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Abstract

Mechanistic studies of pancreatic disease progression using animal models require objective
and quantifiable assessment of tissue changes among animal cohorts. Disease state quantification,
however, relies heavily on tissue immunostaining, which can be expensive, labor- and time-intensive,
and all too often produces uneven staining that is prone to variable interpretation between experts
and inaccurate quantification. Here we develop a fully automated semantic segmentation tool using
deep learning for the rapid and objective quantification of histologic features using hematoxylin and
eosin (H&E) stained pancreatic tissue sections acquired from murine pancreatic cancer models. The
tool was successfully trained to segment and quantify multiple histopathologic features of
pancreatic pre-cancer evolution, including normal acinar structures, the ductal phenotype of acinar-
to ductal metaplasia (ADM), dysplasia, and the expanding stromal compartment. Disease
quantifications produced by our computational tool were highly correlated to the results obtained
by immunostaining markers of normal and diseased tissue (DAPI, amylase, and cytokeratins;
correlation score= 0.9, 0.95, and 0.91, respectively) and were able to accurately reproduce
immunostain patterns. Moreover, our tool was able to distinguish ADM from dysplasia, which are
not reliably distinguished by immunostaining, and avoid the pitfalls of uneven or poor-quality
staining. Using this tool, we quantified the changes in histologic feature abundance for murine
cohorts with oncogenic Kras-driven disease at 2 months and 5 months of age (n=12, n=13). The
calculated changes in histologic feature abundance were consistent with biological expectations,

showing an expansion of the stromal compartment, a reduction of normal acinar tissue, and an
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increase in both ADM and dysplasia as disease progresses (p= 2e-6, 6e-7, 4e-4, and 3e-5,
respectively). These results demonstrate the tool’s efficacy for accurate and rapid quantification of
multiple histologic features using an objective and automated platform. Our tool promises to
rapidly accelerate and improve the quantification of altered pancreatic disease progression in

animal studies.

Introduction

Advances in deep learning technologies are creating opportunities for the rapid and
objective assessment of both normal tissue and pathologic processes in biologic specimens.
Computer-aided interrogation of medical imaging is being applied to accelerate and improve
diagnosis in human patients [1, 2, 3, 4]. Similarly, deep learning technologies can greatly improve
analyses in animal disease models which require the measurement of disease progression in large
numbers of tissue samples resulting either from pharmacological or genetic manipulations. The
extensive and growing use of murine models in disease studies creates a significant need for tissue
assessment methods that are rapid, objective and quantifiable in order to permit statistically
validated disease measurements among animal cohorts, free of technical variability and investigator
bias.

The challenge of objective quantification of tissue changes among animal cohorts is
significant. Evaluation of tissue by either histochemical stains or antigen-specific
immunohistochemistry offers distinct and sometimes overlapping information, but both have

limitations. Hematoxylin and eosin (H&E) staining is a rapid, reliable and inexpensive method,
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however, lack of molecular specificity and requirement for manual segmentation have, thus far,
limited its use for extraction of quantifiable data. Consequently, disease assessments by H&E
staining are typically qualitative and vulnerable to inter-observer variation and bias [5,6,7].
Immunohistochemical stains offer a degree of specificity, but immunostaining can be labor- and
time-intensive, expensive and results are often challenging to objectively quantify over broad tissue
regions. In addition, tissue features of interest are not always cleanly distinguishable by
immunostaining markers, and so tissue assessments can be limited by reliance on the molecular
specificity of antibodies.

Using murine models of pancreatic cancer progression and pancreatitis, we are working to
develop and validate deep learning approaches that enable the rapid, reliable, and automated
quantification of disease progression over large tissue areas, solely based on H&E staining. Murine
models of pancreatic cancer were chosen as they have proven useful for mechanistic investigations
of pancreatic cancer progression, modeling well the human disease both genetically and
phenotypically, particularly during the evolution of pre-cancerous lesions [8, ?]. The murine models
have produced an explosion of studies including pre-clinical drug tests and evaluation of additional
genetic perturbations that expose tumor-suppressing and tumor-promoting disease modifiers [10-
12].

The early stages of pancreatic cancer evolution are well described in the mouse models [8, 9].
The normal pancreas consists predominantly of acinar and ductal epithelial cells forming the
exocrine compartment, along with islet cells of the endocrine compartment, vasculature and the

varied fibroblasts of the stromal compartment. The earliest stages of oncogene-induced pre-cancer
3
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evolution are marked by an expansion of ductal cells or by the conversion of the acinar cells to a
ductal phenotype in an adaptive process known as acinar-to ductal metaplasia (ADM) [13]. ADM is
also characteristic of acute and chronic pancreatitis, inflammatory conditions that can predispose to
cancer [13]. The next stage in cancer evolution is the development of low-grade dysplasia, also
referred to as pancreatic intraepithelial neoplasias (PanINs 1 and 2). Low-grade dysplasia is a pre-
invasive neoplasia that can evolve to high-grade dysplasia (PanIN 3) and then progress to invasive
pancreatic ductal adenocarcinoma (PDAC) [14]. Both ADM and dysplasia are accompanied by a
prominent stromal reaction and immune cell infiltrate [13]. The stages of ADM and dysplasia
evolution are believed to encompass a long phase of pre-cancer evolution that is a valuable window
for early intervention [14].

Here we describe the model training workflow and application of deep learning on H&E
stained samples of murine pre-cancerous lesions, segmenting the normal acini, the ductal
phenotype of ADM, and dysplasia. With the rapid growth of computer vision, more specifically
deep learning, novel image analysis architectures have been developed for accessing image
information that is not readily observed through traditional methods. Several research groups have
worked towards inter-modality image translation and have developed tools that attempt to convert
medical images such as H&E stained tissue and brightfield microscopy to more detailed ones such
as fluorescent immunostains [15,16,17,18]. The target of such models has been the direct translation
of stain intensities for the purpose of constructing entirely new images. Our developed tool seeks to
go further, predicting binarized masks of positive staining area and augment immunostaining by

segmenting key histologic features that current stains cannot reliably differentiate.
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Results presented here demonstrate a well validated segmentation tool that can
automatically, rapidly, and objectively quantify pancreatic tissue and disease progression in mice,
relying solely on easily replicated and low-cost H&E staining of whole pancreas tissue sections, free
of experimental variability and investigator bias. Our work provides a tool that is immediately
applicable to the improvement and acceleration of pancreatic disease studies in animal cohorts, and
provides workflows for similar tool development in other disease models. Moreover, the ease of use
and availability allows for this tool to be a common thread for comparing different studies

performed throughout the world.
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Murine pancreatic pre-cancerous tissues were isolated from the P48+, LSL-KRASC'?® mice
(KC) which is a common mouse pancreatic cancer model that displays the early disease hallmarks of
ADM, dysplasia, and desmoplasia, and can eventually develop invasive adenocarcinoma after more
than one year of age [8]. Tissue sections from 3 whole pancreases were acquired from KC mice at 5
months for models training, and whole pancreas sections from an additional 25 mice were collected
at 2 and 5 months of age (n=12, n=13) for validation and testing on an unseen dataset. All pancreas
tissue sections were stained with H&E and the validation set was additionally stained by
immunofluorescence for amylase (AMY), labeling normal acini, pan-keratin (panK), labeling primarily
the oncogenic Kras-transformed epithelial population, and DAPI, labeling all nuclei.

In order to predict the immunofluorescent stain and histologic feature distributions, several
UNet models [19] were trained using intensity normalized H&E image tiles paired with ground truth
tiles created from three experts’ annotations using CYTOMINE [20]. Annotations were generated to
designate normal acinar structures, the ductal phenotype of ADM, and dysplasia. Given expert
annotations as ground truth, models were trained by optimizing the Binary Cross Entropy Loss, and
following training, the Dice Coefficient was used to select the best models. These trained models
were then validated quantitatively by correlating their predicted stain distributions to a set of
stained and binarized fluorescent images where the intensity threshold is chosen by an expert
(Figure 1). As observed in Table 1, the models implementing Reinhard Normalization [21] achieved
better scores on average, relative to Vahadane [22] and Macenko [23] normalization methods.
Furthermore, the models achieved the best scores when the normalization process was applied on

intermediate overlapping crops rather than across the whole image.
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Figure 2. Predictions compared to annotations
a) Model Predictions closely align with the
manually annotated ground truth regions that
was used for training. b) Close inspection of the
ducts shows consistent discrepancies regarding
the lumen and split histologic features within
single ducts. Manual annotations were made by
circling whole ducts, but the models’ predictions
are actually more reflective of biology, wherein,
stain does not mark for the lumen. The
Predictions can also distinguish histologic
features differences that the manual annotations
combined.

Manual
Annotations

Predicted
Features

The models were trained using 80% of the training data, and 20% was held out for cross-
validation to evaluate the models’ performance with unbiased data. The best models yielded Dice
Coeffi cients of ~0.79, ~0.70, and ~0.79 on the hold-out set for normal acinar tissue, ADM, and
dysplastic features, respectively (Table 1). The segmentations match the expert annotations with a
high degree of qualitative accuracy (Figure 2a). The models’ Dice scores are lower than expected
from successful models is because the models actually refined approximations in the experts’
annotations leading to discrepancies between prediction and annotation (Figure 2b). Due to the

limitations of the annotation method used, entire lesions, including empty lumina, were labeled as
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one type of tissue (i.e., ADM or dysplasia). The models, however, accurately differentiate between

the tissue types within a lesion and avoid labeling lumina. Despite these results being biologically

correct, they are different than the experts’ manual annotations, resulting in a negative impact on

the measured Dice Coefficients.
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Figure 3. Comparing model predictions to stained
tissue.

a) Stain masks and predicted segmentation masks are
qualitatively highly similar. Differences can be seen in
the high-level architecture of the tissues, which is
indicative of the fact that the predictions were made
from serial sections to the stains. There are also dim
regions of the stained image that are lost from the
global thresholding technique. These regions are
successfully captured by the models. "Other" stain is
the DAPI stain minus regions overlapping with AMY
and panK.

b) Correlations were made by comparing the percent
of area coverage for each stain mask. The high levels
of correlation illustrate the models’ ability to replicate
straining using only H&E images. These regions are
successfully captured by the models. "Other" stain is
the DAPI stain minus regions overlapping with AMY
and panK.

To test further the accuracy of the trained models, a comparison was made between

quantified model predictions and quantified immuno-stained images that have been binarized.
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Quantification of the tissue area occupied by normal acinar cell and transformed pancreatic
epithelial cells was achieved by immunostaining for amylase and pan-keratin, respectively, with
DAPI staining of nuclei used to detect all cellular regions. The comparable calculation was then
made using tool predictions on adjacent H&E stained tissue sections. For the tool prediction, ADM
and dysplasia predictions were grouped into the panK stain because pan-keratin immunostaining
does not distinguish ADM and neoplastic tissues. Because stain area is more biologically targeted
than the rough annotations that incorporate empty lumens and mislabeled features, the models’
immunostain correlation scores are much more reflective of their overall accuracy. When the
prediction masks are compared qualitatively to the stained images, the models are able to
approximate the immunostain localization (Figure 3a). There are minor differences between the
immunostained and the predicted segmentations, which reflects slight tissue variations between the
adjacent, but separate, sections used for H&E staining and immunohistochemistry. Quantitatively,
three models also have high correlations (Figure 3b) with the immunostained sections despite these
sections (n= 25) being unseen during training. This validates that the models have been successfully
trained and are capable of replicating known biological data.

Not only can these models replicate immunostaining data, they can extract more information
than can be gained via immunostaining. In this dataset, the pan-keratin immunostain labels both
metaplasia and dysplasia, restricting the disease features that can be segmented. The model
predictions, however, can distinguish these features (Figure 4a). This allows for deeper and more
nuanced quantification of disease progression than can be achieved by immunostaining alone.

Because this process of prediction is deterministic, it is also a faster and less biased than manually
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annotating histologic features, and less expensive and less error-prone than immunostaining

(Supplemental Figure 1).

a
Histologic .
Normal Acinar
. ADM
Dysplasia
b Predicted Stain Area in Developing Cancer (o Predicted Feature Area in Developing Cancer
100 30
90 p=2e-6 p = 6e-7 p=9e-6
& 8 I £
g 7 3 20
3 5o 5 15 p=de-4 p=3e-5
15} Q
o Y 0
’-g 30 T -_g 10
S —M .l T
10
0 0

Other AMY panK Metaplasia Dysplasia
[12-Months M 5-Months [12-Months M 5-Months

Figure 4. Discerning features beyond immunostaining

a) In test images the predicted histologic features visually align with what is expected from the H&E images. This shows
the models’ utility in discerning novel information regarding ductal features that cannot be detected via staining.

The models were used to predict the changes stain distributions b) and cancer histologic features ¢) in murine models
with induced cancer. Predictions show significant changes in all stains and features between time points, and quantifies
specific features that were not discernable in immunostaining alone.

Using the tissue sections from the unseen testing dataset isolated from KC mice at 2 and 5
months of age (n=12, n=13), the model was able to quantify tissue changes reflecting disease

progression by predicting immunostain from H&E stain images (Figure 4b and c). The observed

10
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age-dependent transitions from normal acinar to ADM and dysplasia, and the increase in other
tissue area (DAPI stained), is consistent with biological expectations, illustrating the practical,

objective use of this tool to quantitatively assess pre-cancerous disease development.
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To test the models’ robustness and generalizability, we evaluated images from pancreata
with acute pancreatitis. Acute pancreatitis is characterized by prominent ADM and an inflammatory
stromal response, but does not promote neoplastic lesions [13]. Acute pancreatitis was induced in
mice by injection of the pro-inflammatory agent caerulein [13], then tissue sections exhibiting acute
pancreatitis or normal pancreas (n=6, n=3 respectively) were analyzed by the model (Figure 5).
Because annotations did not exist for these datasets, model prediction localizations were evaluated

qualitatively. Despite not being trained to analyze the particular disease states of pancreatitis, the

11
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models were able to accurately label pancreatitis features (i.e. ADM) with minimal error, regardless
of whether the ADM was sporadic or clustered within the tissue (Figure 5a). The model’s quantified
tissue assessments show the significant presence of ADM by pixel area in the pancreatitis samples
compared to normal tissues, which matches biological expectations. The near-absence of significant
ADM and dysplasia in normal pancreas samples is also consistent with expectations, as is the near-
absence of dysplasia in the pancreatitis samples (Figure 5b). The small quantities of ADM and
dysplasia predictions in the normal tissues are errors introduced primarily by pixel level noise and
are insignificant compared to the size of the samples. Within this dataset we do not see large
heterogeneity in the histologic features across disease states, and as a result the model performs

consistently across all disease states shown.

Discussion

The computational tool developed here is intended to augment and accelerate disease
research performed in animal models by allowing for simple stain prediction and histologic feature
labeling from H&E images without the need for expensive and time-consuming immunostaining and
biased image interpretation. It can be used to both mark the localization of tissue features and
quantitatively to measure the extent of disease based on multiple histologic features (Supplemental
Figure 2). Such rapid and unbiased quantification of disease states in animal models is critical to
enabling efficient and accurate disease assessments among large study cohorts, as well as provide a
common method to compare finding across different studies. The ability of this tool to accurately

predict histologic features among 25 unseen pancreatic pre-cancer samples from multiple time

12


https://doi.org/10.1101/2020.04.01.020842
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.020842; this version posted April 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

points and 9 unseen samples comprising other disease states demonstrates the robustness of the
models when analyzing new datasets. The fact that the models generalize well, despite being
trained with a relatively small dataset (Supplemental Figure 3 and Table 2), illustrates the
effectiveness of this workflow for tool development. Using this workflow makes niche tool
development plausible for small working groups that might have less access to the resources
needed to produce large batches of annotated data.

There have been many efforts to recreate advanced staining images using more common
input modalities [15,16,17,18], and although they are useful for visualizing potential stain and
intensity distributions, the algorithms are limited to predicting staining patterns of existing markers.
If the user wants to analyze specific biological features for which there is no specific stain; however,
simple stain translation will not suffice. The tool created here, however, can create objective binary
interpretations of H&E images that segment histologic features of developing pancreatic cancer for
which there is no reliable conventional immunostain. Previous studies have attempted to use
computer-aided analyses for duct detection in pancreatic cancer [24]; however, these do not cover
the subtly different features of early disease hallmarks of ADM and dysplasia.

Although this tool enables easy, rapid, and accurate stain reconstruction and feature labeling
in the early stage disease models employed here, there are several limitations to its predictive
capacity. The most prominent source of error for the tool currently is the way it handles unlearned
tissue types, such as lymph nodes, pancreatic islets, the desmoplastic stroma, and the occasional
presence of neighboring gastrointestinal tissue. Lymph nodes and gastrointestinal tissue are highly

irregular compared to the pancreatic features that were present in the training data, leading to
13
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completely arbitrary labeling of the unrecognized tissue areas. To overcome this, these regions can
simply be cropped prior to analysis, as performed for our analyses. Islets comprise a small fraction
of the pancreatic tissue area, and were labeled by the model as “other” (i.e. neither normal, ADM,
or dysplasia), and therefore introduced only minor errors. In addition, the desmoplastic stroma is a
prominent and histologically distinct feature of pancreatic disease that is currently unlearned and
labeled as "other" tissue.

Greater limitations arise with the appearance of high-grade neoplasia and adenocarcinoma,
both of which can adopt ductal structures more closely resembling ADM. It should also be noted
that the tool currently labels all non-neoplastic ductal structures as ADM, whether they originate
from acinar cells or from ductal cells, and this contributes some error for the quantification ADM of
acinar origin. At this stage of the tool’s development, no label for fully developed adenocarcinoma
features were used, so lesions that have progressed beyond high grade dysplasia would likely be
mislabeled as either ADM or “other”. With future work, it should be possible to train models to
identify these additional tissue features and predict them accurately alongside the existing models.
The final limitation of the tools is its failure to make accurate predictions in areas of tissue folding or
out of focus imaging, but these are obstacles for any image-based measurement tool (including
human annotators) and are avoidable with good technique.

Further work is in progress to reduce error and allow for a broader range of tissue
interrogations, including training the tool to recognize a greater diversity of cell types and tissue
features such as islets of Langerhans, neural tissue, desmoplastic stroma, adenocarcinoma, and

peripheral elements such as lymph nodes or gastrointestinal tissue. The model’s quantitative
14
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capabilities can also be applied to other disease states that share similar histologic features, such as
pancreatitis. Continued development can yield a single comprehensive tool for predicting and
labeling all histologic features in pancreatic tissue without the need for complex staining.

Despite the current limitations discussed above, the tool developed here demonstrates clear
advantages and superiority to immunostaining for disease quantification in pancreatic pre-cancers.
By relying on H&E staining alone, the data acquisition is not only faster and cheaper, but less
vulnerable to variable and uneven staining across tissue sections. This consistency and stability of
H&E staining eliminates a primary source of error and bias in feature quantification because of
manual adjustments needed to threshold immunostained tissues; tissue immunostaining quality
varies significantly within single tissue sections and among the many tissues acquired and stained
from animal cohorts, typically stained on different days, months, and even years. This tool's
exploitation of H&E staining not only enables easy quantitative comparisons between tissues
collected and stained across broad time periods, but also enables such comparisons among tissues
collected and stained in different laboratories around the world. This unifying aspect will improve
collaboration and cross-validation between experiments conducted by different groups.

Being computer driven, the tool easily quantifies whole pancreatic tissue sections, allowing
greater volumes of data acquisitions and avoiding the selection of “representative” regions for
quantification, which introduces further bias. Furthermore, as an automated, machine-driven
measurement tool, potential investigator bias is excluded from the data quantification pipeline.
Finally, and importantly, tool has been demonstrated to identify and segregate key histologic

features which immunostaining methods cannot reliably distinguish (i.e. ADM and dysplasias),
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significantly extending the power of available tissue analytics. This genre of tool will certainly

enhance, and conceivably fully replace immunostaining in many animal studies.
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Code availability

The tool’s code for making predictions is provided on GitHub at the following link:
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Images needed to run the tool can be found in the following google drive:

https://drive.gooqgle.com/drive/folders/1ipgkjPawkuolLatLENjHvSVC7hcZKWbRJ?usp=sharing
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Methods

Dataset

Murine pancreatic tissues displaying a range of pre-cancerous lesions were isolated from the
P48+ce; | SL-KRASS2> mice (KC) mouse pancreatic cancer model. This a widely used genetically
engineered mouse model of oncogenic Kras-driven pancreatic adenocarcinoma that closely models
the evolution of the human disease, displaying the early hallmarks of ADM, Dysplasia, and
desmoplasia, and eventually invasive adenocarcinoma after more than one year of age [8]. Tissue
sections from 3 whole pancreases were acquired from KC mice at 5 months for models training, and
whole pancreas sections from an additional 25 mice were collected at 2 and 5 months of age (n=12,
n=13) for validation and testing on an unseen dataset. Collected pancreases displayed abundant
pre-cancerous lesions but were preceding the development of adenocarcinoma. All pancreas tissue
sections were stained with H&E and the validation set was additionally stained by
immunofluorescence for amylase, labeling normal acini, pan-keratin, labeling primarily the
oncogenic Kras-transformed epithelial population, and DAPI, labeling all nuclei.
H&E staining and Immunofluorescence

The pancreatic tissues were paraffin-embedded, sectioned at 5pm thickness, and H&E
stained by standard protocols at the OHSU Histopathology Core. For immunofluorescence staining
of amylase and pan-keratin, antigen retrieval was performed using Dako Target Retrieval Solution at
pH 9 (Aligent: S236784-2) according to manufacturer’s instructions. Specimens were blocked with

blocking buffer (1X PBS/5% normal serum/0.3% Triton™ X-100) for 1 hour at room temperature.
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The anti-amylase (Santa Cruz: sc-12821) and anti-pan-Cytokeratin (Santa Cruz: sc-15367) primary
antibodies were incubated overnight at 4°C, then washed and incubated with secondary antibodies
(Invitrogen: A10042 and A32814) for 1.5 hours at room temperature. Slides were covered by
coverslips with DAPI's Prolong® gold anti-fading agent (Invitrogen: P36931). Fluorescent images of
amylase (A), pan-cytokeratin (B), and DAPI (C) staining were acquired using a Carl Zeiss Axioscan Z1
slide scanner at a resolution of 0.2 microns/pixel and converted to BigTiff format.

Immunofluorescence images were quantified using ImageJ software. The threshold tool was
applied manually to select the amylase-, pan-cytokeratin, or DAPI-positive tissue regions. Lymph
nodes were manually cropped and excluded.
Expert Annotation

Annotations for pancreatic tissue features were constructed in Cytomine [20] by three trained
experts, and affirmed by a pathologist. These annotations came from 5 regions across 3 images
(Supplemental Figure 3) and included at total of 1924 normal acinar, 2582 ADMs, and 1732
Dysplasia (Table 2).
Training Image Preparation

In order to make the images more amicable to training for the Deep Learning algorithms,
they were trained with intensity normalization to make them appear more consistent with each
other. To overcome differential staining across an H&E image, various normalization approaches
were applied on intermediate sized (5000x5000 pixel) overlapping crops prior to tiling (512x512
pixel). Background intensities were also ignored from the normalization process to reduce drastic

changes on edge regions, isolating only the areas of interest for normalization. Background area
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was selected by thresholding pixels where all RGB values were greater than 200. The best
normalization method was shown to be Reinhard normalization [21] (Table 1), so it is used in the
implementation of the models.
UNet Training

A separate UNet model was trained for each annotated ductal tissue type (normal acinar,
ADM, and Dysplasia) [19]. To make each model specific to its respective tissue type, each model’s
training set was made to incorporate small portions of the other tissue types as negative controls.
The training sets were made using 80% of the total relevant tissue tiles and ~5-10% of the total of
other tissue tiles. Tiles were augmented during training with flips, rotations, and shears to overcome
the small dataset size. Training for all three models lasted for 50 epochs, used a batch size of 32
tiles and had a learning rate of 7e-4, implementing the Adam optimizer. Binary cross entropy was
used as the loss function during training. Dice Coefficient was used following training to select the

best models.

N
1
Binary Cross Entropy Loss = — NZ y;-log(§) + (1 —y;) -log(1 —%;)

i=0

2(XNnY)

Dice Coefficient = ————
1’ XT+1¥]

Model Integration
Following model prediction, positive pixels for each model were calculated using the
following thresholds:

Normal Acinar Threshold = 0.3, ADM Threshold = 0.5, Dysplasia Threshold = 0.7,
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These thresholds were chosen based on the Receiver operating characteristic (ROC) curves
(Supplemental Figure 4), and were manually adjusted to improve generalizability and reduce noise
in the test images. Again, background white pixels were removed from prediction by ignoring all
pixels where all RGB values were greater than 200. Total tissue (DAPI positive) region was also
calculated by finding all pixels where RGB values were lower than 200. To combine all four tissue
masks, normal acinar predictions override metaplasia and dysplasia predictions; metaplasia
predictions override dysplasia predictions; normal acinar, metaplasia, and dysplasia predictions all
override DAPI predictions.

Validation and Testing

Because no foreign tissue was used for negative controls during training (primarily lymph
nodes and Gl tissue), regions of images containing these tissues had to be cropped out prior to
testing and analysis. Testing and analysis were performed through a similar pipeline as training,
incorporating intermediate crop normalization and tile level prediction. These overlapping tiles
were stitched back into a full image and an average was taken to get pixel level predictions for each
model. Model predictions were compared to immunostained serial sections that were thresholded
by an expert. To do this, ADM and dysplasia predictions were combined to make a general pan-
keratin prediction mask. Predictions were then paired with their respective serial section and
correlated to determine model accuracy.

The amylase, pan-keratin and DAPI area were measured in pixels, and the percentage of

positive areas were calculated as a percent of the total all measured cellular regions. The
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differences in means were assessed by independent-samples T-Test or one-way ANOVA. The
correlation was tested by Bivariate Pearson analysis.
Animal models

All animal use was approved by the OHSU Institutional Animal Care and Use Committee.

The KC mice were all backcrossed at least 5 generations into the C57Bl6/J background. Acute

pancreatitis was induced in 6-week old C57BI6/J mice by intraperitoneal injection of 50 pg caerulein

(Wisent INC:450-185-EG) per kg body weight, with a total of 7 consecutive treatments at Thour
intervals. Pancreatic tissues were harvested 3 days following caerulein treatment. Caerulein was

dissolved in PBS at a concentration of 10 ug/ml.
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Tables:

Table 1: Evaluation of Model Performances

Normalization Method Metric | Normal Acinar ADM Dysplasia
Reinhard Normalization of Dice 0.78691 0.70239 0.79403
Intermediate Crops BCE 0.16131 0.17112 0.22374
Reinhard Normalization [21] | Dice 0.71750 0.60303 0.76210
BCE 0.20561 0.16635 0.21966
Vahadane Normalization [22] | Dice 0.69311 0.58241 0.73684
BCE 0.20753 0.18726 0.24471
Macenko Normalization [23] | Dice 0.70686 0.56660 0.77210
BCE 0.21784 0.18370 0.19711
Table 2: Number of Training Annotations:
Number of Annotations
Normal Acinar ADM Dysplasia
Image 1 119 1722 1659
Image 2 1342 597 70
Image 3 463 263 3
Total 1924 2582 1732
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