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Abstract

The human PUF-family proteins, PUM1 and PUMZ2, post-transcriptionally regulate gene expression
by binding to a PUM recognition element (PRE) in the 3> UTR of target mRNAs. Hundreds of
PUM1/2 targets have been identified from changes in steady state RNA levels; however, prior
studies could not differentiate between the contributions of changes in transcription and RNA
decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to
depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively
by changing RNA stability. We also applied an in vitro selection workflow to precisely identify
the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we
developed a ’rulebook’ of key contextual features that differentiate functional vs. non-functional
PREs, allowing us to train machine learning models that accurately predict the functional regulation
of RNA targets by the human PUM proteins.
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1 1. Introduction

2 The control of gene expression at the post-transcriptional level is critical for diverse biological
3 processes including proper organismal development in multicellular organisms. Many regulators,
s+ including RNA-binding proteins (RBPs), act to control the stability of target mRNA transcripts
s through the recognition of key sequence elements in the 3’ UTRs of mRNAs [1, 2]. A recent survey
¢ of all known human RBPs indicated that a substantial fraction of human RBPs bind to mRNAs,
7 however, for any given RBP, the binding specificity, set of mRNA targets, and functional role for
s the RBP at each target still remains poorly understood [3].

9 The PUF (Pumilio and FBF [fem-3 binding factor]) family of proteins represent one of the most
10 well-studied classes of RBPs [1, 4, 5]. PUF proteins possess a shared C-terminal Pum homology
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1 domain (PUM-HD). Structurally, the human PUM-HD consists of 8 helical repeats containing
12 specific amino acids that both intercalate and form hydrogen bonds and van der Waals contacts
13 with target RNA, resulting in exquisite specificity for a UGUANAUA consensus sequence motif or
1 PUM Recognition Element (PRE) [6, 7]. Recognition by the PUM-HD is modular and specificity
15 for a given base can be changed through mutation of a set of three key amino acids in a single
16 repeat [7, 8]. Furthermore, the sequence specificity by PUM-HD across species can be predicted
17 from the identity of these three key amino acids across the helical repeats in any given PUM-HD
18 [9]. Thus, there are slight differences in the exact set of sequences recognized by the PUM-HD
10 of different PUF family members and, in addition, interactions with protein partners can alter
20 sequence preference [10-12].

21 Functionally, the PUF family of proteins have been implicated in post-transcriptional regu-
22 lation underlying control of developmental processes [1]. One of the founding members of the
23 family, Drosophila Pum, together with the Nos protein, is needed for correct body patterning in
2 the developing fly embryo [13, 14]. Patterning is accomplished by location-specific repression of
s the hunchback mRNA through sequence-specific recognition of a nanos response element (NRE)
26 in the hunchback 3" UTR [15]. In humans, there are two members of the PUF family, PUMI1 and
o7 PUM2, which share 75% overall sequence identity with 91% sequence identity in the PUM-HD.
s In addition, human PUM1 and PUM2 share 78% and 79% sequence identity in the PUM-HD to
20 DmPum, respectively [5, 16]. Human PUM1 and PUM2 are expressed across tissues and their ex-
50 pression is highly overlapping [5, 16] suggesting that they likely act redundantly. Mammalian PUM
31 proteins have been implicated in spermatogenesis [17, 18], neuronal development and function[19—
22 24], immune function [25, 26], and cancer [27-30]. PUM1 missense and deletion mutants lead to
;3 adult-onset ataxia (Pumiliol-related cerebellar ataxia, PRCA) and loss of one copy leads to de-
s velopmental delay and seizures (Pumiliol-associated developmental disability, ataxia, and seizure;
35 PADDAS) [31]. Yet, the targets responsible for these biological outcomes are largely opaque.

36 Targeted experiments have indicated that human PUM1 and PUM2 are capable of repressing
57 expression of a luciferase reporter through recognition of PREs in the reporter gene’s 3’ UTR,
33 likely through recruitment of the CCR4-NOT complex and subsequent degradation of the mRNA
3 target [32]. Additionally, similar assays have shown that repression by the human PUM2 PUM-
s HD alone—that is lacking the N-terminal domains of PUM2—requires the polyA binding protein
a1 PABPCI, suggesting that the human PUMs could accelerate mRNA degradation by inhibiting
22 translation [33]. However, PUM-mediated repression is not the only type of gene regulation by
a3 human Pumilio proteins. Recently, expression of a key regulator of hematopoietic stem cell dif-
u ferentiation, FOXP1, was shown to be enhanced by human PUM1/2 binding to the 3" UTR [29].
s Furthermore, measurements of changes in global steady-state RNA abundance between wild-type
s (WT) and PUM1/2 knockdown conditions have identified hundreds of RNAs that either increase
a7 or decrease in abundance upon PUM1/2 knockdown [34]. Follow-up experiments have confirmed
s activation of key targets by human PUMs through the use of a reporter gene-target 3’ UTR fusion
s construct [34], indicating that human PUMs directly activate some mRNA targets. However, the
s0 mechanism of PUM-mediated activation remains to be elucidated.

51 High-throughput measurements of PUM1 and PUM2 binding sites in vivo have confirmed high
52 specificity for a PRE and have identified a diverse set of PUM targets in human cell lines, including
53 those involved in regulating neuronal function and signaling cascades [35-38]. Thus, sequence-
s specific recognition of the PRE is an important aspect of target recognition for the PUM proteins.
55 However, key questions about PUM-mediated gene regulation remain. There are on the order of
ss 10,000 PRE sites across the full set of annotated human 3" UTRs, but only ~1000 genes change in
57 steady state RNA levels under PUM1/2 knockdown [34]. Additionally, models using a simple count
ss  of PREs in the 3’ UTR of a transcript do not completely capture the complexity of PUM-mediated
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so gene regulation [34]. The identification of additional sequence features that discriminate functional
0o PREs from apparently non-functional PREs will improve the understanding of PUM-mediated
61 gene regulation. Furthermore, as the measurement of steady-state RNA levels do not allow for
62 differentiation between the individual contributions of transcription rates and RNA stability, we
s instead set out to directly measure changes in RNA stability under PUM1/2 knockdown condi-
64 tions. Through the use of high-throughput sequencing methodologies, we demonstrate that human
s PUMI1/2 modulate the abundance of mRNA targets primarily through controlling mRNA stability
66 and not transcription rates. We demonstrate, through high-throughput in wvitro binding assays,
67 that PUM1 and PUM2 PUM-HDs have highly similar preferences for the same sets of sequences.
¢ Consistent with prior reports, we find that PUM1/2 control the mRNA stability of transcripts
60 involved in signaling pathways, neuronal development, and transcriptional control. In addition, we
70 identify a key set of contextual features around PREs that contribute meaningful information in
7 predicting PUM-mediated regulation including proximity to the 3’ end of a transcript and the AU
72 content around PRE sites. Taken together, our study illuminates key contributors to determining
73 functional PRE sites and represents a rich resource for interrogating the control of mRNA stability
74 by the PUM RBPs.

75 2. Results

76 2.1. Bru-seq and BruChase-seq reveal PUM-mediated effects on mRNA stability

7 In order to measure the effect of the human PUM1 and PUM2 proteins on mRNA stability at a
78 transcriptome-wide scale, we employed the Bru-seq and BruChase-seq methodology [39]. In brief,
79 Bru-seq and BruChase-seq involve the metabolic labeling of RNA using 5-bromouridine (BrU),
so  which is readily taken up by the cells and incorporated into the nascent NTP pool [40]. After
st incubation with BrU over a short time period, newly synthesized and labeled RNAs are selectively
g2 pulled out of isolated total RNA using an anti-BrdU antibody and sequenced. Labeled RNA abun-
83 dance is then tracked over time by continuing to grow the cells in the absence of BrU and isolating
s« BrU-labeled RNA at additional time points. To distinguish relative changes in transcription rates
s from relative changes in RNA stability between WT and PUM1/2 knockdown cells, we chose two
ss time points: (1) a zero hour time point taken at the transition to unlabeled media after 30 minutes
g7 of incubation in BrU-containing media and (2) at six hours, a time point chosen to coincide with the
ss average mRNA half-life in cultured mammalian cells [41-43]. To determine the impact of PUM1/2
so on relative RNA abundances, the experiment was performed in the presence of a mix of siRNAs
o targeting both PUM1 and PUM2 mRNAs (siPUM) or in the presence of scrambled non-targeting
a1 control siRNAs (NTC), as previously established [32, 34](Figure 1A). Cells were treated with siR-
o2 NAs for 48 hours before BrU labeling, identically to the method used in Bohn et al. [34], to allow
93 for PUM depletion prior to labeling. Overall, four biological replicate samples were collected for
94 each time point and RNAi condition resulting in a total of 16 samples and above the minimum
os recommendations for replicates suggested by the ENCODE consortium for RNA-seq and ChIP-seq
o experiments [44, 45]. HEK293 cells were chosen for this study as they express both PUM1 and
o7 PUM2, have been previously used to analyze PUM activity [32, 34], support efficient BrU-labeling
o [46], and support RNA interference [47]. As we have previously demonstrated [32, 34], knockdown
99 of both PUM1 and PUM2 is necessary to alleviate PUM repression of PRE-containing mRNAs. It
100 is important to note that the use of two time points does not allow for determination of full decay
101 rate constants for each transcript, but it does allow for measurements of relative changes in mRNA
102 stability between the two conditions [48].

103 Clear changes in RNA abundance can be seen between time points and conditions at the gene
14 level. Consider the Cyclin G2 (CCNG2) mRNA which encodes a cyclin involved in the cell cycle,
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105 contains 2 PREs in its 3’ UTR, and was among the most dramatically affected mRNAs (Figure
ws  1B). At the 0 hr time point, read coverage resulting from recent transcription for four distinct
107 replicates in each condition can be seen (Read coverage includes immature RNAs that still contain
ws introns) (Figure 1B top). At the six hour time point, only mature RNA remains, with read coverage
19 primarily observed at exons and no longer prevalent in the intronic regions (Figure 1B bottom).
10 Here, silencing of both PUM1 and PUM2 clearly increases RNA abundance relative to the non-
1 targeting control at the 6 hr time point, but does not appear to impact transcription as seen at the
112 0 hr time point.

113 To quantify the effect of silencing PUM1 and PUM2 on changes in relative labeled RNA abun-
14 dance between the 0 and 6 hour time points, we used DEseq2 [49] to model the count of reads
15 observed from each gene using a generalized linear model that considers the effects of time, condi-
ue tion, and the interaction between time and condition (see Methods for details). We interpret the
u7  term associated with the interaction between condition and time to be the PUM-mediated effect
us  on stability—where a positive value indicates that an RNA was stabilized in the PUM knockdown
19 condition and a negative value indicates that an RNA was de-stabilized in the PUM knockdown
120 condition. Likewise, we interpret the condition term as the PUM-mediated effect on transcription
121 rates, thus, we are able to separate the impacts of transcription from RNA stability using our exper-
122 imental procedure and statistical methodology. We find that hundreds of genes show altered RNA
123 stability under PUM knockdown conditions. Figure 1C displays an overview of PUM-mediated ef-
124 fects on stability as a volcano plot, with 12,165 genes represented in a two-dimensional histogram.
125 Using an FDR-~corrected p-value threshold of 0.05 and a fold-change cutoff of log2(1.75) (see Meth-
16 ods), we found 44 genes were statistically significantly de-stabilized (56 with no fold-change cutoff)
127 and 200 genes were statistically significantly stabilized in the PUM knockdown condition (252 with
12 no fold-change cutoff). Of these genes, 30 were also identified as having lower abundance under
120 PUM knockdown in the Bohn et al. [34] RNA-seq data set (37 with no fold-change cutoff). Like-
130 wise, 95 were also identified as having higher abundance under PUM knockdown in the Bohn et al.
131 [34] RNA-seq data set (106 with no fold-change cutoff). As expected, in our data both PUM1I
132 and PUM2 were substantially destabilized in the PUM knockdown condition relative to the WT
133 condition indicating that the siRNAs were successful in disrupting PUM1/2 expression and that
13¢ our methodology is capable of detecting known changes in RNA stability. Additionally, we found
135 that genes with a PRE in their 3 UTR were, on average, more stabilized in the PUM knockdown
136 condition than those without a PRE in their 3’ UTR (Figure 1C bottom). Taken together, this
137 suggests that PUM1/2 are selectively modulating the RNA stability of target transcripts.

138 To further examine the effects of PUM knockdown on both transcription and stability, we tested
130 for statistically significant changes under a null model centered around a log, fold change of 0 for
1o both the condition term (transcription) and the interaction between condition and time (stability).
141 In addition, for each term, we also tested for a statistically significant lack of change by considering
142 a null model centered around the boundary of a defined region of practical equivalence spanning
13 from —logy(1.75) to logy(1.75)(see Methods for details); such a test is important because failure
e to reject the null hypothesis cannot, by itself, be taken as evidence favoring the alternative. In
15 total, four statistical tests were run for each gene: a test for change and a test for no change for
us both transcription and stability. For each axis, the smaller of the two FDR-corrected p-values (i.e.
17 test for change vs. test for no change) was chosen as the coordinate for that term, which enabled
us classification of each gene into one of four quadrants: 1. Genes that change in both stability and
1o transcription (Figure 1D, upper right quadrant), 2. genes that change only in stability (Figure 1D,
150 lower right quadrant), 3. genes that change only in transcription (Figure 1D, upper left quadrant)
151 and 4. genes that change in neither (Figure 1D, lower left quadrant). Thus, using this methodology,
152 we identified 213 genes with a statistically significant change in stability (Figure 1D lower right
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quadrant). We were also able to identify a set of 2,834 genes with evidence for no change in stability
under our experimental conditions (Figure 1D lower left quadrant) and 19,744 genes we were have
insufficient information to reliably classify. Additionally, we show only one gene, ETVI, with
a statistically significant change in transcription, 11,527 genes with statistically significant lack
of change in transcription and 11,263 genes we have insufficient information to reliably classify.
Taken together and consistent with the Pumilio proteins’ role in post-transcriptional regulation,
these results suggest that PUMs regulate gene expression at the level of RNA stability and not
transcriptional initiation. Furthermore, this analysis allows us to divide the genes into those in
which Pumilio knockdown has an effect on RNA stability and those in which there is evidence
for a lack of effect on RNA stability, a stronger statement than simply failing to reject the null
hypothesis that no change was occurring. The words EFFECT and NOEFFECT will be used to
refer to these respective gene classes throughout the rest of the paper.
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Figure 1 (previous page): Bru-seq and BruChase-seq allow for determination of PUM-mediated effects on RNA
stability. A) Experimental design for measuring PUM-mediated effects on RNA stability. HEK293 cells incubated
for 30 minutes in the presence of 2mM BrU prior to time 0. Cells were then washed and cultured in media containing
20 mM unlabeled uridine for six hours. At 0 and 6 hour timepoints, a portion of cells were harvested and BrU
labeled RNA was isolated for sequencing. Changes in relative RNA abundance between the 0 and 6 hour time points
were compared between cells grown in the presence of silencing RNA targeting PUMI and PUM2 (siPUM) and a
non-targeting control siRNA (NTC). Cells were treated with siRNAs for 48 hours prior to BrU labeling to allow for
PUM depletion. B) Read coverage traces for CCNG2 as measured in reads per million (RPM). Traces are shown for
siPUM (orange) and NTC (blue) conditions at both OH (top) and 6H (inverted bottom) time points. Four replicates
for each combination of siRNA and time point are overlaid. Known isoforms for CCNG2 are represented above. C)
(Top) Volcano hexbin plot displaying global changes in RNA stability under PUM knockdown conditions. Stability in
PUM knockdown is represented by a normalized interaction term between time and condition, where positive values
indicate stabilization upon PUM knockdown and negative values indicate destabilization upon PUM knockdown (see
Methods for details). No change in stability is represented with a dotted line at 0. Statistical significance at an FDR
corrected p-value < 0.05 is represented with a horizontal dashed line. A selection of genes known to be regulated
by PUM [34, 35] and genes newly identified in this study are labeled. For selected genes only, red triangles indicate
genes that have a PRE in any annotated 3’ UTR as determined by a match to the PUM1 motif we identified using
SEQRS (Figure 2A). Gray squares indicate genes that did not have a PRE in their 3 UTR. Unlabeled genes are
binned into a two-dimensional histogram to avoid overplotting. (Bottom) Marginal distribution of Stability in PUM
knockdown for genes with a PRE in their 3’ UTR (red) and genes without a PRE in their 3" UTR (gray). Median
values for each distribution are plotted as a dashed line in the appropriate color. The star indicates a statistically
significant difference in the median stability as measured by a two-sided permutation of shuffled labels (n =1000,
p < 0.001). D) Analysis of changes in transcription vs. changes in stability. Four separate statistical tests were
calculated for each gene: 1. a test for statistically significant changes in RNA stability (A Stability # 0), 2. a test for
statistically significant changes in transcription (A Txn # 0), 3. a test for no change in RNA stability (A Stability
= 0), and 4. a test for no change in transcription (A Txn = 0). Genes are plotted as an (x,y)-coordinate where each
coordinate represents the & 1log;,(FDR corrected p-value) of the test with greater evidence (A # 0, +logio; or A = 0,
-log,,) for each axis (see Methods for details). Representative genes displaying a range of stability effects are labeled.
Red squares represent genes that were destabilized in PUM knockdown, whereas red triangles represent genes that
were stabilized in PUM knockdown. All other genes were binned into a two dimensional histogram. Gray rectangles
represented a statistical significance cutoff of g-value > 0.05. (Left and Below) Marginal histograms for each axis are
plotted with matching gray rectangles to represent the same statistical significance cutoff of g-value > 0.05.

2.2. SEQRS shows conserved preference for the canonical UGUANAUA PRE by Pumilio proteins

The sequence preferences for both the full length PUM1 and PUM2 have been previously probed
in vivo [36-38, 50] and the sequence preferences for the RNA-binding domains of both PUM1 and
PUM2 were probed in vitro [10, 51, 52]. Each of these approaches and methodologies agree on a
general preference for the UGUANAUA consensus motif for both PUM1 and PUM2, with subtle
differences in the information content for the Position Weight Matrices (PWM)s obtained from
each technique, particularly at the 3’ end of the PWM. However, prior in vitro determination
of human PUM sequence preferences have involved only one round of selection [51] or a selected
subset of possible sequences [52]. Thus, to compare the binding specificity of the PUM-HD of
the human PUM1 and human PUM?2 proteins we applied in vitro selection and high-throughput
sequencing of RNA and sequence specificity landscapes (SEQRS) to purified PUM-HDs of each
protein [53]. Similar to systematic evolution of ligands by exponential enrichment (SELEX) [54],
SEQRS allows for the determination of an RNA-binding protein’s sequence specificity by selecting
for RNAs that interact with the RBP out of a pool of random 20mers generated by T7 transcription
of a synthesized DNA library. The RNA pulled-down from a previous round is reverse-transcribed
into DNA to be used as the input for the next round of transcription and selection, allowing for
exponential enrichment of preferred sequences for any RBP of interest. We applied five rounds of
SEQRS to the PUM1 and PUM2 PUM-HDs separately and quantified the abundance for each of
the 65536 possible 8mers in the sequencing libraries for each round (including 8mers that would
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1« overlap with the adjacent static adapter sequences see Methods for details).

185 To obtain representative PWMs for each round of selection (Figure 2A,B (top)), we used the top
185 enriched 8mer, UGUAAAUA, as a seed sequence to create a multinomial model from the abundance
157 of every possible single mismatched 8mer to the seed sequence (see Methods for details). This data
188 analysis approach has yielded similar results to that of expectation-maximization algorithms such as
189 MEME [55] and has been used successfully with SELEX experiments using DNA-binding proteins
o [56, 57]. We also applied this same analysis pipeline to previously published SEQRS analysis of the
11 D. Melanogaster Pumilio PUM-HD [53] and find that it readily captures the D. mel Pum sequence
192 preference for the canonical UGUANAUA PRE (Figure 2D (top)). However, the PWMs defined
193 here (Figure 2A,B,D (top panels)) are representative of only the most highly enriched sequences in
104 each dataset and round.

105 In order to determine how representative the UGUANAUA consensus motif is for the entire
106 dataset of each protein, we grouped each 8mer based on its similarity to the UGUAAAUA seed
17 sequence as measured by the number of mismatches to that seed (Hamming distance). We then
108 considered the relative enrichment of a given 8mer within each round compared to its relative en-
190 richment within the input pool. Thus, scores above 0 indicate higher relative abundance than the
200 input pool for a given 8mer and scores below 0 indicate lower relative abundance. Here, we see that
200 8mers within 1-2 mismatches of the UGUAAAUA seed sequence are highly enriched compared to
202 8mers with more than 2 mismatches across each round for each protein (Figure 2A,B,D (bottom)).
203 However, the high level of variation in enrichment scores with higher numbers of mismatches and
204 the inclusion of some 8mers with high enrichment scores in these groups, suggests that only con-
205 sidering sequences that are within 1 or 2 mismatches of the canonical PRE (here represented by
200 UGUAAAUA) may not fully describe PUM binding specificity. Additionally, the PWM we ob-
207 tained from our SEQRS experiment for PUM2 PUM-HD (Figure 2B-C) suggests that the PUM2
208 has much weaker enrichment for the canonical PUM PRE compared to PUM1, which is inconsistent
200 with PUM2 sequence preferences obtained from in vivo transcriptome-wide experiments [36, 37].
210 This may indicate differences between in vitro and in vivo conditions that specifically impact PUM2
a1 or may indicate that PUM2 PUM-HD does not bind as efficiently to RNA as the full-length PUM2
212 protein. However, comparing PWMs between these two proteins only considers the most highly
a3 enriched sequences in each dataset. As seen in Figure 2C, the consensus motif emerging from the
24 PUM2 SEQRS data strongly resembles those for other PUMs, albeit with less apparent stringency.
215 To compare the overall sequence preferences between PUM1 and PUM2 we plotted the enrich-
216 ment scores for all possible 8mers in each dataset against each other (Figure 2E). We find that the
217 8mer enrichment scores between these two proteins are highly correlated (Spearman’s p = 0.63)
218 which indicates that PUM1 and PUM2 PUM-HDs have overall similar sequence preferences when
210 considering all possible sequences rather than highly enriched sequences. We also see that the PUM1
20 PUM-HD has an overall stronger enrichment for highly enriched sequences compared to PUMZ2,
21 which may explain the differences in obtained PWMs for each protein. When considering only the
22 8mers within one mismatch to the UGUAAAUA seed sequence used for creating the PWMs, we
223 find that enrichment scores between PUM1 and PUM2 are nearly perfectly correlated (Spearman’s
24 p = 0.91). Furthermore, mismatches in the 3’ end of the motif appear to be less detrimental to
25 enrichment by PUM1 and PUM2 compared to mismatches in the 5 end of the motif, which is
26 also represented by the lower information content at the 3’ end of the PWMs. Due to the overall
27 similarity in sequence preferences between these two proteins and the higher overall information
28  content in the PUM1 PWM, the SEQRS round 5 PWM for PUM1 will be used to determine PREs
220 throughout the text, unless otherwise indicated.
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Figure 2: SEQRS analysis of Human PUM1 and PUM2 PUM-HDs reveals preference for the canonical PUM Recog-
nition Element. A) (Top) Position weight matrices representing 8mer sequence preferences for purified Human PUM1
PUM-HD, as determined for each SEQRS round. (Bottom) 8mer enrichment, as measured by log,(Enrichment SE-
QRS round/ Enrichment no protein) (see Methods for details) for each 8mer as binned by Hamming distance from
the canonical UGUAAAUA PUM recognition element. Enrichment scores for 8mers within 2 mismatches are filled in
red. B) Same as in A, but for Human PUM2 PUM-HD. C) Closer view of Human PUM2 PUM-HD PWMs. D) Same
as in A, but for Drosophila Pum PUM-HD. E) Correlation of 8mer enrichment between Human PUM1 and Human
PUM2 PUM-HDs. Enrichment for all possible 8mers are displayed in a two dimensional histogram. The dashed black
line represents one to one correspondence. All 8mers within one mismatch to the UGUAAAUA sequence are plotted
as red points with the color specifying the position within the motif where the mismatch occurs. The red line is a
linear fit using only the UGUAAAUA 8mer and all 8mers within one mismatch.
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230 2.8. Contextual features around PREs are associated with PUM-mediated RNA stability effects

231 Determining what distinguishes a functional binding site from a non-functional binding site is a
232 major question for any RBP. Taken as a whole, RBPs tend to bind similar low sequence complexity
233 motifs in vitro [51]. Additionally, probing of RBP binding in vivo at a transcriptome-wide scale,
214 has indicated that the majority of predicted binding sites are not bound for some RBPs [58].
235 Global in vivo experiments with the Pumilio-family of proteins have established that mammalian
236 Pumilio proteins recognize the UGUANAUA PRE in the 3’ UTR of target genes [22, 32, 36, 37].
237 However, predicting the PUM-mediated effect on gene expression from sequence information and/or
28 PUM-binding measurements remains an elusive goal [34].

239 To determine sequence motifs de novo that have explanatory power for our RNA stability
20 dataset, we used FIRE [59] to find motifs in the 3’ UTR of transcripts that share high mutual
2s1  information with our RNA stability dataset by taking the normalized interaction term (see Methods
22 for details) and discretizing it into ten bins, with an equal number of genes in each bin. Figure 3A
23 shows that FIRE rediscovers the canonical UGUANAUA PRE using only the RNA stability data
24 as input. Furthermore, the UGUANAUA PRE is enriched in transcripts that are highly stabilized
25 under PUM knockdown conditions, suggesting that these transcripts are regulated by PUM through
as  recognition of a UGUANAUA PRE in their 3’ UTR.

247 To determine whether there was evidence for PUM binding at PREs associated with a change
2 in RNA stability, we used publicly available in vivo binding data for human PUM2 obtained using
29 photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) [37].
250 The PAR-CLIP technique involves incorporation of 4sU into the total cellular RNA pool allowing
21 for efficient crosslinking of proteins that bind near an incorporated 4sU. Upon creation of sequencing
22 libraries from PAR-CLIP samples, a T — C mutation is induced at the crosslinking site which can
253 be used as additional evidence for a protein binding. We used PAR-CLIP data from Hafner et al.
254 [37] to determine the amount of binding signal at PREs associated with transcripts that have a
255 statistically significant change in RNA stability under PUM knockdown (EFFECT class, Figure
256 1D) and compared it to transcripts with a statistically significant lack of change in RNA stability
7 (NOEFFECT class, Figure 1D). In Figure 3B, we report the average PAR-CLIP read coverage
»s in a 40 bp window around PREs in the 3’ UTR of transcripts associated with the EFFECT and
50 NOEFFECT classes. We use a 5% truncated mean to remove the impact of extreme outliers on
x%0 the average coverage reported. To estimate a 95% confidence interval on the average coverage
21 (shaded region), we performed bootstrapping (n = 1,000) by sampling vectors of read coverage for
262 individual PREs with replacement. Here, we clearly see that PREs in transcripts with a change
263 in RNA stability have higher binding signal than those with no change in RNA stability. This is
264 consistent with higher overall PUM binding at PREs associated with changes in RNA stability but,
265 as the PAR-CLIP signal is not normalized to RNA abundance, the possibility that these transcripts
26 were simply more abundant under the PAR-CLIP conditions cannot be definitively ruled out.

267 We have shown that a PRE in the 3’ UTR is associated with a change in RNA stability under
268 PUM knockdown and that PREs in transcripts with a change in RNA stability have evidence for
260 being bound by PUM in vivo. However, knowledge of the presence or absence of a PRE in the
a0 3’ UTR alone is not sufficient to predict the magnitude of PUM-mediated repression, and a wide
o1 variation in the effect of knocking down human PUM1 and PUM2 on steady-state RNA levels has
212 been observed in previous transcriptome-wide analysis [34]. Here, we demonstrate that a similar
a3 level of variation can be seen in measurements of RNA stability. Figure 3C displays the overall
o7a  distribution of RNA stability measurements for transcripts with increasing numbers of PREs in
o5 annotated 3’ UTRs. We find that an increase in the number of PREs is, on average, associated
276 with an increase in RNA stability under PUM knockdown conditions compared to transcripts that
27 do not have a PRE in their 3’ UTR. However, wide variations in RNA stability can be seen for
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78 each category, consistent with previous measurements of changes in steady state RNA levels under
279 PUM knockdown [34]. Thus, a simple count of PREs does not fully explain PUM-mediated action
280 at a particular transcript.

281 To explore the local sequence context around PREs, we trained a 3rd order Markov model on
22 the full set of unique annotated human (hgl9) 3" UTRs that were greater than 3 basepairs long
283 (29,380 3’ UTRs). Using this Markov model, we simulated 1,000 different sets of 29,380 3’ UTRs
2« that were the same length and shared similar sequence composition to the set of true 3’ UTRs.
265 We then searched for matching PREs in the simulated sets of 3 UTRs and calculated the AU
286 content in a 100 bp window around these PREs. On average, we discovered 12200 matching PREs
27 (standard deviation of 112) in simulated sets of 3’ UTRs compared to the 14086 matching PREs
28 in the annotated set of 3" UTRs. We find that the true set of PREs have, on average, higher local
20 AU content than PREs in simulated sets of 3 UTRs (Figure 3D). Additionally, in the simulated 3’
200 UTRs the local AU content for PREs is centered around the average AU content for all 3/ UTRs,
201 as would be expected if there was no selective pressure for PREs to occur in AU rich areas of 3/
220 UTRs. This analysis is consistent with Jiang et al. [60] who also observed a preference for PREs
203 to occur in AU rich areas as compared to shuffled PREs with preserved overall sequence content.
204 Here we further show that the local AU content surrounding a PRE is associated with a functional
205 effect on PUM-mediated regulation.

206 To determine the relationship between local AU content and changes in RNA stability upon
207 PUM knockdown, we plotted the AU content of a 100 bp window surrounding a PRE within a gene’s
28 3 UTR against the corresponding RNA stability measurement for that gene (Figure 3E top). For
200 3’ UTRs with more than one PRE, the PRE with the highest local AU content was considered. We
s0 find that large changes in RNA stability are associated with higher local AU content. Additionally,
s PREs in transcripts that had a statistically significant stability effect in PUM knockdown had
so2  higher local AU content compared to PREs in transcripts with no change in stability (p < 0.001,
s03  Figure 3E bottom). These data indicate that local sequence context beyond the PRE plays a role
s« in PUM function.

305 Previously proposed mechanisms of PUM-mediated control of RNA stability involve interaction
06 with the CCR4-NOT complex and/or PABPs, both of which act at the 3" end of mRNA transcripts
307 to promote deadenylation or participate in translation initiation [32, 33]. Thus, the location of PUM
38 binding sites within the 3’ UTR of target transcripts may play a role in determining PUM-mediated
a0 effects on stability by physically locating PUM near known co-regulators. Using the Markov models
s described above, we also determined the location of PREs within 3" UTRs. As shown in Figure
sn 3H, we observe that the observed distribution of true PRE locations in length-normalized 3" UTRs
sz appear enriched towards the 3’ end of 3’ UTRs (red) as compared to PREs found within 1000
si3 simulated sets of 3 UTRs (gray). Again, this suggests a selective pressure for PRE sites to exist at
su the 3’ end of 3’ UTRs as compared to the uniform distribution of PREs found in simulated 3’ UTRs
a5 with similar sequence properties. Like the AU content analysis, this analysis is also consistent with
s16 - observations made by Jiang et al. [60] who saw an enrichment towards the 3’ end for PRE locations
517 in the full set of human 3’ UTRs compared to a shuffled PRE motif with preserved overall sequence
sis content. While these approaches are complementary, our approach allows for the exact identity of
si9 the PRE to remain intact thereby maintaining a PRE-centric assessment rather than one based
30 solely on the general sequence content within the motif. Additionally, we observe that transcripts
s with a PRE towards the 3’ end of the 3’ UTR tend to have a larger RNA stability effect (Figure
322 3G center) and PREs in transcripts that had a statistically significant change in stability in PUM
33 knockdown were, on average, closer to the 3’ end of the 3’ UTR than those with no change in RNA
s24  stability (p < 0.001, Figure 3G bottom), suggesting a functional role for PRE location in the 3’
35 UTR of target transcripts.
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High throughput analysis of many human RBPs has indicated that some RBPs prefer to bind
bipartite motifs, suggesting that clustering of RBP binding sites may contribute to binding speci-
ficity and subsequent function [51]. To determine the relationship between PRE clustering and
RNA stability in PUM knockdown, we discretized transcripts according to the maximum number
of complete PREs that were within a sliding 100 bp window in the 3’ UTR of a transcript and
plotted the distribution of RNA stability measurements for each cluster (Figure 3F). Similar to
the association with the number of PREs (Figure 3C), we find that having more PREs clustered
together is associated, on average, with a higher stabilization effect under PUM knockdown condi-
tions. We also find that PREs tend to cluster together more than one would expect by chance by
determining the divergence from a simple Poisson model (Figure 31, p < 0.001 for clusters 2-5; see
Methods for details). Taken together, this analysis suggests that clustering of PREs may facilitate
PUM action on target transcripts.
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Figure 3 (previous page): Features associated with a PUM Recognition Element (PRE) explain some variability in
PUM-mediated effect on decay. A) Results of motif inference using FIRE [59] on the stability in PUM knockdown
data discretized into 10 equally populated bins. Red bars within each bin represent the spread of RNA stability
values within each bin. Stability in PUM knockdown is represented by a normalized interaction term between time
and condition throughout this figure, where positive values indicate stabilization upon PUM knockdown and negative
values indicate destabilization upon PUM knockdown (see Methods for details). B) 5% truncated average of Pum2
PAR-CLIP read coverage [37] over each PRE site in the 3" UTRs of genes with a statistically significant change
in RNA stability (blue) compared to genes in which there was a statistically significant lack of change in stability
(orange; see Methods for details on NOEFFECT test). Shaded regions represent bootstrapping (n = 1,000) within
each group. Dashed lines indicate the PRE site. C) Violin plots representing the distributions of RNA stability for
genes with 0 to 15 PRE sites within their 3’ UTR. Stars represent statistical significance as measured by a Wilcoxon
rank sum test using equality of pseudomedian with the 0 PRE case as the null hypothesis. D) Distribution of AU
content in a 100 bp window around all unique PRE sites in the 3' UTRs of the human transcriptome. The observed
distribution (red) is compared to the distribution of AU content around PRE sites in 1,000 simulated sets of 3" UTRs
the same size as the true set of 3’ UTRs as simulated from a third order Markov model trained on the true 3’ UTR
sequences. The dotted line represents the average overall AU content of the entire set of 3’ UTRs in the human
transcriptome. E) Relationship of AU content in a 100 bp window around a PRE to RNA stability. (left) Marginal
histogram of RNA stability for genes with 0 PREs in their 3’ UTRs. (right) 2D histogram of RNA stability and AU
content around each PRE site for all genes with at least one PRE in the 3’ UTR. Dotted line represents the average
AU content over the entire set of 3' UTRs in the human transcriptome. (bottom) Marginal kernel density plot of AU
content around a PRE site split amongst genes with a statistically significant change in RNA stability (red) and genes
with a statistically significant lack of change in stability (blue). Dotted black line represents the average AU content
of 3UTRs. Dashed lines represent the median AU content around a PRE for the EFFECT (red) and NOEFFECT
(blue) genes. The star represents a statistically significant difference in medians using a one-sided permutation test
(n=1,000) of shuffled class labels. F) Violin plots representing the distributions of RNA stability for genes with 0 to
6 full PRE sites clustered within a 100 bp window. Stars represent statistical significance as measured by a Wilcoxon
rank sum test using the 0 PRE case as the null distribution. G) Relationship of normalized location of PRE site
in 3’ UTR to RNA stability. Plots as in (D). H) Distribution of length normalized locations of PRE sites in the 3’
UTRs of the human transcriptome. The observed distribution (red) is compared to that of PRE sites found in 1,000
simulated sets of 3" UTRs calculated as in (G). I) Comparison of the observed frequencies of PRE site clustering
over all possible 100 bp windows in the full set of human 3’ UTRs with at least 1 PRE in them to the probabilities
expected from a Poisson null distribution. Error bars represent 95% confidence intervals based on 1,000 bootstraps
of the observed distribution.

2.4. Pumilio proteins modulate the stability of genes involved in neural development, cell signaling,
and gene regulation

Mammalian Pumilio proteins have been shown to regulate a diverse set of genes, including those
involved in signaling pathways, transcriptional regulation, and neurological functions [18, 22, 23,
34, 35]. Consistent with prior observations, we see changes in RNA stability for genes involved
in these functions. For example, multiple epidermal growth factor-like-domains 9 (MEGF9) is a
transmembrane protein that is highly expressed in the central and peripheral nervous system and
its expression appears to be regulated during nervous system development in mice [61]. We see
strong stabilization of the MEGF9 transcript under PUM knockdown conditions (Figure 4A top).
Furthermore, of the five PREs we identify in two unique 3" UTRs for MEGFY, we see the most
PUM2 binding signal for the 3’-most PRE (Figure 4A bottom right). Additionally, we see that the
3’-most PRE has high local AU content compared to the overall distribution of PRE sites (Figure 4A
bottom left). Taken together, these data implicate the PUM proteins as direct post-transcriptional
regulators of MEGF9.

Another transcript that is strongly stabilized under PUM knockdown conditions is glycogen
synthase kinase-3 B (GSK3B) (Figure 4B top). GSK3B is a serine-threonine kinase that is involved
in the regulation of diverse cellular processes and its misregulation is associated with neurological
disease [62, 63]. We identify four PREs in GSK3B 3’ UTRs (Figure 4B below) with largely similar
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6 adjacent AU content (Figure 4B bottom left). We also find that the 3’ most distal PRE has evidence
357 for PUM2 binding consistent with the global trends we describe in Figure 3. Like MEGFY, this
358 evidence suggests that PUM proteins are involved in destabilizing GSKS3B transcripts.

359 We also see examples of RNAs that are destabilized when PUM is knocked down, suggesting
0 that PUM may actually act to stabilize these transcripts under conditions containing WT levels of
ss1 PUM expression. Transcription dimerization partner 2 (TFDP2) encodes a protein that cooperates
32 with E2F transcription factors to regulate genes important for cell cycle progression; dysregulation
363 of this system can lead to cancer [64]. PUM proteins have been previously shown to regulate another
¢ member of the E2F family by functionally cooperating to enhance the effect of miRNA-mediated
35 regulation of E2F3 expression [65]. Furthermore, regulation of TFDP2 by the liver-specific miRNA
6 miR-122 has been shown to be important for preventing up-regulation of ¢-Myc in hepatic cells
37 [66]. We observe that TFDPZ2 is highly destabilized under PUM knockdown conditions (Figure 4C
s top). Additionally, we find that the TFDP2 3’ UTR has a single PRE site toward the 3’ end of
s0  the 3’ UTR and has high adjacent AU content (Figure 4C bottom and lower left). However, there
s70  is limited evidence for PUM2 binding in PAR-CLIP data (Figure 4C lower right). One possible
sn1 - mechanism for PUM mediated activation of TFDP2 is by acting to block regulation by miRNAs;
s however, the nearest conserved miRNA site of a conserved miRNA family to the PRE is over 100
513 bases away [67] and further evidence would be needed to establish this link.

374 Another example of a highly destabilized transcript under PUM knockdown conditions is the
srs  embryonic lethal abnormal vision 1 (ELAVLI) or HuR RNA-binding protein (Figure 4D top).
sis The ELAVL1 RBP stabilizes RNA transcripts by binding to AU-rich elements in the 3’ UTR of
s77 transcripts [68] and its dysregulation is associated with several different types of cancer [69]. We
ss found one PRE in the 3" UTR of ELAVLI(Figure 4D bottom). This motif is found towards the
;9 3’ end of the 3’ UTR but has average local AU enrichment compared to other PREs found across
0 all annotated 3’ UTRs (Figure 4D lower left). Additionally, there is limited evidence for binding
ss1 by PUM2 at either of the PREs in the ELAVLI 3’ UTR (Figure 4D lower right). Taken together,
32 this suggests that ELAVL1 may be indirectly regulated by PUM.

383 To discover categories of genes that are globally associated with RNA stability changes in PUM
s8¢ knockdown, we applied iPAGE—a computational tool that uses mutual information to find in-
s formative Gene Ontology (GO) terms associated with discretized gene expression data [70]—to
ss6 our stability dataset as represented by the normalized interaction term discretized into 5 equally
37 populated bins. It is worth noting that this analysis will discover pathways regulated both indi-
s rectly and directly by PUM out of the full set of annotated GO terms. Figure 5A displays the
380 1PAGE results with several GO terms that are either significantly overrepresented (red-filled box)
s00 or underrepresented (blue-filled box) across the full range of stability data. We see several enriched
01 GO term categories that are consistent with previous reports of changes in steady-state RNA lev-
302 els under PUM knockdown in HEK293 cells [34] including categories related to guanyl-nucleotide
503 exchange factor activity (G0O:0005085), WNT signaling (GO:0030177), nucleosome (GO:0000786)
s and platelet-derived growth factor receptor signaling (GO:00048008).

395 For a finer grain view, we plotted the RNA stability results for each gene involved in selected
36 GO terms as indicated by either blue (destabilized in PUM KD) or red (stabilized in PUM KD)
307 text for that GO term in Figure 5A. In Figure 5B, we show two selected GO terms whose members
38 tend to be de-stabilized upon PUM knockdown: nucleosome (GO:0000786, left) and myelin sheath
300 (GO:0043209, right). For genes related to the nucleosome, we see a general destabilization under
200 PUM knockdown conditions. However, when comparing genes within this GO term that have a
w1 PRE in their 3 UTR to those that do not, we see that genes with a PRE in their 3’ UTR have
42 a median stability upon PUM KD that is significantly higher than those without a PRE in their
w3 3 UTR (p < 0.001), suggesting that the destabilization of most nucleosome genes under PUM
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a4 knockdown conditions may be mediated indirectly. Some of these effects could be explained by
a5 perturbation of the stem-loop binding protein (SLBP), as SLBP is a protein involved in the proper
w06 maturation of replication-dependent histone mRNAs [71], and we observe that SLBP is significantly
a7 stabilized under PUM knockdown conditions (Figure 1C).

408 PUM knockdown also causes a general de-stabilization of genes categorized into the myelin
a0 sheath GO term. A role for PUM in controlling the stability, either indirectly or directly, of genes
410 involved in the myelin sheath is consistent with the previously identified role of mammalian PUMs
a1 in neurogenesis and neurodegenerative diseases [19, 22, 23, 31]. However, we see no evidence for
a2 a difference in stability between genes that have a PRE in their 3’ UTR compared to genes that
a3 do not have a PRE in their 3 UTR. Furthermore, the genes that have a statistically significant
aa  de-stabilization under PUM knockdown have no PRE in their 3’ UTR, whereas the genes with a
a5 significant stabilization do, suggesting a complex role of PUM in modulating the stability of genes
416 in this GO term, possibly arising mainly through indirect effects.

417 In Figure 5C, we report specific GO terms that were enriched in genes that were stabilized
as under PUM knockdown and thus likely contain many classic, PUM-repressed targets. Consistent
a9 with this idea, we find that each of these GO terms represent classes of genes that have previously
420 been associated with PUM-mediated regulation. For instance, the guanyl-nucleotide exchange
a1 factor activity GO term (GO:0005085; Figure 5C, far-left) includes guanine nucleotide exchange
a2 factors (GEFs) which activate Rho-family GTPases to regulate a diverse suite of cellular functions,
223 including cell-cycle progression, the actin cytoskeleton, and transcription [72]. Additionally, genes
224 involved in peptidyl-serine phosphorylation (GO:0018105; Figure 5C, mid-left), represent a broad
a5 class of kinases, including those involved in neurological disease and inflammation [63, 73]. Finally
a6 genes involved in transcriptional repressor activity (GO:0001078, Figure 5C, mid-right), include
227 proteins involved in regulating hematopoiesis and controlling neurological development [74-76].
428 Supporting the idea that PUMs are directly repressing subsets of genes within these GO terms
a0 we find that, for each GO term above, genes with a PRE in their 3’ UTR are significantly more
430 stabilized under PUM knockdown than those with no PRE.

431 Of particular interest is the mild enrichment of genes that were stabilized under PUM knock-
12 down for the CCR4-NOT complex GO term (GO:0030014; Figure 5C, far-right). Almost every
433 gene in this GO term was stabilized under PUM knockdown to some extent. Although the overall
434 effect of a PRE for genes in this category did not meet our threshold for statistical significance,
a5 several of the genes have a PRE in their 3 UTR including both genes with a statistically significant
436 change in stability. Human Pumilio proteins have been shown to interact with the CCR4-NOT
a7 complex and recruit the complex to target mRNAs for de-adenylation [32]. These data suggest
438 that PUM could also be acting to directly inhibit CCR4-NOT expression and thus globally lower
439 deadenylation rates, perhaps providing a feedback loop that further regulates PUM activity.

440 Overall, we observe that genes associated with GO terms that are stabilized under PUM knock-
41 down have a significant association with PREs suggesting that these GO terms contain mainly genes
42 that are direct targets of PUM. In contrast, we find that genes associated with GO terms that are
43 destabilized under PUM knockdown do not have a significant association with PREs, suggesting
44 that these GO terms contain mainly genes that are indirect targets.

ws 2.5, Conditional random forest models allow for prediction of PUM-mediated effects from sequence-
446 specific features

447 A long standing goal in the study of RBPs is to predict that RBPs effect on a given transcript
as from known features about possible targets. Previous models of PUM-mediated regulation have

49 reported modest performance based on the number of PREs in various locations across the tran-
a0 script including the 5" UTR, CDS, and 3’ UTR [34]. Here, we use a different approach, which
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Figure 4: PUM-mediated effects on RNA stability under PUM knockdown include stabilization and destabilization.
A) (top) Read coverage traces for MEGF9 and surrounding region (chr9:123348195-123491765, hgl9) as measured in
reads per million (RPM). Traces are shown for siPUM (orange) and NTC (blue) conditions at both OH (upper track)
and 6H (inverted lower track) time points. Four replicates for each combination of siRNA and time point are overlaid.
Known isoforms for MEGF9 are represented above. The black arrow indicates the direction of the 5 and 3’ ends of the
transcribed RNA molecule from the gene shown. (Below) Diagram of unique MEGF9 3’ UTRs. Sites matching the
PUM1 SEQRS motif are represented as vertical lines and labeled alphabetically from 3’ to 5’ for each UTR. (Below
left) AU content of a 100 bp window around each PRE labeled above in the overall distribution of surrounding AU
content for all PUM1 SEQRS motif matches in the entire set of 3' UTRs. (Below right) PAR-CLIP read coverage
[37] of 40 bp around each indicated PRE. Number of reads with a T—C mutation are shown in red, whereas the
number reads with no T—C mutation are shown in gray. B) As in A), but for GSK38B and surrounding region
(chr3:119509500-119848000). C) As in A), but for TFDP2 and surrounding region (chr3:141630000-141900000).
Annotations for the 3’ end of the GK5 gene are included due to their proximity to the TFDP2 5" end. D) As in A),
but for ELAVLI and surrounding region (chr19:8015000-8080000).
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Figure 5: Gene ontology terms associated with PUM-mediated changes in RNA stability. A) Results of iPAGE
analysis to find GO terms sharing mutual information with RNA stability discretized into 5 equally populated bins.
Red bins indicate over representation of genes associated with the corresponding GO term. Blue bins indicate under
representation of genes associated with the corresponding GO term. A black box indicates a statistically significant
over or under representation with a p-value < 0.05 using a hypergeometric test [70]. Throughout this figure stability
in PUM knockdown is represented by a normalized interaction term between time and condition, where positive values
indicate stabilization upon PUM knockdown and negative values indicate destabilization upon PUM knockdown (see
Methods for details). B) Selected GO terms whose members are over represented in the RNAs that are destabilized
under PUM knockdown, as labeled in blue in panel A. For each GO term, a volcano plot is shown for all genes
within the GO term. Volcano plots are shown as two dimensional histograms for genes below a statistical significance
threshold (g-value < 0.05) and as individual points for genes above the statistical significance threshold. Individual
points are blue if a PRE can be found within any annotated 3" UTR for that gene and red otherwise. The dashed line
represents the statistical significance threshold and the dotted line represents no change in RNA stability under PUM
knockdown. Below each volcano plot is a marginal density plot for the RNA stability split into two categories within
the specified GO term: Genes with a PRE in any annotated 3' UTR, (blue) and genes with no PRE in any annotated
3" UTR (red). Medians for each distribution are shown as dashed lines in the appropriate color. The black dotted
line represents no change in RNA stability, as in the volcano plot above. A star represents a statistically significant
(p < 0.05) difference in the medians as tested by a two-sided permutation test of shuffled group labels (n = 1000).
C) As in (B), but for selected GO terms whose members are over represented in the RNAs that are stabilized under
PUM knockdown, as labeled in red in panel A.
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451 allows us to include a larger feature set of possible predictors for PUM-mediated regulation. Using
a2 conditional random forest models [77], we divided genes into EFFECT and NOEFFECT classes,
s53 as shown in Figure 1D. We used four different definitions for a PRE, (Figure 6A) including the
4 SEQRS motifs we defined for PUM1 and PUM2 in Figure 2A-B, the PUM2 motif determined from
w5 Hafner et al. [37], and a regular expression (regex) representing UGUANAUW as defined from the
456 PUM consensus sequence which has been used extensively to define PREs in previous publications
w7 |7, 34, 60]. We focused our analysis on PREs found in the 3’ UTRs of target genes. For each
458 definition of a PRE, we calculated several features based on our analysis in Figure 3, including AU
459 content around a PRE, clustering of PRESs, total count of PREs, a score for PRE match to the
w0 specific PRE definition, relative location of the PRE in the 3’ UTR, number of miRNA sites near a
61 PRE, and predicted secondary structure around a PRE. In addition to these features, we included
462 motif matches for additional human RBPs, in vivo PUM binding data, predictions of secondary
a3 structure, and the fraction optimal codons for the CDS of target genes (see Methods for details).
w4 As our data is highly unbalanced (199 EFFECT genes and 2535 NOEFFECT genes, after only
w5 including genes that are present in all features) we trained 10 different machine learning models
466 where the NOEFFECT class was randomly downsampled to match the number of EFFECT class
467 genes in each model. Within each downsampled dataset, 5-fold cross validation was performed to
468 assess performance.

469 To determine which features best help predict EFFECT genes from NOEFFECT genes, we used
a0 an AUC-based permutation variable importance measure [78], which indicates the average change
ar1 in the area under the curve (AUC) of a receiver operator characteristic (ROC) plot across all trees
42 with observations from both classes in the forest when the predictor of interest is permuted. By
473 permuting the feature of interest and measuring the change in AUC of the ROC curve, one can
472 measure the importance of that variable in predictive performance. Typically values of the AUC
a5 of a ROC curve span from 0.5 to 1.0 where 1.0 indicates perfect classification performance and 0.5
a7 indicates random guessing of class distinctions. Since the AUC-based variable importance measure
477 is calculated using the change in AUC when the predictor is permuted, the expected values are much
478 smaller and fall between 0.0 and 0.06 in simulated cases with 65 predictors and variable numbers of
a7o  observations from n=100 to n=1,000 [78]. Higher values indicate a larger drop in performance when
40 that variable is permuted; thus, the variables can be ranked based on their unique contribution
451 to the model, with higher values indicating a more important individual contribution. Figure 6B
42 displays the top 20 variables ranked according to their average AUC-based variable performance
a3 across all 50 models (10 sets of downsampled models with 5-fold cross-validation each). Count
ssa  based metrics enumerating the total number of PREs within the 3’ UTR appear to be the most
485 important variable for predicting a PUM-mediated effect in the Bru-seq and BruChase-seq data. In
486 addition, local AU content and PRE clustering appear to be substantial contributors to the models.
a7 To a lesser extent, the number of miRNA sites around a PRE, the location of the PRE in the 3’
w8 UTR, and the “Bound” status of the 3’ UTR also appear to contribute meaningfully to our models.
a0 It is possible that each of these variables contain largely the same information (i.e., whether or not
a0 the 3 UTR has a PRE or not in it). Thus, in order to rule out the possibility that each feature was
w1 simply differentiating between genes with a PRE in their 3’ UTR from genes without a PRE, we
102 trained separate models for each motif definition where we only considered genes that have at least
203 one PRE present in their 3 UTR. Each of these models also displayed substantial contributions
104 for AU content, clustering, and total count in predicting PUM-mediated regulation, as measured
a5 by Bru-seq and BruChase-seq (Figure S2A-D left panel) suggesting that each of these features are
206 contributing meaningful information to the model.

497 The high similarity in appearance between each of the definitions of a PRE we include here led
208 UuS to explore how much redundant information is contained between each of the top 20 highest
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499 contributing features. To measure redundancy, we use an information theoretic definition based on
so0 discretization of each feature (see Methods for details). In Figure 6C, we display the redundancy
s00  between the top 20 features as a hierarchically clustered heatmap, where a value of 1.0 indicates
s02 that the features contain exactly the same information and a value of 0.0 indicates that the fea-
503 tures share no information. Here, we can see that features that are defined around the same motif
sos  definition or feature-type tend to share information (as expected). However, despite their similar-
s05 ity in appearance, there are some differences in information content between the different motif
so6 definitions and different feature types, indicating that there is knowledge to be gained outside of a
so7 - simple PRE count.

508 To assess the performance of our conditional random forest models we considered several typical
so0 performance measures including summary metrics (Accuracy, F1 measure, Matthews correlation
si0  coefficient [MCC], Area Under the Curve of a Precision-Recall Curve [AUC PRC], and AUC ROC),
s and metrics more focused on performance for positive or negative cases (Negative Predictive Value
sz [NPV], Precision, Recall, Specificity). We considered each of these metrics for all 50 models (10
s13 downsampled datasets with 5-fold cross-validation each) at a classification probability cutoff of 0.5.
514 The full range of values obtained are displayed in Figure 6D. It is evident that the models are
si5. robust to both downsampling and cross validation and the performance hovers around 0.75 for
si6  each metric (and 0.5 for MCC), indicating balanced performance in predicting both positive and
57 negative classes. These results are robust even in the case where we only use one PRE definition
si8 and only consider genes that contain a PRE in their 3 UTR (Figure S2A-D).

519 In order to determine the predictive efficacy of our models we tested their performance against
s20 the Bohn et al. [34] RNA-seq dataset which was not used to the train the models (Figure 6E). Here,
521 the performance on the trained Bru-seq and BruChase-seq data is reported as the five-fold cross-
52 validation performance for each of the 10 downsampled models. To observe the overall performance
523 of the models, we display precision-recall curves on both the Bru-seq and BruChase-seq data on
s24  which the model was trained and the RNA-seq data for each of the 10 different models (Figure 6F).
s The baseline is defined separately for each dataset as the overall class balance between the positive
526 and negative class. A perfect model tends toward the upper right of the graph, and a poor model
57 follows the dotted baseline for that dataset. Despite the differences in technique and biological
58 implications between RNA-seq and Bru-seq and BruChase-seq in determining PUM-mediated gene
520 regulation, we find that the models trained on Bru-seq and BruChase-seq are able to perform
s well in predicting PUM-mediated regulation in RNA-seq data. We see similar performance when
531 considering a single definition for a PRE and only considering genes that have a least one PRE in
52 their 3 UTR (Figure S2A-D). Although the features we have included here are not sufficient to fully
533 describe PUM-mediated gene regulation in human cells, we have demonstrated a clear functional
s association and predictive utility for PUM motifs (i.e. match scores and count of PREs) as well
535 as contextual features around PREs including the location, neighboring AU content, clustering of
53 PREs, and overlap with predicted miRNA sites.
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Figure 6 (previous page): Predicting PUM-mediated effect on decay using both sequence-based and experimental
features. A) Motifs used to calculate features for machine learning. Shapes indicate the type of feature calculated,
whereas colors indicate the motif used to calculate those features. Total count is a simple count of motifs; Match
score refers to a numerical value indicating how well a sequence matches a motif; clustering indicates motif proximity
to additional instances of the same motif; location indicates features associated with a single motif’s location on the
3" UTR. Shapes filled in with the appropriate color are used to label features throughout the rest of the figure. B)
Variable importance plot displaying the top twenty most important features, as determined by training a conditional
random forest classifier on PUM decay data (see Methods for details including information on feature names). Violin
plots represent density from ten separate downsamplings of the majority class, each with five fold cross-validation. An
AUC based variable importance measure is used as described in Janitza et al. [78]. C) Calculation of the redundancy
in information between the top twenty most important variables, as determined in A. Redundancy is calculated in
the information-theoretic sense (see Methods for details) where 1 is completely redundant information and 0 is no
redundancy in information between the two variables. D) Cross-validation of conditional random forest classifier
performance. Each boxplot represents a separate downsample of the majority, no PUM-mediated effect class. Values
for each boxplot represent the performance metric as calculated for each of five folds using a classification cutoff of
0.5. E) Performance of conditional random forest models on the steady state RNA data-set from [34]. Blue boxplots
represent values from seperate downsamplings of the majority, no PUM-mediated effect class used to train the model
on the Bru-seq and BruChase-seq data set. Red boxplots indicate values from testing each model on the Bohn et al.
[34] steady-state RNA-seq data set. Metrics were calculated using a classification cutoff of 0.5. F) Precision Recall
curves using the models in E. Each line represents one of ten conditional random forest models trained on separate
down sampled sets of the entire Bru-seq and BruChase-seq data set and tested on the steady state RNA data set.

3. Discussion

Through the combination of our high-throughput probing of RNA decay and the mining of
sequence information in the 3’ UTRs of human transcripts, we were able to establish several general
rules of PUM-mediated gene regulation in human cells.

3.1. Human PUM proteins control gene expression by modulating RNA stability

Previous studies have established that both PUM1 and PUM2 control the stability of individual
transcripts through recognition of a UGUANAUA PRE [32]. Transcriptome-wide measurements in
PUM1 and PUM2 knockdown conditions have shown that hundreds of RNAs change in abundance,
as measured using RNA-seq [34]. However, measurements of RNA abundance using RNA-seq only
allow for determination of changes in steady-state RNA abundances and do not allow one to dif-
ferentiate effects from changes in RNA stability versus changes in transcription rates. Through the
use of metabolic labeling, we are able to differentiate the effects of knocking down both PUMI1 and
PUM2 on transcription from the effects on RNA stability [39]. Our results indicate that perturbing
the expression of human PUM1 and PUM2 has a widespread effect on the mRINA stability of many
transcripts in HEK293 cells, but does not appear to perturb transcription rates in any meaningful
way, as measured by our system. Rather than determine full decay rate constants for each tran-
script, which would have required the use of additional time points throughout the chase period
of our experiment, we chose to determine relative changes in RNA stability using just two time
points. The measurements obtained from these experiments cannot be interpreted on an absolute
scale, but the rank order of stability measurements within the experiment is preserved, allowing
us to determine the relative effects of PUM knockdown between any two genes [48]. Consistent
with the changes in steady-state RNA levels determined under PUM knockdown conditions, we see
transcripts that are both destabilized and stabilized. As expected, the number of genes that are
stabilized under PUM knockdown is much higher than the number of genes that were destabilized,
which is consistent with PUM’s role in reducing the expression levels of target genes likely through
the recruitment of the CCR4-NOT complex and subsequent destabilization of the transcript [32].
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se3 3.2. General rules for predicting PUM-mediated activation remain elusive

564 In contrast with the clear and robust effects of PUM on PUM-repressed transcripts, the mech-
ss  anism for the rarer case of PUM-mediated stabilization remains unclear. Measurements using
s66  luminescent reporter assays have shown activation of a subset of predicted PUM-activated tran-
se7  scripts that is dependent on the presence of a PRE in the 3’ UTR of the reporter [34]. Furthermore,
ses  direct binding of PUM1 or PUM2 to PREs present in the FOXP1 3’ UTR has been reported to
se0  promote expression of the FOXP1 protein, an important regulator of the cell cycle in hematopoi-
s7o - etic stem cells [29]. Conversely, when considering PAR-CLIP measurements of PUM2 occupancy at
sn PREs for only the transcripts that were destabilized under PUM knockdown, we find inconclusive
sz evidence for binding in targeted examples (Figure 4C,D) and an insufficient number of examples
573 to draw firm conclusions when considering the group as a whole separately from the stabilized
st transcripts (data not shown). Furthermore, attempts to classify transcripts that were stabilized
s5 in PUM knockdown from those that were destabilized using random forest models with identical
s76  feature sets to those used in Figure 6 showed poor performance, possibly due to the small num-
577 ber of examples for transcripts that were destabilized under PUM knockdown. There is also the
ss possibility that the destabilization of the transcripts under PUM knockdown are indirect effects
s79 - mediated through another factor that PUM is either directly regulating or PUM is competing with
ss0  for binding. It is likely that the PUM-mediated activation of genes found through high-throughput
ss1 studies represent a combination of direct and indirect targets. However, despite the clear evidence
sz for direct PUM-mediated activation of some targets, general rules for predicting PUM-mediated
533 activation remain elusive and mechanistic insights into PUM-mediated activation of key targets
s« will require further study.

ses 3.3. PUM1 and PUM2 have shared sequence preferences

586 Using SEQRS [53] on purified PUM-HDs for both PUM1 and PUM2, we find a strong preference
ss7 for the UGUANAUA motif for PUM1 and, somewhat surprisingly, a much weaker preference for
sss  this motif for PUM2. However, when considering the enrichment of all possible 8mers, we see that
ss9  the preferences for each PUM-HD are highly correlated with a larger magnitude in enrichment
soo  for PUM1 PUM-HD compared to PUM2 PUM-HD. Our approach uses a random library of RNA
s01  sequences to determine RNA binding preferences and our analysis of PUMI1 qualitatively agrees
sz with previous in vitro approaches with randomized libraries [51]. However, using a curated library
s03  of sequences based on mutations from the consensus UGUANAUA motif, Jarmoskaite et al. [52]
so¢  created a thermodynamic model for PUM2 binding that considers the effects of non-consecutive
s05  bases in target recognition, as opposed to our simpler model that only considers the frequency of
so6 occurrence of consecutive bases in a fully randomized library. Using this model, they show that
so7. PUM-HDs from both PUM1 and PUM2 share nearly identical sequence preferences, which is in
s08  agreement with our strong correlation in enrichment between the two proteins.

599 When we considered the local sequence content and location of PREs, we found that PREs
s0 tend to be located towards the 3’ end of the 3 UTR and have high local AU content. We are
so1 not the first to observe these properties, as Jiang et al. [60] also arrived to this conclusion by
62 comparing the locations of shufled PREs. However, we instead considered the locations of PREs
s03 in simulated sets of 3’ UTRs that share similar trinucleotide content to that of the true set of 3’
604 UTRs and this strengthens the claim that PREs are enriched in these areas more than one would
605 expect by chance. Furthermore, we are able to connect these observations directly to functional
606 outputs, showing that PREs in transcripts that had a significant change in RNA stability under
sov  PUM knockdown are closer to the 3’ end of the 3’ UTR and have higher flanking AU content,
s suggesting a functional role for the location of PREs within the 3’ UTR itself. The non-random
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00 propensity of PREs to occur towards the 3’ end of the 3’ UTR is consistent with a model where
610 PUMSs recruit the CCR4-NOT complex for de-adenylation of target sequences.

611 3.4. Human Pumilio proteins requlate genes involved in signaling pathways

612 When looking at the classes of genes that are stabilized under PUM knockdown, we find that
613 many GO terms with evidence for direct repression by PUMs revolve around regulating signaling
o142 pathways mediated by proteins including kinases (G0O:0018105), GEFs (GO:0005085), and receptor
e15  signaling (GO:0030177, GO:0048008). The role of mammalian Pumilio proteins in modulating
616 signaling through controlling mRNA levels has been well established. In human testes, PUM2
617 is thought to interact with DAZL proteins to regulate germ-line development and many GTP-
618 binding, receptor-associated, and GEF encoding-mRNAs are found among a list of targets that
619 co-immunoprecipitate with both proteins [17]. Similarly, PUM1 has been shown to be important in
620 mouse testis development through downregulation of many proteins involved in MAPK signaling
21 and ultimate activation of p53 [18]. In fact, it has been argued that an ancestral function of the
622 PUF family of proteins is to regulate the maintenance of stem cells and cells that behave in a stem
623 cell-like manner through the down-regulation of kinases involved in critical signaling pathways [1].
64 Many studies looking at mRNAs associated with PUM1 or PUM2 binding in mammalian cells
65 tend to find similar sets of GO terms overlapping with PUM bound targets. Early RIP-Chip
626 experiments with human PUM1 and PUM2 found that genes bound by both proteins belonged to
627 GO terms associated with the Ras pathway, MAPK kinase cascade, PDGF signaling pathway, WN'T
68 signaling pathway, small GTPase-mediated signal transduction, and transcription factor activity,
20 among others [35, 36]. More recent iCLIP experiments in mouse brains have found that mouse
630 PUMI1 and PUM2 bind transcripts for genes associated with WNT signaling, regulation of MAP
631 Kkinase activity, small GTPase-mediated signal transduction, and several categories related to neural
32 development [22]. Similarly, changes in steady-state RNA abundance under both human PUM1
633 and human PUM2 knockdown identified several similar classes of genes including WNT signaling,
s GEF activity, NOTCH signaling, and PDGF signaling [34]. Each of the categories noted above is
635 consistent with identified biological roles for mammalian PUMs. For example, mice lacking PUM1
636 and PUM2 have impaired learning and memory, as well as decreased neural stem cell proliferation
37 and survival [22]. Further, human PUM1 haploinsufficiency is associated with developmental delay
s3s and ataxia [31]. Likewise, PUM2-deficient mice are more prone to chemically-induced seizures and
630 have impaired nesting abilities [20], and mouse PUM2 regulates neuronal specification in cortical
ss0 mneurogenesis [23]. Our work shows that genes in these GO categories are modulated at the level
sa1  of mRNA stability, likely through direct interaction of the human PUM proteins by recognition of
ss2 PREs in the 3’ UTR of transcripts.

643 In many ways, post-transcriptional regulation of proteins involved in signaling cascades is an
64« ideal way to rapidly modulate those pathways. In contrast to the delay in time between the
s4s control of mRNA synthesis and the resulting protein production involved in regulating a gene at
646 the transcriptional level, post-transcriptional regulation allows for a rapid dampening of expression
647 levels directly where protein synthesis is occurring. Furthermore, gene regulation in the cytosol
ss allows for the possibility of localized control of expression [79]. In fact, temporal and localized
610 control of gene expression—important for proper development of the fly embryo—was exactly how
0 the PUF family of proteins were initially discovered [13]. Given the emerging role for human
651 PUM proteins in neuronal development and function, and the need for localized control of gene
62 expression in neuronal tissue [80] it is conceivable that PUM proteins could be heavily involved in
653 RNA polarity within the neuron as has been observed in C. elegans olfactory neurons [81].
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o4 3.5. Prediction of PUM-mediated regulation defines a set of general principles for an ideal PUM
655 target site

656 Many attempts have been made to predict gene regulation by Pumilio proteins given sequence
657 information about the possible targets. Previously, a biologically inspired model based strictly on
ess  the count of PREs within the 5" UTR, CDS, and 3’ UTR was fit to steady state RNA levels [34].
es0 In this model, the effects of having multiple PREs on a single transcript were found to be less
60 than linear on the target response to PUM knockdown, which was interpreted to indicate that
e1  multiple PRE sites function to increase the odds of having a PUM bound and that a single PRE
sc2 likely performs most of the functions needed for PUM-mediated regulation [34]. In this study we
663 expanded the feature set of possible predictors for PUM-mediated activity and determine a set of
se4 rules that define a functional PRE. Consistent with the Bohn et al. [34], we find that a simple count
ss of PREs in the 3’ UTR acts as the best predictor for PUM activity. However, surprisingly we find
s that the simple UGUA.AUJAU] regular expression outperforms more sophisticated PWM-based
667 definitions from either in vivo and in vitro high throughput data. This may indicate that, although
66s PUMSs can bind PREs with mismatches from this consensus motif, the UGUANAUA may represent
e0 the “ideal” PRE for functional regulation. In fact, structural studies of human PUMI1 and PUM?2
670 have identified three different modes of binding between the nucleotide bases of the fifth base in the
11 consensus motif and the amino acids of PUM repeats 4 and 5. Lu and Hall [82] show that changes
62 between these modes of binding do not alter PUM binding affinity, but could conceivably present
673 different surfaces for effector proteins. Although our regular expression allows for any base at the
e fifth position, PUM repeats are modular [7] and it is conceivable that a similar mechanism could
675 apply to other bases in the motif. Additionally this suggests that PUM binding to the UGUANAUA
676 consensus motif could represent the ideal structure for PUMs interaction with effector molecules.
677 We also find sequence features surrounding a PRE to be important in predicting PUM activity
e on a target. High AU content and position within the 3’ UTR both appear to be important for
679 predicting mammalian PUM regulation. Consistent with prior reports of cooperativity between
0 PUM and miRNAs [36, 50, 60, 65], we find that a count of predicted miRNA sites near PREs
681 helps predict PUM effect, with a higher number of miRNA sites near a PRE indicating a larger
es2 stabilization under PUM knockdown (Figure S1A). It is possible that PUM could act to block or
683 enhance miRNA function through direct interactions with the miRNA machinery or through local
es¢ rearrangements of RNA secondary structure.

685 Secondary structure has been predicted to have an effect on many RBPs [51] and PUM has been
s shown to change secondary structure upon binding to facilitate miRNA interaction [65]. However,
ss7  we found that in silico predictions of RNA secondary structure around PREs were not predictive
s of PUM function (Figure S1C). Targeted regression models considering PRE count and structure
s performed worse when structural information was added (data not shown). Recent studies have
60 shown that structural probing experiments used in tandem with in silico folding algorithms vastly
o1 improve biological predictions based on structural information [83]. Similar methods may be needed
62 to determine the role of secondary structure in PUM-mediated regulation. Alternatively, PUM
603 proteins may be able to overcome RNA secondary structure in order to bind PREs, in which case,
604 secondary structure would have no bearing on PUM binding. Similarly, RNA modifications may
605 limit the ability for PUM to recognize PREs. Recent efforts have identified m6A sites across the
s human transcriptome at single nucleotide resolution [84]; however, we find limited to no overlap
s7  between m6A sites and PREs (data not shown).

698 There has also been a recent interest in the role of codon optimality in mRNA decay in human
s0o cells [85, 86]. Using, as a measure of codon optimality, the fraction of optimal codons—where
700 a codon is designated as optimal if its Codon Stability Coefficient is positive [87]—we find that
1 PUM targets undergoing PUM-mediated decay in our data set have a lower fraction of optimal
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702 codons on average than those with no PUM-mediated effect (Figure S1B). However, the fraction of
703 optimal codons did not rank in the top twenty most important features for differentiating between
704 transcripts subject to PUM-mediated decay from those that are not affected in our machine learning
705 models (Figure 6). Recent studies have implicated codon optimality as an important determinant
706 of mRNA stability in eukaryotes [85-88] and it is conceivable that PUM proteins could be directly
707 mediating some of these effects. However, it is also possible that RNAs with a lower fraction of
708 optimal codons represent more ideal targets for PUM or that PUM could be interacting with the
700 factors that mediate decay for RNAs with less optimal codons. Further studies will be needed to
70 establish the relationship between PUM and codon optimality.

711 By combining high-throughput functional data with statistical modeling, we have identified
712 several contextual features around PREs that have improved our understanding of PUM-mediated
713 gene regulation and increased our ability to predict PUM targets. However, there is still substan-
714 tial room for improvement. Recent successes in Pumilio target prediction in Drosophila have come
715 from characterizing binding partners of DmPum: Nos and Brat [89]. Nos binds together with
76 DmPum to modulate the 5 sequence specificity of the Pum-Nos complex, thus introducing fine-
717 tune control over Pum target recognition [11]. A recent study identified many new and previously
78 known interacting partners for the human PUMI1 and PUM2 proteins including DAZL, PABP,
79 FMRP, miRISC, and members of the CCR4-NOT complex [90]. Like the Nos/DmPum example,
720 these partners likely add an additional layer of information in the control of PUM-mediated gene
71 regulation. Furthermore, the probing of RNA secondary structure in vivo may allow for better in-
72 corporation of secondary structural information into models of PUM-mediated regulation. Finally,
723 we were unable to find determinants of PUM-mediated activation, an area that is rich for future
724 targeted experiments.

725 4. Materials and Methods

26 4.1. Exzperimental methodology

7 4.1.1. SEQRS protein purification

728 Methods are reproduced here from Weidmann et al. [11]. Recombinant Halo-tag PUM1 RBD (aa
720 828-1176) and Halo-tag PUM2 RBD (aa 705-1050) were expressed from plasmid pFN18A (Promega)
730 in KRX E. coli cells (Promega) in 2xY'T media with 25 pg/mL kanamycin and 2mM MgSO, at 37°C
731 to ODgoo of 0.7-0.9, at which point protein expression was induced with 0.1% (w/v) rhamnose for
732 3hr. The PUM RBD expression constructs were originally described in Van Etten et al. [32]. Cell
733 pellets were washed with 50mM Tris-HCI, pH 8.0, 10% (w/v) sucrose and pelleted again. Pellets
73¢  were suspended in 25mL of 50mM Tris-HC1 pH 8.0, 0.5mM EDTA, 2mM MgCly, 150mM NaCl,
735 1mM DTT, 0.05% (v/v) Igepal CA-630, 1mM PMSF, 10 pg/ml aprotinin, 10 pg/ml pepstatin,
736 and 10 pg/ml leupeptin. To lyse cells, lysozyme was added to a final concentration of 0.5 mg/mL
737 and cells were incubated at 4°C for 30min with gentle rocking. MgCls was increased to TmM and
78 DNase I (Roche) was added to 10 pug/mL, followed by incubation for 20 min. Lysates were cleared
730 at 50,000x g for 30min at 4°C. Halo-tag containing proteins were purified using Magnetic HaloLink
720 Resin (Promega) at 4°C. Beads were washed 3 times with 50mM Tris-HCI pH 8.0, 0.5mM EDTA,
71 2mM MgCl2, 1M NaCl, 1mM DTT, 0.5% [v/v] Igepal CA-630) and 3 times with Elution Buffer
722 (50mM Tris-HCl, pH 7.6, 150mM NaCl, ImM DTT, 20% [v/v] glycerol).

743 To confirm protein expression, beads were resuspended in Elution Buffer with 30 U of AcTEV
74 protease (Invitrogen), cleavage proceeded for 24hr at 4°C, and beads were removed by centrifugation
75 through a micro-spin column (Bio-Rad). Concentration of eluted protein was measured by Bradford
76 assay, followed by coomassie stained SDS-PAGE analysis.
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747 SEQRS was conducted on PUM1 PUM-HD and PUM2 PUM-HD as described in Campbell
78 et al. [9] with minor modifications including the use of Magnetic Halolink beads (Promega). The
740 PUM test proteins remained covalently bound via N-terminal Halotag to the beads.

750 The initial RNA library was transcribed from 1ug of input dsDNA using the AmpliScribe T7-
751 Flash Transcription Kit (Epicentre). 200 ng of DNase treated RNA library was added to 100 nM
752 of Halo-tagged proteins immobilized onto magnetic resin (Promega). The volume of each binding
753 reaction was 100ul in SEQRS buffer containing 200 ng yeast tRNA competitor and 0.1 units of
7« RNase inhibitor (Promega). The samples were incubated for 30min at 22°C prior to magnetic
755 capture of the protein-RNA complex. The binding reaction was aspirated and the beads were
756 washed four times with 200ul of ice cold SEQRS buffer. After the final wash step, resin was
757 suspended in elution buffer (ImM Tris pH 8.0) containing 10 pmol of the reverse transcription
758 primer. Samples were heated to 65°C for 10min and then cooled on ice. A 5ul aliquot of the
750 sample was added to a 10ul ImProm-II reverse transcription reaction (Promega). The ssDNA
760 product was used as a template for 25 cycles of PCR using a 50ul GoTaq reaction (Promega).

w1 4.1.2. Bru-seq and BruChase-seq experimental procedure

762 Bru-seq and BruChase-seq were conducted as described in Paulsen et al. [39] in HEK293 cells
763 grown in the presence of siPUM1/2 or siNTC. RNAi conditions and siRNA sequences were previ-
764« ously described by Bohn et al. [34] and include treatment with siRNAs for 48hrs to allow for PUM
765 depletion prior for BrU labeling. Four replicates were gathered for each time point and siRNA con-
766 dition, resulting in 16 total samples. Resulting cDNA libraries were sequenced using an Illumina
767 HiSeq 2000 via the University of Michigan Sequencing core.

w8 4.2. Bru-seq and BruChase-seq Computational analysis

w0 4.2.1. Modeling PUM-mediated RNA decay

770 Sequencing reads were aligned to the human genome (hg19) and processed according to Paulsen
1 et al. [39] up to obtaining read counts for exons and introns for each gene and sample. Our
772 experimental design resulted in four different replicates of siNTC (WT) and siPUM1/2 (PUMKD)
773 conditions with two different time points each: tgp, and tgp,. For the tgy, time points, read counts
774 from both exons and introns were pooled for each gene. For the tgp, time points, only read counts
775 from exons were used. Read abundance was modeled using DESeq2 [49]. As described in Love
776 et al. [49], DESeq2 models read count abundance K for gene i in sample j using the generalized
777 linear model described below:

Kij ~ NB(pij, o) (1)

778 Where «; is a gene-specific dispersion parameter for gene i and y;; is defined by the following:
Iij = S;di (2)

779 Here, s; is a sample specific size factor used to put read count abundances on the same scale

70 between samples. Finally, ¢; ; is defined according to our design matrix:

logy(gi,j) = Bo + Bec + Bit + Bycte (3)

781 Where, c is an indicator variable that is 0 when the sample is in condition WT and 1 when
782 the sample is in condition PUMKD. Likewise, ¢ is an indicator variable that is 0 when sample is
783 in the 0 hour time point and 1 when the sample is in the 6 hour time point. We interpret the
784 (4. term to represent changes in RNA stability resulting specifically from the PUM KD condition.
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785 Similarly we interpret the . term to represent changes in transcription rates between the two
786 conditions. Throughout the text, unless otherwise noted, we report 8;. normalized by the reported
787 standard error for the coefficient, which amounts to the Wald statistic computed for that term by
s DESeq2. Thus, the Wald statistic for the interaction term is denoted as “RNA stability in PUM
780 KD” throughout the text and is a unitless quantity.

90 4.2.2. Analysis of transcriptional vs. stability effects

791 To test for significant changes in transcription or stability, the Wald test statistic for the ap-
792 propriate term—{, for transcription and S, for stability—was calculated as described above. The
793 Wald statistic was compared to a zero centered normal distribution and a two-tailed p-value was
704 calculated using statistical programming language R’s pnorm function (n.b. this is virtually equiv-
705 alent to the p-values calculated by the DEseq2 package for contrasts [49]). To test for a statistically
796 significant lack of change in transcription or stability, the Wald statistic for the appropriate term
797 was compared to a normal distribution centered at the nearest boundary of a region of practical
76 equivalence (ROPE) and a two-tailed p-value was calculated using R’s pnorm function. The ROPE
799 was defined as logy(1/1.75) — log,(1.75) and was chosen to be within the range of fold expression
soo change of a RnLuc reporter gene with between one and three PREs in its minimal 3" UTR [34].
sor  Each p-value was FDR-corrected using the Benjamini-Hochberg procedure [91] and, for each term,
g2 the smaller of the two FDR-corrected p-values was reported. In order for a gene to be classified
g3 in the EFFECT class the following conditions had to be met: 1. its change in stability g-value
s« had to be smaller than its no change in stability g-value; 2. Its change in stability g-value had to
sos pass a cutoff of 0.05 for statistical significance; and 3. The original log, fold-change value had to
s be outside the defined ROPE. In contrast, in order for a gene to be classified in the NOEFFECT
g7 class the following conditions had to be met: 1. it was not classified as an EFFECT gene; 2. its no
sos change in stability g-value had to be smaller than its change in stability g-value; 3. its no change
soo in stability g-value had to pass a cutoff of 0.05 for statistical significance; and 4. The original log,
sio  fold-change value had to be within the defined ROPE. Genes not passing the criteria for either the
si1 EFFECT or NOEFFECT groups are those for which we lack sufficient information to make any
sz strong statement on the effects of PUM knockdown.

813 4.3. SEQRS Computational analysis

814 Each raw sequencing read from the SEQRS experiments has the following expected structure:
815 NNNNNN-CTGATCCTACCATCCGTGCT-NNNNNNNNNNNNNNNNNNNN-CACAGCTT
si6 CGTACCGAGCGG-GATCGGAAGA-XXXXXX-ATCTCGTA

817 Where X represents a known barcode sequence used to split the reads from a multiplexed
s1is experiment and N represents a random variable base. The in wvitro transcription reaction uses
s10 the above sequence as a template resulting in RNA with sequence starting from the 3’ end of the
82200 CACAGCTTCGTACCGAGCGG downstream of the 20mer and going in the opposite direction.
g1 Thus, the RNA molecules in the SEQRS experiments are the reverse complement of the following:
822 CTGATCCTACCATCCGTGCT-NNNNNNNNNNNNNNNNNNNN-CACAGCTTCGTACC
23 GAGCGG

824 Raw sequencing reads were split by barcode, allowing for up to two pairwise mismatches on
g5 both the upstream and downstream adapter sequences. The 20mer variable regions and constant
826 fanking adapter sequences of each read were reverse complemented and broken into all possible
827 8mer sequences using a sliding window, and raw counts for all possible 8mer abundances for each
828 sequencing round for each protein were calculated using custom python scripts. For 8mers that
820 overlapped the constant flanking adapter sequences, only 8mers that had at least one base in the
830 variable region were considered.
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831 To determine position-weight matrices that best represented selection by the protein of interest
sz for that round, we followed the approach of Jolma et al. [57] in the analysis of DN A-binding proteins
33 using SELEX. Briefly, a seed sequence is determined from the most abundant N-mer within that
s« round. From this seed sequence, the abundance of each base at a given position was tallied when all
835 other positions match the seed sequence. The PWM frequencies were determined by dividing each
836 column of the resulting count matrix by its column sum. For all PWMs determined by this method
ss7 we used a UGUAAAUA seed sequence. Unlike Jolma et al. [57] we do not include the correction
838 for non-specific carryover of nucleic acid from the previous cycle as the assumption that no more
g3 than 25% of 8mers would be expected to be bound may not hold for RNA-binding proteins due to
ss0  their promiscuous binding [51]. Instead, we accounted for the bias of the initial sequencing pool by
s calculating a PWM for the initial pool using the UGUAAAUA seed sequence. We then divided the
a2 position frequency matrix of each PWM by the initial sequencing pool’s position frequency matrix.
83 Finally, we determined the bias-corrected frequency matrix by dividing each column of the matrix
84 by its column sum.

845 In order to compare 8mer selection between rounds or proteins, the enrichment of a particular
a6 Smer was calculated with the following equation:

Cs,i
N,
D i) Csi
E =log, i (4)
Ny, o
i=1 Cb,i
847 Where c; ; represents the count for 8mer 7 in sample s and ¢, ; represents the count for 8mer 4 in

sss  blank round where the input sequences were sampled. The DmPum data and corresponding blank
sa9  sample was accessed from Weidmann et al. [11] and only the first five rounds were considered.

g0 4.4. GO term analysis and iPAGE

851 GO term analysis was performed using the integrative pathway analysis of gene expression
sz (IPAGE) software package [70]. Genes were discretized by the interaction term Wald test statistic
853 into five-equally populated bins and iPAGE was run with default settings.

84 4.5. Determination of matching PREs

855 The full set of 3’ UTRs for hgl9 genome was downloaded using the TxDb.Hsapiens.UCSC.-
g6 hgl9.knownGene, BSgenome.Hsapiens.UCSC.hgl19, and GenomicFeatures R packages. Matches
ss7 to a given PWM across all 3 UTRs were determined using the FIMO package with a uniform
sss background using default cutoffs for reporting matches [92]. For PRE-centric figures, such as the
5o heatmaps and violin plots in Figure 3 and Figure S1, each unique 3’ UTR isoform is matched to
g0 its corresponding “RNA stability in PUM KD” value by gene name, and each feature’s value is
ss1  reported as the given summary statistic over a given 3’ UTR isoform for that feature, as described
sz in the section below (i.e., for AU content, the value reported is the maximum AU content around
g3 any given PRE within that 3’ UTR isoform).

864 For de novo discovery of informative motifs in our Bru-seq and BruChase-seq dataset, we
sss applied the finding informative regulatory elements (FIRE) software [59] with default settings to
sss  each unique 3’ UTR isoform matched to its “RNA stability in PUM KD” value and discretized into
87 ten equally populated bins.

868 To calculate the location and AU content of PREs in randomly generated sets of the 3’ UTRs,
g0 a third order Markov model was trained on the annotated set of unique 3’ UTR isoforms from
sro  the hgl9 genome. One thousand randomly simulated sets of 3’ UTRs—each with the same length
sr1  as the annotated set of 3/ UTRs—was then generated using custom python scripts. For each of
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g2 the thousand simulated sets of 3’ UTRs, the fifth round SEQRS PUMI (Figure 2A) was used to
a3 search for matches using FIMO as described above. Here each individual PRE was considered in
s the calculation of the kernel density plots shown in Figure 3.

875 To determine the PAR-CLIP read coverage at identified PRE sites in the set of known unique
srs 3’ UTR isoforms, raw reads were downloaded from SRA with accession numbers SRR048967 and
s7 SRR048968. Raw fastq files were processed with trimmomatic [93] and cutadapt [94] to remove
ss  low quality reads and illumina adapters. Processed reads were aligned to the hgl9 genome using
s7o  the STAR aligner with default parameters [95]. Read coverage and T to C mutations were deter-
ss0  mined for reads within 20 bp of each PRE in each unique 3’ UTR isoform for both EFFECT and
g1 NOEFFECT genes, individually, using custom python scripts. Coverage over all PREs was aligned
ss2 and the bottom and top 5% of read coverage at each position was removed from the average cal-
83 culation. Error bars were determined by bootstrapping, with stratified sampling with replacement
s read coverage from individual PREs in each group separately.

85 4.0. Determination of PRE clustering

886 To determine whether the PREs cluster together more than would be expected by chance, we
87 determined the ratio of the observed frequency of PUM sites within all possible 100 bp windows
sss of 3’ UTRs with a least 1 PRE in them to a Poisson model with the rate parameter, A, set to the
sso average count of PREs within all 100 bp windows. 95% confidence intervals were determined by
a0 bootstrapping the observed distribution of PRE counts within all windows.

g1 4.7. Predicting PUM-mediated requlation using conditional random forest models

892 In order to predict the PUM-mediated regulation on a given transcript, we used conditional
g3 random forest models as implemented by the cforest function from the party R package [96-98].
84 Binary classification models were trained using default settings with no parameter tuning on the
g5 Bru-Seq EFFECT and NOEFFECT classes and a permutation-based AUC variable importance
sos metric was calculated for each individual model [78]. Due to the large class imbalance, ten separate
g7 datasets were generated from the full dataset, where the majority NOEFFECT class was randomly
sos downsampled to match the EFFECT class. Within each of the ten datasets, five-fold cross validation
a0 was performed to assess performance and detect overtraining. Final models were generated using
o0 the ten downsampled datasets without cross-validation and performance was tested on the RNA-
o1 seq dataset from Bohn et al. [34]. Precision-recall plots were calculated using the PRROC package
o2 based on the methodology of Davis and Goadrich [99].

o3 4.7.1. Calculation of features associated with a PWM

904 For each of the features described, the values were first calculated individually for each unique
ws 3’ UTR isoform. Values for each isoform were combined by taking the mean of the value for that
ws feature and isoform weighted by the number of isoforms that shared that unique 3’ UTR in the full
o7 set of annotated 3’ UTRs in the hgl9 genome. For features ending in “fimo_best_bygene_max_fimo”,
o the maximum FIMO match score for each unique 3’ UTR isoform for that PWM was calculated
o0 by setting the p-value cutoff threshold in FIMO to 1.1, thereby allowing FIMO to consider every
o10 possible match for a given sequence. The maximum match score for each sequence was reported
onn  for each unique 3’ UTR isoform. For features ending in “fimo_best_bygene_total num”, the total
o1 number of matching sites for a given unique 3’ UTR isoform was calculated as described above in
013 the “Determination of matching PREs” section. For each sequence, the geometric average of FIMO
ois  scores for each matching PRE was calculated and reported in the “fimo_bygene_geom_avg_ score”.
915 The maximum match score, geometric average match score, and total match number was calculated
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o16  for the SEQRS PUMI round 5 PWM, SEQRS PUM2 round 5 PWM, Hafner et al. [37] PUM2 PWM,
a7 and each of the PWMs for human RBPs found in the CISBP-RNA database [100].

018 For PREs, the shortest distance to the 3’ UTR for any given PRE is converted to normalized co-
a9 ordinates (i.e., 0.0 is the 5’ end and 1.0 is the 3’ end) and reported in the “fimo_best_bygene_dist_3".
o0 For “fimo_bygene_at_content” the largest percentage AT content in a 100 bp window surrounding
o1 any PRE within a given sequence was reported. Similarly for “fimo_bygene_max_cluster”, the max-
o2 imum number of full PRE sites within a sliding of 100 bp was calculated. For both of these features,
o3 windows were truncated at the 3’ and 5" ends of the sequence.

024 Predicted miRNA sites were determined using default predictions (conserved sites of conserved
o5 miRNA families) from TargetScan release 7.2 [67]. Overlaps with PREs were calculated by counting
o6 mMiRNA sites within a 100 bp window surrounding each PRE. For 3’ UTRs with more than one
07 PRE, the PRE with the maximum number of overlapping miRNA sites was considered.

s 4.7.2. Calculation of in silico basepairing probabilities for PREs

920 For each identified PRE, the probability of the given PRE being base-paired within predicted
a0 secondary structure was calculated using RNAfold [101] by calculating the ensemble free energy of
931 an unconstrained sequence F, of 50 bp flanking each side of a given PRE and the ensemble free
02 energy of a constrained sequence where no base within the PRE is allowed to form a base pair F,.
o33 The probability of the PRE being constrained from base-pairing can be calculated using;:

(Fu — .
) (5)

934 Where T is the temperature (set to physiological temperature, 310.15K), and R is the gas
o35 constant (set to 0.00198 kcal K=! mol~'). Thus the probability of any given PRE being un-
36 paired is P.. We define two features associated with P, for each PRE in a given 3’ UTR isoform.
o7 “_avgprob_unpaired” is the average P, of all the PREs within a given 3’ UTR and “_maxprob_unpaired”
o3¢ is the maximum P, of all the PREs within a given 3’ UTR. Values for each isoform were combined
039 into gene level estimates, as described above.

P.=exp (

o0 4.7.8. Calculation of information redundancy between features

041 In order to calculate the information redundancy between features, each feature was discretized
w2 into ten equally populated bins. The redundancy between feature 1 (F}) and feature 2 (F3) was
a3 calculated with the following equation:

2 x I(Fy; F
o 2xI(F;F) (6)
(H(F1) + H(Fy))
944 Where H is the entropy of a given vector X of discrete values, as defined below:

H(X) =~ )  P(x)logy(P(x)) (7)

zeX
045 And the mutual information I(X;Y") of vectors X and Y of discrete values is defined as:
P(z,y)
I(X;Y) = Px,ylog() 8
(X5 = 3 3 Pl iox ®)
x yey
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w6 4.7.4. Determination of EFFECT and NOEFFECT classes for RNA-seq data

047 RNA-seq data was obtained from Bohn et al. [34] and a gene was only considered if the FPKM for
ws  both the PUM1/2 knockdown condition and the siNTC condition were greater than 5. Genes that
a0 passed this cutoff and that were considered to have statistically significant differential expression
os0 in the original analysis were considered EFFECT genes. Genes that passed the cutoff and were
951 not considered to have statistically significant differential expression were considered NOEFFECT
052 genes.
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Figure S1: Additional features considered in determining PUM-mediated decay. A) Count of predicted conserved
miRNA sites from conserved families that overlapped within 100 bp of a PRE for each gene. Stars indicate statistical
significance from a Wilcoxon rank sum test compared to the 0 overlapping miRNA case. Stability in PUM knock-
down is represented by a normalized interaction term between time and condition, where positive values indicate
stabilization upon PUM knockdown and negative values indicate destabilization upon PUM knockdown (see Meth-
ods for details).B) (Above) Relationship between the fraction optimal codons as determined by the Codon Stability
Coefficient determined in HEK293 cells [87] and PUM-mediated effect as measured in our Bru-seq data. (Below)
Marginal density plots of the fraction optimal codons for genes in the EFFECT and NOEFFECT classes. Median
fraction optimal codons for each class are plotted with dotted lines. A significant (p < 0.05, two-sided permutation
test, n = 1000) difference in medians between the classes is indicated by a star. C) (Above) Relationship between the
probability of a given PRE being unpaired in predicted RNA secondary structure. Only genes with a PRE with > 0
probability of being unpaired where shown in the heatmap. All other genes are shown in the marginal y-axis density
plot. (Below) Marginal density plot for genes in the EFFECT and NOEFFECT classes with median probabilities for
each class shown as dotted lines. See Methods for details of secondary structure prediction.
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Figure S2 (previous page): Predicting PUM-mediated effect subset by motif. A) Conditional random forest models
for the datasets considering only genes that had at least one match to the regex motif definition in a 3 UTR. PRE
features only consider those around the regex definition. Panels are as in Figure 6B, D, and F. B) As in A), but for
the Hafner et al. [37] PUM2 motif. C) As in A), but for the SEQRS PUM1 motif. D) As in A), but for the SEQRS
PUM2 motif.
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