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ABSTRACT 18 

High density single nucleotide polymorphism (SNP) arrays allow large numbers of individuals to 19 

be rapidly and cost-effectively genotyped at large numbers of genetic markers.  However, despite 20 

being widely used in studies of humans and domesticated plants and animals, SNP arrays are 21 

lacking for most wild organisms. We developed a custom 90K Affymetrix Axiom array for an 22 

intensively studied pinniped, the Antarctic fur seal (Arctocephalus gazella).  SNPs were 23 

discovered from a combination of genomic and transcriptomic resources and filtered according 24 

to strict criteria.  Out of a total of 85,359 SNPs tiled on the array, 75,601 (88.6%) successfully 25 

converted and were polymorphic in 274 animals from a breeding colony at Bird Island in South 26 

Georgia.  Evidence was found for inbreeding, with three genomic inbreeding coefficients being 27 

strongly intercorrelated and the proportion of the genome in ROH being non-zero in all 28 

individuals. Furthermore, analysis of genomic relatedness coefficients identified multiple second 29 

and third order relatives among a sample of ostensibly unrelated individuals.  Such “cryptic 30 

relatedness” within fur seal breeding colonies may increase the likelihood of consanguinous 31 

matings and could therefore have implications for understanding fitness variation and mate 32 

choice. Finally, we demonstrate the cross-amplification potential of the array in three related 33 

species. Overall, our SNP array will facilitate future studies of Antarctic fur seals and has the 34 

potential to serve as a more general resource for the wider pinniped research community.  35 
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INTRODUCTION 36 

Single nucleotide polymorphisms (SNPs) have become one of the most popular genetic markers 37 

in evolutionary and conservation biology (Morin et al. 2004). They are the most abundant form of 38 

genetic variation and in contrast to classical markers such as microsatellites, they can be 39 

genotyped on a very large scale (Seeb et al. 2011). Consequently, SNPs can provide the 40 

resolution needed to address broad reaching questions in ecology, evolution and conservation 41 

biology with greater power than was previously possible. In particular, quantitative genetic and 42 

gene mapping studies have profited enormously from the power of these markers (Johnston et 43 

al. 2013; Berenos et al. 2014; Barson et al. 2015; Gienapp et al. 2017). 44 

 

Two of the most common approaches for genotyping SNPs in non-model organisms are 45 

genotyping by sequencing (GBS) methods such as restriction site associated DNA (RAD) 46 

sequencing (Hohenlohe et al. 2010; Davey et al. 2011) and array based methods in which panels 47 

of pre-determined polymorphisms are hybridised onto chips by companies such as Affymetrix 48 

and Illumina. GBS approaches are capable of genotyping tens of thousands of SNPs and do not 49 

necessarily require access to existing genomic resources. However, they generate large 50 

amounts of sequence data that require bioinformatic processing, which can be time-consuming 51 

and technically challenging (Shafer et al. 2017). An additional issue with GBS is that the depth of 52 

sequence coverage is not always high enough to call genotypes with high confidence, which 53 

leads to high rates of missing data (Chattopadhyay et al. 2014; Huang and Knowles 2016; 54 

Benjelloun et al. 2019).  By contrast, array based methods are faster, require minimal technical 55 

effort, have low genotyping error rates and high call rates, and can easily be scaled up to very 56 

large numbers of individuals. SNP arrays are also flexible, with low density arrays allowing 57 

hundreds to thousands of SNPs to be genotyped and high density arrays or “SNP chips” 58 

supporting tens of thousands to millions of SNPs (Thaden et al.; Shi et al. 2012). For these and 59 

other reasons, array based genotyping has become the method of choice for many researchers, 60 

particularly those working on long-term datasets with access to many individuals. 61 

 

Until recently, the majority of array based studies of natural populations exploited resources 62 

already developed for closely related domestic species such as the BovineSNP50 and 63 

OvineSNP50 bead chips (Thaden et al.; Shi et al. 2012). However, given that cross-species 64 

polymorphism declines with increasing phylogenetic distance (Miller et al. 2012), custom species-65 

specific arrays are now being developed for several wild species such as great tits (Kim et al. 66 

2018), flycatchers (Kawakami et al. 2014), house sparrows (Lundregan et al. 2018) and polar 67 

bears (Malenfant et al. 2015). These resources have already provided insights into diverse topics 68 

from adaptive divergence and hybridization (Bourret et al. 2013; McFarlane et al. 2020) through 69 
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to conservation genomics (Chen et al. 2016) and quantitative trait locus mapping (Kim et al. 70 

2018). However, high rates of failure are not uncommon with custom arrays, as considerable 71 

numbers of SNPs either fail to produce any results at all (i.e. they do not “convert”) or they appear 72 

monomorphic and are consequently for most purposes uninformative.  Among recent efforts to 73 

develop SNP arrays for wild organisms, the proportion of tiled SNPs converting into high quality 74 

polymorphic genotyping assays has varied from just over 50% to at most around 80% (van Bers 75 

et al. 2012; Hagen et al. 2013; Kawakami et al. 2014; Malenfant et al. 2015; Kim et al. 2018). 76 

Recent studies investigating the causes of assay failure have identified poor SNP genomic 77 

context as a major factor, particularly when markers are derived from a transcriptome, and have 78 

highlighted the advantages of considering how SNP probe sequences map to a reference 79 

assembly (Humble et al. 2016a, 2016b).  Consequently, incorporating contextual information into 80 

SNP filtering pipelines has the potential to substantially improve the success rates of custom 81 

arrays. 82 

 

The Antarctic fur seal (Arctocephlaus gazella) is a prime example of a species that would benefit 83 

from the development of a SNP array. On Bird Island in South Georgia, a breeding colony of fur 84 

seals has been intensively monitored since the 1980s and genetic, phenotypic and life-history 85 

data have been collected for around ten thousand animals. This information has provided the 86 

foundation for elucidating the species' mating system (Hoffman et al. 2003, 2007), demographic 87 

history (Hoffman et al. 2011; Paijmans et al. 2020) and population status (Forcada and Hoffman 88 

2014).  For example, by combining data from nine microsatellites with multi-event mark-recapture 89 

models, Forcada and Hoffman (2014) showed that adverse climate effects have led to a 24% 90 

decline in the number of breeding females over the past three decades.  Alongside this, breeding 91 

female heterozygosity has increased by around 8.5% per generation since the early 1990s 92 

(Forcada and Hoffman 2014). Together, these patterns are strongly suggestive of increasing 93 

viability selection against homozygous individuals, possibly due to inbreeding depression. 94 

 

To shed light on this phenomenon in fur seals as well as to improve our broader understanding 95 

of the mechanisms responsible for inbreeding depression, a shift from using small numbers of 96 

microsatellites to many thousands of SNPs is required (Kardos et al. 2015). High density datasets 97 

of mapped SNPs are capable of estimating inbreeding with extremely high precision because 98 

they can capture and measure the genome-wide contribution of runs of homozygosity (ROH), 99 

contiguous tracts of homozygous SNPs that occur when individuals inherit two identical by 100 

descent (IBD) copies of a chromosomal segment from a common ancestor (Franklin 1977). 101 

Indeed, simulation studies have shown that ROH based measures provide more precise 102 

estimates of inbreeding than those obtained from pedigrees (Keller et al. 2011), which cannot 103 

capture variation among individuals due to recombination and Mendelian sampling (Hill and Weir 104 
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2011). Furthermore, the length distribution of ROH can shed light on whether inbreeding is the 105 

result of matings between relatives in recent generations or in the distant past (Thompson 2013). 106 

This is because the length of an IBD segment is determined by the number of generations 107 

between the inbred individual and the most recent common ancestor carrying the two 108 

homologous copies of that IBD segment. For these reasons, quantifying ROH is becoming the 109 

method of choice among researchers interested in inbreeding and inbreeding depression (Kardos 110 

et al. 2017; Grossen et al. 2018; van der Valk et al. 2020). 111 

 

As well as improving estimates of inbreeding, genome-wide marker panels have also made it 112 

possible to calculate precise measures of relatedness, something that has traditionally been 113 

restricted to populations for which a pedigree is available (Santure et al. 2010; Huisman 2017). 114 

Understanding how animals are related is of fundamental importance to many aspects of 115 

evolutionary and conservation biology, from understanding patterns and mechanisms of mate 116 

choice (Foerster et al. 2006; Blyton et al. 2016; Tuni et al. 2019) to making informed pairing 117 

decisions in conservation breeding programmes (Galla et al. in press). As high quality, multi-118 

generational pedigrees are not available for most wild populations, the possibility of using 119 

genomic data for deriving relatedness estimates therefore provides many additional research 120 

opportunities. 121 

 

This paper describes the development of a 90K Affymetrix Axiom genotyping array for the 122 

Antarctic fur seal. As our longer-term aims are to investigate the mechanism(s) behind the 123 

population decline as well as more generally to explore the genetic architecture of fitness-related 124 

traits, we developed a genome-wide panel of nuclear SNPs based on RAD sequencing data from 125 

a recent study (Humble et al 2018). We additionally made use of another desirable property of 126 

SNP arrays, the possibility of incorporating candidate gene markers, by tiling over ten thousand 127 

polymorphisms from a transcriptome assembly (Humble et al. 2016b) together with a handful of 128 

SNPs from the major histocompatibility complex (MHC), a group of genes constituting arguably 129 

the most important component of the vertebrate immune system (Sommer 2005). Finally, we 130 

attempted to maximise the overall genotyping success of the array by subjecting all discovered 131 

SNPs to a strict prioritisation scheme that incorporated multiple sources of information including 132 

the genomic context of each locus. We genotyped 288 samples, primarily from Antarctic fur seals 133 

but also including three additional pinniped species, to assess the performance of the SNP array, 134 

to quantify inbreeding and to explore patterns of relatedness among individuals.  135 
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MATERIALS AND METHODS 136 

Genomic SNP discovery  137 

Genome-wide distributed nuclear SNPs were discovered using RAD sequencing as described 138 

by Humble et al. (2018). Briefly, tissue samples from 83 individuals were collected from the main 139 

breeding colonies across the species range: Bird Island, South Georgia (n = 57), Cape Shirreff 140 

in the South Shetlands (n = 6), Bouvetøya (n = 5), Îles Kerguelen (n = 5), Heard Island (n = 5) 141 

and Macquarie Island (n = 5). RAD libraries were prepared using a protocol with minor 142 

modifications as described in Matsuzaki et al. (2004). Read quality was assessed using FastQC 143 

v0.112 and the sequences were trimmed to 225 bp and demultiplexed using process_radtags in 144 

STACKS v1.41 (Catchen et al. 2013). To identify SNPs to include on the array, we followed 145 

GATK’s best practices workflow (Poplin et al. 2017) using the Antarctic fur seal genome v1.2 as 146 

a reference (Humble et al. 2016a). The resulting SNP dataset was filtered to include only biallelic 147 

SNPs using bcftools (Li 2011). 148 

 

We then applied a set of initial quality filters using vcftools (Danecek et al. 2011) to filter out low 149 

quality SNPs from our dataset. Specifically, we removed genotypes with a depth of coverage of 150 

less than five or greater than 18 to minimise spurious SNP calls due to low coverage or repetitive 151 

genomic regions. We also removed SNPs with minor allele frequencies (MAF) below 0.05 and 152 

with a genotyping rate below 60%. Next, to prepare the remaining loci for array design, we filtered 153 

out SNPs with insufficient flanking sequences by identifying and removing those less than 35 bp 154 

away from the start or end of a scaffold. We then collated a list of probe sequences for the 155 

remaining SNPs by extracting their 35 bp flanking sequences from the Antarctic fur seal reference 156 

genome using the BEDTOOLS command getfasta (Quinlan and Hall 2010). 157 

 

Transcriptomic SNP discovery and annotation 158 

In order to allow polymorphisms residing within expressed genes to be genotyped on the array, 159 

we included SNPs discovered from the Antarctic fur seal transcriptome in our list of probe 160 

sequences. The transcriptome sequencing, assembly and SNP detection process is fully 161 

described in (Humble et al. 2016b). In brief, testis, heart, spleen, intestine, kidney and lung 162 

samples were obtained from nine Antarctic fur seals that died of natural causes at Bird Island, 163 

South Georgia. Skin samples were additionally collected from 12 individuals from the same 164 

locality. The transcriptome was assembled in multiple iterations using 454 and Illumina sequence 165 

data from three different cDNA libraries (Hoffman 2011; Hoffman et al. 2013b; Humble et al. 166 

2018). SNPs were then discovered using four separate genotype callers and reduced to a 167 

consensus subset that was identified by all methods. Loci with sufficient flanking sequences for 168 
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probe design, and which had been assigned appropriate quality scores by Affymetrix in our 169 

previous study, were retained for array design. 170 

 

Putative functions were assigned to the transcriptomic SNPs by BLASTing the transcripts against 171 

the SwissProt, Trembl and non-redundant blast databases using BLASTx v2.2.30 with an e-value 172 

cutoff of 1e-4. We then used the total_annotation.py script provided by the Fool’s Guide to 173 

RNAseq (De Wit et al. 2012) to combine all BLAST results, download Uniprot flat files and extract 174 

Gene Ontology (GO) categories. To track the number of SNPs with putative immune, growth and 175 

metabolism functions throughout the array design process, we flagged all SNPs residing within 176 

transcripts associated with the annotation terms described in Table S1. 177 

 

Pre-validated and MHC-derived SNPs 178 

We also added to our list of probe sequences a further set of SNPs that were previously 179 

demonstrated to be polymorphic in the study colony. These included 40 SNPs derived from RAD 180 

sequencing data that were validated using Sanger sequencing (Humble et al. 2018), 102 181 

transcriptomic SNPs that were validated using Illumina’s GoldenGate assay (Hoffman et al. 2012) 182 

and 173 cross-amplified SNPs from the Canine HD Bead chip that were previously shown to be 183 

polymorphic in 24 Antarctic fur seals (Hoffman et al. 2013a). In addition to these, we included a 184 

further six SNPs that were recently discovered from the second exon of the Antarctic fur seal 185 

MHC DQBII locus based on Illumina MiSeq data from 82 Antarctic fur seals (Ottensmann and 186 

Hoffman, unpublished data). 187 

 

SNP selection 188 

We took our combined list of probe sequences, comprising genomic and transcriptomic SNPs 189 

together with pre-validated and MHC-derived SNPs, and evaluated their suitability for inclusion 190 

on an Affymetrix Axiom SNP genotyping array. First, we assessed the genomic context of each 191 

SNP by blasting their flanking sequences against the fur seal reference genome using BLASTN 192 

v2.2.30 with an e-value threshold of 1e-12. We then determined the total number of mappings and 193 

the alignment length of the top BLAST hit. Finally, all of the probe sequences were sent to 194 

Affymetrix who assigned recommendations to each SNP using an in silico evaluation tool. This 195 

tool considers probe sequence characteristics such as GC content and flanking sequence 196 

duplication and calculates a probability of successfully converting into a genotyping assay for 197 

each locus. We then prioritised a list of SNPs to be included on the array based on the following 198 

criteria:  199 
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(i) Priority one was assigned to SNPs with an Affymetrix recommendation of “recommended” in 200 

either the forward or reverse direction, that mapped uniquely and completely to the reference 201 

genome and that were neither an A/T nor a C/G SNP, as these require twice the number of 202 

probes. We also assigned priority one status to all pre-validated and MHC-derived SNPs 203 

regardless of their Affymetrix design scores. 204 

(ii) Priority two status was assigned to the remaining loci if they had a “neutral” recommendation 205 

by Affymetrix in either the forward or reverse direction, mapped uniquely and completely to the 206 

reference genome, were neither an A/T nor a C/G SNP and had no secondary SNPs present 207 

within the flanking sequence. 208 

(iii) Priority three status was assigned to any remaining RAD loci with an Affymetrix 209 

recommendation of “recommended” in either the forward or reverse direction, that mapped to no 210 

more than two different locations in the reference genome, that were neither an A/T nor a C/G 211 

SNP and had a MAF of at least 0.017 in South Georgia (equivalent to the minor allele having 212 

been found in at least two individuals in the discovery pool for this population). The latter filter 213 

was to prioritise SNPs that were polymorphic in our study population. 214 

(iv) Priority four status was assigned to the remaining RAD loci with an Affymetrix 215 

recommendation of “recommended” in either the forward or reverse direction, that mapped to no 216 

more than three different locations in the reference genome and that were neither an A/T nor a 217 

C/G SNP. 218 

(v) Priority five status was assigned to any high-quality A/T or C/G SNPs that were assigned an 219 

Affymetrix recommendation of “recommended” in either the forward or reverse direction and that 220 

mapped uniquely and completely to the reference genome. 221 

(vi) Priority six status was assigned to all remaining RAD loci with a “neutral” recommendation in 222 

either the forward or reverse strand, that mapped to no more than two different locations in the 223 

reference genome, that were neither an A/T nor a C/G SNP and that had no secondary SNPs 224 

present within the flanking sequence. 225 

(vii) Priority seven status was assigned to all remaining RAD SNPs with neutral recommendations 226 

for either the forward or reverse strand. 227 

 

Any SNPs remaining after these prioritisation steps were assigned a priority of zero and were no 228 

longer considered for array design.  After determining the priority of each SNP, we then thinned 229 

the dataset so that all RAD derived SNPs with a priority greater than or equal to three were at 230 

least 1 kb from the next adjacent SNP, and all SNPs with a priority of one or two were at least 231 

100 bp apart. Finally, we removed 289 duplicate SNPs that were discovered by more than one 232 

approach. The final set of 87,608 SNPs was submitted to Afymettrix for Axiom myDesign chip 233 

manufacture. 234 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.020123doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.020123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

Genotyping 235 

To assess the performance of the genotyping array, a total of 288 samples on three 96 well plates 236 

were genotyped on a Gene Titan platform by the Beijing Genomics Institute (BGI). To estimate 237 

the overall genotyping error rate, a single fur seal individual was genotyped three times, once on 238 

each plate. The majority of samples (n = 276) were collected from Antarctic fur seals at Bird 239 

Island, South Georgia as part of a long-term monitoring study conducted by the British Antarctic 240 

Survey. These were made up of females born between 1984 and 2016 and included 53 mother-241 

offspring pairs. Additionally, we evaluated cross-species amplification by genotyping four 242 

samples each of three pinniped species including one phocid (the Grey seal, Halichoerus grypus) 243 

and two otariids (the Steller's sea lion, Eumetopias jubatus, and the Galápagos sea lion, Zalophus 244 

wollebaeki). DNA was extracted using a standard phenol-chloroform protocol (Sambrook and 245 

Russell 2006) and quantified using PicoGreen® on a TECAN Infinite® 200 PRO plate reader. A 246 

total of 271 samples had DNA concentrations above the manufacturer’s recommendation of 50 247 

ng/µl. The remaining 15 samples had DNA concentrations between 40 and 50 ng/µl (n = 7) or 248 

between 20 and 40 ng/µl (n = 8). These were included to evaluate how samples with suboptimal 249 

DNA concentrations would perform on the array. 250 

 

The resulting genotype data were analysed using Affymetrix Power Tools (APT) command line 251 

software. We applied two workflows to the data, the first to assess the performance of the array 252 

in the Antarctic fur seal, and the second to quantify rates of cross-species amplification.  For the 253 

former, we excluded samples belonging to the other three pinniped species so that their inclusion 254 

did not impact overall cluster quality, and then filtered out samples with dish QC scores less than 255 

0.82 and with call rates below 97%. For the latter, we excluded samples with dish QC scores 256 

below 0.82 but did not filter on the basis of call rate in order to retain as many samples from the 257 

other pinniped species as possible. 258 

 

Genotyping was conducted for both datasets using the apt_genotype_axiom function in APT, 259 

with quality metrics and classifications being assigned to individual SNPs using the Ps_Metrics 260 

and Ps_Classification functions respectively. We then used the OTV_Caller function in the 261 

SNPolisher R package to recover SNPs that were originally classified as “off-target variants”.  262 

The resulting output was then re-classified using the APT functions Ps_Metrics and 263 

Ps_Classification. To estimate the genotyping error rate, we quantified the probability at each 264 

typed locus of both alleles being IBD between replicate samples using the Z2 score output of the 265 

--genome command in PLINK v1.9 (Purcell et al. 2007). 266 
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Inbreeding 267 

The genomic data were subsequently used to estimate levels of inbreeding in our study 268 

population. In order to generate a high-quality dataset with minimal missing data, we selected all 269 

of the polymorphic SNPs and then used PLINK to retain loci with a genotyping rate of over 90%, 270 

MAF > 0.01 and that conformed to Hardy-Weinberg equilibrium with a p-value threshold of 0.001. 271 

Using the resulting dataset of 74,261 SNPs genotyped in 272 individuals, we calculated three 272 

genomic estimates of inbreeding for each individual: standardised multi-locus heterozygosity 273 

(sMLH), a measure based on the correlation of uniting gametes (𝐹̂𝐼𝐼𝐼), and the proportion of the 274 

genome in ROH (FROH). sMLH was calculated using the R package inbreedR (Stoffel et al. 2016) 275 

and 𝐹̂𝐼𝐼𝐼was calculated using the --ibc function in GCTA (Yang et al. 2011).   276 

 

To calculate FROH, we first identified regions of the genome in ROH using the --homozyg function 277 

in PLINK with a sliding window of 20 SNPs (--homozyg-window-snp 20). A window was defined 278 

as homozygous when it contained no more than one heterozygous site (--homozyg-window-het 279 

1) and no more than five missing sites (--homozyg-window-missing 5). If at least 5% of all 280 

windows containing a given SNP were defined as homozygous, the SNP was presumed to lie 281 

within a homozygous segment (--homozyg-window-threshold 0.05). Homozygous segments 282 

were then called as ROH when they contained at least 20 SNPs (--homozyg-snp 20) and no more 283 

than one heterozygous site (--homozyg-het 1). Furthermore, to ensure that incomplete marker 284 

information did not bias ROH detection, segments were only called as ROH when they contained 285 

at least one SNP per 100 kb (--homozyg-density 100) and were at least one Mb in length (--286 

homozyg-kb 1000). If two SNPs within an ROH segment were further than 1000 kb apart, the 287 

ROH was split into two segments (--homozyg-gap 1000). The proportion of the genome in ROH 288 

(FROH) was then calculated as the sum of the detected ROH lengths for each individual over the 289 

total assembly length (2.3 Gb). In addition to these inbreeding estimators, we also quantified the 290 

extent of identity disequilibrium using the measure 𝑔2 in inbreedR. 291 

 

Relatedness 292 

Next, we used the SNP dataset to infer patterns of relatedness among the Antarctic fur seal 293 

individuals. For this analysis, we pruned the dataset of polymorphic SNPs for linkage 294 

disequilibrium using the --indep function in PLINK. We used a sliding window of 50 SNPs, a step 295 

size of 5 SNPs and removed all variants in a window above a variance inflation factor threshold 296 

of 2, corresponding to r2 = 0.5. We then excluded SNPs that deviated significantly from HWE as 297 

described above. Finally, in order to retain a subset of SNPs that contained as much information 298 

as possible for inferring relationships among individuals, we filtered out loci with MAF below 0.3 299 

and that had been called in fewer than 90% of individuals. Based on the resulting dataset of 6,579 300 
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SNPs, we quantified relatedness among all 272 individuals using the --genome function in PLINK. 301 

Specifically, we used the measure PI_HAT, which estimates the overall proportion of the genome 302 

that is identical by descent (IBD) between pairs of individuals, as well as Z scores, which reflect 303 

the probability of sharing zero, one or two alleles IBD. The latter probabilities depend directly on 304 

relatedness and therefore provide a more precise method for inferring the type of relationship 305 

between individuals (Galván-Femenía et al. 2017). 306 

 

In addition to measures of IBD sharing, we used the R package sequoia version 1.3.5 (Huisman 307 

2017) to assign kinship categories. We first ran an initial iteration of parentage assignment to 308 

identify duplicate individuals as well as loci with Mendelian errors by setting MaxSibIter to zero. 309 

This correctly identified the sample genotyped in triplicate as well as 44 SNPs with Mendelian 310 

errors, which were removed from the dataset. We then ran a second iteration of sequoia to assign 311 

siblings and second degree relationships by setting MaxSibIter to five. For both iterations, birth 312 

year information was provided using the LifeHist parameter. 313 

 

Cross-species amplification potential 314 

Finally, we investigated the cross-amplification potential of the array by quantifying the number 315 

of markers that could be successfully called in the grey seal, the Galápagos sea lion and the 316 

Steller's sea lion using the --missing function in PLINK.  We furthermore quantified the proportion 317 

of called SNPs that were polymorphic in each species. 318 

 

Data availability 319 

Flanking sequences and accompanying metadata for all of the SNPs that were printed on the 320 

array have been deposited on the European Variation Archive (ENA, https://www.ebi.ac.uk/eva) 321 

under study accession number XXX.  Code for the analyses are available at 322 

https://github.com/elhumble/Agaz_90K_workflow_2018.  Supplementary material and SNP 323 

genotypes are available via Figshare: XXX.  324 
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RESULTS 325 

Overview 326 

We discovered SNPs from a combination of genomic and transcriptomic resources, applied 327 

appropriate downstream filters, and then selected the most suitable loci for tiling on a custom 328 

Antarctic fur seal SNP array according to the priority scheme described in the Materials and 329 

methods. Figure 1 summarises the design and implementation of the array including the number 330 

of SNPs retained at each step of the selection procedure and the genotyping outcomes for 331 

different types and priority categories of SNP. 332 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Flow diagram outlining the number of SNPs at each step of the array development pipeline. (A) 333 

Numbers of SNPs discovered, filtered and submitted for array design. (B) Numbers of submitted, tiled and 334 

genotyped SNPs in priority categories one to seven. (C) Classification outcomes of genotyped SNPs and 335 

the breakdown of resource categories for polymorphic SNPs.  336 
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SNP discovery, filtering and array design 337 

Briefly, RAD sequencing data from 83 individuals were used to call a total of 797,768 biallelic 338 

SNPs with GATK’s best practices workflow (Humble et al. 2018). Downstream filtering for depth 339 

of coverage, MAF and genotyping rate resulted in a total of 151,063 SNPs, of which 151,062 had 340 

sufficient flanking sequences for probe design. A further 34,718 high quality SNPs were 341 

discovered from the Antarctic fur seal transcriptome, of which 32,727 had sufficient flanking 342 

sequences for probe design and 31,590 had appropriate Affymetrix quality scores (Humble et al. 343 

2016b). Combining the RAD and transcriptomic SNPs resulted in a total of 182,652 loci. These 344 

were pooled together with 275 pre-validated SNPs and six SNPs from the MHC to produce a 345 

total of 182,933 markers to be considered for array development (Figure 1A). To select the most 346 

suitable SNPs for array design, we considered the type of SNP, genomic context, Affymetrix 347 

design score metrics, pre-validation status, MAF and spacing of each locus. Based on this 348 

information, a total of 87,608 SNPs were assigned to priority categories one to seven and were 349 

therefore sent to Affymetrix for printing. Of these, 85,359 (97%) were successfully tiled on the 350 

array, of which 59.5% belonged to the highest priority category (Figure 1B). 351 

 

Performance of the array 352 

To evaluate the performance of the array, we genotyped a total of 276 Antarctic fur seal 353 

individuals across three microtiter plates. To provide a positive control and for genotyping error 354 

rate estimation, one of these individuals was genotyped in triplicate, once on each plate. 355 

Consequently, the total number of Antarctic fur seal samples genotyped on the array was 278. 356 

Four of these samples either failed quality control (n = 1) or fell below the call rate threshold of 357 

97% (n = 3) and were therefore removed from the dataset. The remaining 274 samples were 358 

successfully genotyped at 77,661 SNPs, corresponding to an overall success rate of 90.0% 359 

(Figure 1B). These included 163 SNPs that were recovered after having been originally classified 360 

as “off-target variants”. The error rate determined from the individual genotyped in triplicate was 361 

low at 0.004 per locus. 362 

 

To evaluate the success of our selection criteria, conversion rates (defined as the proportion of 363 

SNPs yielding high quality genotypes) were quantified separately for each priority category. SNPs 364 

assigned to priority categories one, five and six had conversion rates in excess of 90% (Figure 365 

1B). Conversion rates were slightly lower (≥ 80%) for priority two and three SNPs, while loci 366 

assigned to priority category four had the lowest overall conversion rate of 66.3%. Contrary to 367 

expectations, we did not find that pre-validated SNPs had higher conversion rates than SNPs 368 

that were not validated in advance. Instead, SNPs from the canine HD Bead chip were actually 369 

less likely to convert than non-validated SNPs (58 / 173 [33.5%]; Fisher’s exact test: odds ratio = 370 

0.05, 95% CI = 0.04–0.07, p < 0.05). After excluding these loci, the overall conversion rate of 371 
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pre-validated SNPs did not differ significantly from that of the remaining ones (130 / 142 [91.5%] 372 

versus 77,473 / 85,044 [91.1%]; Fisher’s exact test: odds ratio = 1.08, 95% CI = 0.60–2.15, p = 373 

0.88). 374 

 

Overall, no relationship was found between genotyping success, expressed as the call rate per 375 

sample, and DNA concentration (slope = -3.36, t = -1.09, df = 278, P = 0.27, Figure S1). All fifteen 376 

of the samples submitted for genotyping with DNA concentrations below the manufacturer’s 377 

recommendation of 50 ng/µl had call rates above 98%, whereas the four samples that were 378 

excluded from the final dataset on the basis of suboptimal quality or call rates had DNA 379 

concentrations above 50 ng/µl. 380 

 

Levels of polymorphism 381 

A total of 75,601 SNPs were polymorphic, equivalent to 88.6% of the tiled loci or 97.3% of the 382 

successfully converted loci (Figure 1C). The final dataset of polymorphic loci comprised 65,407 383 

SNPs discovered from the RAD sequencing data, 49 SNPs that were cross-amplified from the 384 

canine HD bead array and 10,142 transcriptomic SNPs, which include 92 pre-validated SNPs 385 

and three SNPs from the MHC. The loci originating from the RAD data were distributed across 386 

835 genomic scaffolds and had a mean spacing of 35.5 kb (range = 0.02–3306.6 kb, Figure S2). 387 

The transcriptomic loci included 1,137 SNPs residing within genes with annotations relating to 388 

immunity plus 1,310 SNPs residing in genes with annotations involving metabolism and growth. 389 

 

Focusing on the polymorphic loci, we investigated patterns of genetic variability by deriving minor 390 

allele frequency (MAF) distributions separately for the RAD and transcriptomic SNPs. We also 391 

examined the correspondence between variability inferred from animals genotyped on the array 392 

(“empirical MAF”) and variability inferred from the original genomic and transcriptomic resources 393 

(“in silico MAF”). Empirical MAF was left skewed among the RAD SNPs (Figure 2A, mean = 0.19 394 

+/- 0.13 SD) whereas the transcriptomic SNPs were more evenly distributed across the site 395 

frequency spectrum (mean = 0.22 +/- 0.14 SD). The empirical MAF distributions of both classes 396 

of marker also extended down to zero (Figure 2A), whereas the corresponding in silico values 397 

were truncated to 0.05 due to filters applied during the SNP discovery process. A strong positive 398 

association was found between empirical and in silico MAF for the RAD SNPs (Figure 2B, 399 

correlation coefficient = 0.90) but this was somewhat weaker for the transcriptomic SNPs (Figure 400 

2C, correlation coefficient = 0.43). 401 
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Figure 2:  Inferred levels of SNP variability in Antarctic fur seals. (A) Minor allele frequency (MAF) 402 

distributions of RAD and transcriptomic SNPs.  Dark colours represent empirical MAF and light colours 403 

represent in silico MAF. Panels on the right-hand side show the strength of association between empirical 404 

and in silico MAF for (B) the RAD and (C) the transcriptomic SNPs. 405 

 

Inbreeding 406 

Inbreeding was investigated using two complementary approaches. First, we quantified identity 407 

disequilibrium using the measure g2, which differed significantly from zero (0.00012, bootstrap 408 

95% confidence interval = 0.000099–0.000149, p = 0.001). Second, we calculated for each 409 

individual (i) sMLH, an estimate of genome-wide heterozygosity; (ii) 𝐹̂𝐼𝐼𝐼, a genomic inbreeding 410 

estimator based on the correlation of uniting gametes; and (iii) FROH, an estimate of the proportion 411 

of the genome in ROH. All three genomic inbreeding measures were intercorrelated (r = 0.62–412 

0.87, Figure 3B–D) and FROH was non-zero for every individual (Figure 3A, mean = 0.06, range 413 

= 0.03–0.08). The length distribution of ROH ranged from one to 22 Mb, with short ROH (< 5 Mb) 414 

making up a larger proportion of the genome than medium or long ROH (≥ 5 Mb) (Figure 4A). In 415 

particular, ROH < 5Mb had a total median length of 106 Mb whilst long ROH ≥ 5Mb had a total 416 

median length of 19.1 Mb. ROH longer than 20 Mb were only observed in four individuals (Figure 417 

4B). 418 
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 419 

Figure 3: (A) Distribution of FROH values (the estimated proportion of the genome in ROH) for 272 Antarctic 420 

fur seals genotyped at 74,261 SNPs; (B–D) Pairwise correlations between the genomic inbreeding 421 

coefficients sMLH, 𝐹̂𝐼𝐼𝐼 and FROH.  See the Materials and methods for further details. 422 

 423 

 424 

Figure 4: Length distributions of ROH in 272 Antarctic fur seals genotyped at 74,261 SNPs. (A) ROH 425 

segments shorter than 5 Mb and therefore due to more recent inbreeding; and (B) ROH segments longer 426 

than or equal to 5 Mb and therefore due to inbreeding in the more distant past. 427 
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Relatedness structure 428 

In order to infer patterns of relatedness within our dataset, we analysed a maximally informative 429 

dataset of 6,579 polymorphic SNPs genotyped in 272 individuals. A narrow peak of relatedness 430 

was present at one, which corresponds to a single individual that was genotyped in triplicate 431 

(Figure 5A). A peak was also present at around 0.5, corresponding to 52 mother-offspring pairs 432 

in the dataset (Figure 5A). These comprised 48 pairs identified on the basis of field records plus 433 

four mother-offspring pairs that were not previously known to be filial pairs. We also identified 434 

five pairs of animals that were incorrectly assigned as mother-offspring pairs in the field. These 435 

had relatedness values of between zero and 0.23 as opposed to the expectation of around 0.5. 436 

The majority of other animals were unrelated, with 99% of pairwise comparisons yielding genomic 437 

relatedness coefficients of less than 0.1. However, 64 pairs of individuals had genomic 438 

relatedness coefficients of between 0.1 and 0.3, consistent with the presence of multiple second 439 

and third order relatives in the study population. We have termed these individuals “cryptic 440 

relatives” as they were not previously known to be related. 441 

 

To investigate further, we calculated Z scores, which reflect the probability of pairs of individuals 442 

sharing zero (Z0), one (Z1) or two (Z2) IBD alleles (Figure 5B). Z scores facilitate more in-depth 443 

interpretation of our data as they can be compared against expectations for different categories 444 

of relative, which are given in the legend of Figure 5. We plotted Z0 against Z1 for all possible 445 

pairwise combinations of individuals in our sample (Figure 5B). Once again, known relationships 446 

could be identified, with the triplicate genotypes of the positive control (Z0 = 0 / Z1 = 0) clustering 447 

together in the bottom left of the figure and mother-offspring pairs (Z0 = 0 / Z1 = 1) clustering 448 

together in the upper left corner. The majority of individuals were unrelated (Z0 = ~1 / Z1 = ~0) 449 

and therefore clustered in the bottom right corner of Figure 5B. However, a long tail of 450 

progressively more related individuals extended along the hypotenuse, with third order relatives 451 

clustering around Z0 = 0.75 / Z1 = 0.25, and second order relatives clustering around Z0 = 0.5 / 452 

Z1 = 0.5. Full siblings (Z0 = 0.25 / Z1 = 0.5) were notably absent from the dataset. 453 

 

To delve into more detail, we used the pedigree reconstruction package sequoia to assign kinship 454 

categories based on a combination of known relationships and genomic data. Sequoia identified 455 

the same mother-offspring pairs as described above. Of the 64 pairs of individuals with 456 

relatedness coefficients between 0.1 and 0.3, sequoia assigned paternal half-sib status to four 457 

(depicted as light blue points in Figure 5B). Three of these pairs comprised two pups born to 458 

different females in successive years, whereas the fourth pair comprised a pup and a breeding 459 

female of unknown age that were sampled seven years apart. 460 
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 461 

Figure 5: (A) Distribution of genomic relatedness values among all possible pairwise comparisons of 462 

Antarctic fur seal individuals in our dataset. Relatedness was quantified as the proportion of the genome 463 

identical by descent (IBD) between each pair of individuals based on a dataset of 6,579 maximally 464 

informative SNPs (see Materials and methods for details); (B) The probability of sharing zero IBD alleles 465 

(Z0) versus the probability of sharing one IBD allele (Z1) for all individual pairwise comparisons. The 466 

expectations for specific classes of relative are as follows: Unrelated: Z0 = 1, Z1 = 0, Z2 = 0; Parent 467 

offspring: Z0 = 0, Z1 = 1, Z2 = 0; Full siblings: Z0 = 0.25, Z1 = 0.5, Z2 = 0.25; Half siblings, avuncular 468 

relationships and grandparents-grandchildren: Z0 = 0.5, Z1 = 0.5, Z2 = 0; First cousins: Z0 = 0.75, Z1 = 469 

0.25, Z2 = 0; Duplicate samples: Z0 = 0, Z1 = 0, Z2 = 1. A small amount of variation (0.05) was applied to 470 

the location of each data point to avoid over-plotting and improve interpretation.  471 

 

Cross-species amplification 472 

Finally, we investigated the cross-amplification potential of the array by genotyping twelve 473 

additional samples belonging to three different pinniped species.  All four grey seal samples failed 474 

to pass the quality control step and were not considered further. For the Galápagos and Steller's 475 

sea lions, the mean number of SNPs successfully called across individuals was 73,922 (range = 476 

73,109‒74,611) and 74,130 (range= 73,164‒74,583) respectively. This is equivalent to a call rate 477 

of 96.2% for the Galápagos sea lion and 96.5% for the Steller's sea lion. Of those SNPs that 478 

could be genotyped, 4,480 (6.1%) were polymorphic in the Galápagos sea lion and 4,191 (5.7%) 479 

were polymorphic in the Steller's sea lion.  480 
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DISCUSSION 481 

We developed a custom 90K SNP array for the Antarctic fur seal. Our efforts to prioritise high 482 

quality SNPs for tiling on the array resulted in a relatively high conversion rate, with 88.5% of the 483 

tiled loci generating readily interpretable and polymorphic genotypes. Furthermore, call rates 484 

were in excess of 99% for the majority of individuals and the genotyping error rate was low at 485 

0.004 per reaction. Analysis of data from 276 fur seals genotyped at 75,601 polymorphic SNPs 486 

provided new insights into inbreeding, through measures of ROH, and provided a more refined 487 

picture of the relatedness structure of the population. Although our dataset of individuals is still 488 

modest, this study provides a first impression of the promise of this array for population genomic 489 

studies of an emerging model marine mammal species. 490 

 

Design and performance of the array 491 

Designing SNP arrays for non-model species is non-trivial and conversion rates are not always 492 

as high as expected (Helyar et al. 2011; Chancerel et al. 2011). We therefore used a suite of 493 

approaches to maximise the representation of suitable SNPs on our array. Among the most 494 

important of these were (i) using multiple callers in our transcriptome variant discovery pipeline 495 

to identify a consensus SNP panel; (ii) mapping the flanking sequences of all SNPs to the fur 496 

seal reference genome to identify loci with the most suitable genomic contexts; and (iii) using 497 

Affymetrix design scores to filter out SNPs with unfavourable flanking sequence characteristics 498 

such as high GC content and non-specific hybridisation probabilities. 499 

 

Overall, the comparably high conversion rate of our array suggests that these measures were 500 

successful. However, the total number of available SNPs was rather modest in relation to the 501 

size of the target array, meaning that we did not have a sufficient number of SNPs in our highest 502 

priority category to fill the entire array. Consequently, careful consideration was required when 503 

establishing additional prioritisation categories in order to strike a balance between SNP quantity 504 

and quality. In practice, we compromised on two main aspects. First, although we would have 505 

preferred only to tile loci with Affymetrix recommendations of “recommended”, this was not 506 

possible. Consequently, 37.9% of tiled SNPs had “neutral” Affymetrix recommendations.  507 

Second, Humble et al. (2018) found that loci mapping to more than one location in the reference 508 

genome were significantly less likely to convert, suggesting that probe sequence uniqueness 509 

may be an important factor to consider in SNP development.  For this reason, we prioritised SNPs 510 

that mapped uniquely to the reference genome, although again we were constrained to include 511 

a number of SNPs whose flanking sequences revealed homology to more than one genomic 512 

region. As anticipated, conversion rates varied from a maximum of 93.7% for priority one SNPs 513 

down to a minimum of 66.3% for priority four SNPs.  Interpreting these varying outcomes is not 514 
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straightforward because SNPs in the various priority categories usually differed in multiple ways. 515 

Nonetheless, category one and two SNPs differed predominantly in their Affymetrix 516 

recommendations, so the 7% difference between these categories can be mainly attributed to 517 

this single factor. 518 

 

Another strategy that we adopted to maximise genotyping success was to include SNPs that had 519 

been pre-validated using other technologies, including Illumina GoldenGate assays (Hoffman et 520 

al. 2012), KASP assays (Hoffman et al. 2013a) and Sanger sequencing (Humble et al. 2018). 521 

This approach was recommended by Kim et al. (2018), who reported higher rates of conversion 522 

on a 500K Affymetrix array for SNPs that had already been successfully genotyped on a 10K 523 

Illumina array. Unexpectedly, we found the opposite pattern, with pre-validated SNPs tending to 524 

perform worse on average than non-validated SNPs. The reasons for this remain unclear, 525 

although genotyping success was particularly low for SNPs derived from the canine HD bead 526 

chip. Our results therefore suggest that validating SNPs in advance may not always lead to better 527 

genotyping outcomes, especially when transferring loci from one technology to another. 528 

 

As an alternative measure of genotyping success, we considered the proportion of samples that 529 

produced high quality genotypes. Only one fur seal sample out of 278 failed to pass quality control 530 

and three additional samples were considered to have failed because they fell a little short of the 531 

call rate threshold of 0.97. These numbers compare favourably with similar studies of both non-532 

model organisms (e.g. Lundregan et al. 2018; Kim et al. 2018; Judkins et al. 2020). Overall, no 533 

relationship was found between the call rate per sample and DNA concentration, in contrast to 534 

Hagen et al. (2013) who reported that failed samples had significantly lower DNA concentrations 535 

than successful ones. However, all of our samples met or exceeded the recommended minimum 536 

total amount of DNA (200ng). Consequently, our findings are in agreement with (Kim et al. 2018), 537 

who experienced increased failure rates among samples that did not contain the recommended 538 

amount of DNA, but who found that DNA concentration did not influence genotyping success 539 

when sufficient amounts of DNA were provided. 540 

 

Levels of polymorphism 541 

A very high proportion (97.3%) of the SNPs that successfully converted on the array were 542 

polymorphic in the Antarctic fur seal.  Moreover, the true rate of polymorphism is probably higher, 543 

as several hundred SNPs were included on the array that showed in silico polymorphism in 544 

populations other than South Georgia, yet animals from these other localities were not genotyped 545 

on the array. Consequently, an unknown fraction of the SNPs that we have classified as 546 

monomorphic may in fact carry alleles that are private to one or more of the other populations. 547 

Our main reason for including these loci was to minimise ascertainment bias in future studies that 548 
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might wish to genotype animals from different locations. Indeed, studies with similar discovery 549 

schemes have demonstrated negligible ascertainment bias towards populations from which the 550 

SNPs were initially discovered (van Bers et al. 2012; Malenfant et al. 2015; Kim et al. 2018). 551 

 

Ascertainment bias cannot be avoided with SNP arrays because high frequency polymorphisms 552 

will always be easier to discover and can be called with greater confidence due to the minor allele 553 

being present in more individuals. Nevertheless, the strong positive association that we observed 554 

between in silico MAF and the empirical MAF of seals genotyped on the array suggests that, at 555 

least for moderately variable loci, the array provides a reasonable reflection of the underlying site 556 

frequency spectrum (SFS). This in turn suggests that the discovery pool of individuals in the 557 

original RAD sequencing study was large enough to estimate MAF reasonably well for the 558 

majority of SNPs that we built into the array. In line with this, a much weaker association was 559 

observed for the transcriptomic SNPs, which were discovered by sequencing many fewer 560 

individuals. Consequently, we do not recommend the array for approaches that may be sensitive 561 

to deviations from the true SFS, such as demographic inference. Nonetheless, for most purposes, 562 

SNPs with high MAFs are beneficial as they afford greater power for a multitude of applications 563 

ranging from parentage and relatedness analysis through linkage mapping to genome-wide 564 

association studies. Consequently, we believe this array will open up a wealth of new possibilities 565 

for delving into the population genomics of this important Antarctic predator. 566 

 

Inbreeding 567 

To assess the levels of inbreeding in our study population we quantified three genomic inbreeding 568 

estimators (sMLH, 𝐹̂𝐼𝐼𝐼 and FROH). The resulting values were strongly intercorrelated, with r values 569 

ranging from 0.62 to 0.87, although associations involving FROH tended to be weaker. When using 570 

incomplete marker information from a SNP chip, short ROH arising from inbreeding in the very 571 

distant past cannot be reliably detected due to inadequate SNP densities (Kardos et al. 2016). 572 

To take account for this, we only called ROH segments that were above a stringent length 573 

threshold. Furthermore, to avoid spurious ROH calls caused by low marker densities, we only 574 

considered ROH segments present in regions of the genome represented by high marker 575 

densities. Therefore, whilst our measures of sMLH and 𝐹̂III have captured variation in inbreeding 576 

due to IBD segments arising from both recent and distant ancestors, our measure of FROH is 577 

unlikely to have captured variation in inbreeding due to very distant ancestors. Additionally, our 578 

estimates of FROH might be less reliable in the current study due to the fragmented nature of our 579 

reference genome, which could potentially have introduced noise into our estimates. However, if 580 

anything, we expect these factors to have led to the magnitude of FROH being underestimated. 581 

We hope to be able further refine our estimates of inbreeding in future studies by improving the 582 
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contiguity of the fur seal reference genome and by calibrating array-based measures of 583 

inbreeding by reference to whole genome resequencing data. 584 

 

Nevertheless, the fact that FROH was non-zero in all of our samples despite the conservative 585 

nature of our analysis provides support for the presence of inbreeding in the study population. 586 

Most individuals carried ROH segments making up around 6% of the genome, with FROH ranging 587 

from as little as 2% in one individual to as much as 8% in four individuals. These numbers are 588 

comparable with estimates for other wild mammal populations such as the Iberian ibex (Grossen 589 

et al. 2018), Dryas monkey (van der Valk et al. 2020) and Icelandic horse (Schurink et al. 2019), 590 

and suggest that previously documented correlations between heterozygosity and fitness may 591 

be due to inbreeding depression (Hoffman et al. 2004, 2007; Forcada and Hoffman 2014). 592 

Furthermore, the vast majority of ROH segments were shorter than 5 Mb, with only four 593 

individuals harbouring ROH longer than 20 Mb. Therefore, most of the IBD observed in our study 594 

population has probably arisen from inbreeding between ancestors in the distant past, as 595 

opposed to inbreeding in more recent generations. These findings suggest that the population of 596 

Antarctic fur seals is large enough to minimise very close inbreeding and / or that female mate 597 

choice is effective in preventing matings between close relatives (Hoffman et al. 2007). 598 

 

Relatedness 599 

Our study also illustrates the potential for high density SNP genotype data to recover known 600 

relationships and to uncover the relatedness structure of a sample of individuals. Genome-wide 601 

measures of relatedness based on IBD allele sharing confidently identified the positive controls 602 

and were also able to flag the presence of known mother-offspring pairs in our dataset. 603 

Nevertheless, we found that field-based assignments of mothers to pups were not always correct, 604 

in support of a previous study that found high rates of fostering and milk-stealing in the study 605 

colony (Hoffman and Amos 2005). We were initially surprised to discover over 60 pairs of related 606 

individuals (0.1 ≤ r ≤ 0.3) in our sample. Investigating this in greater detail, we uncovered 607 

evidence in support of the presence of a mixture of second order relatives (which could potentially 608 

include additional half siblings, avuncular and grandparent-grandchild relationships), and third 609 

order relationships (such as possible first cousins). Notably, full siblings were conspicuously 610 

absent from our dataset, in contrast to grey seals, where around 30% of offspring are full siblings 611 

due to partner fidelity (Amos et al. 1995). However, mate fidelity is unlikely to be very important 612 

in Antarctic fur seals because the vast majority of territorial males only come ashore for one or 613 

two seasons in total (Hoffman et al. 2003).  614 

 

Unfortunately, we were not able to ascertain the exact nature of the majority of cryptic 615 

relationships within our dataset because sequoia was constrained by a lack of known pedigree 616 
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links other than mother-offspring pairs. Nevertheless, sequoia confidently identified four pairs of 617 

paternal half siblings, which we would expect to be present in the study colony given the 618 

polygynous mating system of this species (Hoffman et al. 2003).  To shed further light on the 619 

relatedness structure of the study colony would require the construction of a multigenerational 620 

pedigree. In the past, we have considered this problematic due to the long generation time of this 621 

species relative to the duration of our study and the fact that not all the pups are sampled every 622 

year. However, the potential for augmenting classical microsatellite based parentage analysis 623 

with genomic information gives us new grounds for optimism. 624 

 

Cross-species amplification 625 

Finally, we explored the cross-species amplification potential of our array by genotyping small 626 

numbers of grey seals, Galápagos sea lions and Steller's sea lions.  Although none of the grey 627 

seals passed quality control, over 70,000 loci cross-amplified in both of the otariid species and 628 

over five percent of these were polymorphic, yielding over 4,000 polymorphic SNPs per species. 629 

This is in line with expectations set out in Miller et al. (2015) and demonstrates the applicability 630 

of the array for generating genomic data in closely related pinniped species. It may also be worth 631 

considering testing the array on less divergent pinnipeds, most obviously other fur seal species 632 

belonging to the genus Arctocephalus, some of which diverged from A. gazella as recently as 633 

around one million years ago (Higdon et al. 2007) and where rates of polymorphism are expected 634 

to be as high as 20–90% (Miller et al. 2012).  635 

 

Conclusions 636 

SNP arrays provide a straightforward and effective solution for generating very large genetic 637 

marker datasets encompassing many individuals.  As such, they have been instrumental in 638 

opening up a wide variety of questions to investigation in natural populations, from population 639 

genomics to quantitative genetics. This manuscript describes the successful development and 640 

implementation of a SNP array for a model marine mammal species, the Antarctic fur seal. By 641 

employing strict filtering approaches incorporating knowledge of the genomic context of each 642 

SNP, we were able to achieve comparably high rates of conversion and polymorphism. We also 643 

confirmed and built upon the results of previous studies by quantifying both inbreeding and 644 

genomic relatedness. We hope not only that our array will open up new avenues in fur seal 645 

research, but also that the protocols we developed to improve genotyping outcomes will be 646 

applicable to the design of arrays for other species.  647 
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