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Abstract 

Controlling cell fate has great potential for regenerative medicine, drug discovery, and basic 

research. Although numerous transcription factors have been discovered that are able to promote 

cell reprogramming and trans-differentiation, methods based on their up-regulation tend to show 

low efficiency. The identification of small molecules that can facilitate conversion between cell 

types can ameliorate this problem working through safe, rapid, and reversible mechanisms. Here 

we present DECCODE, an unbiased computational method for the identification of such molecules 

solely based on transcriptional data. DECCODE matches the largest available collection of drug-

induced profiles (the LINCS database) for drug treatments against the largest publicly available 

dataset of primary cell transcriptional profiles (FANTOM5), to identify drugs that either alone or 

in combination enhance cell reprogramming and cell conversion. Extensive in silico and in vitro 

validation of DECCODE in the context of human induced pluripotent stem cells (hIPSCs) 

generation shows that the method is able to prioritize drugs enhancing cell reprogramming. We 

also generated predictions for cell conversion with single drugs and drug combinations for 145 

different cell types and made them available for further studies. 
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Introduction 

Controlling cell fate has enormous potentials for regenerative medicine1, drug discovery2 and cell-

based therapy3. A milestone discovery by Yamanaka and colleagues, who induced human stem 

cells via genetic reprogramming of mature somatic cells using four transcription factors (TFs)4,5, 

has recently revolutionized the field of stem cell biology. To date, numerous studies have revealed 

distinct sets of TFs that achieve or promote cell reprogramming6 and transdifferentiation7,8. 

However, these methods often suffer from low efficacy due to partly unknown barriers that need 

to be overcome for complete conversion9. 

 

Optimizing the reprogramming system using non-invasive approaches such as small molecule 

treatment is a promising strategy that may increase the reprogramming potential. The cellular 

effects of small molecule treatment are often rapid, dose dependent and reversible10, and have 

potential for in situ regeneration therapeutic interventions11. Recently, several methods relying 

fully or partially on drug treatment to enhance cell conversion have emerged12. Many of these use 

fibroblasts as the starting cell type, reprogrammed towards pluripotency13,14 or trans-differentiated 

to specialized cell types including neurons15, endothelial cells16, pancreatic like cells17, 

cardiomyocytes18, hepatocytes19 or other cell types20,21,22. Such studies provide a proof of principle 

for drug-based reprogramming, the exact mechanisms of which, however, are often poorly 

understood, making extensive trial-and-error unavoidable. Indeed, methods for identifying small 

molecule candidates include either exhaustive screenings of drug libraries followed by marker 

gene readout23 or application of drugs known to modulate specific pathways involved in the 

desired lineage commitment24. While these methods are promising, they are laborious and do not 

scale. 

 

Whereas computational approaches to identify novel combinations of transcription factors to 

facilitate cell reprogramming have been developed and validated25,26, no similar tools exist for 

small molecules. Here, we present a methodology to automatically identify small molecules that 

either alone or in combination enhance cell reprogramming and cell conversion. We analyzed 447 

genome-wide expression profiles of untreated primary cells from the FANTOM5 project27 together 

with 107,404 transcriptional responses to small molecule treatment from the LINCS project28 to 

identify small molecules that drive the cell transcriptional program towards the one of the desired 

lineage. We make the results available in an online tool named DECCODE (Drug Enhanced Cell 

COnversion using Differential Expression), that when queried returns the top compounds 

predicted to enhance conversion towards the desired cell type. We extensively validated 

DECCODE to identify small molecules enhancing reprogramming of human fibroblasts towards 

human induced Pluripotent Stem Cells (hIPSCs). DECCODE is unbiased, as it does not rely on 

previous knowledge, and it can scale up to identify drugs to enhance cell conversion to any desired 

cell type. We make the results available in an online tool (available at the following URL: 

https://fantom.gsc.riken.jp/5/cellconv/) that when queried returns the top compounds predicted to 

enhance conversion towards a large collection of primary cell types. 
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Results 

The DECCODE approach 

A schematic representation of our approach is illustrated in Figure 1A. Given a target cell type, 

we constructed its cell type-specific differential gene expression profile using the FANTOM5 

database29, the most extensive atlas of gene expression profiles across primary human cells27, thus 

obtaining 447 expression profiles corresponding to 145 different cell types (Methods). 

Specifically, the target cell-type expression profile was compared against the profiles of all the 

remaining cell-types to detect differentially expressed genes specific to the target cell-type. We 

then compared the target cell-type profile with drug-induced transcriptional profiles obtained from 

the LINCS database (GSE70138). LINCS contains 107,404 differential gene expression profiles 

corresponding to the transcriptional responses of 41 cell lines to 1,768 different drugs spanning 

different concentrations and time points, far exceeding any other publicly available resource of 

cellular perturbations28. 

 

Since FANTOM5 and LINCS employ different expression profiling technologies, we first 

converted differential gene expression profiles (DGEPs) in both datasets to differential pathway-

based expression profiles (DPEPs)30 (Methods) in order to enable an integrative analysis over the 

two datasets. Subsequently, we generated a consensus profile for each drug by merging together 

DPEPs across different time points and dosages. Finally, given a cell-type of interest, we searched 

among the 1,768 drugs that induce a transcriptional response similar to the expression profile of 

the target cell-type. The underlying hypothesis is that the selected drugs will induce a change in 

gene expression in the starting cell-type by making it more transcriptionally similar to the target 

cell-type, and thus facilitating the cell conversion process. 

 

We also developed an extension of this method to predict drug combinations that synergize to 

enhance cell conversion. In previous work, we showed that combinatorial drug treatment is 

effectively described by a linear combination of the individual drug responses31 at the 

transcriptional level. The same finding has also been proven at the protein level, where protein 

dynamics in drug combinations can be explained  by a linear superposition of their responses to 

individual drugs32. After confirming that the linear relationship also holds at the pathway level 

(Methods), we employed a multivariable linear regression model to describe the combined effect 

of drug combinations. First, for each drug, we selected the profile having highest DECCODE score 

across the treated cell lines, thus obtaining a single profile for each drug. Then we used forward 

selection to pick out the drug subsets yielding the most significant correlation with the target cell 

profile (Methods).  
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Figure 1: Computational identification of drugs facilitating cell conversion. (A) Workflow of the DECCODE 

approach. Target cell profiles are constructed from the FANTOM5 collection of human primary cell samples. Drug-

induced consensus profiles are created for each of the treated cell lines included in the LINCS database. Single drugs 

or drug combinations are then prioritized based on their similarity with the target cell type profile. (B) In silico 

validation of single drugs facilitating conversion to hIPSCs.  Drugs are grouped by their DECCODE scores and the 

Pluripotency Scores (PSs) of the drug-induced gene expression profiles within each group are computed and 

represented as a box-plot. (C) In silico validation of drug combinations of increasing size facilitating conversion to 

hIPSCs. PSs for drugs within each of the top 30 combinations are compared to random sets of the same size (see 

Methods for the details). Random selection was repeated 100 times. (D) Improvement obtained when using drug 

combinations of increasing size. The Spearman correlation between predicted drug combination profiles and hIPSC 

profile as more drugs are added is reported in the boxplot. The red line highlights the difference between the means 

of subsequent sets. 

Application of DECCODE to human IPS cells conversion 

We first applied DECCODE in the single-drug mode to identify drugs enhancing cell 

reprogramming to human induced pluripotent stem cells (hIPSCs). We thus selected hIPSCs as the 

target cell-type and DECCODE returned the list of all 1,768 drugs ranked according to their 

predicted efficacy in enhancing cell reprogramming. We performed Drug Set Enrichment Analysis 

(DSEA)30 of the first 25 drugs in the ranking to identify those pathways that are consistently 

modulated by most of the drugs. As a result, we observed a consistent enrichment of pathways 

associated with pluripotency, such as differentiation and proliferation (Supplementary Table 1). 

 

In order to further assess the validity of the DECCODE score, we devised an in silico validation 

method based on assigning a Pluripotency Score (PS) to each drug according to the upregulation 

of pluripotency specific genes and downregulation of somatic specific genes (Methods). We then 
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compared the DECCODE scores with the PSs. A clear trend can be observed with top-ranked 

(higher DECCODE scores) drugs exhibiting higher PSs, and bottom-ranked (lower DECCODE 

scores) drugs exhibiting lower PSs, whereas no obvious correlation existed in the middle ranked 

profiles (Figure 1B). The full distribution of the DECCODE scores is reported in Supplementary 

Figure 1. 

 

We then applied DECCODE in the drug-combination mode to identify drugs that can jointly 

enhance reprogramming to hIPSCs. Pluripotency Score and predicted similarity to the hIPSC 

profile of the top 30 drug combinations significantly improved when increasing the number of 

drugs, as assessed by Spearman correlation and adjusted r-squared. (Figure 1C-D, 

Supplementary Figure 2A). However, we observed that the most significant improvement was 

achieved when adding just one additional drug and gradually decreased as we kept adding more 

drugs, eventually reaching a plateau. Akaike Information Criterion (AIC) further confirmed that 

the relative goodness of fit increased more than what would be expected by chance as more drugs 

were added to the single drug models (Supplementary Figure 2B). The distribution of the 

transcriptional similarities between the two drug profiles in each of the top 30 drug-pair 

combinations was compared to randomly chosen drug-pairs (Supplementary Figure 2C). The 

results indicated that the two selected drugs in each combination tend to be transcriptionally 

different. Taken together, these in silico results suggest that drug combinations may offer an 

increased capacity to promote reprogramming compared to single drug administration. 

Experimental validation of DECCODE for conversion to hIPSCs 

We set to experimentally validate predictions of DECCODE in single-drug mode applied to the 

hIPSCs reprogramming problem. As a biological model of reprogramming, we employed human 

secondary fibroblasts harboring a doxycycline-inducible OSKM (OCT4, SOX2, KLF4, C-MYC) 

gene cassette (hiF-T cells)33. We selected for experimental validation the top-ranked 25 drugs 

present in either of two widely used chemical screening libraries (Methods) that were predicted by 

DECCODE to enhance reprogramming to hIPSCs. In addition, we selected 20 drugs with scores 

in the lower half of the total ranking for comparison. hiF-T cells were treated with a total of 45 

drugs in triplicate. After 21 days of treatment, cells were stained for the pluripotency marker TRA-

1-60, imaged, and cell colony number and area were quantified for each well (see example in 

Supplementary Figure 3). The top-ranked drugs performed significantly better than the lower 

ranked drugs, either when considering the number of colonies or the total area covered by the 

colonies (Figure 2A). Several top-ranked drugs have been already associated with enhancement 

of reprogramming (Supplementary Table 2), including tranylcypromine, which we previously 

identified as a new positive regulator of the reprogramming process33. 

 

Tazobactam, an antibiotic of the beta-lactamase inhibitor class previously unexamined in the 

context of cell reprogramming, achieved the highest performance when considering the area 

covered by the colonies and the second highest performance when considering the number of 

colonies (Figure 2A and Supplementary Figure 4), thus ranking first when considering both area 

and colony number together. Tazobactam was further validated by performing primary 

reprogramming of human primary foreskin fibroblasts through OSKM transduction either in the 

presence or absence of tazobactam. Both the number of colonies and the total area covered by the 

colonies confirmed the ability of tazobactam to enhance reprogramming to hIPSCs (Figure 2B). 
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Figure 2: Experimental validation of DECCODE to identify drugs that enhance conversion to hIPSCs. (A) Secondary 

reprogramming: fold change (FC) relative to controls of the number of colonies and their total area following treatment 

either with the 25 drugs ranked by DECCODE at the top of the ranking (green boxes) or with 20 drugs ranked in the 

bottom half of the ranking (red boxes). Dots represent the effect of individual drugs in terms of the average fold change 

for three replicate experiments against controls. Main panel shows the combined average of both number of colonies 

(count) and their area expressed as FCs; smaller panels report counts and area separately. (B) Primary reprogramming: 

number of colonies and percentage of their total area following treatment with tazobactam and OSKM compared to 

OSKM alone (control). Dots represent the single values for each replicate. 

Resource 

To create a comprehensive resource for drug-assisted cell conversions, we applied DECCODE to 

the whole FANTOM5 set of primary cells. We observed that closely related cell types exhibit high 

transcriptional similarity leading to tautological and nonspecific drug predictions. To reduce 

redundancy, we thus employed a two-level hybrid clustering of cell types taking into consideration 

both knowledge-driven and data-driven similarities (Figure 3). In the first level, we applied the 

Affinity Propagation34 algorithm to cluster primary cells using either an ontological similarity 

(Methods) or a transcriptional similarity, thus obtaining two different clusterings (Figure  3). For 

visualization purposes, we also performed a hierarchical clustering for both similarity measures 

(Supplementary Figure 5, 6). In the second level, cell types that were grouped together by both 

ontological and transcriptional clustering, were kept in one cluster, otherwise they were separated 

into distinct clusters. Finally, differential pathway-based expression profiles (DPEPs) of cell types 

in the same cluster were merged together to create a single consensus profile. We thus obtained 69 

Consensus DPEPs corresponding to distinct “meta-cells”, i.e. an ensemble of different cell-types 

very similar in both ontological and transcriptional terms (the 69 meta-cell clusters are reported in 

Supplementary Table 3). 
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Figure 3: Two-level clustering to obtain cell-type specific consensus profiles.  

 

We applied DECCODE to the 69 meta-cells profiles and found several drugs experimentally 

proved to facilitate cell conversions among the top 5% of ranked drugs (Supplementary Tables 

4&5). Of note, two small molecules (Y-27632 and PD0325901) that were ranked among the top 

20 candidates for conversion into the neuronal cell-type were previously experimentally proven to 

promote neural conversion. Y-27632, a ROCK inhibitor that assists in neuron survival, was used 

in combination with six other small molecules to convert human fibroblasts into neuronal-like 

cells35. PD0325901, a MEK-ERK inhibitor, facilitated the direct conversion of somatic cells to 

induced neuronal cells in a chemical cocktail of six compounds36.  

 

Our method has been pre-computed on 69 meta-cells representing all the primary cell types 

included in the FANTOM5 database, and the top single- and multi-drug predictions are publicly 

available through the DECCODE web site (https://fantom.gsc.riken.jp/5/cellconv/) to provide an 

extensive resource that may support and complement future chemical enhanced cell conversion 

studies. 

Discussion 

 

Therapies based on cell reprogramming and conversion are becoming a reality37,38 along with the 

need for methods that improve efficacy and safety of these processes. The use of small molecules, 

rather than genetic factors, is a promising approach to address safety issues. In addition to the 

ultimate goal of finding combinations that can fully convert one cell type to another, the 

identification of small molecules that can perform a partial conversion, or make the conversion 

more effective, also represents an important improvement on current methods. Here, we developed 

an unbiased method, DECCODE, which does not rely on expert knowledge of lineage-specific 

genes and pathways, scales to large numbers of cell conversions and drugs, and relies on publicly 

available data, thus not requiring massive screening efforts. Our method is the first validated 

computational approach for prioritizing small molecules promoting cell reprogramming. We have 
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applied DECCODE to 145 human primary cell types from FANTOM5 and made the results 

available, providing a comprehensive resource including both single drugs and combinations of 

two drugs predicted to facilitate conversion to a variety of cell types. Together with such resources, 

we also released the full automated pipeline used for colony quantification, including source code 

and high resolution plate scans39 (DOI: 10.5281/zenodo.3732772). 

 

Although the number of gene expression profiles following drug treatment available in public 

databases is substantial, the number of unique small molecules profiled is not. Indeed, only a subset 

of small molecules that have been experimentally validated to facilitate cell conversions, were 

transcriptionally profiled in LINCS. Moreover, considering that many of the profiled agents are 

kinase inhibitors, relevant for cancer therapy, publicly available drug profile resources represent a 

small portion of the “druggable genome” in cell conversion applications. Future profiling efforts 

that include additional libraries of small molecules will increase the utility of our approach. 

 

Since our method relies on the analysis of transcriptomic data, there are some restrictions regarding 

the small molecules that can be captured. For example, epigenetic modifiers, such as HDAC 

inhibitors are extensively used in cell conversions to tackle the epigenetic barriers between 

different types of cells. The broad action and the nonspecific transcriptional behavior40 of these 

drugs limit their identifiability by DECCODE. In contrast, our approach gives priority to 

compounds exhibiting strong transcriptional regulation towards the target cell type. It may 

therefore be advisable to combine compounds identified in this study with treatment with 

epigenetic modifiers in order to further increase the efficacy of cell conversion. 

 

Experiments on human fibroblasts confirmed the ability of DECCODE to predict small molecules 

facilitating cell reprogramming. The efficiency of reprogramming when treating cells with the 

best-ranked drugs was increased when compared to the control case. Our work demonstrates that 

DECCODE is able to distinguish and prioritize small molecules based on their potential to promote 

reprogramming and its usefulness in facilitating cell conversion should not be underestimated. We 

identified the core reprogramming chemicals for each lineage commitment, which could aid in 

establishing the role of various small molecules in different cell fates. We made our results 

available via a user-friendly interface to facilitate the design of cell conversion experiments 

involving chemical compounds. Our method provides a significant head start towards the 

development of systematic chemical based reprogramming strategies.   

Material and Methods 

Gene expression data 

We used untreated primary cell profiles from the FANTOM5 collection and drug-induced gene 

expression profiles from the LINCS collection. We selected all primary human cells having at least 

two biological replicates from the FANTOM5 database (http://fantom.gsc.riken.jp/5/data), 

resulting in 447 samples, which correspond to 145 different cell types. Expression tables of robust 

CAGE peaks for these samples were processed as follows: we kept only the promoters located 

within 500 bp of known RefSeq transcripts (87,400 promoters). We added read counts of all the 
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promoters sharing the same Entrez id annotation, resulting in 18,980 genes (Supplementary 

Figure 7). Read counts of samples were converted in CPM (counts per million) values and 

averaged across the same cell type. Z-score normalization was applied to each gene across cell 

types to obtain differential expression profiles for each cell type. Subsequently, genes in every cell 

type were ranked according to their expression, from the most expressed to the least expressed 

gene. 

 

LINCS database is available as gene-based expression profiles. We downloaded the 5th level of 

differential gene expression signatures released on the GEO website (GEO accession GSE70138) 

which includes 107,404 profiles corresponding to 1,768 different drugs in 41 cell lines, 83 

concentrations, and four treatment durations. Data access was performed through the cmapR 

package41. Genes in each drug profile were ranked according to their expression, from the most 

up-regulated to the most down-regulated gene. 

 

Conversion to pathway-based profiles 

To harmonize the two datasets, we converted the ranked lists of genes from both cell-types 

(FANTOM5) and drug treatments (LINCS) into pathway-based expression profiles (PEPs). A PEP 

is a transcriptomic profile expressed in terms of pathways as opposed to genes. PEPs were 

introduced in our previous work30 and their efficacy for drug discovery applications was also 

proved42. To convert FANTOM5 and LINCS Gene Expression Profiles (GEPs) to PEPs, we 

applied the gep2pep Bioconductor package43  using all the 14,645 gene sets from 16 different gene 

set collections included in the MsigDB v6.144. The gep2pep package iteratively performs Gene Set 

Enrichment Analysis (GSEA)45 to compute Enrichment Scores for each gene set and each 

expression profile. A PEP is then defined as a ranked list of pathways, each of which is associated 

with an Enrichment Score (and the corresponding p-value). Once FANTOM5 and LINCS GEPs 

are converted to PEPs, they can be directly compared (Supplemental Figure 7). 

 

Various pathway-based profiles for the same gene expression profile can be obtained based on the 

chosen pathway database. In our case, as previously mentioned, we tried 16 different pathway 

collections available at the MSigDB database. We then evaluated which one out of these 16 

collections best captured cell-type similarities, with respect to the Cell Ontology46. To this aim, 

we used the Cell Ontology annotation of cell-types created by the FANTOM5 consortium47. In 

order to obtain a numerical score for each pair of cell-types i and j in the ontology, we used the 

Jaccard Index as follows:  

 

𝐷𝐶𝑂(𝑖, 𝑗)=1 −
|𝐶𝑖 ∩ 𝐶𝑗|

|𝐶𝑖|+|𝐶𝑗|−|𝐶𝑖 ∩ 𝐶𝑗 |
  (Jaccard index) 

 

where Ci are the ontology ancestors of cell type i, Cj are the ontology ancestors of cell type j, 1 ≤ 

i, j ≤ 145, i ≠ j. Then we defined the PEP-based distance between cell types i and j using the 

Manhattan distance as follows: 

 

𝐷𝑃(𝑖, 𝑗) = |𝑃𝑖 − 𝑃𝑗| 
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Pi is the PEP of cell type i, Pj is the PEP of cell type j, 1 ≤ i, j ≤ 145, i ≠ j. 

Finally, we compared the cell distances computed on the PEPs with the same cell distances based 

on the Cell Ontology (Supplemental Figure 8). The PEPs based on the C2 collection (Canonical 

Pathways) achieved the highest agreement with the ontology-based similarities, capturing more 

accurately the known cell hierarchy, when compared to a previously developed gene-based 

approach48.Thus, pathway-based profiles obtained with C2, which includes 250 pathways, were 

chosen for all further analyses.  

Merging of Pathway-based Expression Profiles 

As previously proposed48, we merged multiple expression profiles elicited by the same drug 

treatment in order to obtain a single “consensus-profile” for each drug, thus enhancing drug-

specific effects while reducing unrelated ones. The gep2pep package43 supports this operation by 

averaging the Enrichment Scores over multiple profiles and applying the Fisher method to 

aggregate their p-values. Using this approach, we merged together all the LINCS profiles induced 

by the same drug in the same cell line across different concentrations and treatment durations. An 

additional profile for each drug was generated by averaging all conditions, including different cell 

lines (termed “independent”). We used both approaches to obtain both cell-specific and cell-

independent meta-profiles. We ended up with 17,259 drug-induced PEPs.  

Single-drug DECCODE scores 

We converted LINCS and target cell-type PEPs to ranks based on their enrichment score (from the 

most enriched to the least enriched pathway). Then, we ranked each LINCS PEP by computing its 

L1 distance from the target cell-type PEP:  

 

𝐷(𝑑𝑖, 𝑡)  = ∑|𝑑𝑖,𝑝 − 𝑡𝑝|

250

𝑝=1

 

 

where di is the LINCS PEP for drug i, i =1, …, 17,259 (number of drug-induced PEPs), t is the 

target cell type PEP, p=1,…, 250 (number of pathways in C2 collection). For further analysis, we 

considered only the top-ranked profile for each small molecule, resulting in 1,768 profiles (number 

of unique small molecules). 

In silico validation with the Pluripotency Score 

While the DECCODE framework is based on an unbiased, data-driven approach, we devised a 

pluripotency-specific method to score gene expression profiles based on prior knowledge about 

genes involved in the conversion to hIPSCs. We then compared these scores with DECCODE 

scores to validate the predictions. The pluripotency score (PS) is based on genes that were 

identified as differentially expressed during reprogramming. In particular, we used the “early 

pluripotency”, “late pluripotency”, “early somatic”, and “late somatic” gene sets previously 

identified33 that characterize gene expression dynamics in the corresponding stages of conversion 
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from human fibroblasts (HiF-T) to hIPSCs. The original study included also other six sets from 

the same context, which we used as statistical background. For each of the ten sets and for each 

drug-induced gene expression profile, we computed an Enrichment Score (ES) using the gep2pep 

tool. We then ranked them from 1st to 10th according to their ESs, thus obtaining a PEP profile. 

Finally, we computed the Pluripotency Score (PS) for each profile p as: 

 

𝑃𝑆(𝑝) = log (
𝑅𝑒𝑎𝑟𝑙𝑦 𝑝𝑙𝑢𝑟𝑖𝑝𝑜𝑡𝑒𝑛𝑡(𝑝)+𝑅𝑙𝑎𝑡𝑒 𝑝𝑙𝑢𝑟𝑖𝑝𝑜𝑡𝑒𝑛𝑡(𝑝)

𝑅𝑒𝑎𝑟𝑙𝑦 𝑠𝑜𝑚𝑎𝑡𝑖𝑐(𝑝)+𝑅𝑙𝑎𝑡𝑒 𝑠𝑜𝑚𝑎𝑡𝑖𝑐(𝑝)
), 

 

where Rx(p) is the rank of the gene set x within the profile p. The score is positive (negative) when 

genes associated with pluripotency stages tend to be more up-regulated (down-regulated) than 

genes associated with somatic stages. 

DECCODE scores for drug combinations 

We showed in previous work that the transcriptional response to combinatorial drug treatment at 

promoters and enhancers is effectively described by a linear combination of the responses of the 

individual drugs (log2FC values)31. We used our previous dataset to test if this additive relationship 

also applies to PEPs. Accordingly, we performed multivariable linear regression analysis, where 

PEPs of individual drugs were considered as explanatory variables and the PEP of combinatorial 

drug action as the response variable. We applied our analysis to five pathway databases, Biological 

Process (BP), Molecular Function (MF), Cellular Component (CC), Transcription Factor Targets 

(TFT) and Canonical Pathways (C2_CP). Supplementary Table 6 demonstrates the performance 

of the linear regression model after ten-fold cross-validation in all the three drug combinations and 

the four pathway collections. The results show that the linear model using PEPs can describe the 

relation between single and combinatorial treatment. 

 

To validate whether both single drug PEPs contribute to the model, we performed the same 

regression analysis 100,000 times with random permutations of one of the single drug PEP. The 

Pearson correlation between the observed and predicted values after the permutations was 

significantly lower for all combinations compared to the regression model based on the non-

permuted individual drug PEPs (Supplementary Figure 9). 

 

In order to produce DECCODE scores for drug combinations, we considered only the top-ranked 

PEP for each drug based on its Manhattan distance to the target cell type. For each drug PEP 

(1,768), we fitted a simple linear regression model and we ranked drugs based on the spearman 

correlation between fitted and observed values. We picked the top 30 drug PEPs and searched 

through the remaining drugs to find out which one should be added to the current models to best 

improve the Spearman correlation. Repeated occurrences of the same drug sets in different order 

were discarded. We continued to add variables to the top 30 models until we reached 10 predictors. 

Computational validation of the obtained combinations was assessed using PSs (Figure 1B). In 

particular, for any drug combination the median of the corresponding PSs was used. Moreover, 

the top 30 solutions were considered for a given drug combination size, thus obtaining 30 median 

PS values. In order to obtain a corresponding null distribution, the same calculation was performed 

also for random drug combinations of equal size. The random selection was repeated 100 times 
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for each size, thus obtaining 100 times 30 median PSs. Figure 1B summarizes this analysis by 

reporting the obtained 30 versus 300 median PSs for drug combinations of size 1 to 10. 

 

 

Selection of the drugs for the experimental validation  
 

In order to validate the method experimentally, we selected 25 drugs from the top of the 

DECCODE ranking, plus 20 non-top drugs for comparison. In particular, to build the set of non-

top drugs, we chose 10 drugs from the middle of the ranking and 10 drugs from the bottom. In 

case of an overlap between top and non-top drugs due to the same drugs being profiled across 

multiple cellular contexts in the LINCS database, we removed the repeated drugs from the non-

top sets and chose the next one in the ranking. In all cases, only the drugs included in the 

Prestwick-FDA library or in the SelleckChem Kinase inhibitors library were considered. 

 

Human Cellular Reprogramming 

All the reprogramming experiments and procedures were performed as previously described33. In 

summary, secondary reprogramming was performed by seeding, on a confluent irradiated MEF-

feeder layer, clonal TERT-immortalized secondary fibroblasts harboring a doxycycline-inducible 

OSKM cassette. The day after seeding reprogramming was initiated by doxycycline 

supplementation and protracted for 21 days. 

 

For primary reprogramming, BJ foreskin fibroblasts were infected with a lentivirus harboring the 

constitutive OSKM cassette (pLM-fSV2A)49  split onto an irradiated MEF-feeder layer and 

reprogrammed for 15 days. 

 

At the end of each reprogramming, quantitative analysis of colony number and area was performed 

using a TRA-1-60 chromogenic staining in bright field. All candidate drugs for reprogramming 

were tested for the entire duration of the reprogramming process at a final concentration of 10nM 

in several technical or biological replicates, as indicated. 

Colony quantification 

To quantify colony number and size in an unbiased and reproducible way, a completely automated 

procedure was developed, which is divided in two phases. The first phase was performed through 

a Matlab script which identifies each well inside all the plate scans, applies a 3X contrast, and 

saves each of them to a separate image file. The second phase was performed by an ImageJ macro 

that loads the well images produced by the previous step and performs the final counting and area 

estimation on each of them. Both Matlab and ImageJ source code, together with the high resolution 

plate scan images, are available online39 (DOI: 10.5281/zenodo.3732772). 

 

In secondary reprogramming experiments, colony count and area values were averaged across the 

three replicates of the same treatment and across the two controls on the same plate. Average fold 

change of treatments versus controls were then obtained accordingly (Figure 2A, small panels). 
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In order to summarize both count and covered area values together, the corresponding fold changes 

were averaged (Figure 2A, main panel). In the primary reprogramming experiment, counts and 

areas for tazobactam treatment and controls were compared directly (Figure 2B, small panels). 

Two controls were excluded according to the Bonferroni Outlier Test (𝑝 < 0.0118 and 𝑝 <
0.0106 respectively). In the case of primary reprogramming results, in order to summarize counts 

and covered area together, all the absolute values were normalized dividing by the corresponding 

mean of the controls (Figure 2B, main panel). 

Computation of DECCODE scores for all the FANTOM5 cell types 

The FANTOM5 cell types include sub-types that are very similar, thus the corresponding 

expression profile are not different enough to produce sub-type specific predictions. Therefore, we 

merged similar cell types to form a single meta-cell profile (see methods subsection “Merging of 

Pathway-based Expression Profiles”). In order to systematically select which cell-type profiles to 

merge, we took advantage of the previously computed PEP-based and ontology-based cell type 

distances (refer to subsection “Conversion to pathway-based profiles”). We applied the Affinity 

Propagation algorithm34 individually to each of the two pairwise distances to obtain two different 

clusterings of the same cell types (Supplementary Figures 5-6). Affinity Propagation clustering 

was performed using the "apcluster" R package50. Finally, we built a consensus clustering by 

assigning two cell types to the same cluster if and only if they were assigned to the same cluster 

by both the ontology-based and PEP-based clusterings. Meta-cell profiles are obtained by merging 

all the profiles included in the same cluster. We then computed single-drug and multiple-drug 

DECCODE scores for all the meta-cell profiles. 
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