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28  Abstract

29 Rapid development of high-throughput technologies has permitted the identification
30  of an increasing number of disease-associated genes (DAGSs), which are important for
31 understanding disease initiation and developing precision therapeutics. However,
32  DAGs often contain large amounts of redundant or false positive information, leading
33 to difficulties in quantifying and prioritizing potential relationships between these
34  DAGs and human diseases. In this study, a network-oriented gene entropy approach
35 (NOGEA) is proposed for accurately inferring master genes that contribute to specific
36  diseases by quantitatively calculating their perturbation abilities on directed disease-
37  specific gene networks. In addition, we confirmed that the master genes identified by
38 NOGEA have a high reliability for predicting disease-specific initiation events and
39  progression risk. Master genes may also be used to extract the underlying information
40 of different diseases, thus revealing mechanisms of disease comorbidity. More
41  importantly, approved therapeutic targets are topologically localized in a small
42  neighborhood of master genes on the interactome network, which provides a new way
43  for predicting new drug-disease associations. Through this method, 11 old drugs were
44 newly identified and predicted to be effective for treating pancreatic cancer and then
45  validated by in vitro experiments. Collectively, the NOGEA was useful for
46  identifying master genes that control disease initiation and co-occurrence, thus
47  providing a valuable strategy for drug efficacy screening and repositioning. NOGEA
48  codes are publicly available at https://github.com/guozihuaa/NOGEA.

49

50 KEYWORDS: Systems pharmacology; Gene entropy; Disease gene network;

51  Disease comorbidity; Drug repositioning
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52 Introduction

53  The onset and progression of most complex diseases often involves the dysfunction of
54  thousands of genes as well as certain altered interactions among them. High-
55  throughput technologies such as gene expression profiling and whole genome
56  sequencing have permitted the identification of an increasing number of disease
57  associated genes (DAGS) [1], which may provide valuable insight into mechanisms of
58  disease initiation and progression. However, as the existing DAGs are usually derived
59  from multiple sources, they often contain large amounts of redundant or false positive
60 information [2] due to collection bias and noise, such that causal relationships among
61 these genes in most cases remain elusive. Therefore, identifying master genes that
62  control disease state transitions from large numbers of DAGs plays a critical role in
63  understanding disease initiation mechanisms. In addition, complex diseases show
64  considerable comorbidity [3]. The master gene defects in one disease may initiate
65  cascades of interactions that lead to the co-occurrence of multiple diseases in a given
66  patient. Pharmacological targeting of the DAG module on the human interactome has
67 proven to be a valuable strategy for drug efficacy screening [4]. At present, it is
68  unclear whether the identification of master genes will further facilitate the network-
69  based drug repositioning.

70 Recent trends in omics technologies and complex biological networks have led to
71 a proliferation of attempts to find the master genes for different diseases. For
72  example, genome-wide association studies (GWAS) have emerged as a powerful tool
73 for detecting sequence variation associated with many human traits and diseases [5].
74 Due to the low-frequency of many mutations, GWAS usually require large cohort
75  sizes to attain sufficient statistical power. More importantly, GWAS identify only the
76  genetic risk factors associated with disease, rather than the master genes of the disease
77  phenotypes because patient genomes contain a certain proportion of *“passenger
78  mutations” [6] and the initiation of many diseases is often triggered by the interplay
79  between genetic and non-genetic factors. Transcriptome analysis is considered to be
80 an effective complement of GWAS for its ability to capture non-genetic perturbations
81 to the organism. Yet variations in mRNA expression are sometimes caused by
82  aberrant protein activity of upstream regulators such as transcription factors, making it
83  difficult to directly identify the master gene set using transcriptome profiling [7].

84 Recently, gene co-expression-based approaches have been proposed to construct
85  context-specific regulatory networks [8] and a local network entropy measure has

86  been developed based on co-expression networks for identifying master genes [9].
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87  While these approaches provide new ways to find master genes, building a highly
88  confident co-expression regulatory network often requires large sample sizes, which
89 are usually not available for relatively rare diseases. To overcome this limitation,
90 protein-protein interaction (PPI) network-based approaches have been developed to
91 infer master genes that are important for disease-related biological processes, such as
92  predicting therapeutic targets [10] or driver genes [11]. Some topological parameters
93  such as the degree and betweenness centrality of the nodes are usually used as
94  important measures to screen master genes [12]. However, current approaches are
95 based mainly on the constant global undirected interactome, ignoring the fact that
96  disease initiation and therapeutics are frequently context-dependent, depending on
97  specific tissues or pathological microenvironment [13]. Therefore, some genes that
98  exhibit important topological properties on the interaction network, such as the hub
99  genes [14], will be automatically selected as key regulators for disease state initiation
100 and maintenance , leading to a possible increase in false positive master genes.
101  Conversely, some classes of genes presenting as upstream regulators of a signaling
102  cascade, such as the G protein-coupled receptors [15], may be identified as
103  dispensable genes due to their relatively low degrees on the interactome, thus
104  decreasing the sensitivity for distinguishing core ones from the giant pool of DAGs.
105 In this study, we have developed a network-oriented gene entropy approach to
106  quantify the perturbation or regulatory ability of each DAG in distinct disease
107  contexts by assembling and interrogating disease-specific regulatory networks. Master
108 genes for each disease, whose altered expression was sufficient for disease state
109 transitions, were identified as those genes that exhibited high entropy values by our in
110 silico method, and were further adopted to investigate comorbidity and causal
111  relationships among different diseases. We further confirmed that existing effective
112 drugs are most likely to target the local module of master genes on the interactome.
113  Using these methods, we have identified 11 old drugs as potent anticancer agents for
114  pancreatic cancer treatment.

115

116

117 Resultsand Discussion

118  Computation of gene entropy in disease networ ks

119  To identify master genes in distinct disease contexts, a network-oriented gene entropy
120  approach (NOGEA) was developed (Figure 1A and 1B). Briefly, Shannon entropy

121  theory was applied to quantify the amount of disorder within intracellular signals in
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122 each disease specific context, which was subsequently factorized as the summation of
123 contribution for each DAG. First, directed disease specific gene networks for 293
124  diseases were constructed to reflect the distinct disease contexts by mapping all DAGs
125 (Table S1) to a previously established directed PPI network (Table S2) [20]. A
126  directed network visualizes the hierarchy of intracellular signal transduction between
127  the interacting proteins, and hence clearly reflects the importance of each DAG in a
128  certain physiological and pathological context. The regulation likelihood between
129  each pair of DAGs was then calculated based on the directed distance on the PPI
130  network to generate a probability-based signaling flux matrix (Figure 1A). Finally, the
131  perturbation ability of each DAG in a disease-specific context was calculated by the
132 network-oriented gene entropy metric (Methods, Figure 1B). The distribution of
133  entropy values for all DAGs is illustrated as a histogram in Figure S1, and the
134  perturbation ability of each DAG was then ranked based on their entropy values
135  (Table S1).

136 To efficiently explore the biological features of each entropy distribution, all DAGs
137  were classified as “Master”, “Interim” or “Redundant” genes which represent high,
138  medium and low entropy genes, respectively. We created an entropy value curve for
139  each disease and then identified two inflection points as thresholds to separate the
140  low, medium and high entropy genes, respectively (Methods). We then merged the
141 master genes of all diseases into a whole master gene set. Interim and redundant genes
142  from different diseases were treated in the same way to obtain the whole interim and
143  redundant gene sets, respectively. As a result, 798 master, 1,962 interim, and 1,387
144 redundant genes were obtained (Figure 1C, Table S3).

145 In order to verify whether the master genes play a key role in disease initiation
146  and development, enrichment analyses were performed using several well-established
147  gene clusters (Table S4). We observed that there was an overrepresentation (z-
148  score=22.61) of disease-causing mutation-associated proteins among all master genes,
149  which was higher than the enrichment score of both interim and redundant genes
150 (Figure 1D). The essential genes were demonstrated to play critical roles in human
151  diseases [28], and the master genes were enriched in essential genes, whose z-score
152 was two times larger than the enrichment score of the redundant genes (Figure 1D).
153 More importantly, we found that master genes were highly enriched in cancer-
154  associated genes; whereas, redundant genes showed less enrichment (Figure 1D).
155  Further KEGG analysis of the master genes showed that these genes were mainly
156  enriched in pathways with close relationships with cancer initiation and progression
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157  (Figure S2). For example, PI3K-AKT signaling pathway (has:04151), which is
158  commonly perturbed in cancers, were found among the top five enriched pathways (P
159 < 10e-30). In a recent study, genes on the interactome were classified into different
160  node types, in which “indispensable” nodes were found to be key players in mediating
161  the transition of disease states. As shown in Figure S3A, we found that master genes
162  were highly enriched in “indispensable” genes, but redundant genes were enriched
163  among the “dispensable” genes. Consistent with these observations, the master genes
164  were highly enriched in “critical” genes that acted as driver nodes in all control
165  configurations (Figure S3B) [26]. Further dissection of all different functional classes
166  within signaling proteins revealed that the master genes were most likely enriched in
167  kinases and membrane receptors (Figure 1E). In summary, the results indicated that
168  the master genes are preferred key regulators in disease initiation and development,
169 reflecting the reliability of the NOGEA method.

170 Traditional network topology parameters, such as the connective degree and
171  betweenness centrality, are commonly used as baseline methods for characterizing the
172 importance of nodes in biological networks [29]. To validate the effectiveness of
173 NOGEA, we compared it with four baseline methods (the connective degree,
174  connective in-degree, connective out-degree and betweenness centrality-based
175  methods) and four newly proposed methods (Katz [30], Catapult [30], HANRD [31]
176  and GPS [32]), all of which are network-based methods for prioritizing disease genes.
177  We first compared the AUROCs between different methods (Methods) and found that
178 NOGEA significantly outperformed both the baseline methods and the newly
179  proposed methods (Figure 1F). We further evaluated AUPRC, area under the
180  precision-recall curve, for each method. NOGEA consistently surpassed all other
181  methods, overmatching the second-best method by ~10% (Figure 1F).

182 Correlations between gene entropy values and four network topology parameters
183  were assessed using Pearson's correlation coefficients (PCC). For most diseases, we
184  observed that the PCCs between gene entropy values and network topology
185 parameters were relatively small (<0.25, Figure S4A). Nonetheless, significant
186  correlation values were observed between the in-degree connective (R?*=0.051,
187  P<1.0e-15, Figure 1G), out-degree connective (R?*=0.274, P<1.0e-15, Figure 1H),
188  degree connective (sum of in and out-degree, R?*=0.155, P<1.0e-15, Figure 1I) and
189  betweenness centrality (R?=0.031, P<1.0e-15, Figure 1J) for genes in the primary
190 directed PPI network versus gene entropy values. Fisher’s exact test was then applied

191 to further determine whether gene entropy is associated with traditional network
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192  topology parameters. Specifically, we constructed a contingency table to classify the
193  disease genes into different bins based on their entropy values and network parameter
194  values (Figure 1K). We found that gene entropy was significantly associated with
195 traditional network topology parameters, including connective degree (P < 0.01),
196  connective in-degree (P < 0.01), connective out-degree (P<0.01) and betweenness
197  centrality (P<0.01). All these results demonstrate that master genes prefer to possess
198  high topology parameter values, indicating relative consistency between gene entropy
199  and the four network topology parameters.

200 To investigate variation of the regulatory role of a specific gene in different
201  diseases, we calculated the divergence-degree of gene entropy across diseases using
202  the coefficient of variation (CV) (Table S1, Figure S4B). The results show that up to
203  60% of the genes have a high CV (>15%), indicating the distinct roles these genes
204  play in different disease contexts. We then examined the entropy value variation of
205 the shared genes in different diseases, and observed that these genes usually exhibit
206  similar entropy values in distinct diseases within the same disease category. For
207  example, corticotropin-releasing hormone receptor 1 (CRHR1) is related to eight
208 mental health-associated diseases with different entropy rank scores (rank>0.80),
209 including anxiety and depressive disorders (Table S1), which is consistent with its
210  major role in mental disorders [33]. We also observed a low entropy rank score for
211  CRHR1 in pulmonary disease (rank=0.55), indicating variation in its regulatory role
212  in distinct disease contexts. Further, we found that ~15% genes have approximately
213  equal rank scores in their associated diseases. For instance, interleukin 4 receptor
214  (IL4R) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
215 (PIK3CA) had high rank scores in their associated diseases (Table S1), especially for
216  neoplasms, suggesting crucial roles for these genes in these diseases. In summary,
217  NOGEA provided a new way to explore the regulatory role of each DAG in distinct
218  disease contexts.

219

220 NOGEA for exploring disease comor bidity

221  Exploration of the underlying mechanisms of comorbidity, which refers to the
222  coexistence of multiple diseases or disorders, is difficult due to complex interactions
223  among environmental, lifestyle and treatment-related factors [34]. In addition, disease
224 comorbidity includes not only the co-occurrence of multiple diseases, but also the
225  potential cause-and-effect relationships among these diseases. Thus, uncovering the

226  diseases’ co-occurrence and causal relationships along with underlying mechanisms is
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227  of great significance for their prevention and treatment. Using experiment-based
228  approaches or mathematical models, previous studies explored the molecular features
229  of disease comorbidity for several diseases, including from gastritis to gastric cancer
230  [35] and from diabetes to cancer [36]. However, existing experiment-based methods
231  to explore the underlying mechanisms for co-occurrence and causal relationships
232  remain costly, labour-intensive, or focused on a small fraction of molecular features.
233  Comparatively, mathematical models provide novel ways to reveal disease
234 comorbidity using multi-omics data; however, these models are difficult to apply in
235 other diseases, due to the lack of multi-scale information for these diseases.

236 The results discussed above demonstrate that NOGEA-inferred master genes are
237  closely associated with disease onset and development, prompting us to investigate
238  whether the network entropy-based approach would be capable of uncovering the
239  molecular basis of disease co-occurrence. Therefore, we constructed a new master
240  gene disease network (M-GDN), where edge would link two different diseases if they
241  shared at least one master gene (Table S5). For comparison, we constructed five other
242  disease networks: the redundant gene-based disease network (R-GDN), the interim
243  gene-based disease network (I-GDN), the all genes-based disease network (A-GDN),
244 the traditional hereditary disease network (THDN) and the random disease genes
245  network (RGN).

246 To test whether the M-GDN would provide an accurate picture of disease
247  comorbidity, we evaluated the Tanimoto similarity between these networks and the
248 human disease comorbidity network (HDCN), which was extracted from the
249  Medicare Claims Database and constructed in a recent study [3]. The M-GDN showed
250  the highest similarity with the HDCN (higher than that of R-GDN and THDN) at a
251  significantly higher level than expected based on the random values (Figure 2A),
252  which indicates that those genes most associated with disease comorbidity tended to
253  be master genes with high entropy rather than arbitrary disease genes. In contrast to
254  previous THDN models, M-GDN considers genetic factors as well as genes that
255  respond to environmental, lifestyle, and/or treatment-related factors, thus providing a
256  more comprehensive solution for exploring the comorbidity of disease. Furthermore,
257  in view of the impact of cellular network interactions on disease comorbidity, we
258  extended our result to a PPI-based M-GDN (Table S6), where two diseases were
259  linked if the master gene of one disease directly interacted with genes of the other
260  disease in the PPl network. Consistent with the above results, the PPI-based M-GDN
261 demonstrated the best predictive ability in identifying disease comorbidity. We then
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262  observed that the inferred underlying molecular mechanisms of disease comorbidity
263  are in accordance with current pathobiological knowledge (Figure 2B). For example,
264  M-GDN confirmed the conclusion that AKT1 mutations lead to schizophrenia and
265  type 2 diabetes mellitus (with rank scores of 0.96 and 0.94 in schizophrenia and type
266 2 DM, respectively) [37]. We also observed in the M-GDN that ADRB2 mutations
267 may lead to asthma and obesity (with rank scores of 0.95 and 0.97 in asthma and
268  obesity, respectively), which is consistent with a previous study [38]. These results
269  suggest that M-GDN helps bridge the gap between bench-based biological discovery
270  and bedside clinical solutions, and thus may provide new insights into the
271  mechanisms of disease comorbidity.

272 Recent reports in the literature suggest that mutations in the IRS1 gene are closely
273  related to the comorbidity of type 2 DM and obesity [39]. The M-GDN revealed that,
274 in addition to IRS1, PTGS2 also plays a crucial role in the co-morbidities of these
275  diseases. It is well known that PTGS2 influences the inflammatory response, which is
276  closely connected with the comorbidity of type 2 DM and obesity [40]. Another
277  example is the comorbidity of leukemia and cardiomyopathy, whose underlying
278  mechanisms remain unclear. Interestingly, FAS is involved in the regulation of cell
279  apoptosis, which affects left ventricular function [41] while PRKCA enhances cell
280  resistance [42] and regulates cardiac contractility and an increased risk for heart
281  failure. More importantly, the FAS-PRKCA interaction has been identified as the top
282  connected cross-talk PPI by in situ proximity ligation assays [43]. These results
283  demonstrate that the interaction between FAS and PRKCA may account for the
284  comorbidity of leukemia and cardiomyopathy.

285 Next, we investigated the molecular basis of disease causal relationships from the
286  perspective of directed biological networks. As an illustration, we constructed a
287  directed comorbidity network (Table S7, Figure 2C) centered on Parkinson's disease.
288 We observed high co-occurrence risk between Parkinson’s and other diseases
289 including Alzheimer’s disease. Recent research suggests that these diseases are
290 related to the accumulation of common proteins in the brain, such as alpha-synuclein
291  protein [44]. Using alcoholism and Parkinson's disease as an example, we observed a
292  significant directed interaction from alcoholism to Parkinson's disease (P<0.01), but
293  not vice versa. This result is consistent with recent clinical studies, which suggest that
294  alcoholism may an inducer of Parkinson's disease [45]. A subsequent network analysis
295  further discovered that the aberration of alcoholism master genes may lead to the
296  modification of most Parkinson's disease’s master genes (Figure 2D). Collectively,
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297 NOGEA is potentially useful for investigating mechanisms underlying disease
298  comorbidity as well as their causal relationships.

299

300 NOGEA caninfer drug-disease associations

301 Recently, several state-of-the-art network-based methods were proposed to investigate
302 the relationships between drugs and diseases, such as the network proximity approach
303  and network inference algorithm [4, 46]. In this study, we assessed relationships
304  between DAGs and drug targets based on the gene network entropy to evaluate the
305 effects of drugs on each disease. For each drug-disease relationship, we calculated the
306 drug disturbance entropy (DDE) parameter, which represents potential therapeutic
307 effects of the drug (Methods, Table S8-S10). To further investigate DDE’s
308 effectiveness, we evaluated the correlation between the DDE value and the hits by
309  known drug-disease interactions (DDIs), and found the occurrence number of known
310 DDils increased with increasing DDE values (Figure 3A). Consistent with previous
311  research [4], a highly significant correlation occurred between DDE values and the
312  enrichment of known drug-disease interactions (R?=0.75, P=2.2e-16) (Figure 3B),
313 indicating a high likelihood that a drug will successfully treat a disease if the drug is
314  capable of strongly perturbing the local module of master genes on the interactome.
315 To validate the utility of DDE for distinguishing known drug-disease pairs from
316  the unknown drug-disease pairs, we compared the AUC of ROC curves for different
317  drug-disease prediction methods (Methods). To obtain a robust AUC estimation, the
318 drug-disease set was split into a training set and a testing set according to a given
319 fraction coefficient for developing and validating the model, respectively. We
320 compared the DDE’s performance with several other state-of-the-art methods [4, 46],
321 including the network inference algorithm (NIA), network proximity approach
322  (NPA), network kernel approach (NKA), network shortest approach (NSA), network
323  center approach (NCA), and network separation approach (NSEA). As illustrated in
324 Fig. 3C, DDE exhibited the best performance (average AUROC=70%) in
325  discriminating known and unknown drug-disease pairs, significantly outperforming
326  the other approaches. Interestingly, we noticed that the NIA, which appeared to be the
327  second-best method (average AUROC=68%), was also able to construct a directed
328  disease-specific gene network and identify master genes before predicting the drug-
329 disease associations. A compressive comparison between the two methods

330 demonstrated their connection and difference (as seen in Supplementary Note 2,
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331  Figure S5, Table S11-S12). Collectively, these results suggest that DDE is effective
332  for predicting drug-disease associations.

333 Pancreatic cancer is a refractory malignant carcinoma of the digestive tract with a
334  5-year survival rate of ~4% [47] that modestly responds to very few existing
335 chemotherapy treatment options. Revisiting the complex interaction pattern between
336 drug targets and pancreatic cancer genes in a systemic manner is essential for
337  developing more effective therapeutic regimens. Therefore, we used pancreatic cancer
338  as an example to explore the utility of NOGEA for drug-disease association inference.
339 By measuring the entropy of each pancreatic cancer gene in the pancreatic cancer
340  specific network (Figure 3D, Figure 3E), we found that those genes with high entropy
341  such as MET, KDR, and EGFR may play more important roles than the lower entropy
342  genes for pancreatic cancer treatment. As reported in previous studies [48], EGFR-
343  mediated signaling is involved in the tumorigenesis of pancreatic cancer, and the
344  preclinical data support EGFR inhibition as a potential treatment strategy for
345  pancreatic cancer. In addition, c-Met protein, which is coded by the MET gene, is a
346  marker of pancreatic cancer stem cells and thus a therapeutic target [49]. KDR
347 (VEGFR-2) is known to be crucial for embryonic vasculature development by
348  modulating endothelial cell proliferation and migration [50]. Moreover, the CD44
349  gene is a potentially interesting prognostic marker and therapeutic target in pancreatic
350  cancer [51].

351 To investigate differences in the targeting patterns between effective drugs and
352  other less-effective drugs from a network-based perspective, we constructed a gene
353  entropy map for pancreatic cancer. We first calculated the linkage strength between
354  drug targets and pancreatic cancer genes for two FDA-approved drugs: Axitinib and
355  Erythromycin (Figure 3D). Axitinib binds to FLT4, FLT1 and KDR, which was
356 identified as a pancreatic cancer master gene by NOGEA. The DDE of Axitinib to
357  pancreatic cancer is 37.6, suggesting that targets of Axitinib are more closely related
358 to pancreatic cancer genes than expected by chance. Conversely, the DDE of
359  Erythromycin (whose efficacy remains unknown) to pancreatic cancer is 1.1. Even
360 though this drug inhibits ABCB1, ALB and KCNH2, the disease proteins and drug
361 targets are not closer than expected by randomly selecting protein sets. However,
362 some drugs that do not directly inhibit the pancreatic cancer master genes may still
363 have the potential to be effective drugs. For example, Sirolimus, which is currently in
364  phase Il clinical trials, targets three proteins (FKBP1A, FGF2 and MTOR) but no

365  known pancreatic cancer genes. Nevertheless, Sirolimus has a high DDE value of
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366  12.1 due to the relatively strong perturbation of high entropy genes such as CD44 and
367 EGFR via FGF2 (Figure 3E). Drugs such as Pravastatin (DDE=-0.7) are predicted to
368  be ineffective pancreatic cancer drugs due to their weak perturbation of nearly all
369  pancreatic cancer genes (Figure 3E). Collectively, these results suggest that NOGEA
370  may be capable of identifying the core genes among many DAGs that provide the
371  Dbasis for rational drug discovery.

372

373  Pancreatic cancer drug screening

374  Due to the encouraging performance of the drug disturbance entropy metric for
375  accurately inferring drug-disease associations, we screened potentially effective drugs
376  for pancreatic cancer treatment. We first calculated and prioritized DDE values for all
377  FDA-approved drugs (Table S13-S14). From top 10% of these drugs, we selected 19
378 molecules that were not known to be associated with pancreatic cancer for further
379  experimental validation. The half-maximal inhibitory concentration (ICso) of a
380 molecule, an important metric to measure its response to certain cancer cell lines, has
381  been widely applied in the screening of potential anti-proliferative agents in
382  preclinical cancer pharmacogenomics. The BXPC3 human pancreatic cancer cell line,
383  which has been frequently used in the study of pancreatic cancer and screening of
384  chemo preventive agents [52], was used in our in vitro study to evaluate its response
385  to the candidate drugs. We identified 11 candidate drugs that inhibit BXPC3 cell lines
386 in a dose dependent manner and exhibit low 1Csy values (<100 uM/L, Figure S6,
387  Figure 4A-4C), demonstrating their efficacies for inhibiting pancreatic cancer cell
388 proliferation and potential for pancreatic cancer therapy in vivo. One drug for
389 example, Vinorelbine, is a drug that has already been approved for non-small-cell
390 lung cancer treatment [53]. In our study, Vinorelbine exhibited a low 1Csy value of
391 155 nM/L (Figure 4A). Conversely, some non-classical anticancer drugs also
392 displayed acceptable suppressive effects on BxPC3. Additional drugs, including
393  Saquinavir, which is mainly used with other medications for HIVV/AIDS treatment or
394  prevention [54], and Celecoxib, a drug mainly used for treatment of pain and
395 inflammation in adults [55], showed ICsq values of 22.63 uM/L (Figure 4B) and 45.36
396  uMI/L (Figure 4C), respectively. These results indicate that our model has the capacity
397  to predict proper drug candidates for disease therapy.

398 Transcriptional expression analysis was conducted to validate our hypothesis that
399 efficient drugs tend to perturb the master genes directly or through their targets. We
400 first identified 1,335 differentially expressed genes (referred to as SAQDEGS) after
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401  Saquinavir treatment (Figure S7A, Table S15). The pancreatic cancer master genes
402  (n=849) that were most likely to be perturbed by Saquinavir were named SAQPEGs
403  and further incorporated with their corresponding neighbor genes on the interactome
404  (Table S15). Finally, a hypergeometric test was used to assess the overlap between
405 SAQDEGs and SAQPEGs. These analyses revealed that the differentially expressed
406  genes were significantly enriched for SAQPEGs (Figure 4D, P<0.01). Results for
407  Celecoxib were similar to those for Saquinavir (Figure S7B, Figure 4E), suggesting a
408  close relationship between genes perturbed by the efficient drugs and the local module
409  of master genes.

410 Finally, to demonstrate the reliability of the DDE approach for extensive
411  screening of pancreatic cancer candidate drugs, we conducted a literature mining
412  analysis to evaluate the association between the candidate drugs (top 10%) and
413  pancreatic cancer based on our previous reports [56] (Methods). We observed that 8
414 of the top 10 candidate drugs were anticancer agents that showed significant literature
415  mining correlation scores with pancreatic cancer (P<0.01, Table S14). In addition,
416  most anticancer candidate drugs (~85%) were significantly associated with pancreatic
417  cancer (Figure 4F, Table S14), suggesting the sensitivity of this model. Interestingly,
418 an analysis of the categories of these candidate drugs revealed that the largest
419  proportion, 44/224 (19.6%), were assigned to Central Nervous System Agents
420 (CNSA). For example, Celecoxib, which was sensitive to the BxPC3 cell lines as
421  mentioned above (Figure 4C), also acts as a CNSA. In general, these results indicate
422 that DDE provides a rational strategy for drug repurposing due to its capacity to
423  quantify drug targeting tendencies on the interactome.

424

425

426

427 Materialsand methods

428  Data set collection

429 The DAGs for all diseases were obtained from four publicly available databases
430 including KEGG Disease [16], Comparative Toxicogenomics Database [17],
431  Therapeutic Target Database [18] and PharmGKB [19]. All disease names and their
432  corresponding IDs were standardized by mapping to Medical Subject Headings
433  ontology (MeSH; www.nlm.nih.gov/mesh/) and official gene symbols for these DAGs
434 were retrieved from GeneCards (http://www.genecards.org/). We then conducted a

435  disease filtering process to ensure disease specificity. We first removed diseases with
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436 levels < 2 on the MeSH tree structures, such as “Nervous System Diseases” and
437  “Cardiovascular Diseases”, as these disease types are too broad. Tanimoto similarity
438  (ratio between the number of shared DAGs and the number of joined DAGs) was then
439  computed for each disease pair and used to remove diseases showing high similarity
440  (>0.50) with its descendant disease. The weighted directed PPl network was
441  constructed using data from a previous study [20], which consisted of 13,684
442  weighted interactions among 6082 proteins. The DAGs were then mapped to
443  corresponding proteins in the PPI network, and those diseases with at least 20 DAGs
444 in the human interactome were retained, for they are likely to induce a module on the
445  network. As a result, we obtained 11,414 disease-gene associations between 274
446  diseases and 2848 protein-coding genes. For each disease, we manually extracted
447  drug-disease associations from the drug indication information in DrugBank [21]. In
448  addition, we obtained drug-target interactions for all FDA-approved drugs from
449  DrugBank. To construct a disease comorbidity network, we retrieved disease pairs
450  with comorbidity relationships from a recent study [3] of 665 diseases and their
451  corresponding genes extracted from Online Mendelian Inheritance in Man (OMIM)
452  [22].

453

454  The disease-specific network-oriented gene entropy approach (NOGEA)

455 Construction of a flux matrix based on the expectation of the Bernoulli
456  distribution. To construct the directed disease-specific gene networks, DAGs were

457  mapped to the directed PPl network. For any given disease D, whose m associated
458  genes can be mapped to the directed PPl network, an initial DAG vector y® =
459 {V(D ), ...,VﬁD ), ...,V,(ff)} was generated to represent the disease, where VED s the i-th
460 DAG. The directed shortest path between two DAGs of disease D was calculated
461  using the “igraph” package [23] based on the R 3.32 environment (r-porject.org). For
462 a given DAG pair VED) and V}D), I is a random variable that obeys the Bernoulli
463  distribution and represents the interaction or information transfer between node pair
464 V%D) to Vj(-D). The distribution function of /; ;, is defined as

465 p(loj = @ dg ) = (e7 ) (1 —e™ )™ (1)
466  where a = 1 or 0, indicating whether signal transduction exists between node pair

467 V%D) and Vj(-D), and w is a scale parameter to adjust the likelihood for different

468  distances. In addition, d; j, is the directed distance between the given node pair v
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469 and V](-D ) It is the number of edges in a directed shortest path connecting them, and
470  was calculated using the “igraph” package based on Dijkstra's algorithm, reflecting
471  the possibility of the pairwise regulatory relationship from VED) to V](-D). The details
472  for determining the optimal scale parameter are presented in Supplementary Note 1.
473  Therefore, the space of "possible" values assumed by I(i, ) is {0,1}, and ifa = 1,
474 p(a; dg j), w) represents the likelihood that there is a signaling flux between the node
475  pair. In the field of network communication, it is widely accepted that the success rate
476  of signal propagation decays exponentially with increasing distance [24]. In addition,
477  previous studies have demonstrated that exponential decay is a popular kernel to
478  characterize the network influence between two nodes [25]. Previously, we used the
479  exponential component to evaluate the association between two nodes in protein-
480  protein networks [26]. Thus, we believe that the success probability of the signal
481  transduction between two proteins decays exponentially with the increase of their
482  distance and the exponential component e”“*%) is useful for representing the
483  success probability. In this way, the stochastic information flux matrix for a given

484  disease is obtained by a simplified formula Eq. (2)

. _ 4.  o—wmdg
485 P(l;d,w) = {p(l(i,j) = l,d(i,j),w)}(mxm) = {e w (,1)}(me) 2)
486  And, pUgjpH =1dg ) w) is equal to the expectation of I(i‘j), where
487 E (p(l(i,j)i dg, j),w)) = e~ @) 3)

488  The expectation was subsequently used to estimate the distribution of signaling

489  fluxing. For a given disease D with m associated genes, the biological signaling may
490  flux between any node pair (DAG) V%D ) and V](D ). We then assumed that the edge (or

491  the node pair) through which the signals fluxes is a random variable F, and its event

492  space is
493 {fapll<ismi<i<mi=jl={faz - fijy fommon} @

494  where f ) "epresents signals that may be transferred from DAG VED ) to VJ(-D ),

495 Normalization of the fluxing matrix. The probability distribution of signal
496  fluxing was estimated from

_ _ 1 i 1 —w*dj i
1 P(F = fap) =+ E (Pl pide ) = 5 x e 0 )
498  where Z is the normalization constant or partition function, and
499 Z =N Xt jaie 0D (6)

500 to ensure that the sum of the probability is 1.
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501

502 Definition and calculation of disease gene entropy. Based on the probability

503 distribution of signal fluxing, we calculated the entropy for a given disease S® in
504 terms of the weighted Shannon entropy formula, which can be interpreted as the

505  degree of disorder or complexity for the disease specific context,

@y _ SN ein(fap)k Logp(f )
a (m=1) XL k™

506 S

()

507  where k7*" is the out-degree of node VJ(D ) in the directed PPI network, which was
508 calculated using the “igraph” package. Interestingly, we found that the disease
509 entropy S® can be factorized as shown in Eqg. (8),

510 §O = ym ) ®)

511  where SED) is the gene entropy of gene VED), which is obtained by

512 5O = v (w))*k}qut“’tglﬂ(f @) ©)
(m—1) T k™

513  Therefore, SfD) is a sub-entropy of disease entropy S and is considered as the
514  “disorder contribution” to a disease specific context.

515 Gene entropy value normalization. Through the above procedure, a gene
516  entropy map was established for 293 diseases. For any given disease D, the gene
517  entropy z-scores were calculated, making the gene entropy values of different diseases
518 comparable,

5P -us™)

D) _
519 257 = =550,

(10)

520  where u(Si(D )) and S(Si(D )) are the estimation of the expectation and standard

521  deviations of SED ) for disease D. In addition, to assess the disturbance capability of a
522  gene in a disease-specific network in a more intuitive manner, we calculated the rank
523  score for all DAGs according to their entropy values, which range from 0 to 1 and
524  reflect their likelihood as master genes.

525 Rank score calculation of gene entropy. The gene entropy values for disease D

526  were sorted in an ascending order, and a rank list was generated:

527 RL® = {rl (SgD)) o1l (SSD)) s rz(sg?))} (11)

528  where the rl (Si(D )) is the rank value of SED ). Note that those genes that possess equal

529  entropy values have the same rank values. For example, if there are k genes
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® .. ¢

i1 i+k}, their rank values

530 {Vigjl),---,vifer)} possessing equal entropy values {S

531  were determined by equation (12):

k (D)

O\ _ ... — ()Y _ Zj=1P0Cyj
532 rl (Si+1) = e = 7] (Si+k) — TJ (12)
533  where po(Si(f}) is the position of Sl-(fj)- in the ascending entropy value list. Based on

534 the rank list, rank score vector RS was generated by Eq. (13):

535 RS®) = { (13)

ri(sP) —min(RL(SP))
max(RL(D))—min(RL(D)) (1xm)

536  where max(RL(®) and min(RL™) are the maximum and minimum of RL(?,
537  respectively.

538

539 Disease-gene classification based on the gene entropy value. To
540  comprehensively explore the biological meaning of the entropy, we divided all DAGs
541 into three groups based on their entropy values using an adaptive approach. Briefly,
542  we created an entropy value curve for each disease, and identified two inflection

543  points in the curve as thresholds. Specifically, for each disease D, we ranked each
544  gene entropy value (SED )) in ascending order. Then we mapped each entropy value
545  onto a two-dimensional coordinate system such that the lowest entropy value (‘S&D)’)

546  became coordinate (1,S§D)), the second lowest value became (2, SED)), and so on, until
547  the maximum entropy value (‘55,?3;) was reached. Two inflection points, individually
548  defined as the threshold points of most rapid increase from the low to the medium and
549  from the medium to the high entropy values, were identified in the entropy value
550 curve from the interval of 10th to 50th percentile and 51st to 90th percentile,
551  respectively, of all entropy values. The entropy value corresponding to this threshold
552  was used as an adaptive disease-specific classification threshold. Master genes of all
553 diseases were then merged and adopted as the whole master gene set to explore their
554  common biological meanings. Interim and redundant genes from different diseases
555  were treated in the same way to obtain the whole interim and redundant gene sets,
556  respectively. Therefore, some genes may belong to all three gene sets (master, interim
557  and redundant), because they play different roles in distinct disease contexts.

558

559

560 Disease comor bidity relationship evaluation
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561  Areal human disease comorbidity network (HDCN) was constructed in which nodes
562  represented diseases and edges represented the reported comorbidity relationships,
563  respectively. We then built five different types of inferred disease comorbidity
564  networks to compare with the HDCN. First, a master gene disease network (M-GDN)
565  was constructed, where edges linked two different diseases only if they shared at least
566  one high entropy gene. We then constructed the redundant gene disease network (R-
567 GDN), the interim gene disease network (I-GDN), the whole genes-based disease
568 network (A-GDN) and the traditional hereditary disease network (THDN),
569  respectively. A Tanimoto coefficient was used to evaluate the similarity between
570  different networks as shown in Eq. (15),

|ECA)NE(B)|
|E(A)|+|E(B)|-|E(A)NE(B)]

571 T(A B) = (15)

572  where A and B are different networks, E'(-) represents the edge set of a given network
573 and |E(-)| is the number of edges in the net. To assess the significance of the
574  similarity of different networks, the random disease genes network was randomly
575 generated 1,000 times and compared with the HDCN using equation (15). In the
576  random disease genes network, each disease involves a random sampling gene set of
577  the same size as the disease in A-GDN.

578 Previous research has demonstrated that cellular interaction links result in
579  statistically significant comorbidity patterns [3]. Therefore, we believe that the
580 directed interaction strength from the DAGs of one disease to another in the directed
581  cellular network can reflect the causal relationship between the two diseases. To
582 evaluate whether a causal relationship exists between two diseases, we estimated the
583  significance of the interaction strength between the DAGs of the disease pairs using
584  the Monte Carlo method. We first defined a raw causal relationship score (RCRS) for
585  two given diseases: D1 and D2,

586 RCRS(D1 - D2) = Yieps,jen2 P(I(i,j); d(i,j)) *Q (P(I(i,j); d(i,j))) (16)
587  where p(I; j); d; jy) was calculated by equation (1), d ;) is the directed distance
588  between master gene pair VED D and V}D 2), and ¢ (p(l(l-, 4, j))) is an indicator

589  function. In addition, ¢ (p) was calculated as

Lp = peur
0,p < Pcut

591  wherep_  is a threshold, below which the probability was discarded and considered

590 p(p) = { (17)

592 not contributive to the overall interaction and p_, was determined according to a
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593  previous study [27]. We then used a normalized causal relationship score (NCRS) to
594  quantify the risk that disease D1 will induce disease D2. The NCRS is defined in Eq.

505  (18)

RCRS(D1-D2)—u(RCRSS(D1-D2))
8§(RCRS(D1-D2))

597  where u(RCRS(D1 — D2)) and §(RCRS(D1 — D2)) are the estimation of the

596 NCRS(D1 - D2) =

(18)

598  expectation and standard deviations of RCRS under the same condition, respectively.
599 Then, Monte Carlo simulation was performed 1,000 times to estimate the
600 wu(RCRS(D1 - D2)) and §(RCRS(D1 - D2)) by randomly sampling the same
601 number of genes as D1 and D2. In each simulation, the values, the average and
602 standard deviations of RCRS were calculated. To assess whether the causal
603  relationship from disease D1 to D2 was significant, the P-value of RCRS(D1 — D2)

604  was further calculated as shown in Eq. (19):

605 p(RCRS(D1 - D2)) = NRCRS(random)>RCRS(D1-D2) 1 (19)

Ngotar+1

606  where N, is the total number of simulations, and ngcrsrandom)>Rrcrs(p1-p2) 1S the

607  number of random RCRS values that are larger than RCRS(D1 — D2). The RCRS
608 value for the significance of P-values was set to 0.01. Finally, for a disease pair D1
609 and D2, if both RCRS(D1 — D2) and RCRS(D2 — D1) were significant (P<0.01),
610 the two diseases were considered to be co-occurrent; whereas, if only one was
611 significant (P<0.01), we determined that a causal relationship exists between the two
612  diseases.

613

614  Drug disturbance entropy (DDE)

615 To quantify the effects of a drug on each disease based on the gene network entropy,
616  we applied an ensemble approach, referred to as drug disturbance entropy (DDE), to
617 evaluate the relationship between drug targets and disease proteins (encoded by
618 disease genes) on the interactome. We first evaluated the linkage strength between
619 each DAG and drug target on the interactome, which was then transformed to a
620 probability. The perturbation value for each target and DAG was defined as the
621  product of the strength probability and the DAG entropy,

622 Ty =pUen = Ldep) *S; (20)
623  where p(I.;y = 1;d;)) represents the strength probability between drug target t and
624 DAG VED ), S, is the entropy value of DAG VfD ), and d p is the distance between
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625 target t and DAG VED ) The raw disturbance entropy, which represents an estimate of

626  adrug’s therapeutic effects through distinct targets, was defined as
627 ET(T, V(D)) = ZtET,iEG Tiep) * <P(T(t,i)) (21)
628  whereT ¢ ;y is the perturbation entropy between target t and DAG VED), and (p(T(t,i))

629 is an indicator function as shown in Eq. (22)

o) =lory < @
631  where T, is a cut-off threshold of the disturbance entropy. The threshold of the
632  perturbation value was determined by extensive sampling, and relationships with a
633  perturbation value below this threshold were discarded. The remaining values were
634  summed as the raw DDE of the drug to the disease. The advantage of this procedure is
635 that weak relationships are eliminated, which greatly reduces noise and improves the
636  robustness of the measure. By sampling across the range of T, choices, the
637  threshold that led to the highest ROC AUC was chosen. We obtained the proper T,

638  as 0.89 x max(T ;) by evaluating the performance of predictions of drug-disease

639  associations. Detailed information for determining T, is depicted in Supplementary
640 Note 1.

641 To avoid possible high DDE that may be caused by a large number of drug targets
642 and DAGs, we converted raw DDE to a size-bias-free value using the mean and
643  standard deviation of raw DDE modeled from sets of random molecules, so that the
644  potential therapeutic effects between distinct drugs and diseases could be evaluated
645  under the same metric. The raw drug disturbance entropy was transformed to a size-
646  bias-free score under formula (23)

ET(T VPN —u(ET(T,V(D)))
S(ET(T, V(D))

647 ET*(T,V®) = (23)

648 where T and V® are the drug target set and the disease-associated gene set

649  respectively; u(ET(T,V®™)) and S(ET(T,V))) are the estimation of the
650 expectation and standard deviations of DDE under this condition, respectively.

651  The estimation procedure of u(ET(T,V®))) and § (ET (T, V™)) are as follows: For
652  each pair of (T, V™)), we constructed 1,000 random set pairs with |T| targets and
653 |V(D)| DAGs, preserving the degree distribution of the randomized targets and
654  disease proteins. To avoid repeatedly choosing the same nodes during the degree-
655  preserving random selection, we used a binning approach as described in a previous
656  report [4].
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657

658

659

660 Conclusion

661 Disease phenotypes typically result from interactions among multiple complex
662 environmental and genetic factors. The occurrence, development and treatment of a
663 disease usually involves hundreds of genes [29]. Presently, we proposed a network-
664  oriented gene entropy approach (NOGEA) for accurately inferring master genes that
665  contribute to specific diseases by quantitatively calculating their perturbation abilities
666  on directed disease-specific gene networks. Our results confirm that that master genes
667 are enriched in gene sets that account for disease onset and development. This may
668 imply that at a molecular level, those master genes with high entropy values are the
669 underlying start-points of the disease state, impacting those redundant genes with low
670 entropy through a directed disease-specific gene network. Interestingly, the
671 comorbidity prediction model built using the master genes showed the best agreement
672  with the independent clinical data set compared to the model established using the
673  whole disease gene set. This indicates that our method may decrease the influence of
674 noise and improve the efficiency for extracting more important genes from massive
675 genomic data sets. Finally, through this method, 11 old drugs were newly identified
676 and predicted to be effective for treating pancreatic cancer and then validated by in
677  vitro experiments. However, it remains challenging to simulate the complex contents
678 of the tumor microenvironment in vitro, making it difficult to comprehensively
679  evaluate drug response using 1Cso. Therefore, despite our encouraging results, future
680  work focusing on in vivo validation before clinical use is needed.

681 Although the identified master genes may be important for elucidating
682 mechanisms of disease progression and drug screening, we acknowledge that it is
683  difficult to directly evaluate the accuracy of NOGEA for identifying master genes at
684  this stage due to the lack of ‘gold standard’ reference data sets. Nevertheless, the
685 availability of more personal genome data in the future will allow for construction of
686  patient-specific networks, NOGEA will provide new opportunities to identify patient-
687  specific master genes and promote the development of personalized medicine.
688 Emerging deep learning methods may become powerful techniques for exploring
689  poly-pharmacy side effects [57] and discovering disease gene associations [58] from
690 massive data sets [59]. Because gene entropy values can be used as novel disease

691 feature data, we expect that integrating deep learning with NOGEA will significantly
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692 improve the accuracy for determining disease-drug or disease-disease associations.
693  Extending the systematic approach presented here from signal drugs to multiple drugs
694  may pave the way toward a better understanding of drug combinations.
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870

871
872 Figurelegends

873  Figurel Computation and characterization of network-oriented gene entropy in
874  disease-specific networks

875 A. Construction of directed disease-specific gene networks by mapping disease
876  genes to the directed PPl network and normalizing the interaction strength. B.
877  Calculation of the perturbation ability (gene entropy) of each gene. C. The Venn plot
878  of the disease gene from different classes; Master: the master genes, Interim: the
879 interim genes, Redundant: the redundant genes. D. Enrichment result (z-score) of
880  master, interim and redundant genes in the context of OMIM, cancer and essential
881  genes. E. Enrichment result (z-score) of master, interim and redundant entropy genes
882 in the context of kinase, membrane receptor (MR), transcription factor (TF). F.
883  Comparison of NOGEA performance with other methods for disease gene
884  prioritization using AUROC and AUPRC. G. DAG entropy values versus their in-
885  degree in the primary directed PPI network. H. DAG entropy values versus their out-
886  degree in the primary directed PPI network. |I. DAG entropy values versus their
887  betweenness in the primary directed PPI network. J. DAG entropy values versus their
888  degree (sum of in- and out-degree) in the primary directed PPl network. K.
889  Assessment of the association between gene entropy and four commonly used
890 network topology parameters.

891

892 Figure2 Exploration of disease comorbidity using network entropy

893  A. Distribution of Tanimoto similarities between HDCN and other disease-disease
894  networks (M-GDN, I-DGN, R-DGN, A-DGN, THDN and RGN). B. The inferred
895 molecular basis of disease comorbidity relationships. Brown and blue nodes represent
896 master genes inferred by NOGEA,; green nodes represent diseases. C. The
897  comorbidity of Parkinson’s disease. In this figure, the width of the edge represents the
898 likelihood of disease comorbidity, arrows represent the inferred causative disease-
899 disease associations, and the color of the nodes depicts the disease category from

900 MESH. D. The molecular basis of the comorbidity between Parkinson’s disease and
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901 alcoholism. The nodes represent the master genes of the disease and the directed links
902  describe the direction from the directed PPI network.

903

904  Figure 3 Drug-disease association inference based on the disease gene entropy
905 A. The hits number by known DDIs in each ranked drug-disease pair bin. B. The
906  correlation between average DDE score in each bin and the hits enrichment fold for
907 known DDIs. C. AUROC for drug-disease predictions using different methods. D.
908 The interaction between drug targets and pancreatic cancer genes. The width of the
909 links, the shade of the pancreatic cancer genes nodes, and the size of the node
910  describe the interaction strength, entropy value, and degree of each node in the human
911 interactome, respectively. E. The entropy value rank plot of pancreatic cancer genes
912  (right); the heat map describes the shortest distance between the drug targets and
913  pancreatic cancer genes of four drugs (left).

914

915 Figure4 Screening of potential efficient drugsfor pancreatic cancer treatment
916  A-C. Cell inhibition rate curves against BXPC3 for Vinorelbine, Saquinavir and
917  Celecoxib, respectively. D. The number and significance of overlapped genes
918  between differentially expressed genes and the inferred effect genes after Saquinavir
919 treatment. E. The number and significance of overlapped genes between the
920 differentially expressed genes and the inferred effect genes after Celecoxib treatment.
921 F. The overlapped drug number between each category and the top 10% of efficient
922 drugs. Red bar: number of literature mining significant drugs; AIlA: Anti-
923 Inflammatory Agents, AIANS: Anti-Inflammatory Agents (Non-Steroidal); ANA:
924  Antineoplastic Agents; ANIA: Antineoplastic and Immunomodulating Agents; ARA:
925  Antirheumatic Agents; CVA: Cardiovascular Agents; CNSA: Central Nervous
926  System Agents; HTA: Hypotensive Agents; PNSA: Peripheral Nervous System
927  Agents; SSA: Sensory System Agents.

928

929 Supplementary material

930 Figure Sl Distribution of gene entropy valuesfor all DAGs

931  Histogram plots showing the distribution of gene entropy values for all DAGs before
932  (left) and after (right) normalization. The x-axis shows the range of gene entropy
933  values, and the y-axis shows the count of genes possessing different entropy values.
934

935 Figure S2 KEGG pathway enrichment results
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936  X-axis: the top 20 significantly enriched ‘KEGG pathway terms’ of the master genes;
937  y-axis: significance of the enrichment [-log(P-value)].

938

939  Figure S3 The disease-gene enrichment analysis for different classifications

940  Enrichment results (z-score) of master, interim and redundant genes in the context of
941  gene sets for critical (A), redundant (A), indispensable (B) and dispensable (B) genes.
942

943 Figure 4 The property of the disease-gene entr opy concept

944  A. The correlation between entropy value and topology property for each disease. In

945 this figure, each point represents a disease. The coordinate of each point represents
946 the Pearson’s correlation coefficient (PCC) for the gene entropy values versus the
947 in-degree (x-axis) and the out-degree (y-axis) of the disease-associated genes
948 (DAGS). The size and the color represent PCC for the gene entropy values versus
949 degree (sum of in- and out-degree) and betweenness, respectively. B. The
950 distribution and cumulative probability of the coefficient of variation for the
951 DAGs among different disease contexts.

952

953 Figure S5 Rank scoresfor thetop 20% of high entropy genesfor three diseases
954  Bar plots show the rank scores of the top 20% of high entropy genes for systemic
955  lupus (CD4 cells) (top), systemic lupus (B cells) (middle) and rheumatoid arthritis (B
956 cells) (bottom). Red bars represent the rank scores of the core genes retrieved from
957 NIA.

958

959  Figure S6 The dose-response curve of the BxPC3 cell of 8 drugs

960 A-H. The dose-response curve of BxPC3 cells for 8 drugs that have not been
961 associated with pancreatic cancer. X-axis: the concentration of each drug; y-axis: the
962  percent inhibition rate of the BXPC3 cells.

963

964  Figure S7 The heat map of microarray experiment results

965 A. Differentially expressed genes between the Saquinavir (sagl, saq2) treated BXPC3

966 cell group and the control group (conl, con2). Color represent the relative
967 expression of the differentially expressed genes. B. Differentially expressed genes
968 between the Celecoxib (cell, cel2) treated BxPC3 cell group and the control group
969 (conl, con2).

970
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971 Figure S8 Estimation of the scale parameter

972  Selected parameters (w=1.1) that showed the highest mean AUROC and were thus
973  used for further analysis.

974

975 Figure SO Characterization of gene entropy features with different scale
976  parameterso

977  A. Normalized probability of different distances with scale parameter » ranging from

978 0 to 4. B. Coronary disease gene entropy values with different scale parameters,
979 »=0 (top) and »=10 (bottom). C. Coronary disease gene entropy values with scale
980 parameter o ranging from 0 to 10.

981

982 Figure S10 Performance of the drug-disease relationship predictions using
983 different scale parameters
984  The box plot shows the AUROC for drug-disease predictions using different scale
985 parameters. To account for the heterogeneous degree distribution of the directed
986 interactome, we preserved the degree of randomized targets and disease genes.
987
988 Table S1 Full list of disease-gene associations used in this study
989  Entropy value: the entropy value calculated using NOGEA in a specific disease; rank
990 score: the rank score for each gene entropy in a specific disease. This table also
991 includes topology parameters of the DAGs in the directed global PPI network, i.e., the
992 undirected degree, the in-degree, the out-degree and the betweenness centrality. In
993 addition, this list includes the mean and standard deviations of the entropy among
994  different diseases for a disease gene, the number of the gene-associated diseases and
995 the coefficient of variation of the disease gene among different diseases. The evidence
996 for the disease-gene associations was retrieved from CTD, TTD and PharmGKB.
997
998 TableS2 List of the directed protein-protein interactions
999  The list was obtained from a recent study as described in the paper, and each row
1000 presents a directed edge.
1001
1002 Table S3 Classification of the disease-associated genes
1003  This list includes all the disease-gene relations used in this study. Genes of each
1004  disease were assigned to master, interim and redundant groups according to their

1005  entropy values.
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1006

1007 Table A Gene setsused for enrichment

1008  This table lists all 8 different gene sets used for enrichment analysis, which contains
1009 1707 OMIM genes, 2186 predicted cancer genes, 1750 essential genes, 1551
1010 transcription factors, 366 kinases, 249 membrane receptors, 1336 druggable genes and
1011 982 FDA targets, respectively. All gene sets were obtained from a recent study
1012  (PMCID: PMC4983807).

1013

1014 Table S5 Inferred comorbidity relationships of disease pairs from the shared
1015 genes

1016  This table lists all inferred comorbidity relationships involving master genes. As
1017  described in the paper, if two diseases shared a master gene, they were considered to
1018  be co-morbid diseases. Shared master genes are also listed.

1019

1020 Table S6 Inferred comorbidity relationships of disease pairs from the interacting
1021 genepairs

1022  This table lists all inferred comorbidity relationships involving master genes. As
1023  described in the paper, if master genes of two diseases directly interact with each
1024  other on the interactome, they were treated as co-morbid diseases. Interacting master
1025  gene pairs are also listed.

1026

1027 Table S7 Inferred causal or co-occurrence relationships between Parkinson’'s
1028 and other diseases.

1029 Results of the inferred relationships correspond with Figure 2C. This table lists all
1030 inferred causal or cooccurrence relationships between Parkinson’s disease and other
1031 diseases. The validated relationships are marked as “YES”. The “positive sim” is the
1032  likelihood from “V1” to “V2” and the “negative sim” is the likelihood from “V2” to
1033  “V1”.

1034
1035 Table S8 Information for all FDA-approved drugs that were used in the present
1036  study

1037  This table lists all FDA approved drugs that were used in the present work and their
1038  corresponding IDs in other databases.
1039

1040 TableS9 List of drug-target relationships used in the present study
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1041  This table lists all FDA drug-target relationships used in this study.

1042

1043  Table S10 Drug-disease information

1044  This table includes FDA drug indications, drug names and corresponding MESH IDs
1045 inferred from the indication information.

1046

1047 Table S11 Generank list for three diseases

1048  This table lists the gene rank scores and core genes for systemic lupus (CD4 cells),
1049  systemic lupus (B cells) and rheumatoid arthritis (B cells).

1050

1051 Table S12 Drug disturbance entropy (DDE) for each FDA-approved drug
1052  associated with three diseases

1053  This table lists the value of DDE calculated using NOGEA for each FDA-approved
1054  drug associated with the systemic lupus (CD4 cells), systemic lupus (B cells) and
1055  rheumatoid arthritis (B cells).

1056

1057 Table S13 FDA-approved drugs and their categories

1058  This table lists all present FDA approved drugs and their corresponding categories
1059  retrieved from the DrugBank database.

1060

1061 Table S14 The DDE for each FDA-approved drug associated with pancreatic
1062  cancer and the literature mining results

1063  This table lists all the DDE scores calculated using NOGEA. The result of literature
1064 mining contains the number of articles derived by searching each drug name,
1065  “pancreatic cancer” as well as both search terms, respectively. The P-values were
1066  assessed using the hypergeometric test.

1067

1068 Table S15 Differentially expressed genes and the predicted effected genes after
1069 treatment with Saquinavir and Celecoxib.

1070 CELDEG: the differentially expressed gene after treatment with Celecoxib. CELPEG:
1071 the predicted effected gene after treatment with Celecoxib. SAQDEG: the
1072  differentially expressed gene after treat with Saquinavir. SAQPEG: the predicted
1073  effected gene after treatment with Saquinavir.

1074

1075 Table S16 Release versions of the database used in thisstudy.
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1076  This table lists all the databases and corresponding versions that were used in this
1077  study.
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