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Abstract 28 

Rapid development of high-throughput technologies has permitted the identification 29 

of an increasing number of disease-associated genes (DAGs), which are important for 30 

understanding disease initiation and developing precision therapeutics. However, 31 

DAGs often contain large amounts of redundant or false positive information, leading 32 

to difficulties in quantifying and prioritizing potential relationships between these 33 

DAGs and human diseases. In this study, a network-oriented gene entropy approach 34 

(NOGEA) is proposed for accurately inferring master genes that contribute to specific 35 

diseases by quantitatively calculating their perturbation abilities on directed disease-36 

specific gene networks. In addition, we confirmed that the master genes identified by 37 

NOGEA have a high reliability for predicting disease-specific initiation events and 38 

progression risk. Master genes may also be used to extract the underlying information 39 

of different diseases, thus revealing mechanisms of disease comorbidity. More 40 

importantly, approved therapeutic targets are topologically localized in a small 41 

neighborhood of master genes on the interactome network, which provides a new way 42 

for predicting new drug-disease associations. Through this method, 11 old drugs were 43 

newly identified and predicted to be effective for treating pancreatic cancer and then 44 

validated by in vitro experiments. Collectively, the NOGEA was useful for 45 

identifying master genes that control disease initiation and co-occurrence, thus 46 

providing a valuable strategy for drug efficacy screening and repositioning. NOGEA 47 

codes are publicly available at https://github.com/guozihuaa/NOGEA. 48 

 49 

KEYWORDS: Systems pharmacology; Gene entropy; Disease gene network; 50 

Disease comorbidity; Drug repositioning  51 
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Introduction 52 

The onset and progression of most complex diseases often involves the dysfunction of 53 

thousands of genes as well as certain altered interactions among them. High-54 

throughput technologies such as gene expression profiling and whole genome 55 

sequencing have permitted the identification of an increasing number of disease 56 

associated genes (DAGs) [1], which may provide valuable insight into mechanisms of 57 

disease initiation and progression. However, as the existing DAGs are usually derived 58 

from multiple sources, they often contain large amounts of redundant or false positive 59 

information [2] due to collection bias and noise, such that causal relationships among 60 

these genes in most cases remain elusive. Therefore, identifying master genes that 61 

control disease state transitions from large numbers of DAGs plays a critical role in 62 

understanding disease initiation mechanisms. In addition, complex diseases show 63 

considerable comorbidity [3]. The master gene defects in one disease may initiate 64 

cascades of interactions that lead to the co-occurrence of multiple diseases in a given 65 

patient. Pharmacological targeting of the DAG module on the human interactome has 66 

proven to be a valuable strategy for drug efficacy screening [4]. At present, it is 67 

unclear whether the identification of master genes will further facilitate the network-68 

based drug repositioning. 69 

Recent trends in omics technologies and complex biological networks have led to 70 

a proliferation of attempts to find the master genes for different diseases. For 71 

example, genome-wide association studies (GWAS) have emerged as a powerful tool 72 

for detecting sequence variation associated with many human traits and diseases  [5]. 73 

Due to the low-frequency of many mutations, GWAS usually require large cohort 74 

sizes to attain sufficient statistical power. More importantly, GWAS identify only the 75 

genetic risk factors associated with disease, rather than the master genes of the disease 76 

phenotypes because patient genomes contain a certain proportion of “passenger 77 

mutations” [6] and the initiation of many diseases is often triggered by the interplay 78 

between genetic and non-genetic factors. Transcriptome analysis is considered to be 79 

an effective complement of GWAS for its ability to capture non-genetic perturbations 80 

to the organism. Yet variations in mRNA expression are sometimes caused by 81 

aberrant protein activity of upstream regulators such as transcription factors, making it 82 

difficult to directly identify the master gene set using transcriptome profiling  [7].  83 

Recently, gene co-expression-based approaches have been proposed to construct 84 

context-specific regulatory networks [8] and a local network entropy measure has 85 

been developed based on co-expression networks for identifying master genes [9]. 86 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 / 32 

While these approaches provide new ways to find master genes, building a highly 87 

confident co-expression regulatory network often requires large sample sizes, which 88 

are usually not available for relatively rare diseases. To overcome this limitation, 89 

protein-protein interaction (PPI) network-based approaches have been developed to 90 

infer master genes that are important for disease-related biological processes, such as 91 

predicting therapeutic targets [10] or driver genes [11]. Some topological parameters 92 

such as the degree and betweenness centrality of the nodes are usually used as 93 

important measures to screen master genes [12]. However, current approaches are 94 

based mainly on the constant global undirected interactome, ignoring the fact that 95 

disease initiation and therapeutics are frequently context-dependent, depending on 96 

specific tissues or pathological microenvironment [13]. Therefore, some genes that 97 

exhibit important topological properties on the interaction network, such as the hub 98 

genes [14], will be automatically selected as key regulators for disease state initiation 99 

and maintenance , leading to a possible increase in false positive master genes. 100 

Conversely, some classes of genes presenting as upstream regulators of a signaling 101 

cascade, such as the G protein-coupled receptors [15], may be identified as 102 

dispensable genes due to their relatively low degrees on the interactome, thus 103 

decreasing the sensitivity for distinguishing core ones from the giant pool of DAGs.  104 

In this study, we have developed a network-oriented gene entropy approach to 105 

quantify the perturbation or regulatory ability of each DAG in distinct disease 106 

contexts by assembling and interrogating disease-specific regulatory networks. Master 107 

genes for each disease, whose altered expression was sufficient for disease state 108 

transitions, were identified as those genes that exhibited high entropy values by our in 109 

silico method, and were further adopted to investigate comorbidity and causal 110 

relationships among different diseases. We further confirmed that existing effective 111 

drugs are most likely to target the local module of master genes on the interactome. 112 

Using these methods, we have identified 11 old drugs as potent anticancer agents for 113 

pancreatic cancer treatment. 114 

  115 

 116 

Results and Discussion 117 

Computation of gene entropy in disease networks 118 

To identify master genes in distinct disease contexts, a network-oriented gene entropy 119 

approach (NOGEA) was developed (Figure 1A and 1B). Briefly, Shannon entropy 120 

theory was applied to quantify the amount of disorder within intracellular signals in 121 
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each disease specific context, which was subsequently factorized as the summation of 122 

contribution for each DAG. First, directed disease specific gene networks for 293 123 

diseases were constructed to reflect the distinct disease contexts by mapping all DAGs 124 

(Table S1) to a previously established directed PPI network (Table S2) [20]. A 125 

directed network visualizes the hierarchy of intracellular signal transduction between 126 

the interacting proteins, and hence clearly reflects the importance of each DAG in a 127 

certain physiological and pathological context. The regulation likelihood between 128 

each pair of DAGs was then calculated based on the directed distance on the PPI 129 

network to generate a probability-based signaling flux matrix (Figure 1A). Finally, the 130 

perturbation ability of each DAG in a disease-specific context was calculated by the 131 

network-oriented gene entropy metric (Methods, Figure 1B). The distribution of 132 

entropy values for all DAGs is illustrated as a histogram in Figure S1, and the 133 

perturbation ability of each DAG was then ranked based on their entropy values 134 

(Table S1).  135 

  To efficiently explore the biological features of each entropy distribution, all DAGs 136 

were classified as “Master”, “Interim” or “Redundant” genes which represent high, 137 

medium and low entropy genes, respectively. We created an entropy value curve for 138 

each disease and then identified two inflection points as thresholds to separate the 139 

low, medium and high entropy genes, respectively (Methods). We then merged the 140 

master genes of all diseases into a whole master gene set. Interim and redundant genes 141 

from different diseases were treated in the same way to obtain the whole interim and 142 

redundant gene sets, respectively. As a result, 798 master, 1,962 interim, and 1,387 143 

redundant genes were obtained (Figure 1C, Table S3). 144 

In order to verify whether the master genes play a key role in disease initiation 145 

and development, enrichment analyses were performed using several well-established 146 

gene clusters (Table S4). We observed that there was an overrepresentation (z-147 

score=22.61) of disease-causing mutation-associated proteins among all master genes, 148 

which was higher than the enrichment score of both interim and redundant genes 149 

(Figure 1D). The essential genes were demonstrated to play critical roles in human 150 

diseases [28], and the master genes were enriched in essential genes, whose z-score 151 

was two times larger than the enrichment score of the redundant genes (Figure 1D). 152 

More importantly, we found that master genes were highly enriched in cancer-153 

associated genes; whereas, redundant genes showed less enrichment (Figure 1D). 154 

Further KEGG analysis of the master genes showed that these genes were mainly 155 

enriched in pathways with close relationships with cancer initiation and progression 156 
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(Figure S2). For example, PI3K-AKT signaling pathway (has:04151), which is 157 

commonly perturbed in cancers, were found among the top five enriched pathways (P 158 

< 10e-30). In a recent study, genes on the interactome were classified into different 159 

node types, in which “indispensable” nodes were found to be key players in mediating 160 

the transition of disease states. As shown in Figure S3A, we found that master genes 161 

were highly enriched in “indispensable” genes, but redundant genes were enriched 162 

among the “dispensable” genes. Consistent with these observations, the master genes 163 

were highly enriched in “critical” genes that acted as driver nodes in all control 164 

configurations (Figure S3B) [26]. Further dissection of all different functional classes 165 

within signaling proteins revealed that the master genes were most likely enriched in 166 

kinases and membrane receptors (Figure 1E). In summary, the results indicated that 167 

the master genes are preferred key regulators in disease initiation and development, 168 

reflecting the reliability of the NOGEA method. 169 

Traditional network topology parameters, such as the connective degree and 170 

betweenness centrality, are commonly used as baseline methods for characterizing the 171 

importance of nodes in biological networks [29]. To validate the effectiveness of 172 

NOGEA, we compared it with four baseline methods (the connective degree, 173 

connective in-degree, connective out-degree and betweenness centrality-based 174 

methods) and four newly proposed methods (Katz [30], Catapult [30], HANRD [31]  175 

and GPS [32]), all of which are network-based methods for prioritizing disease genes. 176 

We first compared the AUROCs between different methods (Methods) and found that 177 

NOGEA significantly outperformed both the baseline methods and the newly 178 

proposed methods (Figure 1F). We further evaluated AUPRC, area under the 179 

precision-recall curve, for each method. NOGEA consistently surpassed all other 180 

methods, overmatching the second-best method by ~10% (Figure 1F). 181 

Correlations between gene entropy values and four network topology parameters 182 

were assessed using Pearson's correlation coefficients (PCC). For most diseases, we 183 

observed that the PCCs between gene entropy values and network topology 184 

parameters were relatively small (<0.25, Figure S4A). Nonetheless,  significant 185 

correlation values were observed between the in-degree connective (R2=0.051, 186 

P<1.0e-15, Figure 1G), out-degree connective (R2=0.274, P<1.0e-15, Figure 1H), 187 

degree connective (sum of in and out-degree, R2=0.155, P<1.0e-15, Figure 1I) and 188 

betweenness centrality (R2=0.031, P<1.0e-15, Figure 1J) for genes in the primary 189 

directed PPI network versus gene entropy values. Fisher’s exact test was then applied 190 

to further determine whether gene entropy is associated with traditional network 191 
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topology parameters. Specifically, we constructed a contingency table to classify the 192 

disease genes into different bins based on their entropy values and network parameter 193 

values (Figure 1K). We found that gene entropy was significantly associated with 194 

traditional network topology parameters, including connective degree (P < 0.01), 195 

connective in-degree (P < 0.01), connective out-degree (P<0.01) and betweenness 196 

centrality (P<0.01). All these results demonstrate that master genes prefer to possess 197 

high topology parameter values, indicating relative consistency between gene entropy 198 

and the four network topology parameters.  199 

To investigate variation of the regulatory role of a specific gene in different 200 

diseases, we calculated the divergence-degree of gene entropy across diseases using 201 

the coefficient of variation (CV) (Table S1, Figure S4B). The results show that up to 202 

60% of the genes have a high CV (>15%), indicating the distinct roles these genes 203 

play in different disease contexts. We then examined the entropy value variation of 204 

the shared genes in different diseases, and observed that these genes usually exhibit 205 

similar entropy values in distinct diseases within the same disease category. For 206 

example, corticotropin-releasing hormone receptor 1 (CRHR1) is related to eight 207 

mental health-associated diseases with different entropy rank scores (rank>0.80), 208 

including anxiety and depressive disorders (Table S1), which is consistent with its 209 

major role in mental disorders [33]. We also observed a low entropy rank score for 210 

CRHR1 in pulmonary disease (rank=0.55), indicating variation in its regulatory role 211 

in distinct disease contexts. Further, we found that ~15% genes have approximately 212 

equal rank scores in their associated diseases. For instance, interleukin 4 receptor 213 

(IL4R) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 214 

(PIK3CA) had high rank scores in their associated diseases (Table S1), especially for 215 

neoplasms, suggesting crucial roles for these genes in these diseases. In summary, 216 

NOGEA provided a new way to explore the regulatory role of each DAG in distinct 217 

disease contexts. 218 

 219 

NOGEA for exploring disease comorbidity 220 

Exploration of the underlying mechanisms of comorbidity, which refers to the 221 

coexistence of multiple diseases or disorders, is difficult due to complex interactions 222 

among environmental, lifestyle and treatment-related factors [34]. In addition, disease 223 

comorbidity includes not only the co-occurrence of multiple diseases, but also the 224 

potential cause-and-effect relationships among these diseases. Thus, uncovering the 225 

diseases’ co-occurrence and causal relationships along with underlying mechanisms is 226 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 / 32 

of great significance for their prevention and treatment. Using experiment-based 227 

approaches or mathematical models, previous studies explored the molecular features 228 

of disease comorbidity for several diseases, including from gastritis to gastric cancer 229 

[35] and from diabetes to cancer [36]. However, existing experiment-based methods 230 

to explore the underlying mechanisms for co-occurrence and causal relationships 231 

remain costly, labour-intensive, or focused on a small fraction of molecular features. 232 

Comparatively, mathematical models provide novel ways to reveal disease 233 

comorbidity using multi-omics data; however, these models are difficult to apply in 234 

other diseases, due to the lack of multi-scale information for these diseases.  235 

The results discussed above demonstrate that NOGEA-inferred master genes are 236 

closely associated with disease onset and development, prompting us to investigate 237 

whether the network entropy-based approach would be capable of uncovering the 238 

molecular basis of disease co-occurrence. Therefore, we constructed a new master 239 

gene disease network (M-GDN), where edge would link two different diseases if they 240 

shared at least one master gene (Table S5). For comparison, we constructed five other 241 

disease networks: the redundant gene-based disease network (R-GDN), the interim 242 

gene-based disease network (I-GDN), the all genes-based disease network (A-GDN), 243 

the traditional hereditary disease network (THDN) and the random disease genes 244 

network (RGN).  245 

To test whether the M-GDN would provide an accurate picture of disease 246 

comorbidity, we evaluated the Tanimoto similarity between these networks and the 247 

human disease comorbidity network (HDCN), which was extracted from the 248 

Medicare Claims Database and constructed in a recent study [3]. The M-GDN showed 249 

the highest similarity with the HDCN (higher than that of R-GDN and THDN) at a 250 

significantly higher level than expected based on the random values (Figure 2A), 251 

which indicates that those genes most associated with disease comorbidity tended to 252 

be master genes with high entropy rather than arbitrary disease genes. In contrast to 253 

previous THDN models, M-GDN considers genetic factors as well as genes that 254 

respond to environmental, lifestyle, and/or treatment-related factors, thus providing a 255 

more comprehensive solution for exploring the comorbidity of disease. Furthermore, 256 

in view of the impact of cellular network interactions on disease comorbidity, we 257 

extended our result to a PPI-based M-GDN (Table S6), where two diseases were 258 

linked if the master gene of one disease directly interacted with genes of the other 259 

disease in the PPI network. Consistent with the above results, the PPI-based M-GDN 260 

demonstrated the best predictive ability in identifying disease comorbidity. We then 261 
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observed that the inferred underlying molecular mechanisms of disease comorbidity 262 

are in accordance with current pathobiological knowledge (Figure 2B). For example, 263 

M-GDN confirmed the conclusion that AKT1 mutations lead to schizophrenia and 264 

type 2 diabetes mellitus (with rank scores of 0.96 and 0.94 in schizophrenia and type 265 

2 DM, respectively) [37]. We also observed in the M-GDN that ADRB2 mutations 266 

may lead to asthma and obesity (with rank scores of 0.95 and 0.97 in asthma and 267 

obesity, respectively), which is consistent with a previous study [38]. These results 268 

suggest that M-GDN helps bridge the gap between bench-based biological discovery 269 

and bedside clinical solutions, and thus may provide new insights into the 270 

mechanisms of disease comorbidity.  271 

Recent reports in the literature suggest that mutations in the IRS1 gene are closely 272 

related to the comorbidity of type 2 DM and obesity [39]. The M-GDN revealed that, 273 

in addition to IRS1, PTGS2 also plays a crucial role in the co-morbidities of these 274 

diseases. It is well known that PTGS2 influences the inflammatory response, which is 275 

closely connected with the comorbidity of type 2 DM and obesity [40]. Another 276 

example is the comorbidity of leukemia and cardiomyopathy, whose underlying 277 

mechanisms remain unclear. Interestingly, FAS is involved in the regulation of cell 278 

apoptosis, which affects left ventricular function [41] while PRKCA enhances cell 279 

resistance  [42] and regulates cardiac contractility and an increased risk for heart 280 

failure. More importantly, the FAS-PRKCA interaction has been identified as the top 281 

connected cross-talk PPI by in situ proximity ligation assays [43]. These results 282 

demonstrate that the interaction between FAS and PRKCA may account for the 283 

comorbidity of leukemia and cardiomyopathy. 284 

Next, we investigated the molecular basis of disease causal relationships from the 285 

perspective of directed biological networks. As an illustration, we constructed a 286 

directed comorbidity network (Table S7, Figure 2C) centered on Parkinson's disease. 287 

We observed high co-occurrence risk between Parkinson’s and other diseases 288 

including Alzheimer’s disease. Recent research suggests that these diseases are 289 

related to the accumulation of common proteins in the brain, such as alpha-synuclein 290 

protein [44]. Using alcoholism and Parkinson's disease as an example, we observed a 291 

significant directed interaction from alcoholism to Parkinson's disease (P<0.01), but 292 

not vice versa. This result is consistent with recent clinical studies, which suggest that 293 

alcoholism may an inducer of Parkinson's disease [45]. A subsequent network analysis 294 

further discovered that the aberration of alcoholism master genes may lead to the 295 

modification of most Parkinson's disease’s master genes (Figure 2D). Collectively, 296 
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NOGEA is potentially useful for investigating mechanisms underlying disease 297 

comorbidity as well as their causal relationships. 298 

 299 

NOGEA can infer drug-disease associations 300 

Recently, several state-of-the-art network-based methods were proposed to investigate 301 

the relationships between drugs and diseases, such as the network proximity approach 302 

and network inference algorithm [4, 46]. In this study, we assessed relationships 303 

between DAGs and drug targets based on the gene network entropy to evaluate the 304 

effects of drugs on each disease. For each drug-disease relationship, we calculated the 305 

drug disturbance entropy (DDE) parameter, which represents potential therapeutic 306 

effects of the drug (Methods, Table S8-S10). To further investigate DDE’s 307 

effectiveness, we evaluated the correlation between the DDE value and the hits by 308 

known drug-disease interactions (DDIs), and found the occurrence number of known 309 

DDIs increased with increasing DDE values (Figure 3A). Consistent with previous 310 

research [4], a highly significant correlation occurred between DDE values and the 311 

enrichment of known drug-disease interactions (R2=0.75, P=2.2e-16) (Figure 3B), 312 

indicating a high likelihood that a drug will successfully treat a disease if the drug is 313 

capable of strongly perturbing the local module of master genes on the interactome. 314 

To validate the utility of DDE for distinguishing known drug-disease pairs from 315 

the unknown drug-disease pairs, we compared the AUC of ROC curves for different 316 

drug-disease prediction methods (Methods). To obtain a robust AUC estimation, the 317 

drug-disease set was split into a training set and a testing set according to a given 318 

fraction coefficient for developing and validating the model, respectively. We 319 

compared the DDE’s performance with several other state-of-the-art methods [4, 46], 320 

including the network inference algorithm (NIA), network proximity approach 321 

(NPA), network kernel approach (NKA), network shortest approach (NSA), network 322 

center approach (NCA), and network separation approach (NSEA). As illustrated in 323 

Fig. 3C, DDE exhibited the best performance (average AUROC=70%) in 324 

discriminating known and unknown drug-disease pairs, significantly outperforming 325 

the other approaches. Interestingly, we noticed that the NIA, which appeared to be the 326 

second-best method (average AUROC=68%), was also able to construct a directed 327 

disease-specific gene network and identify master genes before predicting the drug-328 

disease associations. A compressive comparison between the two methods 329 

demonstrated their connection and difference (as seen in Supplementary Note 2, 330 
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Figure S5, Table S11-S12). Collectively, these results suggest that DDE is effective 331 

for predicting drug-disease associations. 332 

Pancreatic cancer is a refractory malignant carcinoma of the digestive tract with a 333 

5-year survival rate of ~4% [47] that modestly responds to very few existing 334 

chemotherapy treatment options. Revisiting the complex interaction pattern between 335 

drug targets and pancreatic cancer genes in a systemic manner is essential for 336 

developing more effective therapeutic regimens. Therefore, we used pancreatic cancer 337 

as an example to explore the utility of NOGEA for drug-disease association inference. 338 

By measuring the entropy of each pancreatic cancer gene in the pancreatic cancer 339 

specific network (Figure 3D, Figure 3E), we found that those genes with high entropy 340 

such as MET, KDR, and EGFR may play more important roles than the lower entropy 341 

genes for pancreatic cancer treatment. As reported in previous studies [48], EGFR-342 

mediated signaling is involved in the tumorigenesis of pancreatic cancer, and the 343 

preclinical data support EGFR inhibition as a potential treatment strategy for 344 

pancreatic cancer. In addition, c-Met protein, which is coded by the MET gene, is a 345 

marker of pancreatic cancer stem cells and thus a therapeutic target [49]. KDR 346 

(VEGFR-2) is known to be crucial for embryonic vasculature development by 347 

modulating endothelial cell proliferation and migration [50]. Moreover, the CD44 348 

gene is a potentially interesting prognostic marker and therapeutic target in pancreatic 349 

cancer [51].  350 

To investigate differences in the targeting patterns between effective drugs and 351 

other less-effective drugs from a network-based perspective, we constructed a gene 352 

entropy map for pancreatic cancer. We first calculated the linkage strength between 353 

drug targets and pancreatic cancer genes for two FDA-approved drugs: Axitinib and 354 

Erythromycin (Figure 3D). Axitinib binds to FLT4, FLT1 and KDR, which was 355 

identified as a pancreatic cancer master gene by NOGEA. The DDE of Axitinib to 356 

pancreatic cancer is 37.6, suggesting that targets of Axitinib are more closely related 357 

to pancreatic cancer genes than expected by chance. Conversely, the DDE of 358 

Erythromycin (whose efficacy remains unknown) to pancreatic cancer is 1.1. Even 359 

though this drug inhibits ABCB1, ALB and KCNH2, the disease proteins and drug 360 

targets are not closer than expected by randomly selecting protein sets. However, 361 

some drugs that do not directly inhibit the pancreatic cancer master genes may still 362 

have the potential to be effective drugs. For example, Sirolimus, which is currently in 363 

phase II clinical trials, targets three proteins (FKBP1A, FGF2 and MTOR) but no 364 

known pancreatic cancer genes. Nevertheless, Sirolimus has a high DDE value of 365 
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12.1 due to the relatively strong perturbation of high entropy genes such as CD44 and 366 

EGFR via FGF2 (Figure 3E). Drugs such as Pravastatin (DDE=-0.7) are predicted to 367 

be ineffective pancreatic cancer drugs due to their weak perturbation of nearly all 368 

pancreatic cancer genes (Figure 3E). Collectively, these results suggest that NOGEA 369 

may be capable of identifying the core genes among many DAGs that provide the 370 

basis for rational drug discovery. 371 

 372 

Pancreatic cancer drug screening 373 

Due to the encouraging performance of the drug disturbance entropy metric for 374 

accurately inferring drug-disease associations, we screened potentially effective drugs 375 

for pancreatic cancer treatment. We first calculated and prioritized DDE values for all 376 

FDA-approved drugs (Table S13-S14). From top 10% of these drugs, we selected 19 377 

molecules that were not known to be associated with pancreatic cancer for further 378 

experimental validation. The half-maximal inhibitory concentration (IC50) of a 379 

molecule, an important metric to measure its response to certain cancer cell lines, has 380 

been widely applied in the screening of potential anti-proliferative agents in 381 

preclinical cancer pharmacogenomics. The BxPC3 human pancreatic cancer cell line, 382 

which has been frequently used in the study of pancreatic cancer and screening of 383 

chemo preventive agents [52], was used in our in vitro study to evaluate its response 384 

to the candidate drugs. We identified 11 candidate drugs that inhibit BxPC3 cell lines 385 

in a dose dependent manner and exhibit low IC50 values (<100 μM/L, Figure S6, 386 

Figure 4A-4C), demonstrating their efficacies for inhibiting pancreatic cancer cell 387 

proliferation and potential for pancreatic cancer therapy in vivo. One drug for 388 

example, Vinorelbine, is a drug that has already been approved for non-small-cell 389 

lung cancer treatment [53]. In our study, Vinorelbine exhibited a low IC50 value of 390 

1.55 nM/L (Figure 4A). Conversely, some non-classical anticancer drugs also 391 

displayed acceptable suppressive effects on BxPC3. Additional drugs, including 392 

Saquinavir, which is mainly used with other medications for HIV/AIDS treatment or 393 

prevention [54], and Celecoxib, a drug mainly used for treatment of pain and 394 

inflammation in adults [55], showed IC50 values of 22.63 μM/L (Figure 4B) and 45.36 395 

μM/L (Figure 4C), respectively. These results indicate that our model has the capacity 396 

to predict proper drug candidates for disease therapy. 397 

Transcriptional expression analysis was conducted to validate our hypothesis that 398 

efficient drugs tend to perturb the master genes directly or through their targets. We 399 

first identified 1,335 differentially expressed genes (referred to as SAQDEGs) after 400 
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Saquinavir treatment (Figure S7A, Table S15). The pancreatic cancer master genes 401 

(n=849) that were most likely to be perturbed by Saquinavir were named SAQPEGs 402 

and further incorporated with their corresponding neighbor genes on the interactome 403 

(Table S15). Finally, a hypergeometric test was used to assess the overlap between 404 

SAQDEGs and SAQPEGs. These analyses revealed that the differentially expressed 405 

genes were significantly enriched for SAQPEGs (Figure 4D, P<0.01). Results for 406 

Celecoxib were similar to those for Saquinavir (Figure S7B, Figure 4E), suggesting a 407 

close relationship between genes perturbed by the efficient drugs and the local module 408 

of master genes. 409 

Finally, to demonstrate the reliability of the DDE approach for extensive 410 

screening of pancreatic cancer candidate drugs, we conducted a literature mining 411 

analysis to evaluate the association between the candidate drugs (top 10%) and 412 

pancreatic cancer based on our previous reports [56] (Methods). We observed that 8 413 

of the top 10 candidate drugs were anticancer agents that showed significant literature 414 

mining correlation scores with pancreatic cancer (P<0.01, Table S14). In addition, 415 

most anticancer candidate drugs (~85%) were significantly associated with pancreatic 416 

cancer (Figure 4F, Table S14), suggesting the sensitivity of this model. Interestingly, 417 

an analysis of the categories of these candidate drugs revealed that the largest 418 

proportion, 44/224 (19.6%), were assigned to Central Nervous System Agents 419 

(CNSA). For example, Celecoxib, which was sensitive to the BxPC3 cell lines as 420 

mentioned above (Figure 4C), also acts as a CNSA. In general, these results indicate 421 

that DDE provides a rational strategy for drug repurposing due to its capacity to 422 

quantify drug targeting tendencies on the interactome. 423 

 424 

 425 

 426 

Materials and methods 427 

Data set collection  428 

The DAGs for all diseases were obtained from four publicly available databases 429 

including KEGG Disease [16], Comparative Toxicogenomics Database [17], 430 

Therapeutic Target Database [18] and PharmGKB [19]. All disease names and their 431 

corresponding IDs were standardized by mapping to Medical Subject Headings 432 

ontology (MeSH; www.nlm.nih.gov/mesh/) and official gene symbols for these DAGs 433 

were retrieved from GeneCards (http://www.genecards.org/). We then conducted a 434 

disease filtering process to ensure disease specificity. We first removed diseases with 435 
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levels < 2 on the MeSH tree structures, such as “Nervous System Diseases” and 436 

“Cardiovascular Diseases”, as these disease types are too broad. Tanimoto similarity 437 

(ratio between the number of shared DAGs and the number of joined DAGs) was then 438 

computed for each disease pair and used to remove diseases showing high similarity 439 

(>0.50) with its descendant disease. The weighted directed PPI network was 440 

constructed using data from a previous study [20], which consisted of 13,684 441 

weighted interactions among 6082 proteins. The DAGs were then mapped to 442 

corresponding proteins in the PPI network, and those diseases with at least 20 DAGs 443 

in the human interactome were retained, for they are likely to induce a module on the 444 

network. As a result, we obtained 11,414 disease-gene associations between 274 445 

diseases and 2848 protein-coding genes. For each disease, we manually extracted 446 

drug-disease associations from the drug indication information in DrugBank [21]. In 447 

addition, we obtained drug-target interactions for all FDA-approved drugs from 448 

DrugBank. To construct a disease comorbidity network, we retrieved disease pairs 449 

with comorbidity relationships from a recent study [3] of 665 diseases and their 450 

corresponding genes extracted from Online Mendelian Inheritance in Man (OMIM) 451 

[22].   452 

 453 

The disease-specific network-oriented gene entropy approach (NOGEA) 454 

Construction of a flux matrix based on the expectation of the Bernoulli 455 

distribution. To construct the directed disease-specific gene networks, DAGs were 456 

mapped to the directed PPI network. For any given disease D, whose m associated 457 

genes can be mapped to the directed PPI network, an initial DAG vector ���� �458 

��1���,… ,�����, … , ������ was generated to represent the disease, where ����� is the �-th 459 

DAG. The directed shortest path between two DAGs of disease D was calculated 460 

using the “igraph” package [23] based on the R 3.32 environment (r-porject.org). For 461 

a given DAG pair ����� and �����, ���,�� is a random variable that obeys the Bernoulli 462 

distribution and represents the interaction or information transfer between node pair 463 

����� to �����. The distribution function of ���,�� is defined as 464 

�����,�� � �; ���,��, 	
 � �����	��,��

�1 
 ����	��,��
��
         (1) 465 

where � � 1 or 0, indicating whether signal transduction exists between node pair  466 

�����  and ����� , and �  is a scale parameter to adjust the likelihood for different 467 

distances. In addition, ���,�� is the directed distance between the given node pair ����� 468 
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and �����. It is the number of edges in a directed shortest path connecting them, and 469 

was calculated using the “igraph” package based on Dijkstra's algorithm, reflecting 470 

the possibility of the pairwise regulatory relationship from  ����� to �����. The details 471 

for determining the optimal scale parameter are presented in Supplementary Note 1. 472 

Therefore, the space of "possible" values assumed by ���, �	 is �0,1�, and if � � 1, 473 


��; ��	,
�, �� represents the likelihood that there is a signaling flux between the node 474 

pair. In the field of network communication, it is widely accepted that the success rate 475 

of signal propagation decays exponentially with increasing distance [24]. In addition, 476 

previous studies have demonstrated that exponential decay is a popular kernel to 477 

characterize the network influence between two nodes [25]. Previously, we used the 478 

exponential component to evaluate the association between two nodes in protein-479 

protein networks [26]. Thus, we believe that the success probability of the signal 480 

transduction between two proteins decays exponentially with the increase of their 481 

distance and the exponential component ���
���,��  is useful for representing the 482 

success probability. In this way, the stochastic information flux matrix for a given 483 

disease is obtained by a simplified formula Eq. (2)  484 

���; �, �	 � �
���	,
� � 1; ��	,
�, �	������ � ����
���,���
�����

         (2) 485 

And, �����,�� � 1; ���,��, 	� is equal to the expectation of ���,��, where 486 

� �
���	,
�; ��	,
�, ��� � ���
���,��                      (3) 487 

The expectation was subsequently used to estimate the distribution of signaling 488 

fluxing. For a given disease D with m associated genes, the biological signaling may 489 

flux between any node pair (DAG) ����� and �����. We then assumed that the edge (or 490 

the node pair) through which the signals fluxes is a random variable F, and its event 491 

space is  492 

���	,
�|1 � � � �,1 � � � �, � � �� � ����,��, … , ��	,
�, … , ���,�����       (4) 493 

where �
��,��

 represents signals that may be transferred from DAG  ����� to �����. 494 

Normalization of the fluxing matrix. The probability distribution of signal 495 

fluxing was estimated from 496 

��� � ���,��
 � �
� � � ������,��; ���,��, 	
� � �

� � ����	��,��           (5) 497 

where � is the normalization constant or partition function, and 498 

� � ∑ ∑ ����	��,��

���,���



���                      (6) 499 

to ensure that the sum of the probability is 1.  500 
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 501 

Definition and calculation of disease gene entropy. Based on the probability 502 

distribution of signal fluxing, we calculated the entropy for a given disease ���� in 503 

terms of the weighted Shannon entropy formula, which can be interpreted as the 504 

degree of disorder or complexity for the disease specific context,  505 

���� � � ∑ ∑ �����,���
��
�	

��������,���

�
��1,���

�
��1

���1�∑ ��
�	
�

��1

                (7) 506 

where �����  is the out-degree of node �����  in the directed PPI network, which was 507 

calculated using the “igraph” package. Interestingly, we found that the disease 508 

entropy ���� can be factorized as shown in Eq. (8),  509 

���� � ∑ ������
��1                            (8) 510 

where ����� is the gene entropy of gene �����, which is obtained by  511 

����� � �∑ �����,���
��
�	

��������,���

�
��1,���

���1�∑ ��
�	
�

��1

                     (9) 512 

Therefore, ����� is a sub-entropy of disease entropy ���� , and is considered as the 513 

“disorder contribution” to a disease specific context.  514 

Gene entropy value normalization. Through the above procedure, a gene 515 

entropy map was established for 293 diseases. For any given disease D, the gene 516 

entropy z-scores were calculated, making the gene entropy values of different diseases 517 

comparable,  518 

������ � ��
��������

����
���

�
����

                        (10) 519 

where  ��	���	  and !��	���	  are the estimation of the expectation and standard 520 

deviations of ����� for disease D. In addition, to assess the disturbance capability of a 521 

gene in a disease-specific network in a more intuitive manner, we calculated the rank 522 

score for all DAGs according to their entropy values, which range from 0 to 1 and 523 

reflect their likelihood as master genes.  524 

Rank score calculation of gene entropy. The gene entropy values for disease D 525 

were sorted in an ascending order, and a rank list was generated:  526 

             "#��� � �$%��1���� , … , $% ������� , … , $%������
�                (11) 527 

where the $% ��	���� is the rank value of �����. Note that those genes that possess equal 528 

entropy values have the same rank values. For example, if there are k genes 529 
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&�	�����,' , �	�����( possessing equal entropy values &�	�����, ' , �	�����(, their rank values 530 

were determined by equation (12): 531 

$% ��	������ � ' � $% ��	������ �
∑ !"�#

���
���

��
���

�
                   (12) 532 

where ����������� is the position of ��$���� in the ascending entropy value list. Based on 533 

the rank list, rank score vector "���� was generated by Eq. (13): 534 

"���� � � %&�'��������(�)��'�����
�*+�)��������(�)�����

�
�1���

                  (13) 535 

where ��)�"#����  and ��*�"#����  are the maximum and minimum of "#��� , 536 

respectively. 537 

 538 

Disease-gene classification based on the gene entropy value. To 539 

comprehensively explore the biological meaning of the entropy, we divided all DAGs 540 

into three groups based on their entropy values using an adaptive approach. Briefly, 541 

we created an entropy value curve for each disease, and identified two inflection 542 

points in the curve as thresholds. Specifically, for each disease D, we ranked each 543 

gene entropy value (�����) in ascending order. Then we mapped each entropy value 544 

onto a two-dimensional coordinate system such that the lowest entropy value (‘�1���’) 545 

became coordinate (1,�1���), the second lowest value became (2, �2���), and so on, until 546 

the maximum entropy value (‘��*+��� ’) was reached. Two inflection points, individually 547 

defined as the threshold points of most rapid increase from the low to the medium and 548 

from the medium to the high entropy values, were identified in the entropy value 549 

curve from the interval of 10th to 50th percentile and 51st to 90th percentile, 550 

respectively, of all entropy values. The entropy value corresponding to this threshold 551 

was used as an adaptive disease-specific classification threshold. Master genes of all 552 

diseases were then merged and adopted as the whole master gene set to explore their 553 

common biological meanings. Interim and redundant genes from different diseases 554 

were treated in the same way to obtain the whole interim and redundant gene sets, 555 

respectively. Therefore, some genes may belong to all three gene sets (master, interim 556 

and redundant), because they play different roles in distinct disease contexts. 557 

 558 

 559 

Disease comorbidity relationship evaluation 560 
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A real human disease comorbidity network (HDCN) was constructed in which nodes 561 

represented diseases and edges represented the reported comorbidity relationships, 562 

respectively. We then built five different types of inferred disease comorbidity 563 

networks to compare with the HDCN. First, a master gene disease network (M-GDN) 564 

was constructed, where edges linked two different diseases only if they shared at least 565 

one high entropy gene. We then constructed the redundant gene disease network (R-566 

GDN), the interim gene disease network (I-GDN), the whole genes-based disease 567 

network (A-GDN) and the traditional hereditary disease network (THDN), 568 

respectively. A Tanimoto coefficient was used to evaluate the similarity between 569 

different networks as shown in Eq. (15), 570 

+�,, -	 � |.�/�0.�1�|

|.�/�|�|.�1�|�|.�/�0.�1�|
                   (15) 571 

where A and B are different networks, ��·	 represents the edge set of a given network 572 

and |��·	|  is the number of edges in the net. To assess the significance of the 573 

similarity of different networks, the random disease genes network was randomly 574 

generated 1,000 times and compared with the HDCN using equation (15). In the 575 

random disease genes network, each disease involves a random sampling gene set of 576 

the same size as the disease in A-GDN. 577 

Previous research has demonstrated that cellular interaction links result in 578 

statistically significant comorbidity patterns [3]. Therefore, we believe that the 579 

directed interaction strength from the DAGs of one disease to another in the directed 580 

cellular network can reflect the causal relationship between the two diseases. To 581 

evaluate whether a causal relationship exists between two diseases, we estimated the 582 

significance of the interaction strength between the DAGs of the disease pairs using 583 

the Monte Carlo method. We first defined a raw causal relationship score (RCRS) for 584 

two given diseases: D1 and D2, 585 

"/"��01 1 02	 � ∑ 
���	,
�; ��	,
�� 4	2��,
2�� 5�
���	,
�; ��	,
���        (16) 586 

where 
���	,
�; ��	,
�� was calculated by equation (1), ���,��  is the directed distance 587 

between master gene pair ����1� and ����2�,   and 5�
���	,
�; ��	,
��� is an indicator 588 

function. In addition, 5�
	 was calculated as  589 

5�
	 � 61, 
 7 
3450, 
 9 
345
:                       (17) 590 

where �
���

 is a threshold, below which the probability was discarded and considered 591 

not contributive to the overall interaction and �
���

 was determined according to a 592 
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previous study  [27]. We then used a normalized causal relationship score (NCRS) to 593 

quantify the risk that disease �1 will induce disease 02. The ;/"� is defined in Eq. 594 

(18) 595 

;/"��01 1 02	 � 676#���8����9�676##���8����

:�676#���8����
          (18) 596 

where  �"/"��01 1 02		  and !�"/"��01 1 02		  are the estimation of the 597 

expectation and standard deviations of "/"� under the same condition, respectively. 598 

Then, Monte Carlo simulation was performed 1,000 times to estimate the 599 

 �"/"��01 1 02		  and !�"/"��01 1 02		  by randomly sampling the same 600 

number of genes as �1 and 02 . In each simulation, the values, the average and 601 

standard deviations of "/"�  were calculated. To assess whether the causal 602 

relationship from disease D1 to D2 was significant, the P-value of "/"��01 1 02	 603 

was further calculated as shown in Eq. (19): 604 

         
�"/"��01 1 02		 � ;���������������������� ���

<!�!�"��
         (19) 605 

where ����
�  is the total number of simulations, and *)=)'�%*(����>)=)'��18�2� is the 606 

number of random "/"� values that are larger than "/"��01 1 02	. The "/"� 607 

value for the significance of P-values was set to 0.01. Finally, for a disease pair D1 608 

and D2, if both "/"��01 1 02	 and "/"��02 1 01	 were significant (P<0.01), 609 

the two diseases were considered to be co-occurrent; whereas, if only one was 610 

significant (P<0.01), we determined that a causal relationship exists between the two 611 

diseases.  612 

 613 

Drug disturbance entropy (DDE) 614 

To quantify the effects of a drug on each disease based on the gene network entropy, 615 

we applied an ensemble approach, referred to as drug disturbance entropy (DDE), to 616 

evaluate the relationship between drug targets and disease proteins (encoded by 617 

disease genes) on the interactome. We first evaluated the linkage strength between 618 

each DAG and drug target on the interactome, which was then transformed to a 619 

probability. The perturbation value for each target and DAG was defined as the 620 

product of the strength probability and the DAG entropy, 621 

+�?,�� � 
���?,�� � 1;��?,��	 4 ��              （20） 622 

where �����,�� � 1; ���,��� represents the strength probability between drug target t and 623 

DAG �����, �� is the entropy value of DAG �����, and ��?,��  is the distance between 624 
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target t and DAG �����. The raw disturbance entropy, which represents an estimate of 625 

a drug’s therapeutic effects through distinct targets, was defined as  626 

�+�+, ����	 � ∑ +�5,	� 452@,	2A 5�+�5,	��                 (21) 627 

where���,�� is the perturbation entropy between target t and DAG �����, and 5�+�5,	�� 628 

is an indicator function as shown in Eq. (22) 629 

5�+�5,	�� � 61, +�5,	� 7 +345
0, +�5,	� 9 +345

:                    (22) 630 

where +BC?  is a cut-off threshold of the disturbance entropy. The threshold of the 631 

perturbation value was determined by extensive sampling, and relationships with a 632 

perturbation value below this threshold were discarded. The remaining values were 633 

summed as the raw DDE of the drug to the disease. The advantage of this procedure is 634 

that weak relationships are eliminated, which greatly reduces noise and improves the 635 

robustness of the measure. By sampling across the range of ���� choices, the 636 

threshold that led to the highest ROC AUC was chosen. We obtained the proper +BC? 637 

as 0.89 4 ��)�+�5,	�	 by evaluating the performance of predictions of drug-disease 638 

associations. Detailed information for determining +BC? is depicted in Supplementary 639 

Note 1. 640 

To avoid possible high DDE that may be caused by a large number of drug targets 641 

and DAGs, we converted raw DDE to a size-bias-free value using the mean and 642 

standard deviation of raw DDE modeled from sets of random molecules, so that the 643 

potential therapeutic effects between distinct drugs and diseases could be evaluated 644 

under the same metric. The raw drug disturbance entropy was transformed to a size-645 

bias-free score under formula (23)  646 

� �� , !���� � ����,������������,������
������,������               (23) 647 

where �  and ���� are the drug target set and the disease-associated gene set 648 

respectively; "�� � , !�����  and #�� � , !�����  are the estimation of the 649 

expectation and standard deviations of DDE under this condition, respectively. 650 

The estimation procedure of "�� � ,!����� and !��+�+, ����		 are as follows: For 651 

each pair of �+, ����	, we constructed 1,000 random set pairs with |+| targets and 652 

?����?  DAGs, preserving the degree distribution of the randomized targets and 653 

disease proteins. To avoid repeatedly choosing the same nodes during the degree-654 

preserving random selection, we used a binning approach as described in a previous 655 

report [4]. 656 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 / 32 

 657 

 658 

 659 

Conclusion 660 

Disease phenotypes typically result from interactions among multiple complex 661 

environmental and genetic factors. The occurrence, development and treatment of a 662 

disease usually involves hundreds of genes [29]. Presently, we proposed a network-663 

oriented gene entropy approach (NOGEA) for accurately inferring master genes that 664 

contribute to specific diseases by quantitatively calculating their perturbation abilities 665 

on directed disease-specific gene networks. Our results confirm that that master genes 666 

are enriched in gene sets that account for disease onset and development. This may 667 

imply that at a molecular level, those master genes with high entropy values are the 668 

underlying start-points of the disease state, impacting those redundant genes with low 669 

entropy through a directed disease-specific gene network. Interestingly, the 670 

comorbidity prediction model built using the master genes showed the best agreement 671 

with the independent clinical data set compared to the model established using the 672 

whole disease gene set. This indicates that our method may decrease the influence of 673 

noise and improve the efficiency for extracting more important genes from massive 674 

genomic data sets. Finally, through this method, 11 old drugs were newly identified 675 

and predicted to be effective for treating pancreatic cancer and then validated by in 676 

vitro experiments. However, it remains challenging to simulate the complex contents 677 

of the tumor microenvironment in vitro, making it difficult to comprehensively 678 

evaluate drug response using IC50. Therefore, despite our encouraging results, future 679 

work focusing on in vivo validation before clinical use is needed. 680 

Although the identified master genes may be important for elucidating 681 

mechanisms of disease progression and drug screening, we acknowledge that it is 682 

difficult to directly evaluate the accuracy of NOGEA for identifying master genes at 683 

this stage due to the lack of ‘gold standard’ reference data sets. Nevertheless, the 684 

availability of more personal genome data in the future will allow for construction of 685 

patient-specific networks, NOGEA will provide new opportunities to identify patient-686 

specific master genes and promote the development of personalized medicine. 687 

Emerging deep learning methods may become powerful techniques for exploring 688 

poly-pharmacy side effects [57] and discovering disease gene associations [58] from 689 

massive data sets [59]. Because gene entropy values can be used as novel disease 690 

feature data, we expect that integrating deep learning with NOGEA will significantly 691 
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improve the accuracy for determining disease-drug or disease-disease associations. 692 

Extending the systematic approach presented here from signal drugs to multiple drugs 693 

may pave the way toward a better understanding of drug combinations. 694 
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 870 

 871 

Figure legends 872 

Figure 1  Computation and characterization of network-oriented gene entropy in 873 

disease-specific networks  874 

A. Construction of directed disease-specific gene networks by mapping disease 875 

genes to the directed PPI network and normalizing the interaction strength. B. 876 

Calculation of the perturbation ability (gene entropy) of each gene. C. The Venn plot 877 

of the disease gene from different classes; Master: the master genes, Interim: the 878 

interim genes, Redundant: the redundant genes. D. Enrichment result (z-score) of 879 

master, interim and redundant genes in the context of OMIM, cancer and essential 880 

genes. E. Enrichment result (z-score) of master, interim and redundant entropy genes 881 

in the context of kinase, membrane receptor (MR), transcription factor (TF). F. 882 

Comparison of NOGEA performance with other methods for disease gene 883 

prioritization using AUROC and AUPRC. G. DAG entropy values versus their in-884 

degree in the primary directed PPI network. H. DAG entropy values versus their out-885 

degree in the primary directed PPI network. I. DAG entropy values versus their 886 

betweenness in the primary directed PPI network. J. DAG entropy values versus their 887 

degree (sum of in- and out-degree) in the primary directed PPI network. K. 888 

Assessment of the association between gene entropy and four commonly used 889 

network topology parameters. 890 

 891 

Figure 2  Exploration of disease comorbidity using network entropy 892 

A. Distribution of Tanimoto similarities between HDCN and other disease-disease 893 

networks (M-GDN, I-DGN, R-DGN, A-DGN, THDN and RGN). B. The inferred 894 

molecular basis of disease comorbidity relationships. Brown and blue nodes represent 895 

master genes inferred by NOGEA; green nodes represent diseases. C. The 896 

comorbidity of Parkinson’s disease. In this figure, the width of the edge represents the 897 

likelihood of disease comorbidity, arrows represent the inferred causative disease-898 

disease associations, and the color of the nodes depicts the disease category from 899 

MESH. D. The molecular basis of the comorbidity between Parkinson’s disease and 900 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.019901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 / 32 

alcoholism. The nodes represent the master genes of the disease and the directed links 901 

describe the direction from the directed PPI network. 902 

 903 

Figure 3  Drug-disease association inference based on the disease gene entropy 904 

A. The hits number by known DDIs in each ranked drug-disease pair bin. B. The 905 

correlation between average DDE score in each bin and the hits enrichment fold for 906 

known DDIs. C. AUROC for drug-disease predictions using different methods. D. 907 

The interaction between drug targets and pancreatic cancer genes. The width of the 908 

links, the shade of the pancreatic cancer genes nodes, and the size of the node 909 

describe the interaction strength, entropy value, and degree of each node in the human 910 

interactome, respectively. E. The entropy value rank plot of pancreatic cancer genes 911 

(right); the heat map describes the shortest distance between the drug targets and 912 

pancreatic cancer genes of four drugs (left). 913 

 914 

Figure 4  Screening of potential efficient drugs for pancreatic cancer treatment 915 

A-C. Cell inhibition rate curves against BxPC3 for Vinorelbine, Saquinavir and 916 

Celecoxib, respectively. D. The number and significance of overlapped genes 917 

between differentially expressed genes and the inferred effect genes after Saquinavir 918 

treatment. E. The number and significance of overlapped genes between the 919 

differentially expressed genes and the inferred effect genes after Celecoxib treatment. 920 

F. The overlapped drug number between each category and the top 10% of efficient 921 

drugs. Red bar: number of literature mining significant drugs; AIA: Anti-922 

Inflammatory Agents, AIANS: Anti-Inflammatory Agents (Non-Steroidal); ANA: 923 

Antineoplastic Agents; ANIA: Antineoplastic and Immunomodulating Agents; ARA: 924 

Antirheumatic Agents; CVA: Cardiovascular Agents; CNSA: Central Nervous 925 

System Agents; HTA: Hypotensive Agents; PNSA: Peripheral Nervous System 926 

Agents; SSA: Sensory System Agents. 927 

 928 

Supplementary material  929 

Figure S1  Distribution of gene entropy values for all DAGs 930 

Histogram plots showing the distribution of gene entropy values for all DAGs before 931 

(left) and after (right) normalization. The x-axis shows the range of gene entropy 932 

values, and the y-axis shows the count of genes possessing different entropy values.  933 

 934 

Figure S2  KEGG pathway enrichment results 935 
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X-axis: the top 20 significantly enriched ‘KEGG pathway terms’ of the master genes; 936 

y-axis: significance of the enrichment [-log(P-value)]. 937 

 938 

Figure S3  The disease-gene enrichment analysis for different classifications  939 

Enrichment results (z-score) of master, interim and redundant genes in the context of 940 

gene sets for critical (A), redundant (A), indispensable (B) and dispensable (B) genes. 941 

 942 

Figure S4  The property of the disease-gene entropy concept 943 

A. The correlation between entropy value and topology property for each disease. In 944 

this figure, each point represents a disease. The coordinate of each point represents 945 

the Pearson's correlation coefficient (PCC) for the gene entropy values versus the 946 

in-degree (x-axis) and the out-degree (y-axis) of the disease-associated genes 947 

(DAGs). The size and the color represent PCC for the gene entropy values versus 948 

degree (sum of in- and out-degree) and betweenness, respectively. B. The 949 

distribution and cumulative probability of the coefficient of variation for the 950 

DAGs among different disease contexts.  951 

 952 

Figure S5  Rank scores for the top 20% of high entropy genes for three diseases  953 

Bar plots show the rank scores of the top 20% of high entropy genes for systemic 954 

lupus (CD4 cells) (top), systemic lupus (B cells) (middle) and rheumatoid arthritis (B 955 

cells) (bottom). Red bars represent the rank scores of the core genes retrieved from 956 

NIA. 957 

 958 

Figure S6  The dose–response curve of the BxPC3 cell of 8 drugs 959 

A-H. The dose–response curve of BxPC3 cells for 8 drugs that have not been 960 

associated with pancreatic cancer. X-axis: the concentration of each drug; y-axis: the 961 

percent inhibition rate of the BxPC3 cells. 962 

 963 

Figure S7  The heat map of microarray experiment results 964 

A. Differentially expressed genes between the Saquinavir (saq1, saq2) treated BxPC3 965 

cell group and the control group (con1, con2). Color represent the relative 966 

expression of the differentially expressed genes. B. Differentially expressed genes 967 

between the Celecoxib (cel1, cel2) treated BxPC3 cell group and the control group 968 

(con1, con2). 969 

 970 
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Figure S8  Estimation of the scale parameter ω 971 

Selected parameters (ω=1.1) that showed the highest mean AUROC and were thus 972 

used for further analysis. 973 

 974 

Figure S9 Characterization of gene entropy features with different scale 975 

parameters ω 976 

A. Normalized probability of different distances with scale parameter ω ranging from 977 

0 to 4. B. Coronary disease gene entropy values with different scale parameters, 978 

ω=0 (top) and ω=10 (bottom). C. Coronary disease gene entropy values with scale 979 

parameter ω ranging from 0 to 10. 980 

 981 

Figure S10 Performance of the drug-disease relationship predictions using 982 

different scale parameters 983 

The box plot shows the AUROC for drug-disease predictions using different scale 984 

parameters. To account for the heterogeneous degree distribution of the directed 985 

interactome, we preserved the degree of randomized targets and disease genes. 986 

 987 

Table S1  Full list of disease-gene associations used in this study  988 

Entropy value: the entropy value calculated using NOGEA in a specific disease; rank 989 

score: the rank score for each gene entropy in a specific disease. This table also 990 

includes topology parameters of the DAGs in the directed global PPI network, i.e., the 991 

undirected degree, the in-degree, the out-degree and the betweenness centrality. In 992 

addition, this list includes the mean and standard deviations of the entropy among 993 

different diseases for a disease gene, the number of the gene-associated diseases and 994 

the coefficient of variation of the disease gene among different diseases. The evidence 995 

for the disease-gene associations was retrieved from CTD, TTD and PharmGKB. 996 

 997 

Table S2  List of the directed protein-protein interactions 998 

The list was obtained from a recent study as described in the paper, and each row 999 

presents a directed edge. 1000 

 1001 

Table S3  Classification of the disease-associated genes 1002 

This list includes all the disease-gene relations used in this study. Genes of each 1003 

disease were assigned to master, interim and redundant groups according to their 1004 

entropy values. 1005 
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 1006 

Table S4  Gene sets used for enrichment 1007 

This table lists all 8 different gene sets used for enrichment analysis, which contains 1008 

1707 OMIM genes, 2186 predicted cancer genes, 1750 essential genes, 1551 1009 

transcription factors, 366 kinases, 249 membrane receptors, 1336 druggable genes and 1010 

982 FDA targets, respectively. All gene sets were obtained from a recent study 1011 

(PMCID: PMC4983807). 1012 

 1013 

Table S5 Inferred comorbidity relationships of disease pairs from the shared 1014 

genes 1015 

This table lists all inferred comorbidity relationships involving master genes. As 1016 

described in the paper, if two diseases shared a master gene, they were considered to 1017 

be co-morbid diseases. Shared master genes are also listed. 1018 

 1019 

Table S6 Inferred comorbidity relationships of disease pairs from the interacting 1020 

gene pairs 1021 

This table lists all inferred comorbidity relationships involving master genes. As 1022 

described in the paper, if master genes of two diseases directly interact with each 1023 

other on the interactome, they were treated as co-morbid diseases. Interacting master 1024 

gene pairs are also listed. 1025 

 1026 

Table S7 Inferred causal or co-occurrence relationships between Parkinson’s 1027 

and other diseases. 1028 

Results of the inferred relationships correspond with Figure 2C. This table lists all 1029 

inferred causal or cooccurrence relationships between Parkinson’s disease and other 1030 

diseases. The validated relationships are marked as “YES”. The “positive sim” is the 1031 

likelihood from “V1” to “V2” and the “negative sim” is the likelihood from “V2” to 1032 

“V1”. 1033 

 1034 

Table S8 Information for all FDA-approved drugs that were used in the present 1035 

study  1036 

This table lists all FDA approved drugs that were used in the present work and their 1037 

corresponding IDs in other databases. 1038 

 1039 

Table S9  List of drug-target relationships used in the present study  1040 
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This table lists all FDA drug-target relationships used in this study. 1041 

 1042 

Table S10 Drug-disease information 1043 

This table includes FDA drug indications, drug names and corresponding MESH IDs 1044 

inferred from the indication information. 1045 

 1046 

Table S11 Gene rank list for three diseases  1047 

This table lists the gene rank scores and core genes for systemic lupus (CD4 cells), 1048 

systemic lupus (B cells) and rheumatoid arthritis (B cells). 1049 

 1050 

Table S12 Drug disturbance entropy (DDE) for each FDA-approved drug 1051 

associated with three diseases 1052 

This table lists the value of DDE calculated using NOGEA for each FDA-approved 1053 

drug associated with the systemic lupus (CD4 cells), systemic lupus (B cells) and 1054 

rheumatoid arthritis (B cells). 1055 

 1056 

Table S13 FDA-approved drugs and their categories 1057 

This table lists all present FDA approved drugs and their corresponding categories 1058 

retrieved from the DrugBank database. 1059 

 1060 

Table S14 The DDE for each FDA-approved drug associated with pancreatic 1061 

cancer and the literature mining results  1062 

This table lists all the DDE scores calculated using NOGEA. The result of literature 1063 

mining contains the number of articles derived by searching each drug name, 1064 

“pancreatic cancer” as well as both search terms, respectively. The P-values were 1065 

assessed using the hypergeometric test. 1066 

 1067 

Table S15 Differentially expressed genes and the predicted effected genes after 1068 

treatment with Saquinavir and Celecoxib.  1069 

CELDEG: the differentially expressed gene after treatment with Celecoxib. CELPEG: 1070 

the predicted effected gene after treatment with Celecoxib. SAQDEG: the 1071 

differentially expressed gene after treat with Saquinavir. SAQPEG: the predicted 1072 

effected gene after treatment with Saquinavir. 1073 

 1074 

Table S16 Release versions of the database used in this study.  1075 
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This table lists all the databases and corresponding versions that were used in this 1076 

study. 1077 
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