

1 Pro-metastatic gene expression, immune evasion and an altered HPV
2 spectrum characterize an aggressive subtype of cervical cancer.

3

4 Ankur Chakravarthy¹, Stephen Henderson², Cindy Dong³, Nerissa Kirkwood³, Maxmilan Jeyakumar³,
5 Jacqueline McDermott⁴, Xiaoping Su⁵, Nagayasu Egawa⁶, Christina S Fjeldbo⁷, Mari Kyllesø Halle⁸,
6 Camilla Krakstad⁸, Afschin Soleiman⁹, Susanne Sprung¹⁰, Heidi Lyng⁷, Heidi Fiegl¹¹, Helga Salvesen⁸,
7 John Doorbar⁶, Kerry Chester^{4,*}, Andrew Feber^{12,*}, Tim R Fenton^{3,*}.

8

9

10 ¹ Princess Margaret Cancer Centre, University Health Network. Toronto, Ontario, Canada

11 ² UCL Cancer Institute, Bill Lyons Informatics Centre, University College London, London, UK

12 ³ School of Biosciences, University of Kent, Canterbury, Kent, UK

13 ⁴ UCL Cancer Institute, University College London, London, UK

14 ⁵ MD Anderson Cancer Center, Houston, Texas, USA

15 ⁶ Department of Pathology, University of Cambridge, Cambridge, UK

16 ⁷ Department of Radiation Biology, Oslo University Hospital, Oslo, Norway

17 ⁸ Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway; Centre
18 for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway

19 ⁹ INNPATH, Institute of Pathology, Tirol Kliniken Innsbruck, Innsbruck, Austria.

20 ¹⁰ Institute of Pathology, Medical University of Innsbruck, Innsbruck, Austria.

21 ¹¹ Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria.

22 ¹² Division of Surgery and Interventional Science, University College London, London, UK

23

24 *Correspondence to: k.chester@ucl.ac.uk; a.feber@ucl.ac.uk or t.fenton@kent.ac.uk

25

26

27

28

29

30

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 **Abstract**

2

3 Cervical cancer is caused by carcinogenic human papillomavirus infection and represents one of the
4 leading causes of cancer death worldwide. Effective means of tumour classification are required for
5 better disease understanding. We performed an integrated multi-omic analysis of 655 cervical
6 cancers, using epigenomic and transcriptomic signatures to discover two distinct cervical cancer
7 subtypes we named “typical” and “atypical”. Typical tumours were largely HPV16-driven and
8 frequently displayed an ‘immune-hot’ tumour microenvironment. Atypical tumours were associated
9 with poor prognosis; they were more likely to be driven by HPVs from the HPV18-containing α 7 clade,
10 displayed distinct genomic aberrations, greater evidence of past immunoediting and a
11 microenvironment associated with immune-evasion and failure of anti-PD1 checkpoint inhibition. The
12 finding that atypical tumours encounter stronger anti-tumour immune responses during development
13 may explain the lower frequency at which α 7 HPV infected-lesions progress from pre-invasive disease.
14 However those escaping this selection pressure evolve into aggressive tumours (independent of HPV-
15 type) in which more intensive adjuvant treatment may be warranted.

16

17 --

18

19 Despite screening and the introduction of prophylactic human papillomavirus (HPV) vaccination in
20 developed countries, cervical cancer continues to be one of the leading worldwide causes of cancer-
21 related deaths in women. Prognosis for patients with metastatic disease remains poor, thus new
22 treatments and effective molecular markers for patient stratification are urgently required. Cervical
23 cancer is caused by at least 14 high-risk human papillomaviruses (hrHPVs), with HPV16 and HPV18
24 together accounting for over 70% of cases worldwide¹. Although among the hrHPVs, HPV16 and
25 HPV33 (both from the α 9 clade) infections are associated with much higher chance of progression to

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 high-grade neoplasias but the presence of HPV16 in particular, has been linked to improved survival
2 in cervical cancer and HPV+ head and neck squamous cell carcinoma (HNSCC)¹⁻³. We have previously
3 shown in an interim analysis of TCGA data that the majority of HPV16+ cervical tumours fall into a
4 good prognosis group based on similarity at the DNA methylation level to HPV16+ HNSCC and penile
5 cancer⁴. This apparent paradox, in which HPV16 behaves more aggressively in the context of tumour
6 development but in which the resulting tumours are less aggressive, suggests fundamental differences
7 in the natural history of tumours driven by different HPV types. Integrated molecular analysis of 228
8 cervical cancers by TCGA reported differential micro-RNA expression and transcription factor
9 activation between tumours harbouring different HPV types⁵. However, a biological explanation for
10 the apparent type-specific clinical differences noted in the above studies remains unexplored, largely
11 due to a lack of sufficiently large cohorts for which HPV typing, molecular and clinical data are
12 available.

13

14 To address this question we used data from 281 cervical tumours profiled by TCGA⁵ as our discovery
15 cohort (**Table 1, Table S1**) and 374 cervical cancers from three European centres, all with detailed
16 clinical annotation and long term follow-up as our validation cohort^{6,7} (**Table 1, Table S2**).
17 Representing to our knowledge, the largest study of its kind in cervical cancer, we defined two cervical
18 cancer subtypes; an “atypical” aggressive subtype defined by a lymphocyte-depleted
19 microenvironment and evidence for epithelial-mesenchymal transition, and a “typical” subgroup
20 comprised almost entirely of tumours harbouring α9 HPVs and associated with longer overall survival.
21 The molecular, cellular and clinical differences identified between typical and atypical tumours also
22 reveal new potential therapeutic options for the treatment of cervical cancers.

23

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 [Results](#)

2

3

	TCGA Training Cohort	European Validation Cohort
Histology		
Adenocarcinoma	44	32
Squamous cell Carcinoma	237	335
Adenosquamous	0	7
Stage		
I	153	98
II	61	194
III	43	65
IV	17	17
NA	7	0
Age	Median (Range)	46 (20-88) 51 (22-91)
HPV Sub Type		
16	166	160
18	38	140
45	22	15
Other	55	50
Negative	0	11
Survival Status		
Alive	226	275
Dead	55	99
Cluster Assignment		
Typical	231	301
Atypical	50	73

4

5 **Table 1:** Summary of clinicopathological characteristics for the two cervical cancer cohorts.

Chakravarthy et al: DNA methylation profiling of cervical cancer

1

2 Generation of HPV type-specific gene expression and DNA methylation profiles in

3 cervical cancer

4

5 To look for associations between HPV type and overall survival while avoiding confounding from

6 histology and advanced stage, we initially reduced our discovery cohort to 139 stage I and II squamous

7 cell carcinomas (SCCs), which we confirmed using VirusSeq⁸ to be transcript-positive for at least one

8 of the three most common HPV types (HPV16, HPV18 and HPV45), and for which the covariates age

9 and tumour stage were available. Multivariate Cox regression identified a significantly worse

10 prognosis in HPV45-driven tumours relative to HPV16 (HR = 5.040, p < 1e-3), while HPV18+ tumours

11 exhibited an intermediate prognosis (**Figure 1A**).

12

13 Modelling transcriptomic and epigenomic (DNA methylation) differences between HPV16 and HPV45-

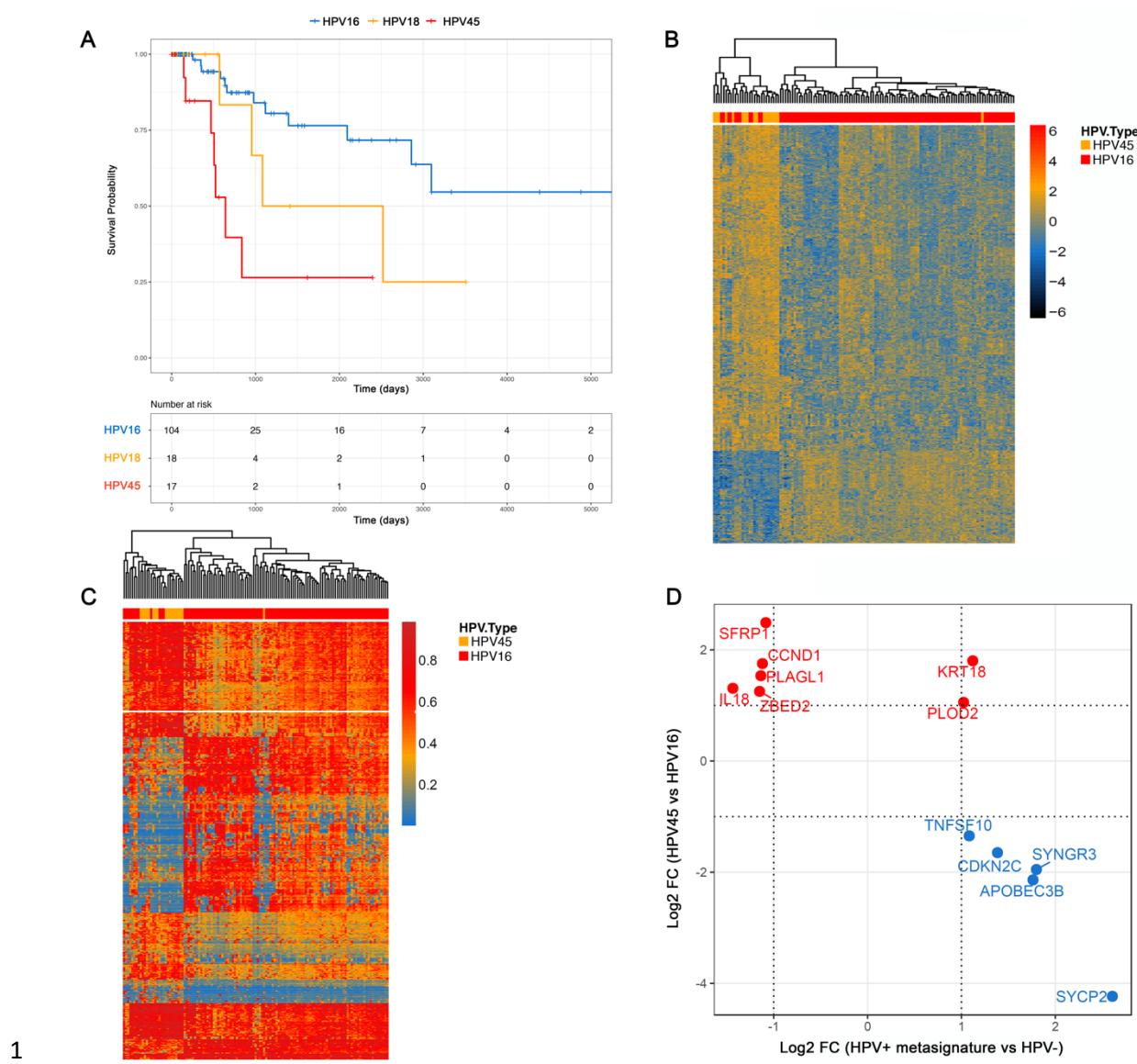
14 associated early-stage tumours identified 713 DEGs (Differentially Expressed Genes, FDR=0.01, FC > 2;

15 **Figure 1B, Table S3**) and 689 MVPs (Methylation Variable Positions, delta-Beta 0.1, FDR < 0.01),

16 (**Figure 1C, Table S4**). 10 DEGs previously shown to be aberrantly expressed in HPV-associated cancers

17 from different anatomic sites⁹ displayed greater dysregulation in HPV16+ than in HPV45+ cervical

18 tumours, while two (*PLOD2* and *KRT18*) were more strongly upregulated in HPV45+ tumours (**Figure**


19 **1D**). Several DEGs were also differentially methylated between HPV16+ and HPV45+ tumours (**Figure**

20 **S1**). These findings indicate molecular differences between cervical cancers driven by different hrHPV

21 types which may manifest in clinical differences.

1
2 **Development and validation of a prognostic classification.**
3 Interestingly, when using either the 713 DEG or 613 MVP signatures, a minority (10% gene expression-
4 based, 11% DNA methylation-based) early-stage HPV16+ SCCs clustered with the HPV45+ tumours in
5 the discovery cohort (**Figures 1B and 1C**). We subsequently used consensus clustering based on the
6 713 DEG signature, which identified two robust clusters, which we termed “typical” and “atypical”
7 cervical cancer subtypes. 6 of 104 HPV16+ tumours co-clustered with the majority (13 of 17) of
8 HPV45+ tumours in the atypical subgroup, which also contained 28% (5/18) of the HPV18+ tumours
9 (**Figure 2A, Table S1**). To assess if these typical and atypical subgroups also exist at the epigenetic
10 level, we developed a DNA methylation Support Vector Machine (SVM) classification model, using
11 TCGA DNA methylation data reduced to 178 CpG sites at which methylation differed significantly
12 between tumours in typical versus atypical clusters (**Figure 2B**, mean delta-Beta > 0.3, FDR < 0.01,

Chakravarthy et al: DNA methylation profiling of cervical cancer

Figure 1. Clinical and molecular variation among TCGA cervical cancers driven by different HPV types. A)
HPV45+ early stage Cervical Squamous Cancers display markedly worse prognosis compared to HPV16+ cancers with HPV18+ tumours showing intermediate survival. HR and p-value from Cox regression controlling for stage.
B) Comparisons between HPV45+ and HPV16+ tumours identify large scale variation in transcriptional and **C)** epigenetic (genome-wide DNA methylation) profiles. **D)** Twelve genes from a pan-tissue signature for HPV- driven tumorigenesis show significant variation between HPV16+ and HPV45+ tumours.

9 **Table S5).** Using this signature we allocated cluster membership to a further 374 cervical cancers from
10 our validation cohort (**Figure 2C and Table S2**). Adenocarcinomas (12 of 32) and adenosquamous

Chakravarthy et al: DNA methylation profiling of cervical cancer

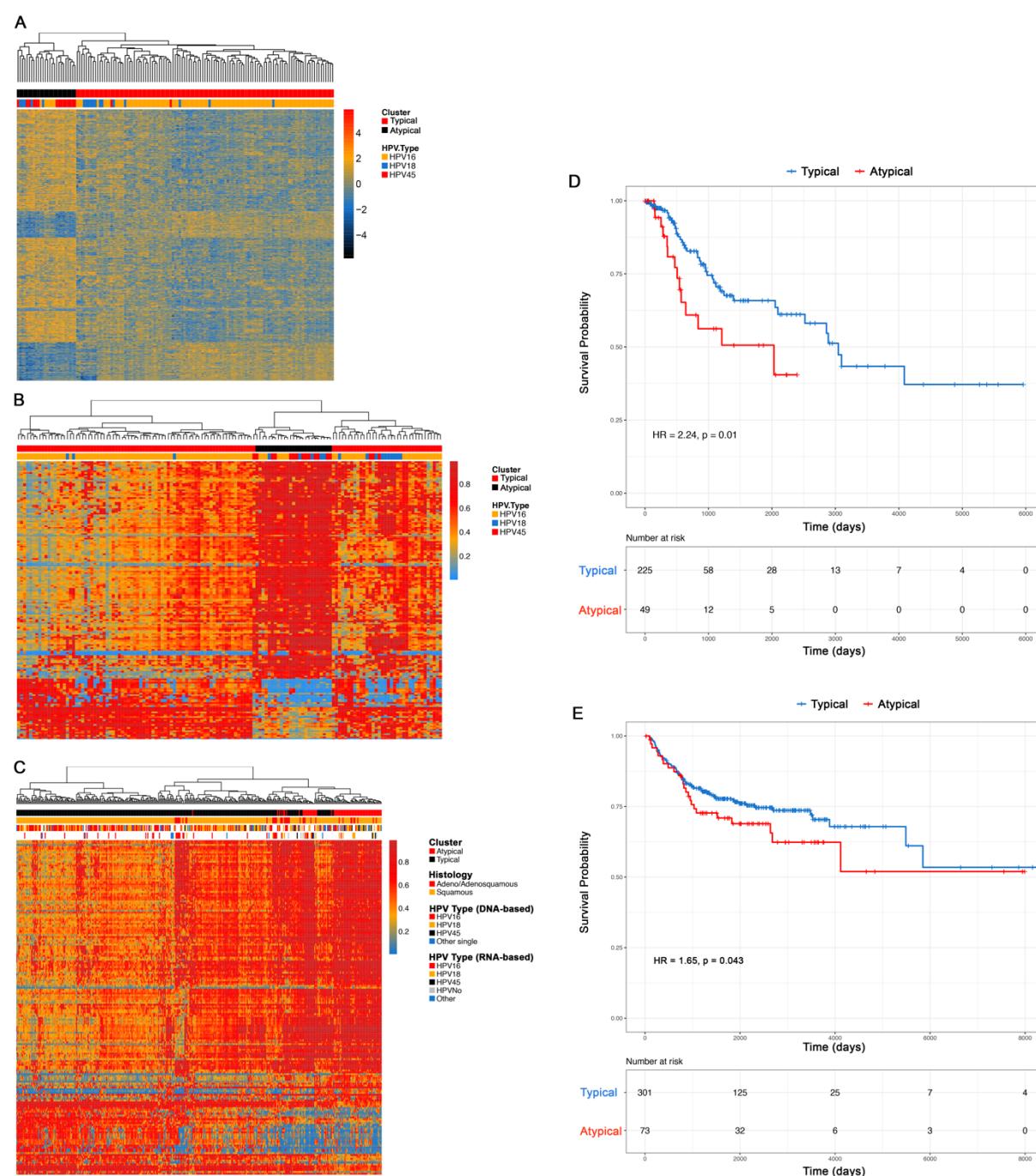
1 carcinomas (5 of 7) were more likely to be classified as atypical than SCCs (56/335, $p = 4.526e-09$,
2 Fisher's Exact Test) and again, the majority (141 of 160) HPV16+ tumours were designated as typical
3 (**Figure 2C**). We could accurately predict the DEG-based cluster assignment using the MVP signature
4 for all validation cohort tumours for which gene expression data were available (RNA-seq for Bergen
5 samples ($n = 65$) and Illumina HumanHT-12 V4.0 expression beadchip arrays for Oslo samples ($n =$
6 268), **Figure S2A**), confirming that both MVP and DEG signatures classify the same tumours as typical
7 or atypical. Single-sample gene set enrichment analysis (ssGSEA)¹⁰ of the same tumours confirmed
8 differential expression of the signature genes in tumours classified as typical or atypical using DNA
9 methylation (**Figure S2B**). Having derived our typical and atypical clusters directly from the HPV45 vs
10 HPV16 expression signature and shown that they were consistent whether assigned from gene
11 expression or from DNA methylation data, for clarity we henceforth refer to all comparisons as atypical
12 and typical. Integrating DNA and RNA-based HPV typing where available, we confirmed that co-
13 infection with HPV45 or other HPV types was not responsible for the assignment of HPV16 transcript-
14 positive samples to the atypical group. In both the validation and discovery cohorts, HPV types from
15 the $\alpha 7$ clade (HPV18, 45, 59, 68, 70) were strongly enriched in atypical tumours (atypical tumours
16 were 2.3X more likely to harbour $\alpha 7$ HPVs than typical tumours, $p = 1.85e-14$ Fisher's Exact Test).

17

18

19

20


21

22

23

24

Chakravarthy et al: DNA methylation profiling of cervical cancer

Figure 2. Derivation of two type-associated prognostic subgroups in cervical cancer and validation across independent cohorts. A) HPV45-like transcriptional profiles are also shared by small numbers of HPV16+ and HPV18+ tumours, coalescing into HPV45-like ('Atypical') and HPV16-like ('Typical') clusters. **B)** A signature of DNA methylation ($dB > 0.3$, $FDR < 0.01$) separates these groups based on consensus clustering (see methods for details). **C)** The methylation patterns are reproduced in a validation dataset from three European centres ($n = 374$). **D)** Survival curves and statistics from multivariate Cox regression of overall survival in TCGA cervical cancer

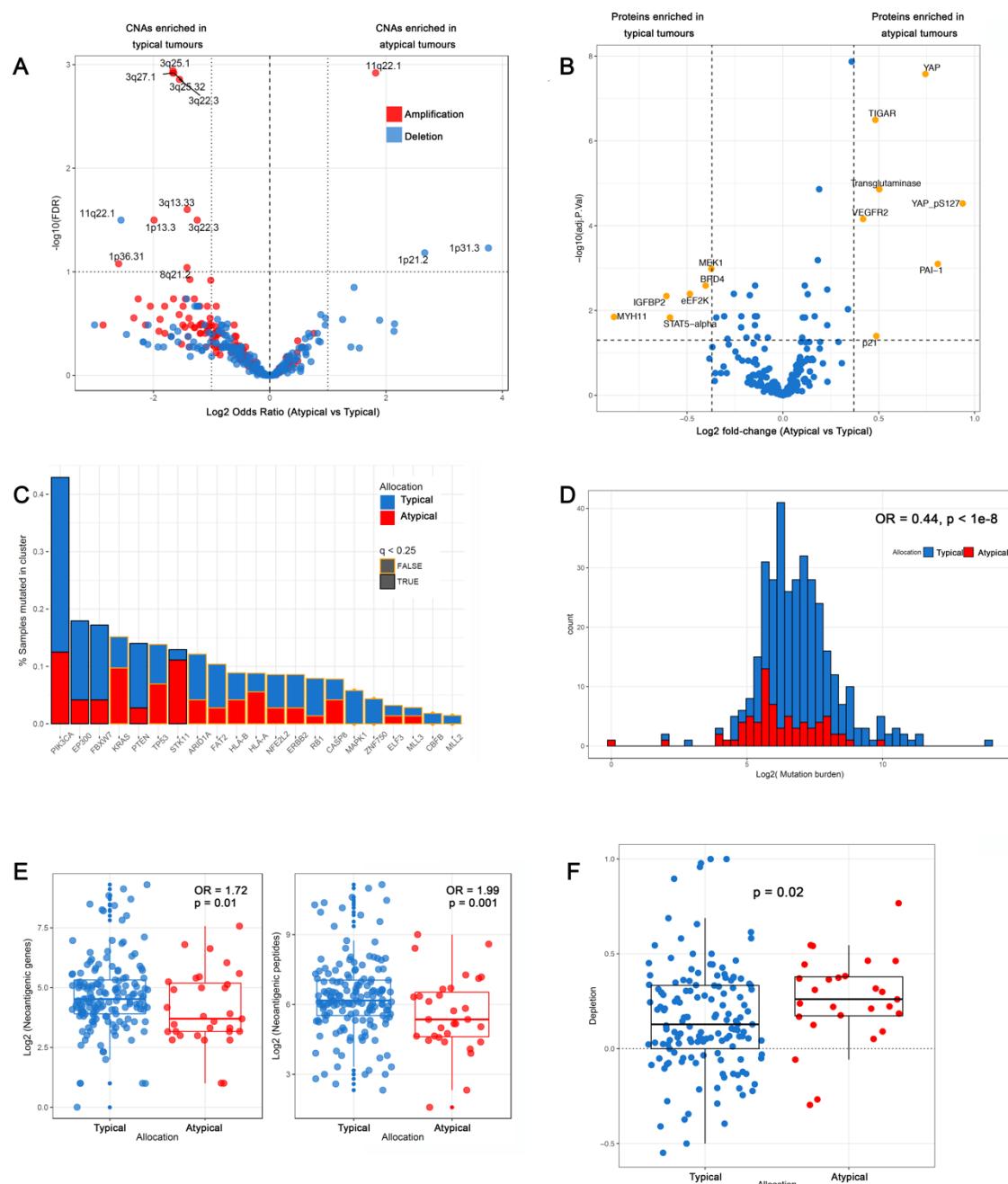
Chakravarthy et al: DNA methylation profiling of cervical cancer

1 cohort stratified by cluster. **E**) Survival curves and statistics from multivariate Cox regression of overall survival
2 in the European validation cohort stratified by cluster.

3
4 Multivariate analysis of survival data from the 274 TCGA tumours for which tumour stage was
5 available identified a significant prognostic difference between the typical and atypical subgroups
6 (**Figure 2D**; HR = 2.24, p = 0.01). This difference became even greater when restricting to stage I/II
7 tumours (**Figure S3A**; n = 139, HR = 4.88, p = 0.0006), and was retained even upon removal of the
8 HPV45+ tumours (**Figure S3B**; n = 122, HR = 4.91, p = 0.03). Cox regression stratifying by histology
9 and controlling for FIGO stage and treatment (surgery alone, surgery with radio-chemotherapy and
10 surgery with chemotherapy alone) identified typical/atypical status to be an independent predictor of
11 overall survival in the validation cohort (n = 374, HR = 1.65 , p = 0.043, **Figure 2E**). Again, the survival
12 difference between the typical and atypical groups was greater when stage IV tumours were excluded
13 (n = 357, HR = 1.73, p = 0.04) and was most pronounced in stage II tumours (n = 194, HR = 2.59, p =
14 0.02).

15
16 Evidence for epithelial to mesenchymal transition (EMT) in atypical tumours.
17 Gene set enrichment using Ingenuity Pathway Analysis 'Diseases and Functions Ontology' (**Figure S4**,
18 **Table S6**) which identified cellular movement as the most activated pathway in atypical tumours, with
19 85 of 121 genes in the set expressed consistent with increased metastatic potential. Prominent pro-
20 metastatic genes in this pathway included the transcription factor *SNAI1* (a master regulator of EMT
21 that accompanies invasion through the basement membrane and dissemination from the primary
22 tumour¹¹ , fibronectin 1, which is known to trigger EMT-associated transcriptional cascades¹², *RHOF*,
23 a prominent player in invasion through pseudofilopodia formation¹³ and *VEGFC*, involved in
24 prometastatic lymphangiogenesis¹⁴. Multiple other gene sets also pertaining to cell movement were
25 strongly enriched and associated with high activation z-scores in atypical tumours (**Figure S4, Table**

Chakravarthy et al: DNA methylation profiling of cervical cancer


1 **S6**). Moreover, these tumours expressed high levels of Transforming Growth Factor (*TGFB1* and
2 *TGFB2*, **Table S3**), which have been implicated as key inducers of EMT that are potentially amenable
3 to therapeutic targeting (reviewed in¹⁵). Given these findings, we examined the relationship between
4 our subtypes and the poor-prognosis cervical cancer EMT cluster defined by TCGA based on reverse
5 phase protein array (RPPA) data⁵. 62% of atypical TCGA tumours with RPPA data available belong to
6 the EMT cluster compared with only 20% of typical tumours. Consistent with the proteomic
7 classification, atypical tumours displayed higher EMT gene expression scores, as defined by TCGA⁵,
8 than typical tumours (**Figure S5**). Upstream regulator analysis identified *EZH2* and *SMARCA4*, both
9 chromatin modifiers, as the leading differentially-activated regulators in atypical tumours (**Figure S6**,
10 **Table S7**). Notably *EZH2* expression has previously been linked to poor prognosis in cervical cancer¹⁶.
11 Other key activated regulators include β -catenin and *HIF1 α* , both of which have been linked to chemo
12 or radio- resistance and poor prognosis in cervical cancer¹⁷⁻¹⁹. These analyses link the atypical
13 expression signature to several independently discovered poor prognostic factors.

14

15 Genomic analyses of prognostic clusters

16 To search for genomic differences between typical and atypical cancers, we analysed mutation (WEX)
17 and copy number data from samples with matched methylation data²⁰. We first generated segmented
18 copy number data for all tumours (combining the TCGA and validation cohort samples for which the
19 necessary data were available for maximum statistical power), which identified 387 focal candidate
20 copy number alterations at FDR < 0.1. Following binomial regression, we identified 12 discrete copy

Chakravarthy et al: DNA methylation profiling of cervical cancer

1

2 **Figure 3. Genomic differences between cervical cancer subgroups.** **A)** Volcano plot showing differences in
 3 GISTIC copy number peak frequencies between typical and atypical tumours, with $-\log_{10}(\text{FDR})$ on the y axis and
 4 odds ratio on the x axis. **B)** Volcano plot showing differentially abundant proteins and phospho-proteins (FDR <
 5 0.05, FC > 1.3, represented by yellow dots) between typical and atypical TCGA tumours, as measured by Reverse
 6 Phase Protein Array. **C)** Bar chart showing mutation frequencies for candidate driver mutations in typical and
 7 atypical cancers. Y axis indicates percentage of tumours mutated within tumour subtype, and the outline colour
 8 indicates statistical significance of differences in mutation frequencies. **D)** Histograms show overall mutational

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 burdens are greater in HPV16-like cancers. Odds ratios and p values are from a negative binomial GLM. **E**)
2 Neoantigen burdens are elevated in typical tumours cervical cancers (estimates and p-values from negative
3 binomial regression). **F**) Atypical tumours display greater evidence of past immunoediting as measured by
4 depletion of predicted neoantigens versus total mutations.

5

6 number alterations between typical and atypical clusters (**Table S8**, **Figure 3A**; FDR < 0.1, log2 (Odds
7 Ratio) > 1). These included 1p31.3 loss and 11q22.1 gain which were more prevalent in atypical
8 tumours and multiple 3q gains and 1p13.3 gain, and 11q22.1 loss, which were disproportionately
9 common in typical cancers (**Figure 3A**). Notably, the 11q22.1 gain seen in atypical tumours are centred
10 on the Yes-Associated Protein 1 (YAP1): a key transcription factor downstream of the HIPPO signalling
11 pathway. Analysis of Reverse Phase Protein Assay (RPPA) data from TCGA also revealed significantly
12 higher YAP1 protein expression in the atypical tumours (**Fig 3B**). We confirmed that those same cases
13 with *YAP1* amplification (7/28 atypical tumours and 12/141 typical tumours) also showed increased
14 *YAP1* mRNA and protein expression.

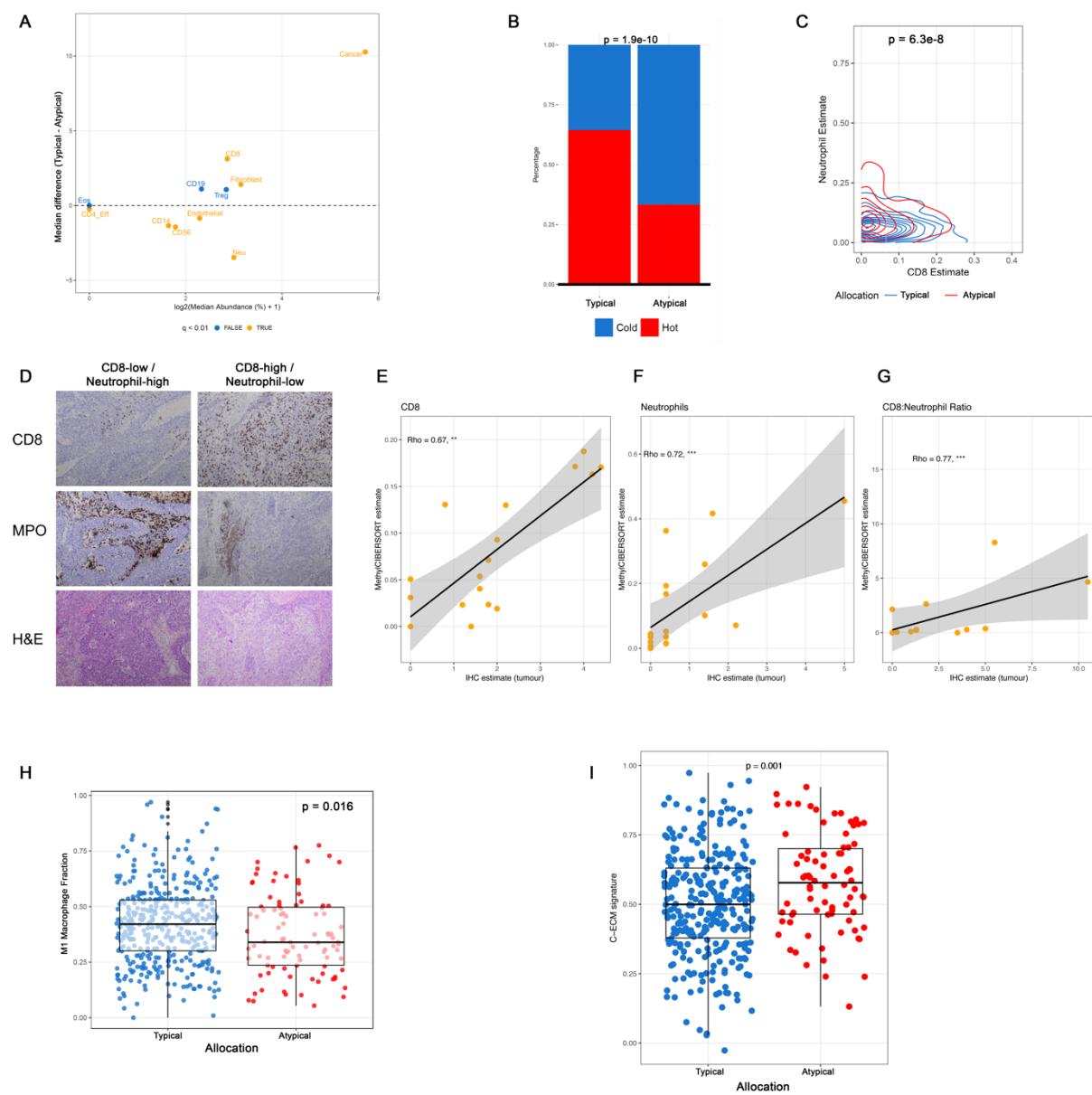
15

16 We next compared the somatic mutation rates in a defined set of candidate driver genes, using a
17 binomial regression. This identified *PIK3CA*, *FBXW7* and *PTEN* mutations as disproportionately more
18 common in typical cancers and loss-of-function *STK11* mutations as more frequent in atypical tumours
19 (FDR < 0.25, **Figure 3C**), *STK11* (LKB1) is also under-expressed in atypical tumours compared with
20 typical tumours (**Table S1**). We observed a higher overall mutation burden in typical tumours (OR= 21
0.48, p = 1.4e-5, **Figure 3D**), leading us to investigate whether there is also a difference in neoantigen
22 load between the subgroups. Fitting a negative binomial GLM to neoantigen data from TCGA (31
23 atypical, 157 typical for which neoantigen estimates were available from the Cancer Immunome Atlas
24 ²¹) revealed markedly more predicted neoantigens in typical tumours, at both the gene and individual
25 MHC class 1-binding peptide level (OR = 1.72, p = 0.01 and OR = 1.99, p = 0.001 respectively, **Figure**

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 **3E**). Interestingly, the ratio of expected versus observed neoantigens per tumour (neoantigen
2 depletion, see methods) is greater in atypical tumours ($p = 0.02$ (Wilcoxon's Rank Sum test), **Fig 3F**),
3 suggesting more extensive immunoediting during their development and leading us to compare the
4 tumour immune microenvironment between subgroups.

5


6 Immunological analyses of prognostic clusters implicate microenvironmental differences and
7 highlight potential therapeutic interventions.

8

9 The nature of the tumour immune microenvironment, particularly the abundance of tumour
10 infiltrating lymphocytes (TILs) is a strong prognostic factor in HPV-associated cancers^{9,22-26}. Pathway
11 analysis revealed activation of granulocyte and aggranulocyte adhesion along with diapedesis in
12 atypical tumours, suggesting increased neutrophil infiltration. Other pathways activated in atypical
13 tumours include inflammatory processes such as Acute Phase Response, TREM1 signalling,
14 complement activation and AHR (Aryl Hydrocarbon Receptor) signalling which are often associated
15 with macrophages (**Figure S7, Table S9**), suggesting a strong microenvironmental component may
16 mediate type-associated pathology. This is supported by the presence of multiple cytokines and
17 chemokines in the atypical-associated transcriptional signature, including *IL11*, *IL18*, *IL1B*, *IL24*, *IL6*,
18 *IL8*, *CCL2*, *CXCL2*, *CXCL3*, *CXCL5*, *TNF* (TNF- α) and *TNFAIP6* (**Table S3**). We next used DNA methylation
19 data to compare the cellular composition of tumours²⁷, observing differences in the proportions of
20 multiple cell types between the subgroups (**Figure 4A**); most notably decreased CD8+ (cytotoxic T
21 lymphocytes (CTL)), a marked elevation of neutrophil and natural killer (NK)-cells and lower tumour
22 purity in atypical cancers (the latter confirmed using genomic estimates²⁸ (ABSOLUTE); **Figure S8**, $p =$
23 0.02 (Wilcoxon's Rank Sum test). Integrating these cell type estimates with our previously-published
24 pan-cancer immune hot/cold classification²⁷, we also found significant enrichment for immune-hot

Chakravarthy et al: DNA methylation profiling of cervical cancer

- 1 cancers in the typical subgroup (**Figure 4B**; $p = 1.9\text{e-}10$), consistent with increased CTL infiltration,
- 2 CTL:Treg ratios (**Figure S9**) and higher MHC class I neoantigen loads in these tumours.

- 3
- 4 **Figure 4. Differences in the immune microenvironment between cervical cancer subgroups.** **A)** Plot showing median abundances (x-axis) and median differences (% y-axis) for different cell types estimated using MethylCIBERSORT, with significant differences in orange. **B)** Applying a pan-cancer classifier to DNA methylation data from the cervical cancer samples shows typical tumours are significantly more likely to be immune-hot than atypical tumours. **C)** Atypical tumours display increased neutrophil:CTL ratios as estimated using MethylCIBERSORT. **D)** Representative images showing Immunohistochemistry for MPO (neutrophils) and CD8

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 in cervical tumour sections. **E**) Correlations between MethylCIBERSORT estimates and immunohistochemistry-
2 based scoring for neutrophils (MPO+). **F**) Correlations between MethylCIBERSORT estimates and
3 immunohistochemistry-based scoring for CD8+ T-cells. **G**) Correlations between MethylCIBERSORT estimates
4 and immunohistochemistry-based scoring for CD8+ T-cell:neutrophil ratios in 17 cervical tumours from the
5 validation cohort. **H**) Typical tumours show higher fractions of proinflammatory (M1) compared to
6 immunosuppressive (M2/M0) macrophages (y axis = ratios, p value from Wilcoxon's Rank Sum Test). **I**) ssGSEA
7 scores (y-axis) showing enrichment for a TGF β -associated extracellular matrix gene expression signature in
8 atypical tumours.

9

10 The estimation of increased neutrophil abundance in atypical tumours (**Figure 4A**) is supported by the
11 upregulation of genes associated with granulocyte diapedesis inferred from pathway analysis (**Table**
12 **S4**) and with increased ssGSEA scores for a neutrophil gene set derived from publicly-available gene
13 expression data (see methods; p<9.2e-6 (Wilcoxon's Rank Sum test) **Figure S10**). Atypical tumours also
14 exhibit a markedly higher neutrophil:CTL ratio (**Figure 4C**); an established adverse prognostic factor in
15 cervical cancer^{29,30}. Enumerating CTLs and neutrophils by IHC for CD8 and MPO respectively in 17
16 tumours from our validation cohort (representative images shown in **Figure 4D**, see methods for
17 details) revealed strong correlations with MethylCIBERSORT estimates (**Figure 4E-G**). Given the
18 upregulation of multiple CXCR2-ligands (CXCL1, CXCL2, CXCL3, CXCL3) as well as G-CSF, PTGS1, PTGS2,
19 IL-1B, CCL2, IL6 (**Table S3**) and activation of TREM1 signalling (**Figure S7**, **Table S9**) ³¹⁻³⁶ in atypical
20 tumours, all of which are associated with Monocytic-Myeloid Derived Suppressor Cells or tolerogenic
21 macrophages, we used CIBERSORT³⁷ to derive estimates of macrophage subpopulations for samples
22 with expression data in our dataset. Atypical tumours displayed significantly lower pro-effector (M1)
23 macrophage proportions relative to suppressive (M0 and M2-like) macrophages (p = 0.016 (Wilcoxon's
24 Rank Sum test), **Figure 4H**). Finally, we observed enrichment for a TGF β -associated extracellular matrix
25 gene expression signature (C-ECM) in atypical tumours that we have previously linked to immune
26 evasion and failure of PD1 blockade in melanoma and bladder cancer²⁷. Although total fibroblast

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 content was similar between typical and atypical tumours (**Figure 4A**) enrichment for the C-ECM
2 signature indicates increased myofibroblast trans-differentiation, which could explain the lack of CTL
3 infiltration and the poor prognosis seen in atypical tumours.

4

5 **Discussion**

6 Of the studies indicating an association between HPV type and prognosis in cervical cancer, both
7 HPV18 and the α 7 clade to which it belongs have been linked to worse prognosis in early-stage
8 tumours³⁸⁻⁴⁰. Our analysis of TCGA cervical cancer data agrees with these studies; among early-stage
9 SCCs, HPV18 was associated with worse prognosis than HPV16 and for tumours harbouring HPV45
10 (also an α 7 type), prognosis was worse still. Although the numbers are small, this observation could
11 help to explain why in a further study, positivity for HPV16 or 18 was associated with favourable
12 prognosis compared with other HPV types or no HPV detection⁴¹.

13

14 Examining the molecular alterations and tumour microenvironment in a large set of tumours provided
15 insight into the complex interplay of HPV type, histology and changes to the host genome that drive
16 cervical carcinogenesis. Firstly, when clustering based on gene expression differences between
17 HPV16+ and HPV45+ tumours, a small minority of HPV16+ tumours co-clustered with the majority of
18 HPV45+ tumours, while HPV18+ tumours were found in both clusters. These clusters were robust;
19 they could be recapitulated at the DNA methylation level and in a larger independent cohort. In both
20 cohorts, we observed a clear difference in prognosis between the clusters, even after inclusion of
21 tumours displaying poor prognostic features, including locally advanced tumours, adenocarcinomas
22 and adenosquamous carcinomas⁴². Likewise, the survival differences were not driven by particularly
23 poor outcomes among HPV45+ tumours, as they remained following exclusion of these samples
24 (**Figure S3**) and there were very few HPV45+ samples in the validation cohort (**Table S4**). Consistent

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 with these observations, membership of the atypical subgroup was an independent prognostic factor
2 in the validation cohort.

3

4 Our aggressive, atypical subgroup is enriched for genes linked to EMT and displays significant overlap
5 with the EMT cluster defined for the subset of TCGA samples with RPPA data available; in particular
6 increased expression of YAP1, which in most cases appears to be driven by *YAP1* gene amplification.

7 Our finding that a subgroup of HPV16+ tumours co-cluster with tumours driven almost exclusively by
8 $\alpha 7$ HPV types suggests that cervical cancers driven by different HPV types evolve along different
9 trajectories but that HPV16+ tumours can occasionally develop via the atypical route more commonly

10 associated with the $\alpha 7$ types. HPV18+ tumours can likewise evolve via either route but like the other
11 $\alpha 7$ types, HPV18+ tumours are frequently atypical. We postulate that the host immune response is

12 the key driver here: a cervical cancer developing in the presence of a stronger immune response will
13 become an atypical tumour, hence the greater neoantigen depletion and immune-
14 evasive/suppressive features displayed in the tumours at time of resection, including M2 macrophage
15 polarization, increased neutrophil abundance, reduced CTL:Treg ratios and increased ECM deposition.

16 By extension, this implies that $\alpha 7$ HPV types elicit more effective immunosurveillance than HPV16 and
17 the other $\alpha 9$ types, however when HPV16-transformed cells do encounter an effective immune
18 response, the resulting tumours develop down the atypical trajectory. This model could also explain
19 why HPV16 infections are at much higher risk to progress to CIN3 than other HPV types³. Greater
20 immunogenicity of $\alpha 7$ HPVs might also explain why they are so rarely, if ever, associated with cancers
21 developing at sites such as the oropharynx, where HPV16 dominates but other $\alpha 9$ types are
22 occasionally seen⁴³.

23

24 Two genomic features of atypical tumours are particularly likely to be selected for in cells under
25 immune surveillance, *STK11* and *YAP1*. *STK11* loss-of-function drives immunosuppressive TGF-beta

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 signalling⁴⁴ and activates glycolysis, in turn suppressing T-cell homing and activity^{45 46,47}. Consistent
2 with this, *STK11* mutations have recently been implicated in mediating resistance to PD1/PD-L1
3 blockade⁴⁸. *YAP1*, is frequently amplified in atypical tumours, has been shown to drive cervical cancer
4 development in mice even in the absence of HPV, and strongly synergizes with HPV16 E6 and E7 to
5 promote tumorigenesis^{49,50}. It is also associated with poor prognosis, reduced lymphocyte activation
6 and resistance to PD1/PD-L1 blockade in HNSCC⁵¹. Downstream of these genomic alterations, TGF-
7 beta is known to modulate several features of the microenvironment observed in atypical cancers: it
8 suppresses NK cell activation⁵²; drives M2-polarisation in macrophages⁵³, induces neutrophil switching
9 to an immunosuppressive phenotype⁵⁴ and drives immunotherapy resistance through T-cell exclusion
10 by CAFs⁵⁵ in addition to its established role in driving metastasis. Our analysis suggests that typical
11 cervical cancers, with their higher mutation burdens and greater T-lymphocyte infiltration will be good
12 candidates for immunotherapy. What therapeutic strategies might be efficacious in the atypical
13 tumours, which display worse prognosis, even when resected at early stage? Although TGF-beta
14 inhibition for cancer treatment has thus far been limited by toxicity, inhibiting NOX4, an NADPH
15 oxidase required for fibroblast differentiation into ECM-depositing myofibroblasts has recently been
16 shown to permit CTL infiltration and to potentiate immunotherapy in a mouse model of HPV-
17 associated cancer⁵⁶. GKT137831, the NOX4 inhibitor used in this study is already approved for use in
18 fibrosis, so could readily be trialled in patients. In those atypical cervical cancers harbouring loss-of-
19 function *STK11* mutations, treatment with the mitochondrial inhibitor Phenformin is a possible
20 therapeutic option⁵⁷.

21

22 In summary, by assembling the largest multi-omics cervical cancer dataset to date, we have gained
23 novel insights into the development and progression of this disease. It has also allowed us to develop
24 a prognostic classification that captures variation in HPV type, host genomic alterations and the
25 tumour microenvironment and offers the potential for stratification of cervical cancer patients for

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 improved clinical management. Genome-wide DNA methylation profiling is already being used in the
2 clinic for diagnosis and stratification of brain tumours⁵⁸, thus a similar strategy could readily be tested
3 for cervical cancer.

4

5 **Methods**

6 *Dataset assembly*

7 DNA methylation (Illumina Infinium 450k array) and RNAseq data were obtained for CESC from the
8 TCGA data portal. TCGA mutation data were obtained from the MC3 project on SAGE Synapse
9 (syn7214402). DNA methylation (Illumina Infinium 450k array) and gene expression (Illumina
10 HumanHT-12 V4.0 expression beadchip) data from the Oslo cohort were obtained from the Gene
11 Expression Omnibus (GSE68339). RNAseq data were obtained for the Bergen cohort from dbGaP
12 (phs000600/DS-CA-MDS) and were converted to fastq files using SRA-dump from the SRA Toolkit
13 (<http://ncbi.github.io/sra-tools/>). Kallisto⁵⁹ was then used to quantify expression of GENCODE GrCh37
14 transcripts, repbase repeats and transcripts from 20 different high-risk HPV types with bias correction.
15 Where IDAT files for 450k data were available, they were parsed using *minfi*⁶⁰ and were subjected to
16 Functional Normalisation⁶¹, followed by BMIQ-correction⁶² for probe type distribution (which was
17 done for all methylation data). For TCGA samples, viral type allocation was performed using VirusSeq⁸.

18

19 *Generation of 450k methylation profiles.*

20 100ng DNA was bisulphite converted using the EZ DNA Methylation kit (Zymo Research) as per
21 manufacturer's instructions. Bisulphite converted DNA hybridised to the Infinium 450K Human
22 Methylation array, and processed in accordance with the manufacturer's recommendations.

23

24

25 *HPV typing.*

26

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 HPV16 or 18 was detected in 230 samples from the Oslo cohort by PCR, using the primers listed in⁶³.
2 The PCR products were detected by polyacrylamide gene electrophoresis or the Agilent DNA 1000 kit
3 (Agilent Technologies Inc, Germany). Samples from the Innsbruck cohort and the remaining non-
4 HPV16/18 samples from the Oslo cohort (n=38) were HPV-typed by DDL Diagnostic Laboratory
5 (Netherlands) using the SPF10 assay, in which a PCR-based detection of over 50 HPV types is followed
6 by a genotyping assay (LIPA₂₅) that identifies 25 HPV types (HPV 6, 11, 16, 18, 31, 33, 34, 35, 39, 40,
7 42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 66, 68/73, 70 and 74). HPV type data for the remaining samples
8 were published previously^{5,7}

9

10 *Prognostic analyses and tumour clustering*

11 Associations between HPV type and survival were tested for early stage (Stage I and II) CESC in the
12 TCGA cohort containing either HPV16, HPV18 or HPV45. Limma-voom and limma on BMIQ and
13 Functionally-normalised 450k data were used to identify differentially expressed genes and
14 methylation variable positions between HPV45 and HPV16 associated tumours. Expression profiles
15 were clustered to yield HPV45-like (atypical) and HPV16-like (typical) cancers using the clusterCons
16 package⁶⁴. The caret R package and limma were used to develop an SVM using 5 iterations of 5-fold
17 Cross-Validation to allocate 450k samples to these subgroups.

18 Samples from our validation cohort, comprise of cases from three European centres (Bergen and Oslo
19 in Norway and Innsbruck, Austria) were binned into these categories, along with TCGA samples not in
20 the original training set, and taken together were used for subsequent statistical analyses to identify
21 genomic and microenvironmental correlates. Associations between nodal dissemination and the
22 HPV45 signature were carried out using the caret R package. A GLMnet with 5 iterations of 5-fold
23 Cross-Validation was applied, with out-of-fold estimates used to assess performance using Affymetrix
24 array data from GSE26511. Survival analyses of epigenetic allocations were carried out using Cox
25 Proportional Hazards regression with stratification by histology, and with surgery, radiotherapy and

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 chemotherapy (given/not given) as covariates. For all clinical analyses, stages were collapsed into
2 Stages I, II, III and IV.

3 *Pathway analyses*

4 Pathways were analysed with Ingenuity Pathway Analysis. Settings used were experimentally
5 validated interactions in human models. Z-score cutoffs of 2 and FDR cutoffs of 0.05 were used to
6 identify significant hits from Canonical Pathways, Upstream Regulator and Functions ontology
7 analyses for plotting.

8 *Copy number analysis*

9 450k total intensities (Methylated and Unmethylated values) were used to generate copy number
10 profiles with normal blood samples from Renius et al⁶⁵ as the germline reference. Functional
11 normalisation⁶¹ was used to regress out technical variation across the reference and tumour datasets
12 before merging and quantile normalisation was used to normalise combined intensities followed by
13 Circular Binary Segmentation as previously described²⁰. Median density peak correction was
14 performed to ensure centering before further analysis. GISTIC2.0⁶⁶ was then used to identify regions
15 of significant copy number change at both arm and gene levels. Candidate copy number changes were
16 evaluated for association with cluster using binomial GLMs.

17 The parameters chosen were a noise threshold of 0.1 with arm-level peel off and a confidence level
18 of 0.95 was used to nominate genes targeted by copy number changes. Binomial regression was finally
19 used to estimate rates of differential alteration.

20 *Mutational analyses*

21
22

23 For TCGA data, mutation calls were obtained from SAGE synapse as called by the MC3 project.
24 Mutations for the Bergen cohort were obtained from⁷. Binomial GLMs were then used to estimate
25 associations between the aggressiveness clusters and mutation frequencies.

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 *Immunological Analyses*

2 MHC-class I neoantigens were retrieved using The Cancer Immunome Atlas²¹ for TCGA samples.

3 Immunoediting estimates were computed based on silent mutation rates as previously described in

4 Rooney et al⁶⁷. Comparisons with immune infiltration in HPV+ Head and Neck Tumours were carried

5 out using a previously published, manually-curated signature of immune-checkpoints, infiltration

6 markers and effector molecules⁹. MethylCIBERSORT²⁷ was used to estimate tumour purity and

7 abundances of seven other microenvironmental cellular fractions. Monocyte polarisation was

8 computed using CIBERSORT on the basis of the original LM22 matrix (1000 permutations, data

9 supplied in counts per million) provided with the software. We normalised the estimates to total

10 monocyte fractions and estimated the fraction of proinflammatory (M1 and dendritic cells) relative to

11 all monocytes to yield a proinflammatory monocyte fraction, which was tested for associations with

12 prognostic cluster using Wilcoxon's Rank Sum Test.

13 To generate a neutrophil gene expression signature for assessing neutrophil content by ssGSEA, RNA-

14 seq data were downloaded from the European Nucleotide Archive for the following datasets -

15 PRJEB11844⁶⁸, GSE60424⁶⁹, and E-MTAB-2319⁷⁰ in order to derive an RNAseq dataset of immune cell

16 types. *Kallisto*⁵⁹ was used to quantify gene expression with a reference transcriptome consisting of

17 Gencode Grch37 assembly of protein coding and lincRNA transcripts. Data were then modelled using

18 limma trend and overexpressed markers (3FC, FDR < 0.05) were selected for each cell subset from one

19 versus all comparisons.

20 The GSVA R package was then used to compute ssGSEA scores for T-cell subsets of interest with

21 absolute ranking, score normalisation and RNA-seq flags set to true. Enrichment scores were then

22 normalised by cellular abundance and differences were estimated using Wilcoxon's rank sum test with

23 Benjamini Hochberg correction for multiple testing.

24

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 *Immunohistochemistry*

2 All immunohistochemical staining was conducted by HSL-Advanced Diagnostics (London, UK) using
3 the Leica Bond III platform with Leica Bond Polymer Refine detection as per manufacturer's
4 recommendations. Sections from a series of 17 tumour samples from the validation cohort were
5 stained for CD8 (mouse monoclonal 4B11, Leica Biosystems PA0183, used as supplied for 15 minutes
6 at room temperature. HIER was performed on-board using Leica ER2 solution (high pH) for 20
7 minutes), CD68 (mouse monoclonal PGM1, Agilent M087601-2, used at a dilution of 1/50 for 15mins
8 at room temperature. HIER was performed on-board using Leica ER1 solution (low pH) for 20 minutes)
9 or MPO (rabbit polyclonal, Agilent A039829-2, used at a dilution of 1/4000 for 15 minutes at room
10 temperature without epitope retrieval. Scoring was performed blinded to cluster membership by a
11 histopathologist (JM) as follows: 0 = no positive cells / field (200X magnification); 1 = 1 – 10 positive
12 cells; 2 = 11 – 100 positive cells; 3 = 101 – 200 positive cells; 4 = 201 – 300 positive cells; 5 = over 300
13 positive cells.

14

15 *Data availability*

16 R markdowns used to run these analyses available on request. Data generated in-house have been
17 deposited in the Gene Expression Omnibus with the accession.(to be deposited upon publication)

18 *Acknowledgements*

19 AC was supported by postgraduate research scholarships from UCL and received additional research
20 support from a Debbie Fund grant to KC. Research in TRF's lab is supported by Rosetrees Trust (M229-
21 CD1) and Cancer Research UK (A25825). DNA methylation data were generated through funding
22 provided by the Debbie Fund to KC and analyses were carried out in part using data generated by The
23 Cancer Genome Atlas. AF was supported by grants from the MRC (MR/M025411/1), PCUK(MA-TR15-
24 009), BBSRC (BB/R009295/1), TUF, Orchid and the UCLH BRC. The authors dedicate this manuscript

Chakravarthy *et al*: DNA methylation profiling of cervical cancer

1 to the late Dr Helga Salvesen, a wonderful collaborator and colleague who played a key role in the
2 project.

3 [Disclosures](#)

4 AC, AF, KC and TRF have filed a patent application for a prognostic methylation biomarker based on
5 some of the results in this paper.

6 [Contributions](#)

7 TRF, AC, AF and KC conceived the project; AC and SH carried out computational analyses; AF, CD, MJ,
8 NK, NE, JM performed experiments; HL, HF, HS, XS, CSF, MKH, JD, CK, AS, SS provided samples and
9 data. AC and TRF and AF wrote the paper and TRF supervised the study.

10

11 [References](#)

12

- 13 1. Li, N., Franceschi, S., Howell-Jones, R., Snijders, P.J.F. & Clifford, G.M. Human papillomavirus
14 type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region,
15 histological type and year of publication. *International Journal of Cancer* **128**, 927-935 (2011).
- 16 2. Bratman, S.V. *et al*. Human Papillomavirus Genotype Association With Survival in Head and
17 Neck Squamous Cell Carcinoma. *JAMA Oncol* **2**, 823-6 (2016).
- 18 3. Jaisamrarn, U. *et al*. Natural history of progression of HPV infection to cervical lesion or
19 clearance: analysis of the control arm of the large, randomised PATRICIA study. *PLoS One* **8**, e79260
20 (2013).
- 21 4. Feber, A. *et al*. Epigenetics markers of metastasis and HPV-induced tumorigenesis in penile
22 cancer. *Clin Cancer Res* **21**, 1196-206 (2015).
- 23 5. Cancer Genome Atlas Research, N. *et al*. Integrated genomic and molecular characterization
24 of cervical cancer. *Nature* **543**, 378-384 (2017).
- 25 6. Lando, M. *et al*. Interplay between promoter methylation and chromosomal loss in gene
26 silencing at 3p11-p14 in cervical cancer. *Epigenetics* **10**, 970-80 (2015).
- 27 7. Ojesina, A.I. *et al*. Landscape of genomic alterations in cervical carcinomas. *Nature* **506**, 371-
28 5 (2014).
- 29 8. Chen, Y. *et al*. VirusSeq: software to identify viruses and their integration sites using next-
30 generation sequencing of human cancer tissue. *Bioinformatics* **29**, 266-7 (2013).
- 31 9. Chakravarthy, A. *et al*. Human Papillomavirus Drives Tumor Development Throughout the
32 Head and Neck: Improved Prognosis Is Associated With an Immune Response Largely Restricted to
33 the Oropharynx. *J Clin Oncol* **34**, 4132-4141 (2016).
- 34 10. Barbie, D.A. *et al*. Systematic RNA interference reveals that oncogenic KRAS-driven cancers
35 require TBK1. *Nature* **462**, 108-12 (2009).
- 36 11. Kaufhold, S. & Bonavida, B. Central role of Snail1 in the regulation of EMT and resistance in
37 cancer: a target for therapeutic intervention. *J Exp Clin Cancer Res* **33**, 62 (2014).
- 38 12. Park, J. & Schwarzbauer, J.E. Mammary epithelial cell interactions with fibronectin stimulate
39 epithelial-mesenchymal transition. *Oncogene* **33**, 1649-57 (2014).

Chakravarthy et al: DNA methylation profiling of cervical cancer

- 1 13. Reymond, N., d'Agua, B.B. & Ridley, A.J. Crossing the endothelial barrier during metastasis.
2 *Nat Rev Cancer* **13**, 858-70 (2013).
- 3 14. Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer
4 metastasis. *Nat Med* **7**, 192-8 (2001).
- 5 15. Steeg, P.S. Targeting metastasis. *Nat Rev Cancer* **16**, 201-18 (2016).
- 6 16. Liu, Y. et al. Increased EZH2 expression is associated with proliferation and progression of
7 cervical cancer and indicates a poor prognosis. *Int J Gynecol Pathol* **33**, 218-24 (2014).
- 8 17. Halle, C. et al. Hypoxia-induced gene expression in chemoradioresistant cervical cancer
9 revealed by dynamic contrast-enhanced MRI. *Cancer Res* **72**, 5285-95 (2012).
- 10 18. Kim, B.W. et al. Prognostic assessment of hypoxia and metabolic markers in cervical cancer
11 using automated digital image analysis of immunohistochemistry. *J Transl Med* **11**, 185 (2013).
- 12 19. Zhang, Y., Liu, B., Zhao, Q., Hou, T. & Huang, X. Nuclear localizaiton of beta-catenin is
13 associated with poor survival and chemo-/radioresistance in human cervical squamous cell cancer.
14 *Int J Clin Exp Pathol* **7**, 3908-17 (2014).
- 15 20. Feber, A. et al. Using high-density DNA methylation arrays to profile copy number
16 alterations. *Genome Biol* **15**, R30 (2014).
- 17 21. Charoentong, P. et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-
18 Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. *Cell Rep* **18**,
19 248-262 (2017).
- 20 22. Gilbert, D.C. et al. Tumour-infiltrating lymphocyte scores effectively stratify outcomes over
21 and above p16 post chemo-radiotherapy in anal cancer. *Br J Cancer* (2016).
- 22 23. Gooden, M.J.M., de Bock, G.H., Leffers, N., Daemen, T. & Nijman, H.W. The prognostic
23 influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis.
24 *British Journal Of Cancer* **105**, 93 (2011).
- 25 24. Jordanova, E.S. et al. Human leukocyte antigen class I, MHC class I chain-related molecule A,
26 and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? *Clin
27 Cancer Res* **14**, 2028-35 (2008).
- 28 25. Nedergaard, B.S., Ladekarl, M., Thomsen, H.F., Nyengaard, J.R. & Nielsen, K. Low density of
29 CD3+, CD4+ and CD8+ cells is associated with increased risk of relapse in squamous cell cervical
30 cancer. *British Journal Of Cancer* **97**, 1135 (2007).
- 31 26. Ward, M.J. et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive
32 oropharyngeal cancer. *Br J Cancer* **110**, 489-500 (2014).
- 33 27. Chakravarthy, A. et al. Pan-cancer deconvolution of tumour composition using DNA
34 methylation. *Nat Commun* **9**, 3220 (2018).
- 35 28. Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human cancer. *Nat
36 Biotechnol* **30**, 413-21 (2012).
- 37 29. Mizunuma, M. et al. The pretreatment neutrophil-to-lymphocyte ratio predicts therapeutic
38 response to radiation therapy and concurrent chemoradiation therapy in uterine cervical cancer. *Int
39 J Clin Oncol* **20**, 989-96 (2015).
- 40 30. Lee, Y.Y. et al. Pretreatment neutrophil:lymphocyte ratio as a prognostic factor in cervical
41 carcinoma. *Anticancer Res* **32**, 1555-61 (2012).
- 42 31. Condamine, T. & Gabrilovich, D.I. Molecular mechanisms regulating myeloid-derived
43 suppressor cell differentiation and function. *Trends Immunol* **32**, 19-25 (2011).
- 44 32. Zelenay, S. et al. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity.
45 *Cell* **162**, 1257-70 (2015).
- 46 33. Elkabets, M. et al. IL-1beta regulates a novel myeloid-derived suppressor cell subset that
47 impairs NK cell development and function. *Eur J Immunol* **40**, 3347-57 (2010).
- 48 34. Chun, E. et al. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear
49 Myeloid-Derived Suppressor Cell Population and Function. *Cell Rep* **12**, 244-57 (2015).
- 50 35. Hartwig, T. et al. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive
51 Immune Microenvironment via CCR2. *Mol Cell* **65**, 730-742.e5 (2017).

Chakravarthy et al: DNA methylation profiling of cervical cancer

- 1 36. Xu, M. et al. Interactions between interleukin-6 and myeloid-derived suppressor cells drive
- 2 the chemoresistant phenotype of hepatocellular cancer. *Exp Cell Res* **351**, 142-149 (2017).
- 3 37. Newman, A.M., Liu, C.L. & Green, M.R. Robust enumeration of cell subsets from tissue
- 4 expression profiles. **12**, 453-7 (2015).
- 5 38. Lai, C.H. et al. Role of human papillomavirus genotype in prognosis of early-stage cervical
- 6 cancer undergoing primary surgery. *J Clin Oncol* **25**, 3628-34 (2007).
- 7 39. Burger, R.A. et al. Human papillomavirus type 18: association with poor prognosis in early
- 8 stage cervical cancer. *J Natl Cancer Inst* **88**, 1361-8 (1996).
- 9 40. Wang, C.C. et al. Clinical effect of human papillomavirus genotypes in patients with cervical
- 10 cancer undergoing primary radiotherapy. *Int J Radiat Oncol Biol Phys* **78**, 1111-20 (2010).
- 11 41. Cuschieri, K. et al. Influence of HPV type on prognosis in patients diagnosed with invasive
- 12 cervical cancer. *Int J Cancer* **135**, 2721-6 (2014).
- 13 42. Halle, M.K. et al. Clinicopathologic and molecular markers in cervical carcinoma: a
- 14 prospective cohort study. *Am J Obstet Gynecol* **217**, 432 e1-432 e17 (2017).
- 15 43. Gillison, M.L., Chaturvedi, A.K., Anderson, W.F. & Fakhry, C. Epidemiology of Human
- 16 Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. *J Clin Oncol* **33**, 3235-42 (2015).
- 17 44. Moren, A., Raja, E., Heldin, C.H. & Moustakas, A. Negative regulation of TGFbeta signaling by
- 18 the kinase LKB1 and the scaffolding protein LIP1. *J Biol Chem* **286**, 341-53 (2011).
- 19 45. Faubert, B. et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of
- 20 cancer cells via HIF-1alpha. *Proc Natl Acad Sci U S A* **111**, 2554-9 (2014).
- 21 46. Ottensmeier, C.H. et al. Upregulated glucose metabolism correlates inversely with CD8+ T
- 22 cell infiltration and survival in squamous cell carcinoma. *Cancer Res* (2016).
- 23 47. Ngwa, V.M., Edwards, D.N., Philip, M. & Chen, J. Microenvironmental Metabolism Regulates
- 24 Antitumor Immunity. *Cancer Res* **79**, 4003-4008 (2019).
- 25 48. Skoulidis, F. et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung
- 26 Adenocarcinoma. *Cancer Discov* **8**, 822-835 (2018).
- 27 49. Eun, Y.G. et al. Clinical significance of YAP1 activation in head and neck squamous cell
- 28 carcinoma. *Oncotarget* **8**, 111130-111143 (2017).
- 29 50. He, C. et al. A Human Papillomavirus-Independent Cervical Cancer Animal Model Reveals
- 30 Unconventional Mechanisms of Cervical Carcinogenesis. *Cell Rep* **26**, 2636-2650 e5 (2019).
- 31 51. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade.
- 32 *J Clin Invest* **127**, 2930-2940 (2017).
- 33 52. Viel, S. et al. TGF-beta inhibits the activation and functions of NK cells by repressing the
- 34 mTOR pathway. *Sci Signal* **9**, ra19 (2016).
- 35 53. Zhang, F. et al. TGF-beta induces M2-like macrophage polarization via SNAIL-mediated
- 36 suppression of a pro-inflammatory phenotype. *Oncotarget* **7**, 52294-52306 (2016).
- 37 54. Fridlender, Z.G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta:
- 38 "N1" versus "N2" TAN. *Cancer Cell* **16**, 183-94 (2009).
- 39 55. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by
- 40 contributing to exclusion of T cells. *Nature* **554**, 544-548 (2018).
- 41 56. Ford, K. et al. NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated
- 42 fibroblast-mediated CD8 T-cell exclusion from tumours. *Cancer Res* (2020).
- 43 57. Shackelford, D.B. et al. LKB1 inactivation dictates therapeutic response of non-small cell lung
- 44 cancer to the metabolism drug phenformin. *Cancer Cell* **23**, 143-58 (2013).
- 45 58. Capper, D. et al. DNA methylation-based classification of central nervous system tumours.
- 46 *Nature* **555**, 469-474 (2018).
- 47 59. Bray, N.L., Pimentel, H. & Melsted, P. Near-optimal probabilistic RNA-seq quantification. *Nat*
- 48 *Biotechnol* **34**, 525-7 (2016).
- 49 60. Aryee, M.J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis
- 50 of Infinium DNA methylation microarrays. *Bioinformatics* **30**, 1363-9 (2014).

Chakravarthy et al: DNA methylation profiling of cervical cancer

1 61. Fortin, J.P. *et al.* Functional normalization of 450k methylation array data improves
2 replication in large cancer studies. *Genome Biol* **15**, 503 (2014).

3 62. Teschendorff, A.E. *et al.* A beta-mixture quantile normalization method for correcting probe
4 design bias in Illumina Infinium 450 k DNA methylation data. *Bioinformatics* **29**, 189-96 (2013).

5 63. Lyng, H. *et al.* Intratumor chromosomal heterogeneity in advanced carcinomas of the uterine
6 cervix. *Int J Cancer* **111**, 358-66 (2004).

7 64. Simpson, T.I., Armstrong, J.D. & Jarman, A.P. Merged consensus clustering to assess and
8 improve class discovery with microarray data. *BMC Bioinformatics* **11**, 590 (2010).

9 65. Reinius, L.E. *et al.* Differential DNA methylation in purified human blood cells: implications
10 for cell lineage and studies on disease susceptibility. *PLoS One* **7**, e41361 (2012).

11 66. Mermel, C.H. *et al.* GISTIC2.0 facilitates sensitive and confident localization of the targets of
12 focal somatic copy-number alteration in human cancers. *Genome Biol* **12**, R41 (2011).

13 67. Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G. & Hacohen, N. Molecular and genetic
14 properties of tumors associated with local immune cytolytic activity. *Cell* **160**, 48-61 (2015).

15 68. De Simone, M. *et al.* Transcriptional Landscape of Human Tissue Lymphocytes Unveils
16 Uniqueness of Tumor-Infiltrating T Regulatory Cells. *Immunity* **45**, 1135-1147 (2016).

17 69. Linsley, P.S., Speake, C., Whalen, E. & Chaussabel, D. Copy number loss of the interferon
18 gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. *PLoS One*
19 **9**, e109760 (2014).

20 70. Bonnal, R.J. *et al.* De novo transcriptome profiling of highly purified human lymphocytes
21 primary cells. *Sci Data* **2**, 150051 (2015).

22

23

24

25

26

27

28

29

30

31

32

33