

1 **From pathogen to commensal to probiotic: modification of *Microbacterium***
2 ***nematophilum*-*C. elegans* interaction during chronic infection by the absence**
3 **of host insulin signalling.**

4

5

6 **Maria Gravato-Nobre¹, Jonathan Hodgkin and Petros Ligoxygakis***

7

8

9

10

11 **Laboratory of Cell Biology, Development and Genetics, Department of**
12 **Biochemistry, University of Oxford, South Parks Rd OX1 3QU Oxford UK.**

13

14

15

16

17 **¹Present address:** MoA Technology, BioEscalator, University of Oxford

18 Innovation Building, Oxford OX3 7FZ

19

20

21 ***Correspondence:** petros.ligoxygakis@bioch.ox.ac.uk

22 **(Petros Ligoxygakis)**

26 **ABSTRACT** The nematode worm *Caenorhabditis elegans* depends on microbes in
27 decaying vegetation as its food source. To survive in an environment rich in
28 opportunistic pathogens, *C. elegans* has evolved an epithelial defence system
29 where surface-exposed tissues such as epidermis, pharynx, intestine, vulva and
30 hindgut have the capacity of eliciting appropriate immune defences to acute gut
31 infection. However, it is unclear how the worm responds to chronic intestinal
32 infections. To this end, we have surveyed *C. elegans* mutants that are involved in
33 inflammation, immunity and longevity to find their phenotypes during chronic
34 infection. Worms that grew in a monoculture of the natural pathogen *Microbacterium*
35 *nematophilum* (CBX102 strain) had a reduced lifespan and health span. This was
36 independent of intestinal colonisation as both CBX102 and the derived avirulent
37 strain UV336 were early persistent colonisers. In contrast, long-lived *daf-2* mutants
38 were resistant to chronic infection, showing reduced colonisation and a higher age-
39 dependent vigour. In fact, UV336 acted as a probiotic in *daf-2*, showing a lifespan
40 extension beyond OP50, the *E. coli* strain used for laboratory *C. elegans* culture.
41 Longevity and vigour of *daf-2* mutants growing on CBX102 was dependent on the
42 FOXO orthologue DAF-16. Since the DAF-2/DAF-16 axis is present in most
43 metazoans this suggests an evolutionary conserved host mechanism to modify a
44 pathogen to a commensal.

45

46 **INTRODUCTION** Animal epithelia from hydra to humans possess innate
47 mechanisms that sense pathogenic and toxic insults and transmit non-self/danger
48 recognition signals to activate appropriate defences (Zasloff 2002; Bartlett 2008;
49 Augustin *et al*, 2012). The efficacy of these systems determines whether microbial
50 populations can be controlled, and thus organismal homeostasis maintained. *C.*
51 *elegans* is a bacterial feeder that spends much of its life in decomposing vegetable
52 matter and depends on microbes as its food source (Frezal and Felix 2015). These
53 microbes are ground by the pharynx before they subsequently enter the gut. To
54 survive in an environment rich in potentially damaging microorganisms, *C. elegans*
55 has evolved an epithelial defence system coupled with the ability to discriminate
56 between pathogenic vs. edible bacteria (reviewed in Kim and Ewbank, 2018).

57 Important antimicrobial molecules participating in these defences include a
58 group of proteins called invertebrate lysozymes (ILYS) and in particular ILYS-3,
59 which is expressed in both the pharynx and the intestine (O'Rourke *et al*, 2006).
60 ILYS-3 (invertebrate-specific but related to human epithelial antimicrobial peptides)
61 contributes to the digestion of the large amount of peptidoglycan fragments
62 generated by the worm's bacterial diet (either pathogenic or non-pathogenic)
63 (Gravato-Nobre *et al*, 2016). Loss of *ilys-3* results in colonization of undigested
64 bacteria from day 1 of adulthood in contrast to wild type worms (Gravato-Nobre *et al*,
65 2016). The latter only display colonization at very late stages of their life (Gravato-
66 Nobre *et al*, 2016). Increased bacterial colonization in *ilys-3* mutants leads to a
67 significant lifespan reduction (Gravato-Nobre *et al*, 2016).

68 The isolation of natural bacterial pathogens of *C. elegans* has permitted a
69 glimpse of the defence mechanisms employed by the worm as well as the host-
70 pathogen interactions triggering such mechanisms (see Hodgkin *et al*, 2000;

71 Nicholas and Hodgkin 2004; Hodgkin *et al* 2013). One such pathogen is
72 *Microbacterium nematophilum* (Hodgkin *et al*, 2000). This Gram-positive bacterium
73 adheres to the rectal and anal cuticle, *Microbacterium nematophilum* (Hodgkin *et al*,
74 2000) and induces inflammation, anal-region infection and tail swelling (Parsons and
75 Cipollo, 2014). Despite the fact that the most obvious response to infection is rectal
76 colonization and the induction of inflammation in the rectal tissues, this bacterium
77 also establishes itself in the gut of the worm. This makes it a good system to
78 investigate effects that occur in the digestive tract associated with long-term gut
79 colonization. In particular, to identify how longevity and health of the organism can
80 be achieved in the face of chronic intestinal infection.

81 To explore this question, we tested *C. elegans* mutants induced by chemical
82 mutagenesis or targeted deletion in signalling pathways known to be involved in
83 immunity to *M. nematophilum* infection and/or *C. elegans* longevity. Culturing worms
84 on the pathogenic *M. nematophilum* strain CBX102 was able to separate estimated
85 survival probabilities into four categories in relation to *ilys-3* and wild type worms and
86 identified *daf-2* as long-lived in conditions of chronic infection. Bacterial colonisation
87 of CBX102 in wild type (N2) worms was increased compared to the laboratory *E. coli*
88 strain OP50. However, colonisation in N2 *per se* was not the reason for
89 pathogenesis as the non-virulent *M. nematophilum* strain UV336 did not curtail
90 lifespan despite being able to colonise at the same levels as CBX102. Nevertheless,
91 *daf-2* worms were healthier and had reduced colonisation compared to normal
92 worms. *daf-2* health and longevity on CBX102 involved the canonical insulin
93 signalling pathway and were thus dependent on the FOXO orthologue *daf-16*, like
94 many other *daf-2*-mediated effects. Finally, the non-pathogenic UV336 was able to
95 support an extended lifespan for *daf-2* even compared to OP50. These results

96 indicate the complex and strain-specific interactions between intestinal bacteria and
97 their host.

98

99 **RESULTS**

100 **Chronic Gastrointestinal Infection (CGI) curtails lifespan, reduces health and**
101 **accelerates ageing in N2 worms.** In our experimental set-up, *C. elegans*
102 develops, feeds and ages in a monoculture of *M. nematophilum*, having the same
103 immune pressure from birth. Compared to standard laboratory food (*E. coli* strain
104 OP50), the pathogenic *M. nematophilum* strain CBX102 accelerated age-dependent
105 bacterial colonization (see below). CGI reduced host lifespan (Fig. 1A) and health
106 measured by vigour of movement in liquid assays (Fig. 1B). The avirulent *M.*
107 *nematophilum* UV336 strain (derived from CBX102 by UV mutagenesis, Akimkina *et*
108 *al*, 2006), had the same level of age-dependent bacterial colonisation as CBX102
109 (Fig. 1C) but in contrast to the latter, presented no negative impact on median
110 lifespan (Fig. 1A) or health span (Fig. 1B) both of which were largely comparable to
111 OP50. In this context, two strains of the same species behaved one as a pathogen
112 (CBX102) and one as a commensal (UV336). Moreover, CBX102 accelerated
113 mitochondrial fragmentation (Fig S1), a sign of age-dependent stress in worms (Han
114 *et al*, 2017).

115

116 **CGI defines four lifespan groups of *C. elegans* mutants** it is generally accepted
117 that CGI has four components (see Stecher *et al*, 2015): These are 1) the infectious
118 agent inducing the disease, 2) host genetics that will influence mucosal barrier
119 function and the level of pro or anti-inflammatory responses, 3) the intestinal
120 commensal microbiota that can enhance the disease when its composition change

121 and 4) diet, which interacts with all other components as well as host metabolism.
122 Negative interaction of these factors can abolish normal intestinal barrier function
123 leading to constant mucosal inflammation and reduced health span and life
124 expectancy (Finch 2010). In contrast, non-inflammatory microbiota can lead to
125 extension of lifespan and health span (Hooper and Gordon 2001). It is evident that
126 interactions of the above 4 components generate a complex set of conditions, which
127 makes it hard to untangle the layers of chronic disease and arrive at causality.
128 However, causality will ultimately define future therapeutic targets for health span
129 extension.

130 In our simplified system, the nematode worm develops, feeds and ages in a
131 bacterial monoculture. This means that food=microbiota=pathogen (or commensal)
132 depending on the choice of bacterium. This condition ensures the ability to modify
133 host genetics *in vivo* by keeping all other parameters important for CGIs in tight
134 control. Although when the pathogen changes so will the function of diet and
135 microbiota, the system enables in principle to find each time, the host genes that
136 interact with a specific bacterium. With this in mind, we have tested whether mutants
137 induced by chemical mutagenesis in signalling pathways known to be involved in
138 immunity to *M. nematophilum* infection and/or *C. elegans* longevity, modulated
139 intestinal colonization, lifespan and health span across the life course. All strains
140 were cultured from eggs in pure CBX102 and tested for bacterial colonization. *The*
141 *purpose was to find mutants that could outlive N2 under CGI while retaining their*
142 *health.*

143 The mutants tested were of genes involved in evolutionary conserved innate
144 immune response pathways against *M. nematophilum* and/or bacterial infection (e.g.
145 the p38 MAPK pathway components *sek-1*, *nsy-1*, *pmk-1*, *kgb-1*; TGF- β with *dbl-1*;

146 ERK with *sur-2*), cuticle properties (*sqt-3*), bacterial killing (the lysozyme-encoding
147 *lys-3* and *lys-7*), pharyngeal-defective with enhanced bacterial colonisation of the
148 intestine (*phm-2*), stress-specific regulators (*hsf-1*), apoptosis (the *p53* homologue
149 *cep-1* and *ced-1*) and lifespan determinants (*hif-1*, *vhl-1*, *age-1*, *eat-2*, *cik-1*, *daf-2*).
150 CGI separated the mutants tested into four categories: A) Those whose lifespan was
151 shorter than *ilys-3* mutants (Fig 2A); B) those that had lifespan comparable to *ilys-3*
152 (Fig. 2B); C) those with life expectancy comparable to N2 (Fig 2C); and D) those that
153 had an increased lifespan compared to N2 (Fig 2D). Most of the time (but not
154 always) bacterial colonisation negatively correlated with lifespan (Fig S2). Table S1
155 has a summary of alleles used categorised in the four groups as above (A-D) and
156 includes lifespan, health (vigorous movement) and bacterial colonisation results
157 along with extracted p-values for statistical significance. An exception was the *clk-1*
158 mutant, which showed enhanced bacterial colonisation and yet lived longer but
159 without showing any movement (data not shown).

160

161 ***daf-2* mutant is long-lived and healthier than N2 under CGI.** From the mutants
162 tested, only one mutant in the insulin receptor *daf-2* was found to be living longer
163 under CGI (Fig. 2D). This confirmed and extended observations for *daf-2* longevity
164 in OP50 (Kenyon *et al*, 1993) as well as acute infections by *S. aureus*, *P.*
165 *aeruginosa* or *E. faecalis* (Garsin *et al*, 2003) and *Salmonella typhimurium* (Portal-
166 Celhay *et al*, 2012). Bacterial colonisation of *daf-2* was reduced compared to N2
167 (Fig. S2). It was also reduced compared to other normally long-lived mutants such
168 as *age-1* (Fig S2). The latter is long-lived on OP50 (Friedman and Johnson, 1988)
169 but had lifespan indistinguishable to N2 on CBX102. (Fig 2D).

170 Despite the adverse effects of CBX102 on N2 lifespan (when compared to
171 OP50), N2 median lifespan on UV336 vs. OP50 was statistically indistinguishable
172 (Fig. 3A). The survival pattern of *daf-2* mutants on CBX102 was statistically
173 comparable to that of *daf-2* on *E. coli* OP50 (Fig. 3B). Compared to N2 on CBX102,
174 *daf-2* worms were still longer-lived (compare Fig. 3A and 3B). Notably, *daf-2*
175 lifespan was extended on UV336 compared to *daf-2* on CBX102 even beyond the
176 TD₅₀ and maximum lifespan limits defined by OP50 (Fig 3B). This boosting effect on
177 lifespan by UV336 over and above OP50 was not observed in N2 (Fig. 3A). This
178 result made the effects of *M. nematophilum* host genotype-specific and identified
179 *daf-2* as a host genotype where UV336 acted as a probiotic. Moreover, this showed
180 that the genotype of the host can modify the effect of a bacterial strain and this
181 interaction determines lifespan (see discussion below).

182
183 **Daf-16 is required for the longevity and health of *daf-2* mutants under CGI** Life-
184 span extension through the DAF-2 insulin-signalling pathway in *C. elegans* occurs by
185 de-repression of the fork-head transcription factor DAF-16, which is normally under
186 negative regulation by DAF-2. Therefore, strong loss-of-function alleles of *daf-*
187 16 such as *mgDf47* and *mu86* suppress the long-lived phenotype of *daf-2* under CGI
188 with CBX102 (Fig 5). Moreover, *daf-16* exhibited a comparable degree of survival to
189 CGI as N2 worms. Loss of DAF-16 suppressed the vigorous thrashing ability of *daf-2*
190 making the double *daf-16*; *daf-2* statistically indistinguishable in its vigor compared to
191 N2 (Fig S3). Therefore, the DAF-2/DAF-16 axis is important for maintaining longevity
192 and health under CGI by a natural pathogen.

193

194 **DISCUSSION** Bacteria associated with the animal gut are important for
195 gastrointestinal function (Fischbach 2018). Intestinal bacteria are involved in the
196 synthesis and absorption of nutrients, protection of mucosal surfaces and the
197 regulation of the immune function of the gut as well as influencing drug metabolism
198 (Fischbach 2018). Quantitative and/or qualitative alterations of the intestinal
199 microbiota underline many inflammatory diseases and chronic gastrointestinal
200 infections (CGIs). In the short term, CGIs can lead to altered mucosal and immune
201 function (Drossman *et al*, 2016). In the longer term, CGIs cause impaired epithelial
202 barrier function (a major factor of reduced health span in old age) and changes in
203 intestinal microbiota (dysbiosis) that can lead to constitutive inflammation in
204 conditions like intestinal bowel disease and enterocolitis (Sperber and Dekel, 2010).
205 We wanted to develop a simple model to test host longevity and health under CGI.
206 *C. elegans* is such a model since microbiota=pathogen=food as the worm is a
207 bacterial feeder and its laboratory culture is a mono-association.

208 Our work shows where longevity and immunity converge under CGI. Our
209 data indicate that the insulin signalling pathway modulates both inherent longevity
210 and pathogen resistance to affect overall survival across the life-course in a manner
211 dependent on the pathogenicity of the bacteria on which *C. elegans* is feeding. The
212 natural pathogen *M. nematophilum* strain CBX102 curtailed lifespan and health of
213 N2 wild type worms but strain UV336 was statistically indistinguishable from *E. coli*
214 OP50. Moreover, inactivating the insulin receptor via *daf-2* made worms live longer
215 and be healthier and physiologically younger on CBX102. This correlated with
216 reduced colonisation. In addition, UV336 extended *daf-2* lifespan even beyond what
217 has been seen with *E. coli* OP50 acting as a probiotic when interacting with this
218 host genetic background. More work is needed to identify the genetic differences

219 between the two *M. nematophilum* strains and how lack of insulin host signalling
220 modifies these bacterial strains and their properties.

221 The fact that inactivating the insulin pathway modifies a pathogen to become a
222 commensal (in the case of CBX102) or a probiotic (in the case of UV336) may be
223 evolutionarily conserved. Recent evidence in mice has shown that inducing insulin
224 resistance through dietary iron drove conversion of a pathogen to a commensal.
225 Specifically, insulin resistance converted the enteric pathogen *Citrobacter* to a
226 commensal (Sanchez *et al*, 2018). There, reduced intestinal glucose absorbance
227 was crucial for *Citrobacter* to be a commensal (Sanchez *et al*, 2018). More work is
228 needed to determine if systemic glucose levels and/or intestinal glucose absorption
229 play a role also in *C. elegans* and how this relates to the worm insulin pathway.
230 However, reduced glucose levels increase lifespan (reviewed in Watts and Ristow,
231 2017). Reducing glycolysis has been shown to induce mitochondrial OXPHOS to
232 generate a lifespan-extending reactive oxygen species (ROS) signal (Schulz *et al*,
233 2007) while increased levels have the opposite effect (Schulz *et al*, 2007; Zarse *et al*,
234 2012).

235 Taken together, our results and recent data from mice show that the
236 consequences a microbe will cause to a host exist as a continuum. Thus, host
237 genetics is important to determine where a microbe may lie in this continuum. The
238 data show that the interaction between the worm and its bacterial food is a two-way
239 interaction where host genes will play a role in shaping the long-term future of that
240 interaction. In our system, the most prominent host proponent is the insulin-FOXO-
241 dependent signalling pathway. *C. elegans* is an excellent model to design genetic

242 screens and identify worm mutants that suppress the UV336-dependent extension
243 of the *daf-2* longevity phenotype.

244

245

246 **MATERIAL AND METHODS**

247 **C. elegans strains:** All strains (supplementary table S1) were provided by the
248 *Caenorhabditis* Genetic Center (CGC), University of Minnesota, and maintained at
249 20 °C, unless otherwise noted. The CGC is supported by the National Institutes of
250 Health – Office of Research Infrastructure Programs (P40 OD010440).

251

252 **Bacteria growth conditions:** *E. coli* OP50 or *M. nematophilum* (CBX102, UV336)
253 cultures were grown in LB at 37 °C. Bacterial lawns were prepared by spreading 100
254 µl of an overnight culture on a 6 cm diameter NGM plate. Plates were incubated
255 overnight at room temperature.

256

257 **Immunity and longevity Assays:** CBX102 assays were performed at 25 °C, unless
258 otherwise noted, as previously described (Gravato-Nobre *et al.* 2016, Plos
259 Pathogens). To test/validate immunity or longevity phenotypes of *daf-2* (e1370),
260 worms were raised on CBX102 or OP50 to the L4 stage at the permissive
261 temperature (15 °C), and shifted to the restrictive temperature of 25 °C. Worms were
262 age-synchronized by bleaching and embryos were incubated at 25 °C on NGM agar
263 plates with lawns of *E. coli* OP50 or *M. nematophilum* CBX102. The embryonic stage
264 (day of bleach) was designated as Day 0. A total of 125 worms were used per
265 lifespan assay. On day 2, 25 animals were transferred to each NGM plate. Animals
266 were scored daily and transferred to fresh lawns every other day. Death was defined

267 when an animal no longer responded to touch. Worms that died of bagging or
268 crawled off the plates were censored from the analysis. For each mutant population
269 and bacterial lawn, the time required for 50% of the animal to die (TD50) was
270 compared to that of the control populations using a *t* test. A *p*-value < 0.05 was
271 considered significantly different from the control.

272

273 **SYTO 13 staining:** Overnight bacterial cultures were concentrated 10x by spinning
274 them at 2500 rpm, and their pellet suspended in 1 ml of TBS containing 3 μ l of SYTO
275 13. Bacterial colonization was determined by exposing the animals to SYTO13-
276 labelled CBX102 or OP50. To allow for their complete post-embryonic development,
277 animals were left on CBX102 lawns, at 15 °C until most mutant animals reached L4,
278 after which they were shifted to 25 °C for another day. On day 7, one-day-old adult
279 worms were exposed to SYTO 13-labelled CBX102. Worms were visualized after 20
280 hours of feeding on SYTO 13-labeled CBX102. Live worms were mounted on a glass
281 slide in 25 μ M tetramisole on a 2% agarose pad and examined using a Leica SP5
282 confocal microscope.

283

284 **Thrashing Assays:** One-day old adults were placed in a drop of M9 and allowed to
285 recover for 40 s (to avoid behaviour associated with stress), after which animal were
286 video recorded for 30s. The number of body bend per second (BBPS) was
287 determined by importing captured video images to ImageJ and by using wrMTrck
288 plugin developed by Jesper S, Pederson.
289 (<http://www.phage.dk/plugins/wrmtrck.html>). More than 20 animals were used in
290 each treatment. Thrashing experiments were done in triplicates. All statistical
291 analysis data performed using GraphPad Prism software.

292

293 **ACKNOWLEDGMENTS** This work was funded by the EP Abraham Cephalosporin
294 Trust grant no. CF 319 (to PL).

295

296

297 **REFERENCES**

298 Augustin R, Fraune S, Franzenburg S, Bosch TC (2012). Where simplicity meets
299 complexity: hydra, a model for host-pathogen interactions. *Adv Exp Med Biol* 710,
300 71-81.

301

302 Bartlett NW, Walton RP, Edwards MR, Aniscenko J, Caramori G *et al* (2008).
303 Mouse models of rhinovirus-induced disease and exacerbation of allergic airway
304 inflammation. *Nat Med* 14, 199-124.

305

306 Drossman (2016). Functional Gastrointestinal Disorders: History, Pathophysiology,
307 Clinical Features and Rome IV. *Gastroenterol* 150, p1262

308

309 Finch, CE (2010). Evolution in health and medicine Sackler colloquium: Evolution of
310 the human lifespan and diseases of aging: roles of infection, inflammation, and
311 nutrition. *Proc. Natl. Acad. Sci. USA* 107, 1718-1724.

312

313 Frezal L and Felix M-A (2015). The Natural History of Model Organisms: *C.*
314 *elegans* outside the Petri dish. *eLIFE*.05849.001

315

316 Friedman DB and Johnson TE (1988). A mutation in the age-1 gene in
317 *Caenorhabditis elegans* lengthens lifespan and reduces hermaphrodite fertility.
318 *Genetics* 118, 75-86.

319

320 Garsin DA, Villanueva JM, Begun J, Kim DH, Calderwood SB *et al*, (2003). Long-
321 lived *C. elegans* *daf-2* mutants are resistant to bacterial pathogens. *Science* 300,
322 1921.

323

324 Gravato-Nobre MJ, Vaz F, Filipe S, Chalmers R, Hodgkin J (2016). The invertebrate
325 Lysozyme Effector ILYS-3 Is Systemically Activated in Response to Danger Signals
326 and Confers Antimicrobial Protection in *C. elegans*. *PLoS Path* 12, e1005826

327

328 Hodgkin J, Kuwabara PE, Cornelissen B (2000) A novel bacterial pathogen,
329 *Microbacterium nematophilum*, induces morphological change in the nematode *C.*
330 *elegans*. *Curr Biol* 10: 1615–1618.

331

332 Hodgkin J, Félix MA, Clark LC, Stroud D, Gravato-Nobre MJ (2013). Two
333 Leucobacter strains exert complementary virulence on *Caenorhabditis* including
334 death by worm-star formation. *Curr Biol* 23, 2157-61

335

336 Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut.
337 Science 292, p1115-1118.

338

339 Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993). A *C. elegans* mutant
340 that lives twice as long as wild type. Nature 366, 461–464.

341

342 Kim DH, Ewbank JJ (2018). Signalling in the innate immune response. WormBook,
343 1-35.

344

345 Nicholas HR, Hodgkin J (2004) The ERK MAP kinase cascade mediates tail swelling
346 and a protective response to rectal infection in *C. elegans*. Curr Biol 14, 1256-1261.

347

348 O'Rourke D, Baban D, Demidova M, Mott R, Hodgkin J (2006). Genomic clusters,
349 putative pathogen recognition molecules, and antimicrobial genes are induced by
350 infection of *C. elegans* with *M. nematophilum*. Genome Res 16: 1005–1016.

351

352 Parsons LM Cipollo J (2014). Oral ingestion of *Microbacterium nematophilum* leads
353 to anal-region infection in *C. elegans*. Microbes Infect 16, 356-61

354

355 Portal-Celhay C, Bradley ER, Blaser MJ (2012). Control of intestinal bacterial
356 proliferation in regulation of lifespan in *C. elegans*. BMC Microbiol 12, 49-56

357

358 Sanchez K, Chen GY, Palaferri-Schieber, AM Leblanc M, Lee YM *et al* (2018).
359 Cooperative metabolic adaptations in the host can favour asymptomatic infection

360 and select for attenuated infection and select for attenuated virulence in an enteric
361 pathogen. *Cell* 175, 146-158.

362

363 Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M *et al* (2007). Glucose restriction
364 extends *Caenorhabditis elegans* life span by inducing mitochondrial respiration and
365 increasing oxidative stress. *Cell Metab.* 6, 280–293.

366

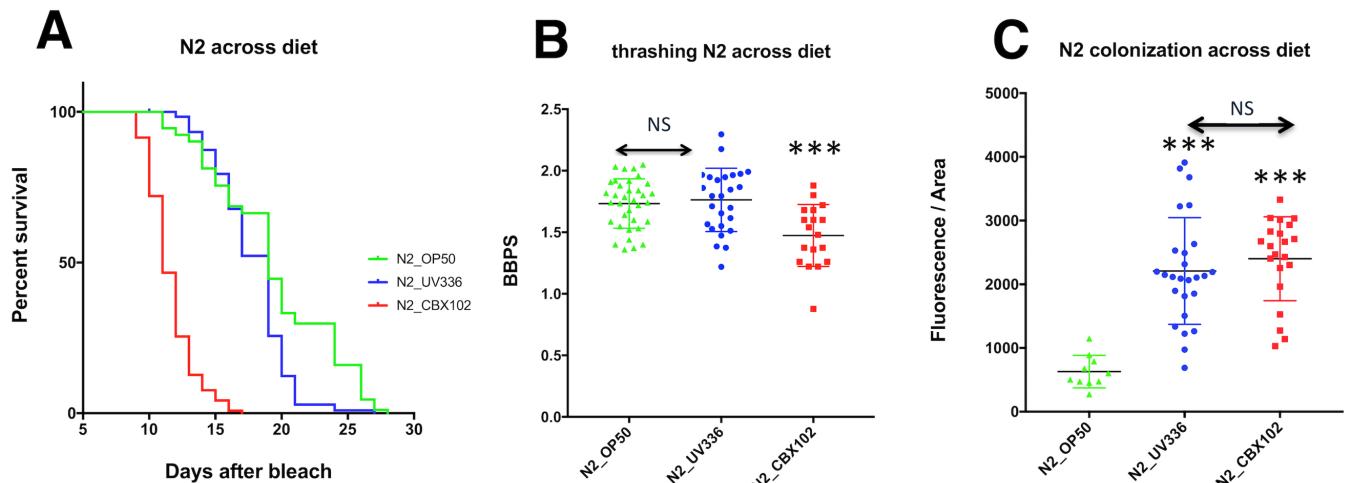
367 Sperber AD, Dekel R (2010). Irritable Bowel Syndrome and Co-morbid
368 Gastrointestinal and Extra-gastrointestinal Functional Syndromes. *J*
369 *Neurogastroenterology Motil* 16, 113-119.

370

371 Stecher, B (2015) The Roles of Inflammation, Nutrient Availability and the
372 Commensal Microbiota in Enteric Pathogen Infection. *Microbiol Spectr* 3, 1-17

373

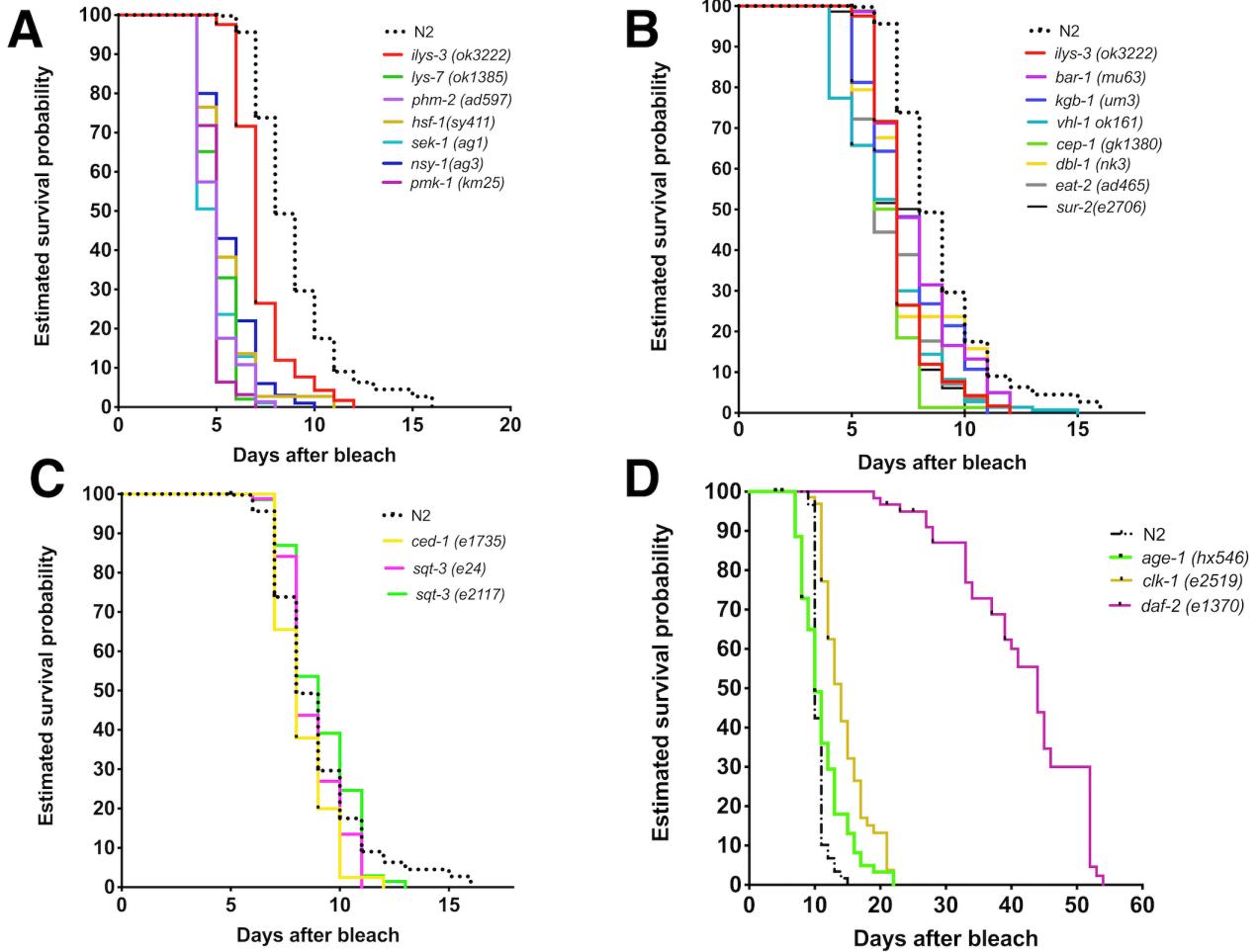
374 Watts JL, Ristow M (2017) Lipid and carbohydrate metabolism in *C. elegans*.
375 *Genetics* 207, 413-446.


376 Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G *et al* (2012) Impaired
377 insulin/IGF1-signaling extends life span by promoting mitochondrial L-proline
378 catabolism to induce a transient ROS signal. *Cell Metab.* 15, 451–465.

379

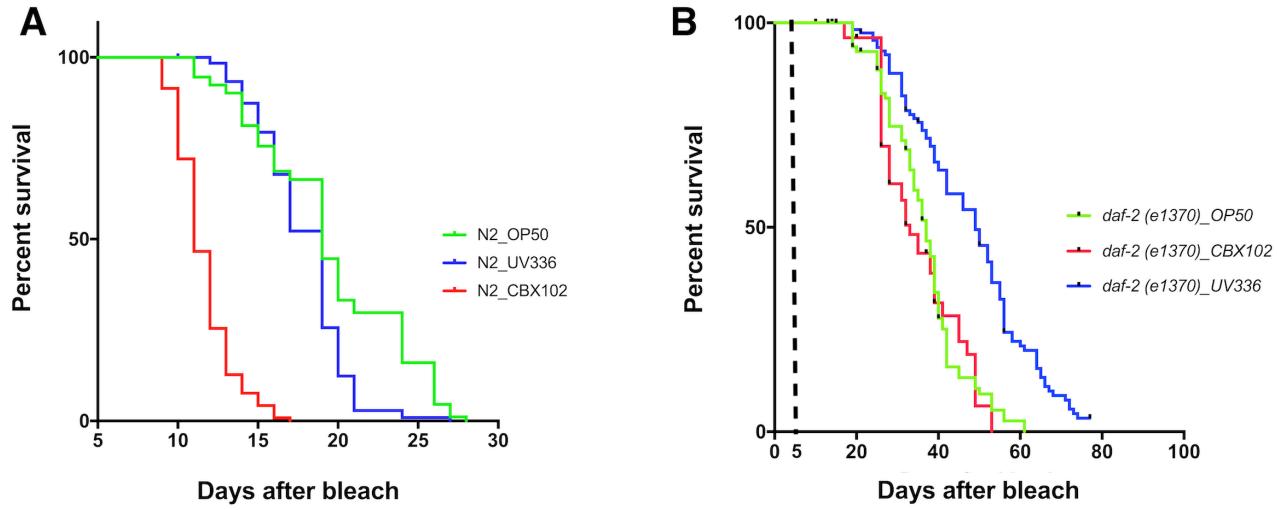
380 Zasloff (2002). Antimicrobial peptides of multicellular organisms. *Nature* 415, 389-
381 395.

382

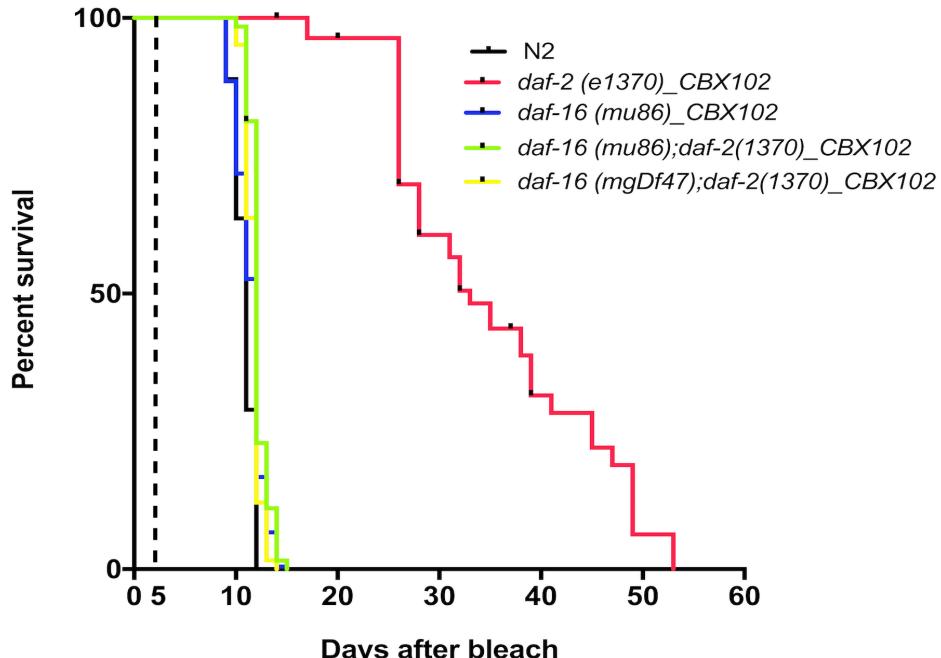

383 **FIGURE LEGENDS**

384
385 **FIGURE 1. Lifespan, health and bacterial colonization of the reference strain**

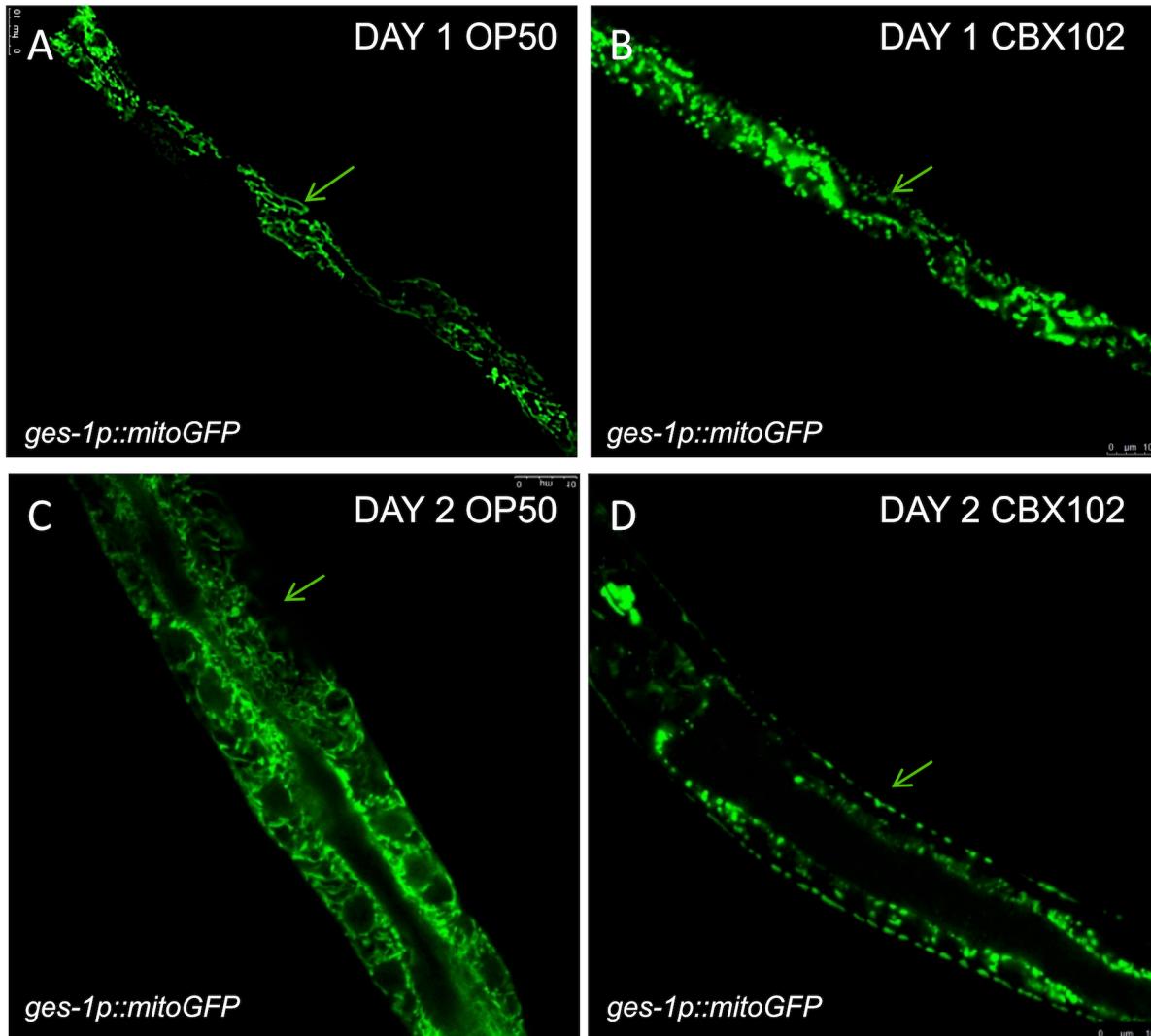
386 **N2 in UV336 vs. CBX102.** **(A)** Lifespan analysis at 25°C showing that CBX102 (red)
387 significantly reduced average survival calculated using the Mantel-Cox log-rank test,
388 95% Confidence Interval (CI) compared to UV336 and OP50. The latter strains were
389 statistically indistinguishable (NS). **(B)** Rigorous movement (thrashing) of animals
390 grown on OP50, UV336 or CBX102 as a proxy for health was calculated as the
391 number of body bends per second (BBPS). Tukey's multiple comparisons with one-
392 way ANOVA test was performed. Worms on CBX102 were significantly less mobile
393 than on OP50 or UV336. These were again, statistically indistinguishable (NS). **(C)**
394 Shown are distributions for the fluorescence intensity of SYTO13 in the intestine of
395 animals on OP50 (*E. coli*), UV336 (*M. nematophilum*, non-inflammatory strain) and
396 CBX102 (*M. nematophilum* pathogenic strain) at 25°C. Asterisks indicate the results
397 of Two-Tukey's multiple comparisons one-way ANOVA tests, 99% CI. All panels:
398 ***p<0.0001, NS=non-significant and n=25 animals/treatments/group. Results are
399 from 3 independent experiments.


400

401
402 **FIGURE 2. Lifespan of *C. elegans* mutants define 4 groups on the pathogenic**


403 ***M. nematophilum* strain CBX102.** (A) Mutations that significantly shorten the
404 lifespan compared to *ilys-3*. TD50 = 5 days. (B) Mutations that shorten the lifespan
405 to the same degree as *ilys-3*. (C) Mutations with the same TD50 as N2 (8-9 days).
406 (D) Mutations that extended the average survival compared to N2 (e.g. *daf-2*=44
407 days). N=100 animals/curve.

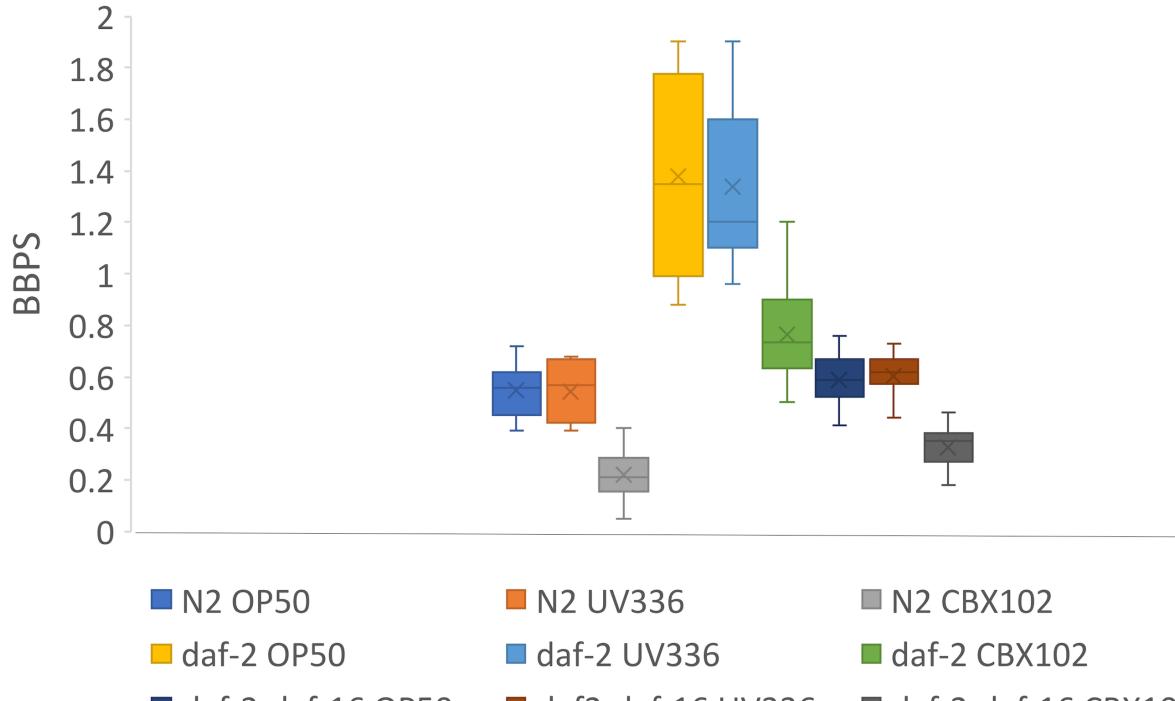
408


409
410 **FIGURE 3. The *daf-2* mutant modifies the effects on lifespan of *M.***
411 ***nematophilum* strains. (A)** Lifespan of *N2* on *M. nematophilum* CBX102 under CGI
412 was significantly reduced ($TD_{50}=11$ days) when compared to both the derived *M.*
413 *nematophilum* UV336 strain as well as *E. coli* OP50 that produced identical TD_{50} (19
414 days). **(B)** Lifespan of *daf-2* on *M. nematophilum* CBX102 under CGI ($TD_{50}=33$) was
415 statistically indistinguishable ($p=0.4531$) to OP50 ($TD_{50}=36$). In contrast, lifespan on
416 UV336 was significantly ($p<0.0001$) increased ($TD_{50}=49$). For experiments involving
417 the temperature sensitive *daf-2*, lifespan assays started at day 0 when animals were
418 age-synchronized by bleach. Embryos were then left at 15^0C on the appropriate
419 bacterial diet till day 5. Day 5 marks the L4 to adult transition and time when plates
420 were transferred to 25^0C .

421


422
423 **FIGURE 4. FOXO mediates the extension of *daf-2* lifespan on CBX102 under**
424 **CGI.** The *daf-2*-mediated lifespan extension on CBX102 was suppressed by *daf-*
425 *16*/FOXO, using two mutants (*mu86* and *mgDf47*) of *daf-16*. We found that when
426 compared to each other and to N2, both *daf-16*, *daf-2* double mutants as well as N2
427 had a lifespan with identical TD_{50} (12 days) on CBX102. This was also the lifespan
428 TD_{50} of *daf-16(mu86)* alone (12 days). In contrast, lifespan of *daf-2* on CBX102
429 under CGI was significantly different ($TD_{50}=33$, $p<0.0001$). For experiments involving
430 the temperature sensitive *daf-2*, lifespan assays started at day 0 when animals were
431 age-synchronized by bleach. Embryos were then left at 15^0C on the appropriate
432 bacterial diet till day 5. Day 5 marks the L4 to adult transition and time when plates
433 were transferred to 25^0C .

434


435
436 **FIGURE S1. *M. nematophilum* CBX102 accelerates ageing.** Animals expressing
437 the mitochondria marker *mito-GFP* in the intestine **(A), (C)** in OP50 showing normal
438 tubular mitochondria while age-matched **(B), (D)** CBX102-grown L2 animals show
439 fragmented mitochondria with irregular shape.

440

441
442 **FIGURE S2. Bacterial colonisation of CBX102 in a *C. elegans* mutants.** Each dot
443 represents a 1-day old animal with SYTO13 fluorescence counted. *M. nematophilum*
444 strain CBX102 displayed less colonisation in *daf-2* compared to N2 (designated as
445 wild-type of WT). In contrast, mutants lacking the antimicrobial *ily-3* gene, displayed
446 significantly increased colonisation. Dunnett's-multiple comparisons one-way
447 ANOVA test was performed. **** $P < 0.0001$; except comparisons with *ily-3* and *daf-*
448 2, all other comparisons were not significant.

449

450
451 **FIGURE S3. Health of animals with different microbiota.** Box plot represents
452 body bends per second (BBPS) counted per animal for each strain. Each box
453 represents a group of 1-day old animals (n=25). Dunnett's-multiple comparisons one-
454 way ANOVA test was performed showing that CBX102 was always significantly
455 lower across the same host genotypes ($p<0.0001$) while *daf-2* was significantly
456 higher than N2 across bacterial strains ($p<0.0001$). Comparison between *daf2* and
457 *daf-16*, *daf-2* showed significant difference ($p<0.0001$) across the different bacteria
458 while N2 and *daf-16*, *daf-2* were statistically indistinguishable ($p>0.1$).
459

460

Group	Genotype	CBX102 Colonization day-2 adult	TD50 CBX102 @ 25 °C	p value	Healthspan CBX102 day1-adult (BBPS)	p value
A *	<i>sek-1(ag1)</i>	(+++)	5	<0.0001	0.5194	0.0001
	<i>nsy-1(ag3)</i>	(++)	5	<0.0001		
	<i>pmk-1(km25)</i>	(++)	5	<0.0001		
	<i>lys-7(ok1384)</i>	(+++)	5	<0.0001	0.9708	0.0001
	<i>phm-2(ad597)</i>	(+++)	5	<0.0001		
	<i>hsf-1(sy411)</i>	(+++)	5	<0.0001		
B *	<i>ilys-3(ok3222)</i>	(+++)	7	<0.0001	0.7608	0.9997
	<i>bar-1(nu63)</i>	(+++)	7	0.0166		
	<i>cep-1(gk138)</i>	(+++)	7	0.0031		
	<i>dbl-1(nk3)</i>	(++)	7	0.9149		
	<i>vhl-1(ok161)</i>	(+++)	7	0.006		
	<i>sur-2(e2706)</i>	(++)	8	0.9578		
	<i>eat-2(ad465)</i>	(++)	6	0.191		
	<i>kgb-1(mu3)</i>	(+++)	7	0.7053		
C **	WT	(++)	8		0.7527	
	<i>sqt-3(e24)</i>	(++)	8	0.5673		
	<i>sqt-3(e2117)</i>	(++)	9	0.5201	0.8253	0.4641
	<i>ced-1(e1735)</i>	(++)	8	0.0793		
D **	<i>daf-2(e1370)</i>	(+)	46	<0.0001	1.261	0.0001
	<i>age-(hx546)</i>	(++)	10	<0.0001	1.332	0.0001
	<i>clk-1(e2519)</i>	(+++)	14	<0.0001		
	<i>hif-1</i>	(++)	10	0.0094		

Table S1. Statistics for Lifespan and Health span assays and mutants tested. For group categories see Fig. 2. WT is wild type (strain N2). Measurements: *relative to *ilys-3* and **relative to WT (N2). *C. elegans* mutants without a numerical value in the health span column were not moving at all and therefore we were unable to film their vigour.

461