus (HPV) vaccination in 19 

developed countries, cervical cancer continues to be one of the leading worldwide causes of cancer-20 

related deaths in women. Prognosis for patients with metastatic disease remains poor, thus new 21 

treatments and effective molecular markers for patient stratification are urgently required. Cervical 22 

cancer is caused by at least 14 high-risk human papillomaviruses (hrHPVs), with HPV16 and HPV18 23 

together accounting for over 70% of cases worldwide1. Although among the hrHPVs, HPV16 and 24 

HPV33 (both from the a9 clade) infections are associated with much higher chance of progression to 25 
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high-grade neoplasias but the presence of HPV16 in particular, has been linked to improved survival 1 

in cervical cancer and HPV+ head and neck squamous cell carcinoma (HNSCC)1-3. We have previously 2 

shown in an interim analysis of TCGA data that the majority of HPV16+ cervical tumours fall into a 3 

good prognosis group based on similarity at the DNA methylation level to HPV16+ HNSCC and penile 4 

cancer4. This apparent paradox, in which HPV16 behaves more aggressively in the context of tumour 5 

development but in which the resulting tumours are less aggressive, suggests fundamental differences 6 

in the natural history of tumours driven by different HPV types. Integrated molecular analysis of 228 7 

cervical cancers by TCGA reported differential micro-RNA expression and transcription factor 8 

activation between tumours harbouring different HPV types5. However, a biological explanation for 9 

the apparent type-specific clinical differences noted in the above studies remains unexplored, largely 10 

due to a lack of sufficiently large cohorts for which HPV typing, molecular and clinical data are 11 

available.  12 

 13 

To address this question we used data from 281 cervical tumours profiled by TCGA5 as our discovery 14 

cohort (Table 1, Table S1) and 374 cervical cancers from three European centres, all with detailed 15 

clinical annotation and long term follow-up as our validation cohort6,7 (Table 1, Table S2). 16 

Representing to our knowledge, the largest study of its kind in cervical cancer, we defined two cervical 17 

cancer subtypes; an “atypical” aggressive subtype defined by a lymphocyte-depleted 18 

microenvironment and evidence for epithelial-mesenchymal transition, and a “typical” subgroup 19 

comprised almost entirely of tumours harbouring a9 HPVs and associated with longer overall survival. 20 

The molecular, cellular and clinical differences identified between typical and atypical tumours also 21 

reveal new potential therapeutic options for the treatment of cervical cancers.  22 

 23 
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Results  1 

 2 

 3 

 4 

Table 1: Summary of clinicopathological characteristics for the two cervical cancer cohorts. 5 

    

   
TCGA Training 

Cohort 
European Validation 

Cohort  
Histology     

 Adenocarcinoma 44 32 

 Squamous cell Carcinoma  237 335 

 Adenosquamous  0 7 
Stage     

 I 153 98 

 II 61 194 

 III 43 65 

 IV 17 17 

 NA 7 0 

    
Age Median (Range) 46 (20-88) 51 (22-91) 

HPV Sub Type    
 16 166 160 

 18 38 140 

 45 22 15 

 Other 55 50 

 Negative 0 11 
Survival Status     

 Alive 226 275 

 Dead 55 99 

Cluster Assignment   
 Typical 231 301 

 Atypical  50 73 
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 1 

Generation of HPV type-specific gene expression and DNA methylation profiles in 2 

cervical cancer 3 

  4 

To look for associations between HPV type and overall survival while avoiding confounding from 5 

histology and advanced stage, we initially reduced our discovery cohort to 139 stage I and II squamous 6 

cell carcinomas (SCCs), which we confirmed using VirusSeq8 to be transcript-positive for at least one 7 

of the three most common HPV types (HPV16, HPV18 and HPV45), and for which the covariates age 8 

and tumour stage were available. Multivariate Cox regression identified a significantly worse 9 

prognosis in HPV45-driven tumours relative to HPV16 (HR = 5.040, p < 1e-3), while HPV18+ tumours 10 

exhibited an intermediate prognosis (Figure 1A).  11 

 12 

Modelling transcriptomic and epigenomic (DNA methylation) differences between HPV16 and HPV45-13 

associated early-stage tumours identified 713 DEGs (Differentially Expressed Genes, FDR=0.01, FC > 2; 14 

Figure 1B, Table S3) and 689 MVPs (Methylation Variable Positions, delta-Beta 0.1, FDR < 0.01),  15 

(Figure 1C, Table S4). 10 DEGs previously shown to be aberrantly expressed in HPV-associated cancers 16 

from different anatomic sites9 displayed greater dysregulation in HPV16+ than in HPV45+ cervical 17 

tumours, while two (PLOD2 and KRT18) were more strongly upregulated in HPV45+ tumours (Figure 18 

1D). Several DEGs were also differentially methylated between HPV16+ and HPV45+ tumours (Figure 19 

S1). These findings indicate molecular differences between cervical cancers driven by different hrHPV 20 

types which may manifest in clinical differences. 21 
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 1 

Development and validation of a prognostic classification. 2 

Interestingly, when using either the 713 DEG or 613 MVP signatures, a minority (10% gene expression-3 

based,  11% DNA methylation-based) early-stage HPV16+ SCCs clustered with the  HPV45+ tumours in 4 

the discovery cohort (Figures 1B and 1C). We subsequently used consensus clustering based on the 5 

713 DEG signature, which identified two robust clusters, which we termed “typical” and “atypical” 6 

cervical cancer subtypes. 6 of 104 HPV16+ tumours co-clustered with the majority (13 of 17) of 7 

HPV45+ tumours in the atypical subgroup, which also contained 28% (5/18) of the HPV18+ tumours 8 

(Figure 2A, Table S1). To assess if these typical and atypical subgroups also exist at the epigenetic 9 

level, we developed a DNA methylation Support Vector Machine (SVM) classification model, using 10 

TCGA DNA methylation data reduced to 178 CpG sites at which methylation differed significantly 11 

between tumours in typical versus atypical clusters (Figure 2B, mean delta-Beta > 0.3, FDR < 0.01,  12 
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 1 

Figure 1. Clinical and molecular variation among TCGA cervical cancers driven by different HPV types. A) 2 

HPV45+ early stage Cervical Squamous Cancers display markedly worse prognosis compared to HPV16+ cancers 3 

with HPV18+ tumours showing intermediate survival. HR and p-value from Cox regression controlling for stage. 4 

B) Comparisons between HPV45+ and HPV16+ tumours identify large scale variation in transcriptional and C) 5 

epigenetic (genome-wide DNA methylation) profiles. D) Twelve genes from a pan-tissue signature for HPV-6 

driven tumorigenesis show significant variation between HPV16+ and HPV45+ tumours.  7 

 8 

Table S5). Using this signature we allocated cluster membership to a further 374 cervical cancers from 9 

our validation cohort (Figure 2C and Table S2). Adenocarcinomas (12 of 32) and adenosquamous 10 
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carcinomas (5 of 7) were more likely to be classified as atypical than SCCs (56/335, p = 4.526e-09, 1 

Fisher’s Exact Test) and again, the majority (141 of 160) HPV16+ tumours were designated as typical 2 

(Figure 2C). We could accurately predict the DEG-based cluster assignment using the MVP signature 3 

for all validation cohort tumours for which gene expression data were available (RNA-seq for Bergen 4 

samples (n = 65) and Illumina HumanHT-12 V4.0 expression beadchip arrays for Oslo samples (n = 5 

268), Figure S2A), confirming that both MVP and DEG signatures classify the same tumours as typical 6 

or atypical. Single-sample gene set enrichment analysis (ssGSEA)10 of the same tumours confirmed 7 

differential expression of the signature genes in tumours classified as typical or atypical using DNA 8 

methylation (Figure S2B). Having derived our typical and atypical clusters directly from the HPV45 vs 9 

HPV16 expression signature and shown that they were consistent whether assigned from gene 10 

expression or from DNA methylation data, for clarity we henceforth refer to all comparisons as atypical 11 

and typical. Integrating DNA and RNA-based HPV typing where available, we confirmed that co-12 

infection with HPV45 or other HPV types was not responsible for the assignment of HPV16 transcript-13 

positive samples to the atypical group. In both the validation and discovery cohorts, HPV types from  14 

the a7 clade (HPV18, 45, 59, 68, 70) were strongly enriched in atypical tumours (atypical tumours 15 

were 2.3X more likely to harbour a7 HPVs than typical tumours, p = 1.85e-14 Fisher’s Exact Test).  16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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 1 

Figure 2. Derivation of two type-associated prognostic subgroups in cervical cancer and validation across 2 

independent cohorts. A) HPV45-like transcriptional profiles are also shared by small numbers of HPV16+ and 3 

HPV18+ tumours, coalescing into HPV45-like (‘Atypical’) and HPV16-like (‘Typical’) clusters. B) A signature of 4 

DNA methylation (dB > 0.3, FDR < 0.01) separates these groups based on consensus clustering (see methods for 5 

details). C) The methylation patterns are reproduced in a validation dataset from three European centres (n = 6 

374). D) Survival curves and statistics from multivariate Cox regression of overall survival in TCGA cervical cancer 7 
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cohort stratified by cluster. E)  Survival curves and statistics from multivariate Cox regression of overall survival 1 

in the European validation cohort stratified by cluster.  2 

 3 

Multivariate analysis of survival data from the 274 TCGA tumours for which tumour stage was 4 

available identified a significant prognostic difference between the typical and atypical subgroups 5 

(Figure 2D; HR = 2.24, p = 0.01). This difference became even greater when restricting to stage I/II 6 

tumours  (Figure S3A; n = 139, HR = 4.88, p = 0.0006), and was retained even upon removal of the 7 

HPV45+ tumours (Figure S3B; n = 122, HR = 4.91, p = 0.03).   Cox regression stratifying by histology 8 

and controlling for FIGO stage and treatment (surgery alone, surgery with radio-chemotherapy and 9 

surgery with chemotherapy alone) identified typical/atypical status to be an independent predictor of 10 

overall survival in the validation cohort (n = 374, HR = 1.65 , p = 0.043, Figure 2E). Again, the survival 11 

difference between the typical and atypical groups was greater when stage IV tumours were excluded 12 

(n = 357, HR = 1.73, p = 0.04) and was most pronounced in stage II tumours (n = 194, HR = 2.59, p = 13 

0.02).  14 

 15 

Evidence for epithelial to mesenchymal transition (EMT) in atypical tumours. 16 

Gene set enrichment using Ingenuity Pathway Analysis ‘Diseases and Functions Ontology’ (Figure S4, 17 

Table S6) which identified cellular movement as the most activated pathway in atypical tumours, with 18 

85 of 121 genes in the set expressed consistent with increased metastatic potential.  Prominent pro-19 

metastatic genes in this pathway included the transcription factor SNAI1 (a master regulator of EMT 20 

that accompanies invasion through the basement membrane and dissemination from the primary 21 

tumour11 , fibronectin 1, which is known to trigger EMT-associated transcriptional cascades12, RHOF, 22 

a prominent player in invasion through pseudofilopodia formation13 and VEGFC, involved in 23 

prometastatic lymphangiogenesis14. Multiple other gene sets also pertaining to cell movement were 24 

strongly enriched and associated with high activation z-scores in atypical tumours (Figure S4, Table 25 
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S6).  Moreover, these tumours expressed high levels of Transforming Growth Factor (TGFB1 and 1 

TGFB2, Table S3), which have been implicated as key inducers of EMT that are potentially amenable 2 

to therapeutic targeting (reviewed in15). Given these findings, we examined the relationship between 3 

our subtypes and the poor-prognosis cervical cancer EMT cluster defined by TCGA based on reverse 4 

phase protein array (RPPA) data5. 62% of atypical TCGA tumours with RPPA data available belong to 5 

the EMT cluster compared with only 20% of typical tumours. Consistent with the proteomic 6 

classification, atypical tumours displayed higher EMT gene expression scores, as defined by TCGA5, 7 

than typical tumours (Figure S5). Upstream regulator analysis identified EZH2 and SMARCA4, both 8 

chromatin modifiers, as the leading differentially-activated regulators in atypical tumours (Figure S6, 9 

Table S7). Notably EZH2 expression has previously been linked to poor prognosis in cervical cancer16. 10 

Other key activated regulators include b-catenin and HIF1a, both of which have been linked to chemo 11 

or radio- resistance and poor prognosis in cervical cancer17-19. These analyses link the atypical 12 

expression signature to several independently discovered poor prognostic factors.  13 

 14 

Genomic analyses of prognostic clusters  15 

To search for genomic differences between typical and atypical cancers, we analysed mutation (WEX) 16 

and copy number data from samples with matched methylation data20.  We first generated segmented 17 

copy number data for all tumours (combining the TCGA and validation cohort samples for which the 18 

necessary data were available for maximum statistical power), which identified 387 focal candidate 19 

copy number alterations at FDR < 0.1. Following binomial regression, we identified 12  discrete copy  20 
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 1 

Figure 3. Genomic differences between cervical cancer subgroups. A) Volcano plot showing differences in 2 

GISTIC copy number peak frequencies between typical and atypical tumours, with -log10(FDR) on the y axis and 3 

odds ratio on the x axis. B) Volcano plot showing differentially abundant proteins and phospho-proteins (FDR < 4 

0.05, FC > 1.3, represented by yellow dots) between typical and atypical TCGA tumours, as measured by Reverse 5 

Phase Protein Array. C) Bar chart showing mutation frequencies for candidate driver mutations in typical and 6 

atypical cancers. Y axis indicates percentage of tumours mutated within tumour subtype, and the outline colour 7 

indicates statistical significance of differences in mutation frequencies.  D) Histograms show overall mutational 8 
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burdens are greater in HPV16-like cancers. Odds ratios and p values are from a negative binomial GLM. E) 1 

Neoantigen burdens are elevated in typical tumours cervical cancers (estimates and p-values from negative 2 

binomial regression). F) Atypical tumours display greater evidence of past immunoediting as measured by 3 

depletion of predicted neoantigens versus total mutations.  4 

 5 

number alterations between typical and atypical clusters (Table S8, Figure 3A; FDR < 0.1,  log2 (Odds 6 

Ratio) > 1). These included 1p31.3 loss and 11q22.1 gain which were more prevalent in atypical 7 

tumours and multiple 3q gains and 1p13.3 gain, and 11q22.1 loss, which were disproportionately 8 

common in typical cancers (Figure 3A). Notably, the 11q22.1 gain seen in atypical  tumours are centred 9 

on the Yes-Associated Protein 1 (YAP1): a key transcription factor downstream of the HIPPO signalling 10 

pathway. Analysis of Reverse Phase Protein Assay (RPPA) data from TCGA also revealed significantly 11 

higher YAP1 protein expression in the atypical tumours (Fig 3B).  We confirmed that those same cases 12 

with YAP1 amplification (7/28 atypical tumours and 12/141 typical tumours) also showed increased 13 

YAP1 mRNA and protein expression. 14 

 15 

We next compared the somatic mutation rates in a defined set of candidate driver genes, using a 16 

binomial regression. This identified PIK3CA, FBXW7 and PTEN mutations as disproportionately more 17 

common in typical cancers and loss-of-function STK11 mutations as more frequent in atypical tumours 18 

(FDR < 0.25, Figure 3C), STK11 (LKB1) is also under-expressed in atypical tumours compared with 19 

typical tumours (Table S1). We observed a higher overall mutation burden in typical tumours (OR= 20 

0.48, p = 1.4e-5, Figure 3D), leading us to investigate whether there is also a difference in neoantigen 21 

load between the subgroups. Fitting a negative binomial GLM to neoantigen data from TCGA (31 22 

atypical, 157 typical for which neoantigen estimates were available from the Cancer Immunome Atlas 23 

21) revealed markedly more predicted neoantigens in typical tumours, at both the gene and individual 24 

MHC class 1-binding peptide level (OR = 1.72, p = 0.01 and OR = 1.99, p = 0.001 respectively, Figure 25 
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3E). Interestingly, the ratio of expected versus observed neoantigens per tumour (neoantigen 1 

depletion, see methods) is greater in atypical tumours (p = 0.02 (Wilcoxon’s Rank Sum test), Fig 3F), 2 

suggesting more extensive immunoediting during their development and leading us to compare the 3 

tumour immune microenvironment between subgroups. 4 

 5 

Immunological analyses of prognostic clusters implicate microenvironmental differences and 6 

highlight potential therapeutic interventions.   7 

 8 

The nature of the tumour immune microenvironment, particularly the abundance of tumour 9 

infiltrating lymphocytes (TILs) is a strong prognostic factor in HPV-associated cancers9,22-26.  Pathway 10 

analysis revealed activation of granulocyte and aggranulocyte adhesion along with diapedesis in 11 

atypical tumours, suggesting increased neutrophil infiltration. Other pathways activated in atypical 12 

tumours include inflammatory processes such as Acute Phase Response, TREM1 signalling, 13 

complement activation and AHR (Aryl Hydrocarbon Receptor) signalling which are often associated 14 

with macrophages (Figure S7, Table S9), suggesting a strong microenvironmental component may 15 

mediate type-associated pathology.  This is supported by the presence of multiple cytokines and 16 

chemokines in the atypical-associated transcriptional signature, including IL11, IL18, IL1B, IL24, IL6, 17 

IL8, CCL2, CXCL2, CXCL3, CXCL5, TNF (TNF-a) and TNFAIP6 (Table S3). We next used DNA methylation 18 

data to compare the cellular composition of tumours27, observing differences in the proportions of 19 

multiple cell types between the subgroups (Figure 4A); most notably decreased CD8+ (cytotoxic T 20 

lymphocytes (CTL)), a marked elevation of neutrophil and natural killer (NK)-cells and lower tumour 21 

purity in atypical cancers (the latter confirmed using genomic estimates28 (ABSOLUTE); Figure S8, p = 22 

0.02 (Wilcoxon’s Rank Sum test). Integrating these cell type estimates with our previously-published 23 

pan-cancer immune hot/cold classification27, we also found significant enrichment for immune-hot 24 
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cancers in the typical subgroup (Figure 4B; p = 1.9e-10), consistent with increased CTL infiltration, 1 

CTL:Treg ratios (Figure S9) and higher MHC class I neoantigen loads in these tumours.  2 

 3 

Figure 4. Differences in the immune microenvironment between cervical cancer subgroups. A) Plot showing 4 

median abundances (x-axis) and median differences (%, y-axis) for different cell types estimated using 5 

MethylCIBERSORT, with significant differences in orange. B) Applying a pan-cancer classifier to DNA methylation 6 

data from the cervical cancer samples shows typical tumours are significantly more likely to be immune-hot than 7 

atypical tumours. C) Atypical tumours display increased neutrophil:CTL ratios as estimated using 8 

MethylCIBERSORT.  D) Representative images showing Immunohistochemistry for MPO (neutrophils) and CD8 9 
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in cervical tumour sections. E) Correlations between MethylCIBERSORT estimates and immunohistochemistry-1 

based scoring for neutrophils (MPO+). F) Correlations between MethylCIBERSORT estimates and 2 

immunohistochemistry-based scoring for CD8+ T-cells. G) Correlations between MethylCIBERSORT estimates 3 

and immunohistochemistry-based scoring for CD8+ T-cell:neutrophil ratios in 17 cervical tumours from the 4 

validation cohort. H) Typical tumours show higher fractions of proinflammatory (M1) compared to 5 

immunosuppressive (M2/M0) macrophages (y axis = ratios, p value from Wilcoxon’s Rank Sum Test). I) ssGSEA 6 

scores (y-axis) showing enrichment for a TGFb-associated extracellular matrix gene expression signature in 7 

atypical tumours. 8 

 9 

The estimation of increased neutrophil abundance in atypical tumours (Figure 4A) is supported by the 10 

upregulation of genes associated with granulocyte diapedesis inferred from pathway analysis (Table 11 

S4) and with increased ssGSEA scores for a neutrophil gene set derived from publicly-available gene 12 

expression data (see methods; p<9.2e-6 (Wilcoxon’s Rank Sum test) Figure S10). Atypical tumours also 13 

exhibit a markedly higher neutrophil:CTL ratio (Figure 4C); an established adverse prognostic factor in 14 

cervical cancer29,30. Enumerating CTLs and neutrophils by IHC for CD8 and MPO respectively in 17 15 

tumours from our validation cohort (representative images shown in Figure 4D, see methods for 16 

details) revealed strong correlations with MethylCIBERSORT estimates (Figure 4E-G). Given the 17 

upregulation of multiple CXCR2-ligands (CXCL1, CXCL2, CXCL3, CXCL3) as well as G-CSF, PTGS1, PTGS2, 18 

IL-1B, CCL2, IL6 (Table S3) and activation of TREM1 signalling (Figure S7, Table S9) 31-36 in atypical 19 

tumours, all of which are associated with Monocytic-Myeloid Derived Suppressor Cells or tolerogenic 20 

macrophages, we used CIBERSORT37 to derive estimates of macrophage subpopulations for samples 21 

with expression data in our dataset.  Atypical tumours displayed significantly lower pro-effector (M1) 22 

macrophage proportions relative to suppressive (M0 and M2-like) macrophages (p = 0.016 (Wilcoxon’s 23 

Rank Sum test), Figure 4H). Finally, we observed enrichment for a TGFb-associated extracellular matrix 24 

gene expression signature (C-ECM) in atypical tumours that we have previously linked to immune 25 

evasion and failure of PD1 blockade in melanoma and bladder cancer27. Although total fibroblast 26 
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content was similar between typical and atypical tumours (Figure 4A) enrichment for the C-ECM 1 

signature indicates increased myofibroblast trans-differentiation, which could explain the lack of CTL 2 

infiltration and the poor prognosis seen in atypical tumours. 3 

 4 

Discussion  5 

Of the studies indicating an association between HPV type and prognosis in cervical cancer, both 6 

HPV18 and the a7 clade to which it belongs have been linked to worse prognosis in early-stage 7 

tumours38-40. Our analysis of TCGA cervical cancer data agrees with these studies; among early-stage 8 

SCCs, HPV18 was associated with worse prognosis than HPV16 and for tumours harbouring HPV45 9 

(also an a7 type), prognosis was worse still. Although the numbers are small, this observation could 10 

help to explain why in a further study, positivity for HPV16 or 18 was associated with favourable 11 

prognosis compared with other HPV types or no HPV detection41. 12 

 13 

Examining the molecular alterations and tumour microenvironment in a large set of tumours provided 14 

insight into the complex interplay of HPV type, histology and changes to the host genome that drive 15 

cervical carcinogenesis. Firstly, when clustering based on gene expression differences between 16 

HPV16+ and HPV45+ tumours, a small minority of HPV16+ tumours co-clustered with the majority of 17 

HPV45+ tumours, while HPV18+ tumours were found in both clusters. These clusters were robust; 18 

they could be recapitulated at the DNA methylation level and in a larger independent cohort. In both 19 

cohorts, we observed a clear difference in prognosis between the clusters, even after inclusion of 20 

tumours displaying poor prognostic features, including locally advanced tumours, adenocarcinomas 21 

and adenosquamous carcinomas42. Likewise, the survival differences were not driven by particularly 22 

poor outcomes among HPV45+ tumours, as they remained following exclusion of these samples 23 

(Figure S3) and there were very few HPV45+ samples in the validation cohort (Table S4). Consistent 24 
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with these observations, membership of the atypical subgroup was an independent prognostic factor 1 

in the validation cohort. 2 

 3 

Our aggressive, atypical subgroup is enriched for genes linked to EMT and displays significant overlap 4 

with the EMT cluster defined for the subset of TCGA samples with RPPA data available; in particular 5 

increased expression of YAP1, which in most cases appears to be driven by YAP1 gene amplification. 6 

Our finding that a subgroup of HPV16+ tumours co-cluster with tumours driven almost exclusively by 7 

a7 HPV types suggests that cervical cancers driven by different HPV types evolve along different 8 

trajectories but that HPV16+ tumours can occasionally develop via the atypical route more commonly 9 

associated with the a7 types.  HPV18+ tumours can likewise evolve via either route but like the other 10 

a7 types, HPV18+ tumours are frequently atypical. We postulate that the host immune response is 11 

the key driver here: a cervical cancer developing in the presence of a stronger immune response will 12 

become an atypical tumour, hence the greater neoantigen depletion and immune-13 

evasive/suppressive features displayed in the tumours at time of resection, including M2 macrophage 14 

polarization, increased neutrophil abundance, reduced CTL:Treg ratios and increased ECM deposition. 15 

By extension, this implies that a7 HPV types elicit more effective immunosurveillance than HPV16 and 16 

the other a9 types, however when HPV16-transformed cells do encounter an effective immune 17 

response, the resulting tumours develop down the atypical trajectory. This model could also explain 18 

why HPV16 infections are at much higher risk to progress to CIN3 than other HPV types3. Greater 19 

immunogenicity of a7 HPVs might also explain why they are so rarely, if ever, associated with cancers 20 

developing at sites such as the oropharynx, where HPV16 dominates but other a9 types are 21 

occasionally seen43.  22 

 23 

Two genomic features of atypical tumours are particularly likely to be selected for in cells under 24 

immune surveillance, STK11 and YAP1. STK11 loss-of-function drives immunosuppressive TGF-beta 25 
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signalling44 and  activates glycolysis, in turn suppressing T-cell homing and activity45 46,47 . Consistent 1 

with this, STK11 mutations have recently been implicated in mediating resistance to PD1/PD-L1 2 

blockade 48. YAP1, is frequently amplified in atypical tumours, has been shown to drive cervical cancer 3 

development in mice even in the absence of HPV, and strongly synergizes with HPV16 E6 and E7 to 4 

promote tumorigenesis 49,50. It is also associated with poor prognosis, reduced lymphocyte activation 5 

and resistance to PD1/PD-L1 blockade in HNSCC 51. Downstream of these genomic alterations, TGF-6 

beta is known to modulate several features of the microenvironment observed in atypical cancers: it 7 

suppresses NK cell activation52; drives M2-polarisation in macrophages53, induces neutrophil switching 8 

to an immunosuppressive phenotype54 and drives immunotherapy resistance through T-cell exclusion 9 

by CAFs55 in addition to its established role in driving metastasis. Our analysis suggests that typical 10 

cervical cancers, with their higher mutation burdens and greater T-lymphocyte infiltration will be good 11 

candidates for immunotherapy. What therapeutic strategies might be efficacious in the atypical 12 

tumours, which display worse prognosis, even when resected at early stage? Although TGF-beta 13 

inhibition for cancer treatment has thus far been limited by toxicity, inhibiting NOX4, an NADPH 14 

oxidase required for fibroblast differentiation into ECM-depositing myofibroblasts has recently been 15 

shown to permit CTL infiltration and to potentiate immunotherapy in a mouse model of HPV-16 

associated cancer 56.  GKT137831, the NOX4 inhibitor used in this study is already approved for use in 17 

fibrosis, so could readily be trialled in patients. In those atypical cervical cancers harbouring loss-of-18 

function STK11 mutations, treatment with the mitochondrial inhibitor Phenformin is a possible 19 

therapeutic option57. 20 

 21 

In summary, by assembling the largest multi-omics cervical cancer dataset to date, we have gained 22 

novel insights into the development and progression of this disease. It has also allowed us to  develop 23 

a prognostic classification that captures variation in HPV type, host genomic alterations and the 24 

tumour microenvironment and offers the potential for stratification of cervical cancer patients for 25 
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improved clinical management. Genome-wide DNA methylation profiling is already being used in the 1 

clinic for diagnosis and stratification of brain tumours58, thus a similar strategy could readily be tested 2 

for cervical cancer. 3 

 4 

Methods  5 

Dataset assembly 6 

DNA methylation (Illumina Infinium 450k array) and RNAseq data were obtained for CESC from the 7 

TCGA data portal. TCGA mutation data were obtained from the MC3 project on SAGE Synapse 8 

(syn7214402). DNA methylation (Illumina Infinium 450k array) and gene expression (Illumina 9 

HumanHT-12 V4.0 expression beadchip) data from the Oslo cohort were obtained from the Gene 10 

Expression Omnibus (GSE68339). RNAseq data were obtained for the Bergen cohort from dbGaP 11 

(phs000600/DS-CA-MDS) and were converted to fastq files using SRA-dump from the SRA Toolkit 12 

(http://ncbi.github.io/sra-tools/). Kallisto59 was then used to quantify expression of GENCODE GrCh37 13 

transcripts, repbase repeats and transcripts from 20 different high-risk HPV types with bias correction. 14 

Where IDAT files for 450k data were available, they were parsed using minfi60 and were subjected to 15 

Functional Normalisation61, followed by BMIQ-correction62 for probe type distribution (which was 16 

done for all methylation data). For TCGA samples, viral type allocation was performed using VirusSeq8. 17 

 18 

Generation of 450k methylation profiles. 19 

100ng DNA was bisulphite converted using the EZ DNA Methylation kit (Zymo Research) as per 20 

manufacturer’s instructions.  Bisulphite converted DNA hybridised to the Infinium 450K Human 21 

Methylation array, and processed in accordance with the manufacturer's recommendations.  22 

 23 

 24 
 HPV typing. 25 
 26 
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HPV16 or 18 was detected in 230 samples from the Oslo cohort by PCR, using the primers listed in63. 1 

The PCR products were detected by polyacrylamide gene electrophoresis or the Agilent DNA 1000 kit 2 

(Agilent Technologies Inc, Germany). Samples from the Innsbruck cohort and the remaining non-3 

HPV16/18 samples from the Oslo cohort (n=38) were HPV-typed by DDL Diagnostic Laboratory 4 

(Netherlands) using the SPF10 assay, in which a PCR-based detection of over 50 HPV types is followed 5 

by a genotyping assay (LIPA25) that identifies 25 HPV types (HPV 6, 11, 16, 18, 31, 33, 34, 35, 39, 40, 6 

42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 66, 68/73, 70 and 74). HPV type data for the remaining samples 7 

were published previously5,7 8 

 9 

Prognostic analyses and tumour clustering 10 

Associations between HPV type and survival were tested for early stage (Stage I and II) CESC in the 11 

TCGA cohort containing either HPV16, HPV18 or HPV45. Limma-voom and limma on BMIQ and 12 

Functionally-normalised 450k data were used to identify differentially expressed genes and 13 

methylation variable positions between HPV45 and HPV16 associated tumours. Expression profiles 14 

were clustered to yield HPV45-like (atypical) and HPV16-like (typical) cancers using the clusterCons 15 

package64. The caret R package and limma were used to develop an SVM using 5 iterations of 5-fold 16 

Cross-Validation to allocate 450k samples to these subgroups.  17 

Samples from our validation cohort, comprise of cases from three European centres (Bergen and Oslo 18 

in Norway and Innsbruck, Austria) were binned into these categories, along with TCGA samples not in 19 

the original training set, and taken together were used for subsequent statistical analyses to identify 20 

genomic and microenvironmental correlates. Associations between nodal dissemination and the 21 

HPV45 signature were carried out using the caret R package. A GLMnet with 5 iterations of 5-fold 22 

Cross-Validation was applied, with out-of-fold estimates used to assess performance using Affymetrix 23 

array data from GSE26511.  Survival analyses of epigenetic allocations were carried out using Cox 24 

Proportional Hazards regression with stratification by histology, and with surgery, radiotherapy and 25 
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chemotherapy (given/not given) as covariates. For all clinical analyses, stages were collapsed into 1 

Stages I, II, III and IV.  2 

Pathway analyses 3 

Pathways were analysed with Ingenuity Pathway Analysis. Settings used were experimentally 4 

validated interactions in human models. Z-score cutoffs of 2 and FDR cutoffs of 0.05 were used to 5 

identify significant hits from Canonical Pathways, Upstream Regulator and Functions ontology 6 

analyses for plotting.  7 

Copy number analysis  8 

450k total intensities (Methylated and Unmethylated values) were used to generate copy number 9 

profiles with normal blood samples from Renius et al65 as the germline reference. Functional 10 

normalisation 61 was used to regress out technical variation across the reference and tumour datasets 11 

before merging and quantile normalisation was used to normalise combined intensities followed by 12 

Circular Binary Segmentation as previously described20. Median density peak correction was 13 

performed to ensure centering before further analysis. GISTIC2.066 was then used to identify regions 14 

of significant copy number change at both arm and gene levels. Candidate copy number changes were 15 

evaluated for association with cluster using binomial GLMs.  16 

The parameters chosen were a noise threshold of 0.1 with arm-level peel off and a confidence level 17 

of 0.95 was used to nominate genes targeted by copy number changes. Binomial regression was finally 18 

used to estimate rates of differential alteration.   19 

Mutational analyses 20 
 21 
 22 
For TCGA data, mutation calls were obtained from SAGE synapse as called by the MC3 project. 23 

Mutations for the Bergen cohort were obtained from7. Binomial GLMs were then used to estimate 24 

associations between the aggressiveness clusters and mutation frequencies. 25 
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Immunological Analyses 1 

MHC-class I neoantigens were retrieved using The Cancer Immunome Atlas21 for TCGA samples. 2 

Immunoediting estimates were computed based on silent mutation rates as previously described in 3 

Rooney et al 67 . Comparisons with immune infiltration in HPV+ Head and Neck Tumours were carried 4 

out using a previously published, manually-curated signature of immune-checkpoints, infiltration 5 

markers and effector molecules 9. MethylCIBERSORT27  was used to estimate tumour purity and 6 

abundances of seven other microenvironmental cellular fractions. Monocyte polarisation was 7 

computed using CIBERSORT on the basis of the original LM22 matrix (1000 permutations, data 8 

supplied in counts per million) provided with the software. We normalised the estimates to total 9 

monocyte fractions and estimated the fraction of proinflammatory (M1 and dendritic cells) relative to 10 

all monocytes to yield a proinflammatory monocyte fraction, which was tested for associations with 11 

prognostic cluster using Wilcoxon’s Rank Sum Test.   12 

To generate a neutrophil gene expression signature for assessing neutrophil content by ssGSEA, RNA-13 

seq data were downloaded from the European Nucleotide Archive for the following datasets - 14 

PRJEB1184468, GSE6042469, and E-MTAB-231970 in order to derive an RNAseq dataset of immune cell 15 

types. Kallisto59 was used to quantify gene expression with a reference transcriptome consisting of 16 

Gencode Grch37 assembly of protein coding and lincRNA transcripts. Data were then modelled using 17 

limma trend and overexpressed markers (3FC, FDR < 0.05) were selected for each cell subset from one 18 

versus all comparisons.  19 

The GSVA R package was then used to compute ssGSEA scores for T-cell subsets of interest with 20 

absolute ranking, score normalisation and RNA-seq flags set to true. Enrichment scores were then 21 

normalised by cellular abundance and differences were estimated using Wilcoxon’s rank sum test with 22 

Benjamini Hochberg correction for multiple testing. 23 

 24 
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Immunohistochemistry 1 

All immunohistochemical staining was conducted by HSL-Advanced Diagnostics (London, UK) using 2 

the Leica Bond III platform with Leica Bond Polymer Refine detection as per manufacturer’s 3 

recommendations. Sections from a series of 17 tumour samples from the validation cohort were 4 

stained for CD8 (mouse monoclonal 4B11, Leica Biosystems PA0183, used as supplied for 15 minutes 5 

at room temperature. HIER was performed on-board using Leica ER2 solution (high pH) for 20 6 

minutes), CD68 (mouse monoclonal PGM1, Agilent M087601-2, used at a dilution of 1/50 for 15mins 7 

at room temperature. HIER was performed on-board using Leica ER1 solution (low pH) for 20 minutes) 8 

or MPO (rabbit polyclonal, Agilent A039829-2, used at a dilution of 1/4000 for 15 minutes at room 9 

temperature without epitope retrieval. Scoring was performed blinded to cluster membership by a 10 

histopathologist (JM) as follows: 0 = no positive cells / field (200X magnification); 1 = 1 – 10 positive 11 

cells; 2 = 11 – 100 positive cells; 3 = 101 – 200 positive cells; 4 = 201 = 300 positive cells; 5 = over 300 12 

positive cells.  13 

 14 

Data availability 15 

R markdowns used to run these analyses available on request. Data generated in-house have been 16 

deposited in the Gene Expression Omnibus with the accession.(to be deposited upon publication) 17 
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