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Abstract

Background: The identification of genes associated with specific experimental conditions,
genotypes or phenotypes through differential expression analysis has long been the
cornerstone of transcriptomic analysis. Single cell RNA-seq is revolutionizing transcriptomics
and is enabling interindividual differential gene expression analysis and identification of
genetic variants associated with gene expression, so called expression quantitative trait loci
at cell-type resolution. Current methods for power analysis and guidance of experimental
design either do not account for the specific characteristics of single cell data or are not
suitable to model interindividual comparisons.

Results: Here we present a statistical framework for experimental design and power analysis
of single cell differential gene expression between groups of individuals and expression
quantitative trait locus analysis. The model relates sample size, number of cells per individual
and sequencing depth to the power of detecting differentially expressed genes within individual
cell types. Power analysis is based on data driven priors from literature or pilot experiments
across a wide range of application scenarios and single cell RNA-seq platforms. Using these
priors we show that, for a fixed budget, the number of cells per individual is the major
determinant of power.

Conclusion: Our model is general and allows for systematic comparison of alternative
experimental designs and can thus be used to guide experimental design to optimize power.
For a wide range of applications, shallow sequencing of high numbers of cells per individual
leads to higher overall power than deep sequencing of fewer cells. The model is implemented
as an R package scPower.

Keywords: experimental design, single cell genomics, eQTL, differential gene expression
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Background

From the early days of microarrays, one of the main goals of transcriptomic profiling has been
to identify changes of gene expression levels (differentially expressed genes; DEGs) between
sets of samples, e.g. patients and healthy controls [1-5]. With the advent of single cell RNA-
sequencing (scRNA-seq) [6—-10], the sets of samples denote sets of cells of a particular type.
In the context of single cell genomics, cell types or states describe the cellular phenotype in
terms of its expression profile and are typically derived from the data [11]. Here we focus on
a discrete notion of cell types that is typically derived by clustering [12], potentially on different
levels of granularity [13]. Single cell differential gene expression analysis typically seeks to
identify genes whose expression levels are markedly different between sets of cells of different
cell types [14—-16]. Here, we focus on the identification of cell type specific DEGs between sets
of samples from different experimental conditions or genotypes, each measured at the single
cell level, which has been identified as one of the grand challenges for single cell data analysis
[17].

Expression quantitative trait locus (eQTL) [18—21] analysis is a special case of differential
gene expression analysis where gene expression is combined with genetic information. A
genetic variant associated with the transcription of a gene is called eQTL and allows for
gaining insights into the molecular underpinnings of trait associated genetic variants. Using
scRNA-seq, it is now possible to identify eQTLs in a cell type specific manner [22—-25] and
large scale efforts are currently underway [26]. In contrast to differential expression methods,
linear regression models are typically used for the detection of eQTLs even in RNA-seq data
sets [20,27], after transforming the count data to a normal distribution.

For the experimental design of transcriptome studies, researchers typically need to decide on
sample sizes and technical parameters given certain constraints on resources. Constraints
typically arise from the limited availability of samples or from the costs of the experiment.
Power analysis should be used to make informed decisions about these parameters based on
the statistical power to detect DEGs and eQTLs given certain assumptions about the expected
effect sizes. The experimenter can determine either the power to detect DEGs and eQTLs,
the required minimal sample size or the minimal effect size by keeping the other two
parameters fixed based on prior knowledge or explicit assumptions. Power analysis is always
tightly linked with the statistical testing procedure. Several methods have been established
based on the theory of linear regression models [28] and the control of the false discovery rate
[29-32] for microarray studies. For RNA-seq studies, power analysis methods based on the
theory of negative binomial count regression [33,34], other parametric models [35-37], or
simulations [38,39] have been proposed and benchmarked [40]. These power analysis
methods can be used in combination with differential expression tools based on negative
binomial count regression such as DESeq2 [5] or edgeR [41], which also perform well on
scRNA-seq data [16,42—-44]. Therefore, in principle methods for RNA-seq power analysis
could also be applied to compute power or minimally required sample sizes for given effect
sizes for single cell experiments.

To unlock RNA-seq power analysis methods for scRNA-seq data, the following aspects have
to be addressed: 1) in interindividual comparisons, the variables of interest (e.g. genotype or
phenotype) are measured at the individual level, whereas the expression levels are measured
in many cells for each individual, and 2) scRNA-seq data is sparse, so only the most highly
expressed genes are detectable. Here we address these aspects by formulating the
identification of cell type specific DEGs and eQTLs as a (negative binomial) regression on
‘pseudo-bulk’ counts. This is allowing for the application of established power analysis
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methods. These are combined with a model for the probability of detecting cell type specific
gene expression as a function of the number of cells of a certain type and the number of reads
sequenced per cell. This allows for answering additional experimental design questions
specific to single cell assays: 1) how many cells per individual are required? And 2) how deep
should each cell be sequenced?

Previously, several individual aspects of single cell experimental design have been addressed.
The comparison of sensitivity and accuracy of different technology platforms [45-47] has led
to recommendations of sequencing depth. The minimal number of cells sequenced to observe
a rare cell type with a given probability can be modelled with a negative binomial distribution
[48,49] or multinomial distribution [50]. PowsimR [44] is a simulation based tool allowing for
power analysis for the detection of DEGs between different cell types. First recommendations
for the experimental design of interindividual comparisons with single cell resolution are
currently being developed [51] in the context of eQTL analyses. However, the general question
of interindividual comparisons between samples has not been addressed by these
approaches. Moreover, handling more complex designs is not readily accessible for
simulation based methods, but can be achieved with analytical power analysis methods.
Here we provide a unified resource for experimental design considerations of interindividual
comparisons including the power to detect rare cell types as well as the power to detect DEGs
and eQTLs. We derive data driven priors on expression distributions from single cell atlases
of three different tissues, two from published studies [52,53] and a newly generated data set.
We combine these with cell type specific priors for effect sizes based on DEGs and eQTL
genes from bulk RNA-seq experiments on cells sorted by fluorescence activated cell sorting
(FACS). The four DE studies [54-57] and one eQTL study [58] cover different biological
applications to diseases such as asthma and cancer and to ageing. Together, this will enable
researchers to design experiments across tissues with realistic effect size estimates. Our
model provides the basis for rationally designing well powered experiments, increasing the
number of true biological findings and reducing the number of false negatives. We provide our
model and parameters as an open source R package scPower on github
https://github.com/heiniglab/scPower. This also comprises a shiny app with a user-friendly
graphical user interface, which is additionally available as a web server at
http://scpower.helmholtz-muenchen.de/. All code to reproduce the figures of the paper is
provided in the package vignette.

Results

Power analysis framework for scRNA-seq experimental design

For the power analyses we assume a gene x cell count matrix, based on UMI counts. Cells
are annotated to an individual and a cell type or state. For the sake of simplicity, we will only
consider discrete cell types / states. These can be derived by clustering and analysis of marker
genes, potentially considering multiple levels of resolution [13] or using the metacell approach
[59]. Individuals are annotated with different experimental factors. For the discussion we will
consider a simple two group comparison, but more complicated experimental designs, which
can be analysed with generalized linear models, can be treated analogously. To determine
cell type specific differential expression between samples, gene expression estimates for each
of N individuals (samples) and each cell type are required. We consider a ‘pseudo-bulk’
approach here, where cell type gene expression levels for each individual are approximated
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as the sum of UMI counts over all cells of the cell type. Three parameters determine the power
and also the cost of a scRNA-seq experiment: 1) the number of samples s, 2) the number of
cells per sample 7., and 3) the number of reads sequenced per cell r. In order to determine
the power of the experiment, we either need to make explicit assumptions or use prior
knowledge about unknown experimental parameters. Figure 1 shows the dependency
between different modifiable experimental parameters, unknown quantities and the expected
outcomes. In our framework these dependencies are modelled as follows.

Po = Pe(n&nc,r, ®e) *Pp(n37nC7T7 @p) (1)

Overall detection power F»: The expected number of detected DEGs depends on one hand
on the probability to measure each of the relevant genes, based on their assumed expression
levels. On the other hand it depends on the statistical power to detect DEGs of assumed effect
sizes (see Methods, section Overall detection power).

Expression probability Pe: In scRNA-seq experiments individual cells are typically not
sequenced to saturation, leading to sparse count matrices, where only highly expressed genes
are detected with counts greater than zero. The overall number of transcripts as well as the
number of transcripts of individual genes can be highly cell type specific [60]. We model the
cell type specific gene detection probabilities depending on the number of reads sequenced
per cell and on the number of cells of the cell type (see Methods, section Expression probability
model).

DE / eQTL power Py We use analytical power calculations based on linear or negative
binomial regression models. The power of the statistical test for differential expression
depends primarily on the number of samples and on the assumed effect sizes. In addition, the
power of negative binomial regression models also depends on the expression level, with
more power for highly expressed genes and less power for genes with high dispersion. The
power also indirectly depends on the number of detectable genes, as this influences the
multiple testing adjusted significance levels required in the power analysis. If expression
quantitative trait loci are analysed instead of differential expression, the statistical power to
detect eQTL genes is based on a linear model of transformed count data. Thus, in this model,
the power depends only on the effect sizes and not on the individual gene expression levels
(see Methods, section Power analysis for differential expression and Power analysis for
expression quantitative trait loci).

Cell type detection probability: In exploratory analyses the goal is to observe as many cell
types as possible. The power to observe rare cells depends on the (possibly unknown)
frequency of this cell type and primarily on the number of cells sequenced per sample.
Additionally, in the comparison between samples, it also depends on the total number of
samples, as the rare cells need to be observed in all of the samples with certain minimal
probability. We use negative binomial models to determine cell type detection probabilities
(see Methods, section Frequency of the rarest cell type).
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Figure 1: Dependence of experimental design parameters. The figure illustrates how the cost
determining factors (purple: number of samples, number of cells per sample and number of
reads per cell) are related to detection power (blue) and expected number of observations
(orange). In addition, power and expected observations also depend on prior knowledge or
assumptions (green).

scPower accurately models the number of detectable genes per cell type

In scRNA-seq experiments typically only highly expressed genes are detected with counts
greater than zero [45—47]. The number of detectable genes per cell type depends on the
number of reads sequenced per cell [46]. Here we consider the sum of all UMI counts per
gene per cell type per individual as the gene expression measurement. Therefore, the number
of detectable genes per cell type also depends on the number of cells of the cell type per
individual. In the following sections, we specify a model for the number of detectable genes
parameterized by the number of cells per cell type and individual and by the number of reads
sequenced per cell. We fit the model using a scRNA-seq data set of PBMCs from 14 healthy
individuals measured with 10X Genomics (Additional file 1: Figure S1, Table S1).

In our approach, we model UMI counts per gene in a particular cell type and individual as
independent and identically distributed according to a negative binomial distribution. The
mean of the distributions across all genes is modeled as a mixture distribution with a zero
component and two left censored gamma distributions to cover highly expressed genes (see
methods and Additional file 1: Figure S2). Subsampling the read depth of our data shows
that the parameters of the mixture distribution are linearly dependent on the average count of
unique molecular identifiers (UMI) (Additional file 1: Figure S3). Average UMI counts are
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related to the average number of reads mapped confidently to the transcriptome, which are in
turn related to the number of reads sequenced per cell (Additional file 1: Figure S$4). Taken
together, we now have a model of per cell read counts across all genes parameterized by the
number of reads sequenced.
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Figure 2: Expression probability model parameterized by UMI counts per cell. Plot A and B
show the observed (solid) number of expressed genes and the number of expressed genes
expected under our model (dashed) on the y-axis and the number of cells per cell type (cell
type indicated by the point symbol) on the x-axis for Run 5 of the PBMC data set (Additional
file 1: Table S1). The data is subsampled to different read depths (indicated by the color).
Similarly, plot C and D show expressed genes for the three batches of the Ye data set. The
definition for an expressed gene is based on a flexible user defined cutoff. Here it was
parameterized: in Figure A and C, a gene is called expressed with count > 10 in more than
50% of the individuals, in Figure B and D, count > 0 in more than 50% of the individuals.

Next, let us consider the count distributions of a particular gene in a particular cell type and
individual. Based on the negative binomial distribution we can relate the distribution of UMI
counts per cell to the distribution of the sum of UMI counts. We determine the expression
probability for a gene using its expression rank to first compute the mean of the distribution of
the sum of UMI counts based on the quantiles of our gamma mixture model and then use this
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distribution to compute the probability that the observed count is greater than a user defined
minimal count threshold in at least a given number of individuals. Summing up these gene
expression probabilities allows for modelling expected number of expressed genes. Figure 2
shows the number of expressed genes across cell types dependent on the number of cells of
the cell type for varying read depth based on subsampling of our data. The observed numbers
(solid lines) are closely matched by the expectation under our model (dashed lines) for genes
with counts greater ten (Figure 2A) and with counts greater than zero (Figure 2B). While
Figure 2A-B shows the results only for Run 5 of the PBMC data set, the fits of all runs can be
found in Additional file 1: Figure S5,S6.

To validate our model, we applied it on a second PBMC data set [22] that was not used during
parameter estimation (Figure 2C-D). The validation data set was measured at smaller read
depth of 25,000 reads per cell and for a different sample size (batch A and B with 4 individuals
and batch C with 8 individuals). The observed numbers are closely matched by the expectation
under our model, which demonstrates that it can generalize well between data sets and
different experimental parameters. Taken together, we have now a general model for the
expected number of expressed genes, which is parameterized by the number of cells per cell
type, the number of reads per cell. Of note, gene expression distributions are cell type specific
and the model parameters have to be fitted from suitable pilot experiments, for instance from
the human cell atlas project [61].

scPower models the power to detect differentially expressed genes and
expression quantitative trait genes

Negative binomial regression is a powerful approach for DEG analysis of both RNA-seq and
scRNA-seq [16,42,43,62] and well tested tools such as DESeq [5,63] or EdgeR [41] are
available. Here we use analytical methods for the power analysis of negative binomial
regression models [64]. These power calculations are exact when analysing the data with
models based on negative binomial regression, but DEG analyses with other tools might lead
to different results. Power to detect an effect of a given effect size (log fold change) depends
on the sample size, on the mean expression level and on the significance threshold alpha.
The large number of parallel tests performed in a DEG analysis requires an adjustment of the
significance level to avoid large numbers of false positive results. This can be achieved by
controlling the family-wise error rate (FWER: probability of at least one false positive) using
the Bonferroni method [65]: o = 0.05 / number of genes to guarantee FWER < 0.05. To obtain
a range of typical effect sizes and mean expression distributions in specific immune cell types,
we analysed several DEG studies based on FACS sorted bulk RNA-seq [54,55]. Combining
our model for gene expression in scRNA-seq experiments with this power analysis of DE
genes, we can calculate the overall detection power of DE genes in a scRNA-seq experiment
as the product of the expression probability of the gene and the DE power for the gene (see
Formula 1). To determine the expression probability for a gene, we use its expression rank
from prior experiments to first compute the probability that the gene has more than a minimal
number of counts in a specific cell type in at least a given number of individuals, as described
above. Gene specific overall power is then derived based on the gene specific expression
probability and the power to detect the gene as a DE gene based on fold changes from prior
DEG studies.

Figure 3A shows that the overall detection power reaches up to 74% for fold changes from a
study comparing CLL subtypes iCLL vs mCLL [54], when using 3,000 measured cells per cell
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type and individual and a total balanced sample size of 20, i.e. 10 individuals per group. The
original study had a sample size of 6 individuals and detected 84 DEGs with median absolute
log fold change of 2.8. For this parameter combination and prior, the DE power would reach
even 96% for all DE genes of the study, however, only 74% are likely to be expressed. Overall,
the DE power increases with higher number of measured cells and higher sample sizes, while
the expression probability is mainly influenced by the number of measured cells. The influence
of the sample size is not so pronounced in this example due to the small sample size of the
reference study, for other reference studies it is more visible (Additional file 1: Figure S10).
Notably, increasing the number of measured cells per individual and increasing the sample
size both result in higher costs. In the next section, we show how a restricted budget affects
the decision on the best parameter combinations to maximize the detection power. Especially,
an increase in the sample size can generate high additional costs.

Similar detection ranges are found for the comparison of other CLL subtypes in the same
study, while the detection power in a study of systemic sclerosis vs control were much lower
with values up to 26% (Additional file 1: Figure $S10). Smaller absolute fold changes in this
study decrease the DE power and therefore also the overall detection power.

A Expression probability DE power Detection power

.
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Probability

100 200 500 1000 1500 2000 2500 3000 100 200 500 1000 1500 2000 2500 3000 ~ 100 200 500 1000 1500 2000 2500 3000
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Figure 3: Expression probability, DE/eQTL power and overall detection power. Power
estimation using data driven priors for A. DE genes and B. eQTL genes dependent on the total
sample size and the number of measured cells per cell type. The detection power is the
product of the expression probability and the power to detect the genes as DE or eQTL genes,
respectively. The fold change for DEGs and the R? for eQTL genes were taken from published
studies, together with the expression rank of the genes. For A, the Blueprint CLL study with
comparison iCLL vs mCLL was used, for B, the Blueprint T cell study. The expression profile
and expression probabilities in a single cell experiment with a specific number of samples and
measured cells was estimated using our gamma mixed models, setting the definition for
expressed to > 10 counts in more than 50% of the individuals.

As a second application scenario, we analysed expression quantitative trait locus (eQTL)
studies of specific immune cells [58]. The analysis of T cells in the study had a sample size of
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192 and identified 5132 eQTL genes with a median absolute beta value for the strongest
associated SNP of 0.89. Due to the very large number of statistical tests (~millions), simple
linear models are usually applied to transformed read count data, as they can be computed
very efficiently. Therefore, power calculations here are based on linear models [28] and the
power is independent of the mean expression level.

Overall detection power for eQTL genes (Figure 3B) is more restricted by the expression
probability of the genes than the eQTL power. The eQTL power increases with larger sample
sizes, but decreases slightly with larger numbers of measured cells per individual and cell
type. This is due to increased expression probability, which leads to an increased overall
detection power, but also to a lower significance threshold due to the FWER correction
(dividing by the number of expressed genes). This slightly reduces the eQTL power (Figure
3B). The same effect occurs for the DE power, but a higher number of measured cells
generate higher mean expression values in the pseudo bulk data, which increase the power
and counteract the negative effect of a more stringent significance threshold. In contrast, the
eQTL power is modelled independently of the mean expression, so a higher number of genes
has a slightly negative effect on eQTL power, but not on overall detection power. A maximal
detection power of 68% and 69% was found for a sample size of 200 individuals and 3,000
measured cells per cell type and individual in the Blueprint eQTL data sets (Additional file 1:
Figure $10).

scPower optimizes the experimental parameters to maximize the
detection power for a given budget

With this model for power estimation in DE and eQTL single cell studies, we are now able to
optimize the experimental design for a fixed budget. The overall cost function for a 10X
Genomics experiment is the sum of the library preparation cost and the sequencing cost (see
Methods). The library preparation cost is defined by the number of measured samples and the
number of measured cells per sample, while the sequencing cost is defined by the number of
sequenced reads, which depends also on the target read depth per cell. Additional file 1:
Figures $11, $12 show the three parameters maximizing detection power, given a fixed total
budget. Figure 4 shows the optimization with expression priors from our PBMC data set,
measured with 10X Genomics.

We systematically investigated the evolution of optimal parameters for increasing budgets in
four artificial scenarios for DEG (Figure 4A) and eQTL analysis (Figure 4B), four scenarios
based on prior DEG (Figure 4C) and two scenarios on prior eQTL (Figure 4D) experiments
on FACS sorted cells. The artificial scenarios reflect combinations of effect sizes (high, low)
and expression levels (high, low) of DEGs and eQTL genes. We observed that the number of
cells per individual is the major determinant of power, as this is the variable that is either
directly set to maximum values or increased first in the optimization (Figure 4). This effect is
least pronounced in the artificial eQTL scenario (Figure 4B), where small effect sizes require
large sample sizes. For most DEG scenarios, the number of reads per cell is increased before
increasing the sample size (Figure 4A,C), indicating that strong effects can be detected with
relatively few samples, while the detection of expression required deeper sequencing. For
eQTL scenarios first increasing the sample size is more beneficial than increasing the read
depth (Figure 4B,D), which remains relatively low (10,000 reads per cell).

In the cost optimization, we also took into account that increasing the number of cells per lane
leads to higher numbers of doublets, droplets with two instead of one cell, which need to be

10
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excluded from the analysis [22]. However, doublet detection methods such as Demuxlet [22]
and Scrublet [66] enable faithful detection of those. We validated the doublet detection and
donor identification of Demuxlet using our PBMC data set by comparing the expression of sex
specific genes with the sex of the assigned donor (Additional file 1: Figure $S1B) and found
high concordance after doublet removal, also for run 5, which was overloaded with 25000
cells. The increase of the doublet rate through overloading was modeled using experimental
data [67]. However, we observe in our own data set as well as in published studies [22,23]
slightly higher doublet rates. Therefore, we consider the modeled doublet rate as a lower
bound estimation. With a high detection rate of doublets, overloading of lanes is highly
beneficial, since larger numbers of cells per individual lead to an increase in detection power,
while not causing additional library preparation costs. Although, overloading leads to a
decreasing number of usable cells and a decreasing read depth of the singlets, as doublets
contain more reads, the overall detection power still rises strongly for both DE and eQTL
studies.
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Figure 4: Optimal parameters for varying budgets and 10X Genomics data. The figure shows
the maximal reachable detection power (y-axis, first column) for a given experimental budget
(x-axis) and the corresponding optimal parameter combinations for that budget (y-axis, second
till fourth column). The colored lines indicate different effect sizes and gene expression rank
distributions. Subplots A-B visualize different simulated effect sizes and rank distributions
(simulation names see text) for DEG studies (A) and eQTL studies (B) with models fitted on
10X PBMC data. Subplots C-D visualize effect sizes and rank distributions observed in cell
type sorted bulk RNA-seq DEG studies (C) and eQTL studies (D) with model fits analogously
to A-B.
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scPower generalizes across tissues and scRNAseq technologies

Our power analysis framework is applicable on data sets for other tissues besides PBMCS
and for other single cell technologies besides 10X Genomics. We demonstrate this with a lung
cell data set measured by Drop-seq [53] and a pancreas data set measured by Smart-seq2
[52]. The model of the expression probability needs to be adapted slightly for other
technologies, while the DE/eQTL power calculation remains the same as for 10X.
Smart-seq? is a plate-based technology, generating read counts from full-length transcripts.
Therefore, we express the count threshold for an expressed gene relative to one kilobase of
the transcript. We fitted the expression model including the transcript length in the size
normalization factor of the count model. Additionally, we modelled the doublet rate as a
constant factor. In contrast, Drop-seq is a droplet-based technology similar to 10X Genomics
and exactly the same model can be used. However, as we are lacking the experimental data
to fit an appropriate model for overloading, we set the doublet rate again constant. With these
adaptations our expression probability model works well for other tissues and technologies
(Additional file 1: Figure S13).

Analogously to Figure 4, the evolution of parameters for simulated priors (Figure 5A,B) and
observed priors (Figure 5C,D) was evaluated across the other technologies. Similar trends
are observed for the Drop-seq lung data as for the 10X PBMC data set in the artificial scenarios
(Figure 5A) as well as for observed priors from cell type sorted bulk studies (Figure 5C). In
both cases, the number of cells per individual is the major determinant of power. Overall, lower
power is observed for the Smart-seq2 pancreas study (Figure 5B,D). In contrast to 10X and
Drop-seq, the optimal number of reads per cell is much higher and the number of cells per
individual and sample size is increased only at higher budgets for both the artificial and data
driven priors.
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Figure 5: Optimal parameters for varying budgets and Drop-seq and Smart-seq2 data. The
figure shows the maximal reachable detection power (y-axis, first column) for a given
experimental budget (x-axis) and the corresponding optimal parameter combinations for that
budget (y-axis, second till fourth column). The colored lines indicate different effect sizes and
gene expression rank distributions. Subplots A-B visualize different simulated effect sizes and
rank distributions (simulation names see text) for DE studies with models fitted on Drop-seq
lung data (A) and Smart-seqg2 pancreas data (B). Subplots C-D visualize effect sizes and rank
distributions observed in cell type sorted bulk RNA-seq DE studies with model fits analogously
to A-B.

Power to detect rare cell types

In exploratory analyses, the goal is to observe as many cell types as possible. The power to
observe rare cells depends on the frequency of this cell type, the number of cells sequenced
per individual and the total number of individuals. Following [48], we model this problem using
the negative binomial distribution (see methods). Here we demonstrate the approach using
prior knowledge of cell proportions in PBMCs from the literature to determine the number of
cells required for each individual to detect a minimal number of cells of a specific type. The
rarest immune cell type we considered are dendritic cells, which occur in PBMCs with a
frequency of 1.5%. Consequently, more than 1000 cells per individual are required to observe
at least ten dendritic cells in all individuals with probability greater than 95%, while only about
300 cells are required for NK cells, which have a frequency of 7% in PBMCs (Additional file
1: Figure S14). The comparison for varying numbers of individuals shows that the number of
cells required for each individual is most strongly affected by the frequency of the cell type and
only to a smaller degree by the number of individuals.

Discussion

We have introduced scPower, a method for experimental design and power analysis for
interindividual differential gene expression and eQTL analysis with single cell resolution.
Based on realistic data driven from multiple tissues and artificial priors, we have observed that
the number of cells is a major determinant of power in droplet based assays, followed by
sample size and read depth.

The number of cells drives power by increasing the sensitivity of gene expression detection.
Previous analyses such as [46] have recommended 1Mio reads per cell when comprehensive
gene expression detection is desired. Our analyses suggest that aggregating shallowly
sequenced transcriptomes of a large number of cells of the same cell type is a more cost
efficient way than increasing read depth to increase the sensitivity for individual level gene
expression analysis. Most likely, multiple independent library preparations in individual cells
lead to an improved sampling of the transcriptome as compared to fewer independent libraries
sequenced more deeply, an effect that has previously been analysed in the context of variant
detection [68]. The number of cells to be sequenced has previously been considered with
respect to the power of detecting rare cell types [48,49], however, its effect on gene expression
sensitivity is equally important.

Optimal read depths (~10000) are relatively low compared to previous recommendations
[45,47,69,70]. In a systematic analysis of ERCC spike in expression it has been shown that
the accuracy of the measurements is not strongly dependent on the sequencing depth and
consistently high (~0.9 Pearson correlation for 10X and Drop-seq) for a read depth of 10,000
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reads per cell [46]. Hence, we expect accurate individual level gene expression quantification
with the optimized experimental design.

The number of cells and sequencing depth also determine the accuracy of the extraction of
gene expression programs, which are critical for the annotation of cell types [71]. Shallow
sequencing of higher number of cells has achieved equal accuracy as deeper sequencing of
fewer cells [71]. In line with our findings, it has thus been recommended to shallowly sequence
more cells [71].

As expected, the sample size is mostly dependent on the effect size, with low effect sizes
requiring large sample sizes and consequently optimal setting with high sample size typically
lead to low sequencing depth and relatively low number of cells.

Previous experimental design methods for scRNA-seq like powsimR [44,47] allow for the
simulation of scRNA-seq read counts on the single cell level and model the fold changes
between groups of cells. Here we consider the fold changes between groups of individuals.
To enable the usage of the simulation model of powsimR for the comparison of individuals, a
model relating the effect sizes observed on the individual level to single cells would be
required. This is particularly challenging especially for continuous individual level covariates.

The pseudo-bulk approach presented here allows for leveraging well established power
analysis methods based on (generalized) linear models. While it represents a baseline method
for power analysis, however, it has a number of limitations. First, the negative binomial
regression model for pseudo-bulk inspired by DESeq [5,63] might not be the most powerful
method for assessing individual level differential expression. Our current framework is tightly
linked to this approach and cannot easily be extended to arbitrary analysis methods, this is
however the case for all analytical power analysis methods. Second, it requires a discrete cell
type definition. Therefore, continuous cell annotations such as pseudo time would need to be
discretized before the power analysis. Third, our method works on raw data and is not able to
process imputed gene expression matrices. Imputation is a popular approach to maximize the
number of quantifiable genes by borrowing information of gene expression profiles of cells
within the same cell type or even between cell types [72—-75]. Imputation within the same cell
type will not assign expression values greater than zero to genes that were zero in all cells of
the cell type. Thus the number of expressed genes (count > 0) in the pseudo bulk approach
should be very similar to within cell type imputation. Some imputation methods such as [73,74]
do model the negative binomial means per gene, which we use in our model, so these results
could in principle be integrated in our model. Fourth, we did not address the power for the
detection of variance QTLs from scRNAseq data [24] due to the lack of data driven priors for
the effect sizes.

Several practical considerations should be addressed when using our approach. First, our
data driven priors only allow for reliably assessing the overall power in sample sizes that are
smaller or roughly equal to the sample size of the pilot data sets from which the effect sizes
were estimated. Consequently, a larger sample size will identify new significant DEGs with
lower effect sizes, which were not identified in the smaller pilot study and thus not included in
the computation of the overall detection power. Second, our current modeling of the doublet
rate using reference values from 10X Genomics is a lower bound compared to the doublet
rates we estimate for our own data and to rates reported by other studies [22,23]. Thus, actual
experiments might result in higher doublet rates and lower number of usable cells. Last, the
choice of a threshold on the number of reads required for a gene to be called expressed
influences also choice of optimal parameters. Here we used a threshold of >10 reads,
however, some eQTL analyses of bulk RNAseq data advocate using >0 reads [27], whereas
DESeq2 automatically chooses the threshold that optimizes the number of discoveries at a
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given FDR by applying the independent filtering strategy [5,76]. Best practice guidelines for
differential gene expression with RNA-seq recommend cutoffs that remove between 19%-33%
of lowly expressed genes, depending on the analysis pipeline [77]. These percentages
correspond to 1-10 reads per million sequenced, which translates to 1-5 UMI counts for a
median of around 5000 UMI counts per cell in our data set. Our gene expression probability
model is cell type specific and has to be fitted based on realistic pilot data. We have shown
that our model can be applied to 10X Genomics, Drop-seq and Smart-seq2 and we would
expect that it is applicable also to other technology platforms.

Importantly, experimental design recommendations here are optimized for differential
expression between individuals. Other applications might result in very different optimal
experimental designs. For instance, co-expression analysis requires a high number of
quantified genes per cell, especially when one is interested in cell type specific co-expression
and comparison of such co-expression relations between individuals. Furthermore, the power
to identify new rare cell types by clustering analysis of scRNA-seq data might have different
optimal parameters [49].

The human cell atlas project has outlined a ‘skydive’ strategy of iteratively sampling human
cells with increasing resolution to build a reference map of healthy human cells [61,78]. In
combination with the human cell atlas reference transcriptomes and cell type annotations
scPower will provide the foundation for building a comprehensive resource for the
experimental design of interindividual gene expression comparisons with cell type resolution
across all organs systems covered in the human cell atlas.

Conclusions

scPower is a unified resource for experimental design considerations of interindividual
comparisons with cell type resolution. It models the power to detect rare cell types as well as
the power to detect DEGs and eQTLs. Based on data driven priors on expression distributions
from single cell atlases of three different tissues and cell type specific priors for effect sizes
based on DEGs and eQTLs from bulk RNA-seq experiments, we show that shallow
sequencing of high numbers of cells per individual lead to higher overall power than deep
sequencing of fewer cells. Our model generalizes across different tissues and scRNAseq
technologies. The method is implemented in an R package with a user friendly graphical user
interface and is freely available on github. Our model will provide the basis for rationally
designing well powered experiments, increasing the number of true biological findings and
reducing the number of false negatives.

Methods

Collection of PBMCs

Blood was collected from psychiatric control individuals according to the clinical trial protocol
of the Biological Classification of Mental Disorders study (BeCOME; ClinicalTrials.gov TRN:
NCT03984084) at the Max Planck Institute of Psychiatry. All individuals gave informed
consent. Perinuclear blood cells (PBMCs) were isolated and cryopreserved in RPMI 1640
medium (Sigma-Aldrich) supplemented with 10% Dimethyl Sulfoxide at a concentration of
roughly 1M cells per ml.
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Single cell RNA-sequencing

For single-cell experiments, 14 cell vials from different individuals (7 male and 7 female) were
snap-thawed in a 37°C water bath and serially diluted in RPMI 1640 medium (Sigma-Aldrich)
supplemented with 10% Fetal Bovine Serum (Sigma-Aldrich) medium. Cells were counted and
equal cell numbers per individual were pooled in two pools of 7 individuals each. Cell pools
were concentrated and resuspended in PBS supplemented with 0.04 % bovine serum
albumin, and loaded separately or as a combined pool with cells of all 14 individuals on the
Chromium microfluidic system (10X Genomics) aiming for 8,000 or 25,000 cells per run. Single
cell libraries were generated using the Chromium Single Cell 3'library and gel bead kit v2 (PN
#120237) from 10X Genomics. The cells were sequenced with a targeted depth of
approximately 50,000 reads per cell on the HiSeq4000 (lllumina) with 150 bp paired-end
sequencing of read2 (exact numbers for each run in Additional file 1: Table S1).

Preprocessing of the single cell RNA-seq data

We mapped the single cell RNA-seq reads using CellRanger version 2.0.0 and 2.1.1 [79].
Demuxlet was used to identify doublets and to assign cells to the correct donors [22].
Additionally, Scrublet version 0.1 was run with a doublet threshold of 0.28 to identify also
doublets from cells which originate from the same donor [80]. Afterwards, the derived gene
count matrices from CellRanger were loaded into Scanpy version 1.4 [81]. Cells identified as
doublets or ambivalent by Demuxlet and Scrublet were removed, as well as cells with less
than 200 genes or more than 2,500 genes and with more than 10% counts from mitochondrial
genes.

Verification of Demuxlet assignment using sex errors

We validated the donor assignment and doublet detection of Demuxlet by testing if assigned
cells express sex specific genes correctly. Xist expression was taken as evidence for a female
cell, expression of genes on the Y chromosome as evidence for a male cell.

The male sex error shows the fraction of cells assigned to a male donor among all cells
expressing Xist (count > 0). The threshold for the female error was set less strictly, as
mismapping of a few reads to the chromosome Y occurs also in female cells. Instead, the
female sex error indicates which fraction of cells is assigned to a female donor among all cells
having more reads mapped to chromosome Y than the fracsemate quantile of all cells, with
fracsemate being the overall fraction of cells assigned to a female donor among all cells. TPM
mapped to chromosome Y is calculated by counting all reads mapped to chromosome Y,
excluding reads mapped to the pseudoautosomal regions, times 10° divided by the total
number of read counts per cell.

Both error rates are calculated twice, once with all cells and once without doublets from
Demuxlet and Scrublet.

Cell type identification

We performed the cell type identification according to the Scanpy PBMC tutorial [82]. Genes
which occurred in less than 3 cells were removed. Counts were normalized per cell and
logarithmized. Afterwards the highly variable genes were identified, the effect of counts and
mitochondrial percentage regressed out. We calculated a nearest neighbour graph between
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the cells, taking the first 40 PCs, and then clustered the cells with a Louvain clustering [83].
Cell types were assigned to the clusters using marker genes (Additional file 1: Table S2).

Influence of read depths

We used subsampling to estimate the dependence of gene expression probabilities on read
depths. The fastq files of all 6 runs were subsampled using fastg-sample from fastg-tools
version 0.8 [84]. The number of reads was downsampled to 75%, 50% and 25% of the original
number of reads. CellRanger was used to generate count matrices from the subsampled
reads. Donor, doublet and cell type annotation were always taken from the full runs with all
reads.

Expression probability model

The gene expression distribution of each cell type was modeled separately because there are
deviations in RNA content between different cell types [60]. The UMI counts = per gene across
the cells of a cell type are modeled by a negative binomial distribution. We used DESeq [63]
to perform the library size normalization as well as the estimation of the negative binomial
parameters. The standard library size normalization of DEseq and the variant “poscounts” of
DESeq2 [5] were both used, depending on the quality of the fit for the specific data set. For
the PBMC 10X data set (Additional file: Table 1), the standard normalization was taken, for
the Drop-seq lung and the Smart-seq2 pancreas datasets the poscount normalization, which
is more suitable for sparse data. Only cell types with at least 50 cells were analysed to get a
robust estimation of the parameters.

The negative binomial distribution is defined by the probability of success P and the number
of successes r:

—1
NB(z,r,p) = <x+; ) * (1 —p)" *xp®

DESeq uses a parametrization based on mean # = pr/(1—p) and dispersion parameter
disp = 1/r.

We formulated the definition of an expressed gene in a flexible way so that users can adapt
the thresholds. In general, a gene is called expressed in a cell type if the sum of counts ¥ over
all cells of the cell type within an individual is greater than n in more than k percent of the
individuals. We assume a negative binomial distribution for the counts x of each gene in each
cell type ¢ with #c and dispe, omitting indices of gene and individual for clarity. The sum of the
gene counts ¥ over all cells Ncensctingiv of an individual in the cell type follow a negative
binomial distribution with fsum = TceitsCirndiv * fle and  diSPsum = diSpe/NeetisCiindiv. The
probability that the sum of counts in one individual is greater than n is:

Pindiv = 1— CdiB (TL, Hsum» diSpsum)

To define a gene as expressed, we require that it can be found in a certain fraction of more
than k percent in all 75 individuals. The expression probability of a gene is obtained from a
binomial distribution:

P, =1 — cdf Binom(k * ng, ns, Dindiv)

So in total, the expected value of the expected number of expressed genes can be defined as
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genes

To generalize the expression probability model also for unseen data sets, the distribution of
mean values Hc over all genes in a cell type is modelled as a mixture distribution with three
components, a zero component and two left-censored gamma distributions:
P, (z) = p1Zero(z) + poGamma(z, 1, s1) + psGamma(z, 2, S2)
The model is an adaption of the distribution used in the single cell simulation tool Splatter [85].
The largest part of the mean values can be fitted with one gamma distribution, a small fraction
with high expressed gene outlier with the second gamma distribution. The genes with zero
mean values originate from two sources. Either, the gene is not expressed or the expression
level is too low to be captured in the setting. The lower bound for the expression level at which
both Gamma distributions are censored depends on the number of cells measured for this cell
type nceisct. The smallest expression level to be captured is 1/nceusct, The density of the
gamma distribution is parametrized by rate r and shape s:
err—le—sa:

(r—1)!
For modeling of the gamma parameters, also the parameterization by mean # and standard
deviation sd is used:

dgammal(zx,r,s) =

The relationship between the mean UMI counts per cell and the gamma parameters (mean
and standard deviation of the two gamma distributions) is linear and 0 values are estimated
by linear regression. The mixture proportion of the zero component P1 is linearly decreasing
with the mean UMI counts, also estimated by linear regression. The lower bound of P1 is set
to a small positive number: 0.01. In contrast, the mixture proportion of the second gamma
component P3 is modelled as a constant, independent of the mean UMI counts. We set it to
the median value of all fits per cell type. The mixture proportion of the first gamma component
p2is 1 — p1 — p3 and is linearly increasing with increasing mean UMI counts.

The number of transcriptome mapped reads is linearly related to the logarithm of the mean
UMI counts per cell, with an increasing read depth leading to a saturation of UMIs. 10X
Genomics describes this also with the sequence saturation parameter. The exact logarithmic
saturation curve depends on multiple biological and technical factors, therefore, it needs to be
fitted for each experiment individually. However, scPower provides example fits from the
different scenarios observed in our analysis.

The dispersion parameter is estimated dependent on the mean value using the dispersion
function fitted by DESeq. The parameters of the mean-dispersion curve showed no correlation
with the mean UMI counts, therefore the mean of the parameters of the dispersion function
across all runs and subsampled runs were taken, resulting in one mean-dispersion function
per cell type.
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Power analysis for differential expression

The power to detect differential expression is calculated analytically for the negative binomial
model [64]. An implementation of the method can be found in the R package MKmisc.
Parameters are sample size, fold change, significance threshold, the mean of the control
group and the dispersion parameter (assuming the same dispersion for both groups). Zhu et
al. implemented three different methods to estimate the dispersion parameter, we chose
method 3 for the power calculation, which was shown to be more accurate in simulation
studies in the paper. More complex experimental designs can be addressed using the method
of [86].

Power analysis for expression quantitative trait loci

Additionally to the DE analyses, the use of scRNA-seq for the detection of expression
quantitative trait loci (eQTLs) was evaluated. Here, the power to detect an eQTL is calculated
using an F-test and depends on the sample size ns, the coefficient of determination R? of the
locus and the chosen significance threshold «. R?is calculated for the pilot studies from the

regression parameterﬁ , its standard error se() and the sample size N of the pilot study:

fo B
se()
2 t2
= N — 24 ¢2

The implementation pwr.f2.test of the R package pwr is used for the F-test [28]. The degrees
of freedom of the numerator are one and of the denominator are s — 2, the effect size is
f2=R/(1- R,

Overall detection power

Assuming independence between the expression probability and power to detect DEGs /
eQTLs, the overall detection power for DEGs is the product of the two probabilities. Expression
probabilities were determined based on the gene expression rank in the observed (pilot) data.
The number of considered genes GG was set to 21,000, the number of genes used for fitting of
the curves. Ranks i were transformed to the quantiles 1/G of the gamma mixture model
parameterized by the mean UMI counts to obtain the mean K« of the negative binomial model,
which is in turn used to compute the expression probability.

To quantify the overall power of an experimental setup, we compute the expected fraction of
detected DEG / eQTL genes with prior expression levels and effect sizes derived from the pilot
data. We obtain gene expression ranks of DEGs / eQTLs and their corresponding fold
changes, to compute overall detection power for each gene. DE power is computed using a
threshold « that is controlling the family-wise error rate (probability of at least one false positive
among FE expressed genes) as 0.05/E. For eQTLs we were accounting for the number of
genes that we test, assuming that there is a maximum of one cis-eQTL per gene. The overall
power of the experimental setup is then the average detection power over all prior DEG/eQTL
genes.
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Pilot data sets

Realistic DE and eQTL priors, i.e. effect sizes and expression ranks, were taken from sorted
bulk RNA-seq studies of matching tissues (PBMCs, lung and pancreas). For all studies, the
significance cut-off of the DE and eQTL genes was set to FDR < 0.05 and the expression
levels of the genes were taken from FPKM normalized values. When published, we took
directly the effect sizes, otherwise we recalculated the DE analysis with DEseq2.

Differential gene expression: To get realistic estimates for effect sizes (fold changes), data
sets from FACS sorted bulk RNA-seq studies were taken [54,55]. The data sets were used to
rank the expression level of the DEGs among all other genes using the FPKM values. The cell
types used in the studies were matched to our annotated cell types in PBMCs for the
expression profiles. The expression profile of CD14+ Monocytes was used for the study of
Macrophages, the profile of CD4+ T cells for the CLL study.

Lung cell type specific priors were obtained from a DE study of freshly isolated airway
epithelial cells of asthma patients and healthy controls [56]. As no effect sizes were reported,
the analysis was redone with the given count matrix from GEO using DEseq?2.

A DE study analyzing age-dependent gene regulation in human pancreas [57] was used to
get pancreas cell type specific priors. We obtained expression ranks and gene length, which
is needed for proper normalization of Smart-seq2 expression values.

eQTLs: We used eQTL effect and sample sizes from the Blueprint study on bulk RNA-seq of
FACS sorted Monocytes and T cells [58]. Neutrophils were excluded as they are no PBMCs.
We took the most significant eQTL for each gene, using a significance cutoff of 1076, We
compared the FPKM normalized expression levels of the eQTL genes among all other genes
to get the expression rank for each eQTL gene. Effect sizes were derived from the slope
parameters of the linear regression against genotype dosage, its standard error and the
sample size of the study.

Cost calculation and parameter optimization for a given budget

The overall experimental cost for a 10X Genomics experiment is the sum of the library
preparation cost and the sequencing cost. It can be calculated dependent on the three cost
determining parameters sample size s, number of cells per sample 7. and the read depth r.
The library preparation cost is determined by the number of 10X kits, depending on how many
samples are loaded per lane "sLane and the cost of one kit costri:. The cost of a flow cell
cost fiowcell and the number of reads per flow cell T flowCell determine the sequencing cost.

N
————— ] *costp + |
6 * NsLane T flowCell

Ng * N * T

costiotar = | | * cost fiowceir

We optimized the three cost parameters for a fixed budget to maximize the detection power.
A grid of values for number of cells per individual and for the read depth was tested, while the
sample size is uniquely determined given the other two parameters and the fixed total costs.
As an approximation of the sample size, the ceiling functions from the cost formula were
removed.

n. — coSltotal
s costyit nc*T*COStflmuCell
G*nsLana T flowCell
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The same approach can also be used with a grid of sample size and cells per sample or read
depth. In general, two parameters need to be chosen and the third parameter is uniquely
determined given the other two and the fixed experimental cost.

Given the three cost parameters, the detection power for a specific cell type and a specific DE
or eQTL study can be estimated. However, we also have to account for the appearance of
doublets during the experiment. The fraction of doublets depends on the number of cells
loaded on the lane. Following the approach of [48], we model the doublet rate d linear
dependent on the number of recovered cells, using the values from the 10X User guide of V3
[67]. A factor of 7.67 * 10~® was estimated, so that d = 7.67 % 107° x n. * nsrane.

The number of usable cells per individual used for the calculation of detection power is then
NusableCells = (1 —d) *xne, We assume that nearly all doublets are detectable using
Demuxlet and Scrublet and that these cells will be discarded during the preprocessing of the

data set. The expected number of cells for the target cell type with a frequency of J will be
fx(1—d)*n,

A second effect of doublets is that the read distribution is shifted, as doublets contain more
reads than singlets. Again following the approach of [48], we assume that doublets contain
80% more reads than singlets. In the following, the ratio of reads in doublets compared to
reads in singlets is called doublet factor df, a factor of df = 1.8 is assumed in the calculations
in this manuscript. Therefore, depending on the number of doublets, the read depth of the
singlets will be slightly lower than the target read depth.

Tk N

NusableCells + Af * (Ne — NusableCelis)

Tsinglets =

Additionally, the mapping efficiency is taken into account. Assuming a mapping efficiency of
80%, "mapped = 0.8 * Tginglets mapped read depth remains. In the power calculation, the
number of usable cells per cell type will be used instead of the number of cells and the mapped
read depth instead of the target read depth.

Instead of defining the number of samples per lane directly, usually the number of cells loaded
per lane Ncelisrane is defined. So, the doublet rate per lane can be directly restricted. We use
in our analyses "ceitsLane = 20,000, which leads to a doublet rate of at most 15.4%. The

number of individuals per lane can be derived directly as "'sLane = [ncettsLane /e .

Simulation of effect sizes and gene rank distributions

Model priors, i.e. effect sizes and gene rank distributions, were derived from FACS sorted bulk
RNA-seq to get realistic assumptions. Additionally, we simulated different extreme prior
distributions to evaluate their influence on the optimal experimental parameters. The log fold
changes for the DE studies were modeled as normally distributed. High effect size distributions
were simulated with a mean of 2 and a standard deviation of 1, low effect sizes distributions
with a mean of 0.5 and standard deviation of 1.
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Effect sizes (R2 values) for the eQTL studies were obtained by sampling normally distributed
Z scores and applying the inverse Fisher Z Transformation. Because very small values are
not observed due to the significance threshold, the normal distribution is truncated to retain
values above the mean. High effect sizes were simulated with a mean of 0.5 and standard
deviation of 0.2, low effect sizes with a mean of 0.2 and a standard deviation of 0.2. A similar
standard deviation was also observed in the pilot data.

250 DEGs were simulated and 2000 eQTL genes. The ranks were uniformly distributed, either
over the first 10,000 genes or the first 20,000 genes. This leads to four simulation scenarios
for each, high and low effect sizes (ES) and high or uniformly distributed expression ranks,
called in the studies highES highRank, IlowES_ highRank, highES unifRank and
lowES _unifRank.

Evaluation of Drop-seq and Smart-seg2 data

We validated our expression probability model for other tissues and single cell RNA-seq
technologies. Two data sets of the human cell atlas were used for that, a Drop-seq data set
measured in lung tissue [53] and a Smart-seq2 data set measured in pancreas tissue [52].

The Drop-seq technology is also a droplet-based technique, similar to 10X Genomics. The
same model can be used, only adapting the doublet and cost parameter. However, as there
was no data available to model the linear increase of the doublet rate during overloading
correctly, the doublet rate was modeled instead as a constant factor and the library preparation
costs were estimated per cell. scPower provides models for both cases and with the necessary
prior data, users can also model the overloading for Drop-seq.

Smart-seq? is a plate-based technique, which produces full length transcripts and read counts
instead of UMI counts. To compensate the gene length bias in the counts, the definition of an
expressed gene was adapted to at least n counts per kilobase of transcript, resulting in a gene
specific threshold of n/geneLength * 1000, The gamma mixed distribution of the mean gene
expression levels is modelled using length normalized counts, but the gene length is required
as a prior for the dispersion estimation and the power calculation, as DEseq uses counts,
which are not normalized for gene length. These priors can be obtained together with the effect
sizes and the expression ranks from the pilot bulk studies. In the simulation of non-DE genes,
an average mean length of 5,000 bp is assumed. The linear relationship of the parameters of
the mixture of gamma distributions is modeled directly based on the mean number of reads
per cell. Doublets also appear in Smart-seq2, but as a constant factor, not increasing with a
higher number of cells per individual. We observed for the parameter of the DEseq dispersion
model a linear relationship with the read depth, which was not visible for Drop-seq and 10X
Genomics. So, instead of taking the mean value per cell type, a linear fit is modeled for Smart-
seq2.

For both data sets, the cell type frequencies varied greatly among individuals, therefore an
estimation of expressed genes in a certain fraction of individuals could not be validated, as
this requires similar cell type frequencies for each donor. Instead, the expressed genes were
estimated to be above a certain count threshold in all cells of a cell type, independent of the
individual.
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Both data sets were subsampled to investigate the effect of the read depth. The Drop-seq
reads are subsampled using fastg-tools version 0.8 [84] and the subsampled UMI count matrix
was generated following the pipeline previously described in [87]. The Smart-seq2 read matrix
was subsampled directly using the function downsampleMatrix of the package DropletUtils
[88].

We compared the budget restricted power to our PBMC 10X Genomics results, using the
same simulated effect sizes and distribution ranks as well as matched observed priors from
FACS sorted bulk studies.

Frequency of the rarest cell type

The probability to detect at least "ceizsciindiv cells of a specific cell type in each individual
depends on the frequency of the cell type f, the number of cells per individual ¢ and the
number of individuals "s . For one individual, the minimal number of cells can be modeled
using a cumulative negative binomial distribution [48]

CdiB (nc — NeelisCtIndivs NeellsCtIndivs f)

and for all individuals as

n
CdiB(nc — NecellsCtIndiv, MeellsCtIndiv, f) °

The cell type frequencies were obtained by literature research, the frequencies in PBMC are
approximately twice as high as in whole blood [89]. All other parameters can be freely chosen
(dependent on the expected study design).
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