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Abstract 

Mechanistic studies of pancreatic disease progression using animal models require objective 

and quantifiable assessment of tissue changes among animal cohorts. Disease state quantification, 

however, relies heavily on tissue immunostaining, which can be expensive, labor- and time-intensive, 

and all too often produces uneven staining that is prone to variable interpretation between experts 

and inaccurate quantification. Here we develop a fully automated semantic segmentation tool using 

deep learning for the rapid and objective quantification of histologic features using hematoxylin and 

eosin (H&E) stained pancreatic tissue sections acquired from murine pancreatic cancer models. The 

tool was successfully trained to segment and quantify multiple histopathologic features of 

pancreatic pre-cancer evolution, including normal acinar structures, the ductal phenotype of acinar-

to ductal metaplasia (ADM), dysplasia, and the expanding stromal compartment. Disease 

quantifications produced by our computational tool were highly correlated to the results obtained 

by immunostaining markers of normal and diseased tissue (DAPI, amylase, and cytokeratins; 

correlation score= 0.9, 0.95, and 0.91, respectively) and were able to accurately reproduce 

immunostain patterns. Moreover, our tool was able to distinguish ADM from dysplasia, which are 

not reliably distinguished by immunostaining, and avoid the pitfalls of uneven or poor-quality 

staining. Using this tool, we quantified the changes in histologic feature abundance for murine 

cohorts with oncogenic Kras-driven disease at 2 months and 5 months of age (n=12, n=13). The 

calculated changes in histologic feature abundance were consistent with biological expectations, 

showing an expansion of the stromal compartment, a reduction of normal acinar tissue, and an 
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increase in both ADM and dysplasia as disease progresses (p= 2e-6, 6e-7, 4e-4, and 3e-5, 

respectively). These results demonstrate the tool’s efficacy for accurate and rapid quantification of 

multiple histologic features using an objective and automated platform. Our tool promises to 

rapidly accelerate and improve the quantification of altered pancreatic disease progression in 

animal studies. 

Introduction 

Advances in deep learning technologies are creating opportunities for the rapid and 

objective assessment of both normal tissue and pathologic processes in biologic specimens. 

Computer-aided interrogation of medical imaging is being applied to accelerate and improve 

diagnosis in human patients [1, 2, 3, 4]. Similarly, deep learning technologies can greatly improve 

analyses in animal disease models which require the measurement of disease progression in large 

numbers of tissue samples resulting either from pharmacological or genetic manipulations. The 

extensive and growing use of murine models in disease studies creates a significant need for tissue 

assessment methods that are rapid, objective and quantifiable in order to permit statistically 

validated disease measurements among animal cohorts, free of technical variability and investigator 

bias. 

The challenge of objective quantification of tissue changes among animal cohorts is 

significant.  Evaluation of tissue by either histochemical stains or antigen-specific 

immunohistochemistry offers distinct and sometimes overlapping information, but both have 

limitations. Hematoxylin and eosin (H&E) staining is a rapid, reliable and inexpensive method; 
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however, lack of molecular specificity and requirement for manual segmentation have, thus far, 

limited its use for extraction of quantifiable data. Consequently, disease assessments by H&E 

staining are typically qualitative and vulnerable to inter-observer variation and bias [5,6,7]. 

Immunohistochemical stains offer a degree of specificity, but immunostaining can be labor- and 

time-intensive, expensive and results are often challenging to objectively quantify over broad tissue 

regions. In addition, tissue features of interest are not always cleanly distinguishable by 

immunostaining markers, and so tissue assessments can be limited by reliance on the molecular 

specificity of antibodies. 

Using murine models of pancreatic cancer progression and pancreatitis, we are working to 

develop and validate deep learning approaches that enable the rapid, reliable, and automated 

quantification of disease progression over large tissue areas, solely based on H&E staining. Murine 

models of pancreatic cancer were chosen as they have proven useful for mechanistic investigations 

of pancreatic cancer progression, modeling well the human disease both genetically and 

phenotypically, particularly during the evolution of pre-cancerous lesions [8, 9].  The murine models 

have produced an explosion of studies including pre-clinical drug tests and evaluation of additional 

genetic perturbations that expose tumor-suppressing and tumor-promoting disease modifiers [10-

12].  

The early stages of pancreatic cancer evolution are well described in the mouse models [8, 9]. 

The normal pancreas consists predominantly of acinar and ductal epithelial cells forming the 

exocrine compartment, along with islet cells of the endocrine compartment, vasculature and the 

varied fibroblasts of the stromal compartment. The earliest stages of oncogene-induced pre-cancer 
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evolution are marked by an expansion of ductal cells or by the conversion of the acinar cells to a 

ductal phenotype in an adaptive process known as acinar-to ductal metaplasia (ADM) [13]. ADM is 

also characteristic of acute and chronic pancreatitis, inflammatory conditions that can predispose to 

cancer [13]. The next stage in cancer evolution is the development of low-grade dysplasia, also 

referred to as pancreatic intraepithelial neoplasias (PanINs 1 and 2). Low-grade dysplasia is a pre-

invasive neoplasia that can evolve to high-grade dysplasia (PanIN 3) and then progress to invasive 

pancreatic ductal adenocarcinoma (PDAC) [14]. Both ADM and dysplasia are accompanied by a 

prominent stromal reaction and immune cell infiltrate [13]. The stages of ADM and dysplasia 

evolution are believed to encompass a long phase of pre-cancer evolution that is a valuable window 

for early intervention [14]. 

Here we describe the model training workflow and application of deep learning on H&E 

stained samples of murine pre-cancerous lesions, segmenting the normal acini, the ductal 

phenotype of ADM, and dysplasia. With the rapid growth of computer vision, more specifically 

deep learning, novel image analysis architectures have been developed for accessing image 

information that is not readily observed through traditional methods. Several research groups have 

worked towards inter-modality image translation and have developed tools that attempt to convert 

medical images such as H&E stained tissue and brightfield microscopy to more detailed ones such 

as fluorescent immunostains [15,16,17,18]. The target of such models has been the direct translation 

of stain intensities for the purpose of constructing entirely new images. Our developed tool seeks to 

go further, predicting binarized masks of positive staining area and augment immunostaining by 

segmenting key histologic features that current stains cannot reliably differentiate. 
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  Results presented here demonstrate a well validated segmentation tool that can 

automatically, rapidly, and objectively quantify pancreatic tissue and disease progression in mice, 

relying solely on easily replicated and low-cost H&E staining of whole pancreas tissue sections, free 

of experimental variability and investigator bias. Our work provides a tool that is immediately 

applicable to the improvement and acceleration of pancreatic disease studies in animal cohorts, and 

provides workflows for similar tool development in other disease models. Moreover, the ease of use 

and availability allows for this tool to be a common thread for comparing different studies 

performed throughout the world.  

Results  

Figure 1: Experiment workflow 
A subset of murine pancreas H&E images were 
annotated by three experts in Cytomine [20]. The images 
and their annotations were cropped and normalized at 
intermediate intervals, and these intermediate crops 
were then tiled into images that can be fed into a UNet 
architecture [19]. 80% of tiles were used for training and 
20% were used for testing. A model was trained for each 
histologic feature label. The best models were chosen 
and used to predict stain and feature distributions on 
unseen H&E images. These predictions were then 
correlated with the stained image counterparts to 
determine model accuracy. 
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Murine pancreatic pre-cancerous tissues were isolated from the P48+/Cre; LSL-KRASG12D mice 

(KC) which is a common mouse pancreatic cancer model that displays the early disease hallmarks of 

ADM, dysplasia, and desmoplasia, and can eventually develop invasive adenocarcinoma after more 

than one year of age [8]. Tissue sections from 3 whole pancreases were acquired from KC mice at 5 

months for models training, and whole pancreas sections from an additional 25 mice were collected 

at 2 and 5 months of age (n=12, n=13) for validation and testing on an unseen dataset. All pancreas 

tissue sections were stained with H&E and the validation set was additionally stained by 

immunofluorescence for amylase (AMY), labeling normal acini, pan-keratin (panK), labeling primarily 

the oncogenic Kras-transformed epithelial population, and DAPI, labeling all nuclei. 

In order to predict the immunofluorescent stain and histologic feature distributions, several 

UNet models [19] were trained using intensity normalized H&E image tiles paired with ground truth 

tiles created from three experts’ annotations using CYTOMINE [20]. Annotations were generated to 

designate normal acinar structures, the ductal phenotype of ADM, and dysplasia. Given expert 

annotations as ground truth, models were trained by optimizing the Binary Cross Entropy Loss, and 

following training, the Dice Coefficient was used to select the best models. These trained models 

were then validated quantitatively by correlating their predicted stain distributions to a set of 

stained and binarized fluorescent images where the intensity threshold is chosen by an expert 

(Figure 1). As observed in Table 1, the models implementing Reinhard Normalization [21] achieved 

better scores on average, relative to Vahadane [22] and Macenko [23] normalization methods. 

Furthermore, the models achieved the best scores when the normalization process was applied on 

intermediate overlapping crops rather than across the whole image.  
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The models were trained using 80% of the training data, and 20% was held out for cross-

validation to evaluate the models’ performance with unbiased data. The best models yielded Dice 

Coeffi cients of ~0.79, ~0.70, and ~0.79 on the hold-out set for normal acinar tissue, ADM, and 

dysplastic features, respectively (Table 1). The segmentations match the expert annotations with a 

high degree of qualitative accuracy (Figure 2a). The models’ Dice scores are lower than expected 

from successful models is because the models actually refined approximations in the experts’ 

annotations leading to discrepancies between prediction and annotation (Figure 2b). Due to the 

limitations of the annotation method used, entire lesions, including empty lumina, were labeled as 

Figure 2. Predictions compared to annotations 
a) Model Predictions closely align with the 
manually annotated ground truth regions that 
was used for training. b) Close inspection of the 
ducts shows consistent discrepancies regarding 
the lumen and split histologic features within 
single ducts. Manual annotations were made by 
circling whole ducts, but the models’ predictions 
are actually more reflective of biology, wherein, 
stain does not mark for the lumen. The 
Predictions can also distinguish histologic 
features differences that the manual annotations 
combined. 

a 

b 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.020842doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.020842
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 8 

one type of tissue (i.e., ADM or dysplasia). The models, however, accurately differentiate between 

the tissue types within a lesion and avoid labeling lumina. Despite these results being biologically 

correct, they are different than the experts’ manual annotations, resulting in a negative impact on 

the measured Dice Coefficients.  

To test further the accuracy of the trained models, a comparison was made between 

quantified model predictions and quantified immuno-stained images that have been binarized. 

Figure 3. Comparing model predictions to stained 
tissue.  
a) Stain masks and predicted segmentation masks are 
qualitatively highly similar. Differences can be seen in 
the high-level architecture of the tissues, which is 
indicative of the fact that the predictions were made 
from serial sections to the stains. There are also dim 
regions of the stained image that are lost from the 
global thresholding technique. These regions are 
successfully captured by the models. "Other" stain is 
the DAPI stain minus regions overlapping with AMY 
and panK.  
b) Correlations were made by comparing the percent 
of area coverage for each stain mask. The high levels 
of correlation illustrate the models’ ability to replicate 
straining using only H&E images. These regions are 
successfully captured by the models. "Other" stain is 
the DAPI stain minus regions overlapping with AMY 
and panK. 

a 

b 
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Quantification of the tissue area occupied by normal acinar cell and transformed pancreatic 

epithelial cells was achieved by immunostaining for amylase and pan-keratin, respectively, with 

DAPI staining of nuclei used to detect all cellular regions. The comparable calculation was then 

made using tool predictions on adjacent H&E stained tissue sections. For the tool prediction, ADM 

and dysplasia predictions were grouped into the panK stain because pan-keratin immunostaining 

does not distinguish ADM and neoplastic tissues. Because stain area is more biologically targeted 

than the rough annotations that incorporate empty lumens and mislabeled features, the models’ 

immunostain correlation scores are much more reflective of their overall accuracy. When the 

prediction masks are compared qualitatively to the stained images, the models are able to 

approximate the immunostain localization (Figure 3a). There are minor differences between the 

immunostained and the predicted segmentations, which reflects slight tissue variations between the 

adjacent, but separate, sections used for H&E staining and immunohistochemistry. Quantitatively, 

three models also have high correlations (Figure 3b) with the immunostained sections despite these 

sections (n= 25) being unseen during training. This validates that the models have been successfully 

trained and are capable of replicating known biological data. 

 Not only can these models replicate immunostaining data, they can extract more information 

than can be gained via immunostaining. In this dataset, the pan-keratin immunostain labels both 

metaplasia and dysplasia, restricting the disease features  that can be segmented. The model 

predictions, however, can distinguish these features (Figure 4a). This allows for deeper and more 

nuanced quantification of disease progression than can be achieved by immunostaining alone. 

Because this process of prediction is deterministic, it is also a faster and less biased than manually 
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annotating histologic features, and less expensive and less error-prone than immunostaining 

(Supplemental Figure 1).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the tissue sections from the unseen testing dataset isolated from KC mice at 2 and 5 

months of age (n=12, n=13), the model was able to quantify tissue changes reflecting disease 

progression by predicting immunostain from H&E stain images (Figure 4b and c). The observed 

Figure 4. Discerning features beyond immunostaining 
a) In test images the predicted histologic features visually align with what is expected from the H&E images. This shows 
the models’ utility in discerning novel information regarding ductal features that cannot be detected via staining.  
The models were used to predict the changes stain distributions b) and cancer histologic features c) in murine models 
with induced cancer. Predictions show significant changes in all stains and features between time points, and quantifies 
specific features that were not discernable in immunostaining alone. 

a 

b c 
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age-dependent transitions from normal acinar to ADM and dysplasia, and the increase in other 

tissue area (DAPI stained), is consistent with biological expectations, illustrating the practical,  

objective use of this tool to quantitatively assess pre-cancerous disease development.  

 

To test the models’ robustness and generalizability, we evaluated images from pancreata 

with acute pancreatitis. Acute pancreatitis is characterized by prominent ADM and an inflammatory 

stromal response, but does not promote neoplastic lesions [13].  Acute pancreatitis was induced in 

mice by injection of the pro-inflammatory agent caerulein [13], then tissue sections exhibiting acute 

pancreatitis or normal pancreas (n=6, n=3 respectively) were analyzed by the model (Figure 5). 

Because annotations did not exist for these datasets, model prediction localizations were evaluated 

qualitatively. Despite not being trained to analyze the particular disease states of pancreatitis, the 

Figure 5. Predicting histologic features in pancreatitis 
The model predicted histologic features match what in expected in both normal and 
pancreatitis samples. a) Predicted images show that tissue is dominated by normal acinar 
with pockets of clear ADM localization. In normal tissue ADM and dysplasia are sparse 
predictions comprised primarily of arbitrary single pixels, and in pancreatitis this is true 
for just dysplasia. 
b) In normal tissues, ADM and dysplasia predictions are negligible, and in pancreatitis 
there is a significant spike in ADM coverage with negligible dysplasia. Erroneous 
predictions of ADM and dysplasia in these samples are primarily driven by noise. 

a 

b 
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models were able to accurately label pancreatitis features (i.e. ADM) with minimal error, regardless 

of whether the ADM was sporadic or clustered within the tissue (Figure 5a).  The model’s quantified 

tissue assessments show the significant presence of ADM by pixel area in the pancreatitis samples 

compared to normal tissues, which matches biological expectations. The near-absence of significant 

ADM and dysplasia in normal pancreas samples is also consistent with expectations, as is the near-

absence of dysplasia in the pancreatitis samples (Figure 5b). The small quantities of ADM and 

dysplasia predictions in the normal tissues are errors introduced primarily by pixel level noise and 

are insignificant compared to the size of the samples. Within this dataset we do not see large 

heterogeneity in the histologic features across disease states, and as a result the model performs 

consistently across all disease states shown. 

Discussion 

The computational tool developed here is intended to augment and accelerate disease 

research performed in animal models by allowing for simple stain prediction and histologic feature 

labeling from H&E images without the need for expensive and time-consuming immunostaining and 

biased image interpretation. It can be used to both mark the localization of tissue features and 

quantitatively to measure the extent of disease based on multiple histologic features (Supplemental 

Figure 2). Such rapid and unbiased quantification of disease states in animal models is critical to 

enabling efficient and accurate disease assessments among large study cohorts, as well as provide a 

common method to compare finding across different studies. The ability of this tool to accurately 

predict histologic features among 25 unseen pancreatic pre-cancer samples from multiple time 
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points and 9 unseen samples comprising other disease states demonstrates the robustness of the 

models when analyzing new datasets. The fact that the models generalize well, despite being 

trained with a relatively small dataset (Supplemental Figure 3 and Table 2), illustrates the 

effectiveness of this workflow for tool development. Using this workflow makes niche tool 

development plausible for small working groups that might have less access to the resources 

needed to produce large batches of annotated data. 

There have been many efforts to recreate advanced staining images using more common 

input modalities [15,16,17,18], and although they are useful for visualizing potential stain and 

intensity distributions, the algorithms are limited to predicting staining patterns of existing markers. 

If the user wants to analyze specific biological features for which there is no specific stain; however, 

simple stain translation will not suffice. The tool created here, however, can create objective binary 

interpretations of H&E images that segment histologic features of developing pancreatic cancer for 

which there is no reliable conventional immunostain. Previous studies have attempted to use 

computer-aided analyses for duct detection in pancreatic cancer [24]; however, these do not cover 

the subtly different features of early disease hallmarks of ADM and dysplasia. 

Although this tool enables easy, rapid, and accurate stain reconstruction and feature labeling 

in the early stage disease models employed here, there are several limitations to its predictive 

capacity. The most prominent source of error for the tool currently is the way it handles unlearned 

tissue types, such as lymph nodes, pancreatic islets, the desmoplastic stroma, and the occasional 

presence of neighboring gastrointestinal tissue. Lymph nodes and gastrointestinal tissue are highly 

irregular compared to the pancreatic features that were present in the training data, leading to 
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completely arbitrary labeling of the unrecognized tissue areas. To overcome this, these regions can 

simply be cropped prior to analysis, as performed for our analyses. Islets comprise a small fraction 

of the pancreatic tissue area, and were labeled by the model as “other” (i.e. neither normal, ADM, 

or dysplasia), and therefore introduced only minor errors. In addition, the desmoplastic stroma is a 

prominent and histologically distinct feature of pancreatic disease that is currently unlearned and 

labeled as "other" tissue. 

Greater limitations arise with the appearance of high-grade neoplasia and adenocarcinoma, 

both of which can adopt ductal structures more closely resembling ADM. It should also be noted 

that the tool currently labels all non-neoplastic ductal structures as ADM, whether they originate 

from acinar cells or from ductal cells, and this contributes some error for the quantification ADM of 

acinar origin. At this stage of the tool’s development, no label for fully developed adenocarcinoma 

features were used, so lesions that have progressed beyond high grade dysplasia would likely be 

mislabeled as either ADM or “other”. With future work, it should be possible to train models to 

identify these additional tissue features and predict them accurately alongside the existing models. 

The final limitation of the tools is its failure to make accurate predictions in areas of tissue folding or 

out of focus imaging, but these are obstacles for any image-based measurement tool (including 

human annotators) and are avoidable with good technique.  

Further work is in progress to reduce error and allow for a broader range of tissue 

interrogations, including training the tool to recognize a greater diversity of cell types and tissue 

features such as islets of Langerhans, neural tissue, desmoplastic stroma, adenocarcinoma, and 

peripheral elements such as lymph nodes or gastrointestinal tissue. The model’s quantitative 
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capabilities can also be applied to other disease states that share similar histologic features, such as 

pancreatitis. Continued development can yield a single comprehensive tool for predicting and 

labeling all histologic features in pancreatic tissue without the need for complex staining. 

Despite the current limitations discussed above, the tool developed here demonstrates clear 

advantages and superiority to immunostaining for disease quantification in pancreatic pre-cancers.   

By relying on H&E staining alone, the data acquisition is not only faster and cheaper, but less 

vulnerable to variable and uneven staining across tissue sections.  This consistency and stability of 

H&E staining eliminates a primary source of error and bias in feature quantification because of 

manual adjustments needed to threshold immunostained tissues; tissue immunostaining quality 

varies significantly within single tissue sections and among the many tissues acquired and stained 

from animal cohorts, typically stained on different days, months, and even years. This tool’s 

exploitation of H&E staining not only enables easy quantitative comparisons between tissues 

collected and stained across broad time periods, but also enables such comparisons among tissues 

collected and stained in different laboratories around the world. This unifying aspect will improve 

collaboration and cross-validation between experiments conducted by different groups. 

 Being computer driven, the tool easily quantifies whole pancreatic tissue sections, allowing 

greater volumes of data acquisitions and avoiding the selection of “representative” regions for 

quantification, which introduces further bias. Furthermore, as an automated, machine-driven 

measurement tool, potential investigator bias is excluded from the data quantification pipeline. 

Finally, and importantly, tool has been demonstrated to identify and segregate key histologic 

features which immunostaining methods cannot reliably distinguish (i.e. ADM and dysplasias), 
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significantly extending the power of available tissue analytics. This genre of tool will certainly 

enhance, and conceivably fully replace immunostaining in many animal studies.  
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Methods 

Dataset 

Murine pancreatic tissues displaying a range of pre-cancerous lesions were isolated from the 

P48+/Cre; LSL-KRASG12D mice (KC) mouse pancreatic cancer model. This a widely used genetically 

engineered mouse model of oncogenic Kras-driven pancreatic adenocarcinoma that closely models 

the evolution of the human disease, displaying the early hallmarks of ADM, Dysplasia, and 

desmoplasia, and eventually invasive adenocarcinoma after more than one year of age [8]. Tissue 

sections from 3 whole pancreases were acquired from KC mice at 5 months for models training, and 

whole pancreas sections from an additional 25 mice were collected at 2 and 5 months of age (n=12, 

n=13) for validation and testing on an unseen dataset. Collected pancreases displayed abundant 

pre-cancerous lesions but were preceding the development of adenocarcinoma. All pancreas tissue 

sections were stained with H&E and the validation set was additionally stained by 

immunofluorescence for amylase, labeling normal acini, pan-keratin, labeling primarily the 

oncogenic Kras-transformed epithelial population, and DAPI, labeling all nuclei.  

H&E staining and Immunofluorescence 

The pancreatic tissues were paraffin-embedded, sectioned at 5μm thickness, and H&E 

stained by standard protocols at the OHSU Histopathology Core.  For immunofluorescence staining 

of amylase and pan-keratin, antigen retrieval was performed using Dako Target Retrieval Solution at 

pH 9 (Aligent: S236784-2) according to manufacturer’s instructions. Specimens were blocked with 

blocking buffer (1X PBS/5% normal serum/0.3% Triton™ X-100) for 1 hour at room temperature. 
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The anti-amylase (Santa Cruz: sc-12821) and anti-pan-Cytokeratin (Santa Cruz: sc-15367) primary 

antibodies were incubated overnight at 4°C, then washed and incubated with secondary antibodies 

(Invitrogen: A10042 and A32814) for 1.5 hours at room temperature. Slides were covered by 

coverslips with DAPI's Prolong® gold anti-fading agent (Invitrogen: P36931). Fluorescent images of 

amylase (A), pan-cytokeratin (B), and DAPI (C) staining were acquired using a Carl Zeiss Axioscan Z1 

slide scanner at a resolution of 0.2 microns/pixel and converted to BigTiff format. 

Immunofluorescence images were quantified using ImageJ software.  The threshold tool was 

applied manually to select the amylase-, pan-cytokeratin, or DAPI-positive tissue regions. Lymph 

nodes were manually cropped and excluded.  

Expert Annotation 

Annotations for pancreatic tissue features were constructed in Cytomine [20] by three trained 

experts, and affirmed by a pathologist. These annotations came from 5 regions across 3 images 

(Supplemental Figure 3) and included at total of 1924 normal acinar, 2582 ADMs, and 1732 

Dysplasia (Table 2).  

Training Image Preparation 

In order to make the images more amicable to training for the Deep Learning algorithms, 

they were trained with intensity normalization to make them appear more consistent with each 

other. To overcome differential staining across an H&E image, various normalization approaches 

were applied on intermediate sized (5000x5000 pixel) overlapping crops prior to tiling (512x512 

pixel). Background intensities were also ignored from the normalization process to reduce drastic 

changes on edge regions, isolating only the areas of interest for normalization. Background area 
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was selected by thresholding pixels where all RGB values were greater than 200. The best 

normalization method was shown to be Reinhard normalization [21] (Table 1), so it is used in the 

implementation of the models. 

UNet Training 

 A separate UNet model was trained for each annotated ductal tissue type (normal acinar, 

ADM, and Dysplasia) [19]. To make each model specific to its respective tissue type, each model’s 

training set was made to incorporate small portions of the other tissue types as negative controls. 

The training sets were made using 80% of the total relevant tissue tiles and ~5-10% of the total of 

other tissue tiles. Tiles were augmented during training with flips, rotations, and shears to overcome 

the small dataset size. Training for all three models lasted for 50 epochs, used a batch size of 32 

tiles and had a learning rate of 7e-4, implementing the Adam optimizer. Binary cross entropy was 

used as the loss function during training. Dice Coefficient was used following training to select the 

best models. 

𝑩𝒊𝒏𝒂𝒓𝒚	𝑪𝒓𝒐𝒔𝒔	𝑬𝒏𝒕𝒓𝒐𝒑𝒚	𝑳𝒐𝒔𝒔 = 	−
1
𝑁
4𝑦6 ∙ log(	𝑦<) + (1 − 𝑦6) ∙ log(1 − 𝑦<6)
?

6@A

 

𝑫𝒊𝒄𝒆	𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 =
2	(	𝑋	 ∩ 	𝑌	)
|𝑋| + |𝑌|  

Model Integration  

 Following model prediction, positive pixels for each model were calculated using the 

following thresholds: 

Normal Acinar Threshold = 0.3, ADM Threshold = 0.5, Dysplasia Threshold = 0.7,  
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These thresholds were chosen based on the Receiver operating characteristic (ROC) curves 

(Supplemental Figure 4), and were manually adjusted to improve generalizability and reduce noise 

in the test images. Again, background white pixels were removed from prediction by ignoring all 

pixels where all RGB values were greater than 200. Total tissue (DAPI positive) region was also 

calculated by finding all pixels where RGB values were lower than 200. To combine all four tissue 

masks, normal acinar predictions override metaplasia and dysplasia predictions; metaplasia 

predictions override dysplasia predictions; normal acinar, metaplasia, and dysplasia predictions all 

override DAPI predictions. 

Validation and Testing 

 Because no foreign tissue was used for negative controls during training (primarily lymph 

nodes and GI tissue), regions of images containing these tissues had to be cropped out prior to 

testing and analysis. Testing and analysis were performed through a similar pipeline as training, 

incorporating intermediate crop normalization and tile level prediction. These overlapping tiles 

were stitched back into a full image and an average was taken to get pixel level predictions for each 

model. Model predictions were compared to immunostained serial sections that were thresholded 

by an expert. To do this, ADM and dysplasia predictions were combined to make a general pan-

keratin prediction mask. Predictions were then paired with their respective serial section and 

correlated to determine model accuracy. 

The amylase, pan-keratin and DAPI area were measured in pixels, and the percentage of 

positive areas were calculated as a percent of the total all measured cellular regions. The 
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differences in means were assessed by independent-samples T-Test or one-way ANOVA. The 

correlation was tested by Bivariate Pearson analysis. 

Animal models 

All animal use was approved by the OHSU  Institutional Animal Care and Use Committee. 

The KC mice were all backcrossed at least 5 generations into the C57Bl6/J background.  Acute 

pancreatitis was induced in 6-week old C57Bl6/J mice by intraperitoneal injection of 50 µg caerulein 

(Wisent INC:450-185-EG) per kg body weight, with a total of 7 consecutive treatments at 1hour 

intervals.  Pancreatic tissues were harvested 3 days following caerulein treatment. Caerulein was 

dissolved in PBS at a concentration of 10 µg/ml. 
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Tables: 

Table 1: Evaluation of Model Performances 

 

Table 2: Number of Training Annotations: 

 Number of Annotations 
 Normal Acinar ADM Dysplasia 

Image 1 119 1722 1659 
Image 2 1342 597 70 
Image 3 463 263 3 

Total 1924 2582 1732 
 

Normalization Method Metric Normal Acinar ADM Dysplasia 
Reinhard Normalization of 
Intermediate Crops 

Dice 0.78691 0.70239 0.79403 
BCE 0.16131 0.17112 0.22374 

Reinhard Normalization [21] 
 

Dice 0.71750 0.60303 0.76210 
BCE 0.20561 0.16635 0.21966 

Vahadane Normalization [22] Dice 0.69311 0.58241 0.73684 
BCE 0.20753 0.18726 0.24471 

Macenko Normalization [23] Dice 0.70686 0.56660 0.77210 
BCE 0.21784 0.18370 0.19711 
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