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Abstract

The molecular basis of how temperature affects cell metabolism has been a long-standing question in
biology, where the main obstacles are the lack of high-quality data and methods to associate temperature
effects on the function of individual proteins as well as to combine them at a systems level. Here we develop
and apply a Bayesian modeling approach to resolve the temperature effects in genome scale metabolic
models (GEM). The approach minimizes uncertainties in enzymatic thermal parameters and greatly
improves the predictive strength of the GEMs. The resulting temperature constrained yeast GEM uncovered
enzymes that limit growth at superoptimal temperatures, and squalene epoxidase (ERG1) was predicted to
be the most rate limiting. By replacing this single key enzyme with an ortholog from a thermotolerant yeast
strain, we obtained a thermotolerant strain that outgrew the wild type, demonstrating the critical role of sterol
metabolism in yeast thermosensitivity. Therefore, apart from identifying thermal determinants of cell
metabolism and enabling the design of thermotolerant strains, our Bayesian GEM approach facilitates
modelling of complex biological systems in the absence of high-quality data and therefore shows promise

for becoming a standard tool for genome scale modeling.
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Introduction

Temperature is the most common environmental and evolutionary factor that shapes the physiology of living
cells. Organisms have successfully adapted to survive in diverse temperature ranges -3, where minor
deviations from the optimal temperature by merely a few degrees can dramatically impair cell growth. For
instance, the model eukaryotic organism Saccharomyces cerevisiae has an optimal growth temperature of
~30°C, whereas a temperature of 42°C is already lethal to the organism #°. Since cell growth fundamentally
requires all cellular components to be functional in the temperature window of cell growth, proteins, the
most abundant group of biomolecules that carry out the majority of catalytic functions and are also the most
sensitive to changes in temperature 57, are considered to have the largest effect on cell physiology in
relation to temperature. However, despite all our knowledge of temperature effects at both the cellular and
molecular levels, including recent breakthroughs in temperature-dependent protein folding "~ and enzyme

kinetics "2, the temperature association between proteins and cell physiology is still poorly understood.

Multiple studies have attempted to model the temperature effects on cell growth with very few proteome
wide parameters. For instance, the dominant activation barrier and the number of essential proteins to cell
growth '3, activation energy of the growth process and the free energy change of protein denaturation '
and others (reviewed in '°). These models showed excellent performance when describing the general cell
growth rate at various temperatures, however, they could not pinpoint the specific rate-limiting enzymes,
nor predict the amount of improvement in growth rate by replacing these enzymes with temperature-

insensitive homologs.

To this end, genome-scale metabolic models (GEMs) '®-'8 | which are a comprehensive mathematical
representation of cellular biochemical reactions '°, have been used to model the thermosensitivity of
metabolism in Escherichia coli, for instance by associating metabolic reactions with protein structures 2° or
by modelling protein-folding networks 2'. It however remains challenging to model more complex, eukaryotic
organisms, such as S. cerevisiae, due to their metabolic complexity '® as well as due to the lack of
availability of the required enzymatic data 7-??, including high quality protein structures 2%2. In addition, such
GEMs rely on thousands of parameters to describe the temperature effects on protein folding and kinetics
18, which have to be empirically or computationally estimated 2>2'. This leads to large statistical uncertainties
in model parameters and can make the models unreliable, due to inaccurate temperature associations
between proteins and cell physiology. Therefore, in order to enable accurate modelling of the temperature
dependence of cell metabolism, a key requirement is to develop a modelling approach that resolves the
issues with large uncertainties of temperature related parameters and produces accurate temperature
constrained predictions.

Hence, in the present study we introduce a Bayesian genome scale modelling approach to model the
temperature effect on cellular metabolism in Saccharomyces cerevisiae, the most widely used industrial
organism with the availability of multiple thermal experimental data %2324 and highly sophisticated GEMs
161825 We first quantify and reduce the large uncertainties in the parameters describing enzyme

thermosensitivity using Bayesian statistical learning 2 to simulate phenotypic data. We show that the
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resulting models are capable of reproducing various experimental datasets and provide explicit insight into
how yeast metabolism is affected by temperature. Our approach identifies the sterol metabolism as a key
factor in the yeast thermal adaptation, and predicts the flux-controlling enzymes in superoptimal
temperature ranges as potential targets for future design of thermotolerant yeast strains. We then
experimentally validate the predicted most rate-limiting enzyme by replacing it with an ortholog from a
known thermotolerant yeast Kluyveromyces marxianus. We hereby demonstrate the power of Bayesian

genome scale modelling for studying complex biological systems.
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Results

GETCool: Using Bayesian statistical learning to integrate temperature
dependence in enzyme-constrained GEMs

In this study, we developed a novel approach for incorporating temperature dependence into an
enzyme-constrained GEM (ecGEM)'® (Fig 1) with the resulting model termed enzyme and temperature
constrained GEM (etcGEM). The approach combined the following steps: (i) etcGEM construction (Fig
1a-d), (ii) flux balance analysis (FBA) and (iii) Bayesian statistical learning (Fig 1e). The ecGEM, which
includes, besides the traditional stoichiometric matrix, also enzyme abundances and activities, provided
an excellent template to directly integrate the enzyme temperature effects. Firstly, for a given reaction,
the flux cannot exceed the capability of the enzyme, which is defined as the product of the functional
enzyme concentration [E], and its k... Secondly, the total amount of enzymes that the cell can afford
is also limited ?’. Inclusion of temperature constraints into ecGEM was thus achieved by making [E]y
and k... temperature dependent, and by incorporating the additional cost of enzymes in the denatured
state (Fig 1a, Method M1). Three thermal parameters were required for each enzyme in the resulting
etcGEM, including (i) the melting temperature T, (Fig 1b), (ii) the heat capacity change AC{f(Fig 1c) and
(iii) the optimal temperature T,,, (Fig 1d Method M2). Moreover, to capture the temperature effects on
the energy cost of non-growth associated maintenance (NGAM), a temperature dependent NGAM

expression term was estimated from experimental data and included in the model.

To resolve the challenges arising from the uncertainties in the parameter values, we used Bayesian
statistical learning 25, which is a probabilistic framework that has been successfully applied for
quantifying and reducing uncertainties in various fields including deep learning 28, ordinary differential
equations 2° and biochemical kinetic models 3°. The approach uses experimental observations (D) to
update Prior distributions (P(0)) of model parameters to Posterior ones (P(8|D)) (Fig 1e). We refer to
the model equipped with 8 sampled from P(8) or P(6|D) as a Prior or Posterior etcGEM, respectively.
The resulting Posterior etcGEMs provided a more reliable platform to study the thermal dependence of
cell metabolism, with an inherent benefit that the uncertainty in the interpretation and prediction from the

improved Posterior etcGEMs could also be quantified.
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Fig 1. Using Bayesian statistical learning to integrate temperature dependence in enzyme-constrained
GEMs. (a) An illustration of the temperature effects on enzyme-catalyzed reactions and their integration into an
etcGEM (see detailed description and equations in Methods M3). The metabolic network ecYeast7.6 16 is shown.
(b) A two-state denaturation model 2°2':3" was used to describe the temperature dependent unfolding process. [E]y
is the concentration of the enzyme in native state; Topt is the optimal temperature at which the specific activity is
maximized; Tm and Tgo are temperatures at which there is a 50% and 90% probability that an enzyme is in the
denatured state, respectively. (c) Macromolecular rate theory 3233 describing the temperature dependence of
enzyme turnover number k,;. Inset shows the heat capacity difference between ground state (E+S) and transition
state (E-TS), adapted from Hobbs J., et al 3. (d) Temperature dependence of enzyme specific activity r, which is a
product of (b) and (c). (e) Overview the Bayesian statistical learning approach, where the problem can be formulated
as: given a generative model (M) (etcGEM in this study) corresponding to a set of parameters 6 and a set of

measurements D(phenome data), Bayes’ theorem provides a direct way of updating the Prior distribution of
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parameters P(6) to a Posterior distribution P(6|D): P(6|D) =%. P(6|D)is thereby a less uncertain

description of the real 8. Since P(D|6) is, in most applications, computationally expensive or even infeasible to
obtain, an Sequential Monte Carlo based Approximate Bayesian Computation (SMC-ABC) 3* approach was
implemented (Methods M3) to sample a list of parameter sets from the Posterior.

Bayesian modelling improves etcGEM performance by reducing
parameter uncertainties

We next applied the GETCool approach to model the temperature dependence of yeast metabolism.
This was done by incorporating temperature effects into the ecYeast7.6 '® model and the resulting model

was termed etcYeast7.6. Enzyme T,, and T,,. parameters were either collected from literature or

predicted by machine learning models (Methods M4). The heat capacity change ACj was estimated as
-6.3 kJ/mol/K by fitting the macromolecular rate theory to the yeast specific growth rate at various
temperatures 32 and then applied for all enzymes. As a result, the etcYeast model was obtained with an
expansion of 2,292 temperature-associated parameters for a total of 764 metabolic enzymes (Fig 1a).
The temperature dependence of NGAM was inferred from experimental data (Methods M4, Fig S1).

We observed that etcYeast predictions made using the initial parameter values could not correctly
recapitulate experimental observations (Fig S2, Method M5), which included (i) the maximal specific
growth rate in aerobic 4 batch cultivations, (ii) anaerobic ° batch cultivations, and (iii) fluxes of carbon
dioxide (COz2), ethanol and glucose in chemostat cultivations 2%, at various temperatures. This was
however not surprising due to the high level of uncertainty and low accuracy associated with the initial
parameter values, as with the experimentally measured T, we estimated an average standard variance
of 3.4 °C, whereas this increased up to 13 °C with the T,,, values predicted by machine learning
(Methods M4). For enzymes without experimentally measured T,,, the average of the existing
experimental values was used, where the standard variance was 5.9 °C (Methods M4). Another potential
source of error was due to assuming the same AC;,: values for all enzymes. We therefore applied the
Bayesian statistical learning approach. Here, we first used a three-fold cross validation showing that the
above three datasets showed both overlapped and orthogonal information between each other in the
Bayesian modelling approach (Fig S3). We then used all three datasets to sample 100 Posterior
etcGEMs, where each model achieved an average R? higher than 0.9 on all three datasets (Fig S4) and
could therefore accurately describe the observed measurements (Fig 2a-c and Fig S5). The increased
performance on all three datasets clearly demonstrated the need to update the parameter Prior

distribution to a Posterior one.

Next, we explored which parameters had been updated in the Bayesian approach. Principal component
analysis of all 21,504 parameter sets generated in the approach showed how the Priori distributions
were gradually updated to distinct Posterior distributions (Fig 2d). Further comparison between Prior

and Posterior distributions revealed that in all three parameter categories, a reduced variance in the
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updated parameters was more likely than a change in mean values (Fig 2e, protein-wise comparison
shown in Fig S6). Particularly for enzyme T,,,.s, a significant (Sidak adj. one-tailed F-test p-value < 0.01)
reduction in variance was observed with 59% (449/764), whereas a significant (Sidak adj. Welch's t-test
p-value < 0.01) change in the mean value was found with merely 26% (200/764). The average standard

variance of enzyme T,,.s was thus reduced by almost 50% from ~11 °C to ~6 °C (Fig S6). Importantly,
we observed that the approach tended to change the enzyme T, rather than its T,,, and Ac‘g parameters

(Fig 2e). In addition, a machine learning approach (Methods M6) further revealed that, out of all three
parameter types, the largest contribution to the improved Posterior etcGEM performance during the

Bayesian approach was from enzyme T,,s (Fig 2f).
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Fig 2. Bayesian modelling improves etcGEM performance by reducing parameter uncertainties. (a-b)
Simulated (a) aerobic and (b) anaerobic growth rates in batch cultivations at various temperatures with Prior and
Posterior etcGEMSs. (c) Simulated ethanol secretion flux in chemostat at various temperatures. In (a-c), lines indicate
median values and shaded areas indicate regions between the 5-th and 95-th percentiles. (d) Principal component
analysis (PCA) 21,504 parameter sets (8) sampled in the Bayesian approach. Each parameter in the set 8° was

standardized by subtracting the mean and then be divided by the standard deviation before PCA. 8 of 128 Prior

and 100 Posterior etcGEMs are highlighted in blue and orange, respectively. All other 6 were termed as
“intermediate” and marked in grey. (e) The number of enzymes, out of all 764, with a significantly changed mean
(Sidak adj. Welch's t-test p-value < 0.01) and variance (Sidak adj. one-tailed F-test p-value < 0.01) in T,,, T,y and
AC;,F between Prior and Posterior. Parameters from 128 Prior and 100 Posterior etcGEMs were used for statistical
tests. (f) A random forest model was used to score the importance of all 2,292 parameters during the Bayesian

approach (Methods M6). The plot shows the accumulated importance score for each of the three parameter
categories.
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Yeast growth rate is explained by temperature effects on its enzymes

With the Posterior etcGEMs capable of describing various experimental observations (Fig 2a-c), we
analysed how the temperature effects on each of the three processes - NGAM, k.., and the protein
denaturation process - contribute to whole cell growth (Fig 3a). We observed that, at temperatures below
29 °C, the temperature dependent k., was the only factor that affected the cell growth rate. In the range
between 29 and 35 °C, both k.., and NGAM determined the growth rate. The contribution of enzyme
denaturation to the temperature dependence of cell growth, however, was observed only at
temperatures higher than 35 °C, with the denaturing effect becoming the dominant effect at ~40 °C and
lack of cell growth at 42 °C. Therefore, in contrast to previous reports indicating that an over 10-fold
increase in NGAM cost with the temperature change from 30 °C to 33 °C was the major limiting factor
to cell growth 3%, our modelling approach showed that the increased NGAM has a merely moderate

effect on growth rate (Fig 3a).

Interestingly, the temperature dependence of enzyme k., s alone could explain the temperature
dependence of cell growth below 35 °C, including the decline in cell growth right after the optimal growth
point defined by OGT. According to the macromolecular rate theory 3233, k., degeneration at
temperatures above the optimal point can be attributed to the negative values of Asz for enzyme
catalysis. This can explain the negative curvature of enzyme specific activities in the absence of the
denaturation process 323336, Given that experimentally measured enzyme melting temperatures (T,,)
are on average 20 °C higher than enzyme T,,,.s collected from BRENDA 37 (Fig 3b), protein denaturation
alone seems to be insufficient to explain the thermal mechanism underlying enzyme T,,,.s. In addition,
all posterior T,,.s showed a similar distribution as experimental T,,.s, even though the etcGEM had
never seen those experimental T,,.s (Fig 3c), which supported our use of the macromolecular rate
theory in the model. This indicates that k.., degeneration, in addition to protein denaturation, plays an
important role in the temperature dependence of yeast cell growth.

We further observed that, even though the model contained only 764 enzymes from a total of ~6,700
proteins 38, protein denaturation alone could still explain termination of cell growth at 42 °C (Fig 3a).
However, in the Posterior etcGEMs, only 9 enzymes (1%) with a mean melting temperature below 42 °C
were present (ERG1, ATP1, ALA1, KRS1, SER1, HEM1, PDB1, ADH1 and TRP3) (Fig S7), of which
three (ATP1, HEM1, PDB1) are located in the mitochondria *°. The other enzymes remained in the
native state even at temperatures several degrees higher than 42°C (Fig 3d), though they were
enzymatically active only in the temperature window of cell growth between 10 °C and 42 °C (Fig 3f),

due to the low k., values beyond this temperature range (Fig 3e).
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Fig 3. Yeast growth rate is explained by temperature effects on its enzymes. (a) lllustration of how the
temperature dependence of different processes combines to affect the growth rate. Fig legend: ec - predictions with
the enzyme constrained model; ec+NGAM(T) - incorporates the temperature effects on non-growth associated
maintenance into the ec model (Fig SX); ec+kcat(T) - incorporates the temperature effects on enzyme kg4 values
into the ec model; ec+denaturation - incorporates the temperature effects on enzyme denaturation into the ec
model; etc - enzyme and temperature constrained model that includes the temperature effects on NGAM, kg4 and
enzyme denaturation into ec model. The growth rate at each temperature point was simulated with all 100 posterior
etcGEMs. Lines indicate median values and shaded areas indicate regions between the 5th and 95th percentiles.
(b) Comparison between distributions of experimentally measured enzyme T,,.s from BRENDA % and T,,s from
Leuenberger P et al.” in S. cerevisiae. (c) Comparison among distributions of mean of Prior Topes Which were
predicted by Tome 22, mean of Posterior TopeS and experimental T,,.s from (b). (d) Probability of 764 enzymes in
the native state. From top to bottom, the enzymes showed increased T,,,s. Each pixel represents one probability
value of an enzyme at a specific temperature. (e) Normalized k_,; values of 764 enzymes at different temperatures.
Each pixel represents one normalized k... value of an enzyme at a specific temperature. (f) Normalized specific
activities of 764 enzymes at different temperatures. The values in (f) are products of (d) and (e). In (d,e,f), an equal

ordering of enzymes is shown.

Metabolic shifts are explained by temperature-induced proteome
constraints

Published reports show that at temperatures above 37°C in chemostat cultures with a dilution rate of
0.1 h', yeast shifts its metabolism from a completely respiratory one to a partly fermentative one, which
is also accompanied by a large increase in glycolytic flux 23. Since our updated Posterior etcGEMs are
able to simulate this metabolic shift (Fig 2c and Fig S5), we used them to further explore the mechanisms

behind the observed process. We observed that the shift occurs due to a proteome constraint, meaning
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that the total protein level in the cell reaches an upper bound (Fig 4). The proteome constraint occurs
due to the decrease in enzyme specific activities with increasing temperature (Fig 3f) and since the
maximal protein amount in the cell is limited 27. As a result, the cell has to synthesize more enzymes to
maintain cell growth at the given growth rate (Fig 4) until the enzyme amount hits the upper bound. This
is also consistent with earlier studies showing that the activation of the Crabtree effect in chemostat
cultures at 30°C is due to a proteome constraint %4°, When the temperature increases above 36 °C,
ATP production by glycolysis is dramatically increased, while ATP production by the mitochondria
decreases (Fig 4). Even though the respiratory pathway produces more ATP per glucose amount, the
fermentative pathway produces more ATP per protein mass and therefore becomes more energetically
efficient when the cell reaches a proteome constraint 4°. In addition, three key mitochondrial enzymes
(ATP1, HEM1 and PDB1) (Fig S7) were found to be unstable, which make the respiratory pathway even
more resource-inefficient for ATP production.
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Fig 4. Metabolic shifts are explained by temperature-induced proteome constraints. The ATP production in
cytoplasm and the total protein amount required at different temperatures were simulated using Posterior etcGEMs
with chemostat culture settings with a dilution rate of 0.1 h™* (Methods M4). Lines indicate median values and shaded
areas indicate the region between the 5th and 95th percentile.

etcGEM uncovers growth rate-limiting enzymes

To investigate which enzymes limit the cell growth at superoptimal temperatures, the flux sensitivity
coefficient of each enzyme was calculated (Methods M5). Among all the enzymes in the model, the
squalene epoxidase ERG1 displayed an order of magnitude higher median flux sensitivity coefficient than
other enzymes, indicating that it is the most flux-controlling enzyme at 40 °C (Fig 5a) and above (Fig S8).

Furthermore, removal of the temperature constraint on ERG1 increased the simulated specific growth rate
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from 0.09 to 0.14 h™' (Fig 5b). We therefore evaluated the impact of replacing the wild-type ERG1 gene with
ERG1 from the thermotolerant yeast Kluyveromyces marxianus (kmERG1, Methods M7). At first, at the
lethal temperature of 42 °C, only a small improvement in growth rate (from 0.01 to 0.06 h™') was predicted
and no significant growth difference was detected between the wildtype and the strain with kmERG1 (Fig
S9). However, already after 2 generations of adaptation at 40 °C, the strain with KmERG1 indeed showed

significantly better growth than the wild type (Fig 5c).

The reduced growth rate at 42 °C is likely caused by an impaired function of several different enzymes, and
rescuing a single enzyme is insufficient to improve the growth rate. Therefore, in order to characterize the
set of growth rate-limiting enzymes at 42 °C, we gradually removed the temperature constraints on enzymes
(set kcat and denaturation temperature independent) in the order of decrescent flux sensitivity coefficient
values in each of the Posterior etcGEMs. Interestingly, in the case of recovering the cell growth rate to 0.2
h”', we found an agreement among all Posterior etcGEMSs that 10 enzymes are required to be fully functional
at 42 °C (Fig 5d). Since each model predicted a different subset of such enzymes, an ensemble approach
was used to count the number of models (votes) in which an enzyme is predicted to be one of 10 such
enzymes (Fig 5e). In total, 82 enzymes were predicted by at least one Posterior etcGEM, and only 24 (out
of 82) enzymes were each predicted by more than 10% of the Posterior etcGEMs (Fig 5e, inset). Among
these 24 enzymes 12 enzymes were engaged with Glycolysis and 3 enzymes were involved in sterol
biosynthesis: ERG1, and HMG1,2 catalyzing the flux-controlling steps in sterol biosynthesis*'. The

remaining enzymes were mainly involved in DNA or protein synthesis related pathways.
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Fig 5. etcGEM uncovers growth rate-limiting enzymes. (a) 20 enzymes with the highest flux sensitivity
coefficients at 40 °C. Each dot represents the prediction from one Posterior etcGEMs. (b) Predicted maximal specific
growth rate of wide-type yeast and the one without any temperature constraints (fully functional) on ERG1 enzyme
at 40 °C. (c) The effect of KmMERG1 expression on thermo tolerance in S. cerevisiae. The strains were cultivated at
40 °C for six generations to reach the steady state of growth. Optical densities (600 nm) are shown at 24 h. Each
bar indicates the mean and dots represent the values of 5 replicates. p-values denote Welch's t-test. (d) Simulated
maximum specific growth rate by removing the temperature constraints of most rate-limiting enzymes at each step
in each Posterior etcGEM at 42 °C. Lines indicate median values and shaded areas indicate the region between
the 5th and 95th percentiles. (e) The percentage of Posterior etcGEMs predicts an enzyme to be in the minimal
enzyme set required to be fully functional at 42 °C in order to achieve a maximal specific growth rate of 0.2 h™.

Inset shows the names and pathways of genes predicted by more than Posterior etcGEMs 10% they are involved
in.
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Discussion

Here, we present a Bayesian genome scale modelling approach to resolve the temperature dependence
of cellular metabolism, termed GETCool. Using an enzyme-constrained GEM'® as a template, we modelled
the temperature effects on each individual enzyme by including temperature dependent terms for the
independent processes of denaturation as well as catalysis (Fig 1A). Due to the high level of uncertainty
and low accuracy associated with the initial thermal parameter values (Fig S6), which were a result of
experimentally measured noise or variability arising from machine learning or theoretical predictions
(Methods M5), the model predictions initially could not correctly recapitulate experimental observations (Fig
2a-c and Fig S2). We therefore used Bayesian statistical learning that enabled updating our Prior guess of
the highly uncertain thermal parameters to a more accurate Posterior estimation of these parameters
according to observed phenotypic data (Fig 1e). The resulting Posterior etcGEMs accurately describe the
experimental observations (Fig 2a-c) and thus provide a more reliable platform to study the thermal

dependence of yeast metabolism.

Previous studies modelling the temperature dependence of enzyme activities have relied mainly on protein
denaturation and the Arrhenius equation, where protein denaturation explained the negative curvature for
temperature dependence of enzyme activity 2>2'. However, with the increasing amount of evidence showing
that protein denaturation alone is insufficient to explain the decrease in enzyme specific activity above Topt,
macromolecular molecular rate theory 323 has become a promising alternative. It was successfully applied
to many enzymes 323336 including its use in explaining the evolution of enzyme catalysis *. According to
the theory, a negative heat-capacity change (AC;,F ) exists between the transition state and the ground state
in the enzyme catalytic process (Fig 1c), which leads to a negative curvature for temperature dependence
of enzyme activity in the absence of denaturation 32. We found that with this theory, temperature
dependence of keats acts as a major contributor to the cell growth rate at all temperatures, which can
especially explain the decline in cell growth rate right after the optimal growth temperature (Fig 3a). Yeast
enzymes only maintain high kcats in the temperature window of cell growth (Fig 3e), which means that the
metabolism becomes inefficient at superoptimal temperatures due to the general decrease in enzyme
turnover without denaturations (Fig 3d-f).

Using the Bayesian genome scale modelling approach to quantitatively depict the temperature effects on
yeast metabolism led to insights into the long-standing discussion on the roles of different cellular factors
in cellular fitness under heat stresses 4%7:2342, For instance, protein denaturation has been suspected as
one of the main causes of the decline in cell growth beyond the optimal growth temperature point. However,
recent high throughput measurements of melting temperatures (Tm) for 707 S. cerevisiae proteins revealed
a Tm distribution with a mean value of 52 °C and a minimum of 40 °C 7, which suggests that protein
denaturation alone might not be sufficient to explain the decline of yeast cell growth between 30°C (optimal
growth temperature, OGT) and 42°C (lethal temperature point). An alternative explanation is provided by
the evidence of a significant increase of non-growth associated ATP maintenance (NGAM) observed with
yeast cells grown in anaerobic chemostat cultivations at high temperatures (33-40°C) compared to ones

grown at low temperatures (5-31 °C) 5, which suggests an imbalance in cellular energy allocation in the
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superoptimal temperature range. Quantitative assessment using our modelling approach revealed that the
impaired cell growth is caused by a combination of decreased kcat values, increased NGAM costs and
protein denaturation (Fig 3). Furthermore, between 30 and 35 °C, the combined decrease in kcats and
increase in NGAM explains the decline in cell growth, whereas with temperatures above 35 °C, protein
denaturation becomes the dominant factor, causing cell death at 42°C. However, in accordance with
published findings that cellular proteomes have a broad distribution of protein stability with only proteins at
the tail of the distribution being problematic 43, using our approach we identified only ~1% unstable enzymes
denatured at the lethal point (Tm lower than 42 °C, Fig 3d).

We identified two interesting metabolic pathways involved in yeast thermotolerance: sterol metabolism and
mitochondrial energy metabolism. With sterol metabolism (Fig 5d), it is known that high sterol levels help
yeast cells survive under heat stress 44 and changes of the sterol composition of the yeast membrane from
ergosterol to fecosterol 4° can significantly increase yeast thermotolerance. However, yeast was found to
downregulate its whole ergosterol biosynthesis at both transcription and translation levels when increasing
the temperature from 30°C to 36 °C (Fig S10). Our modeling approach identified three problematic enzymes
(Fig 5d: HMG1,2 and ERG1) in the sterol metabolism, which are also flux-controlling enzymes in the sterol
biosynthesis pathway*6. We experimentally confirmed that replacement of ERG1 with its ortholog in the
thermotolerant yeast K. marxianus can significantly improve the cell growth at 40 °C (Fig 5c). We thereby
hypothesize that, since those three enzymes are problematic at superoptimal temperatures, there is no
need for the cell to maintain high expression and translation levels of other enzymes in the same pathway.
Instead, it has to downregulate its whole ergosterol biosynthesis to save resources and increase fitness.

With mitochondria, previous studies have indicated that the mitochondrial genome plays an important role
in yeast thermal adaptation 47~4°. We found that out of the 9 unstable enzymes identified with the Posterior
etcGEMs (with a Tmlower than 42 °C, Fig S7), three (ATP1, HEM1 and PDB1) belonged to the mitochondrial
energy metabolism. Simulation of chemostat data (Fig 4) revealed that at superoptimal temperatures, yeast
prefers to produce ATP via the glycolysis metabolism instead of the mitochondrial energy metabolism in
the mitochondria. Furthermore, mitochondria only exists in eukaryotes and almost all of them have evolved
to have an optimal growth temperature below 40 °C 3. All these findings indicate that mitochondria are not
evolved to be functional at very high temperatures (e.g. >42 °C). Since mitochondrial energy metabolism is
not essential for yeast cell growth, as there are alternative energy pathways (Fig 4), this also explains why
we could not successfully predict mitochondrial enzymes to be engineering targets for the recovery of cell
growth at 42 °C (Fig 5d), despite the existence of three unstable enzymes in the mitochondrial energy

metabolism.

In conclusion, we demonstrate the usefulness of a Bayesian genome scale modeling approach for
reconciling temperature dependence of yeast metabolism. Describing the link between temperature and
cell physiology is of industrial importance, e.g. for finding optimized production of biochemicals 24°0-52 put
also in medicine, e.g. to understand the effects of temperature on human metabolism %3-5%. Furthermore,
based on its success here, we foresee that our method can be integrated into genome scale modelling
approaches in general. This approach can also become a staple of GEM modeling in order to resolve

uncertainties present in the data, which can be important as GEMs have become a widely used platform
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for integration of various biological data, such as transcriptomics and proteomics data that are associated

with large uncertainties °°.
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Materials and Methods

M1. A temperature dependent enzyme-constrained genome scale metabolic model (etcGEM)

The central concepts of an enzyme constrained model ' are: 1) the flux through each reaction cannot
exceed the capacity of its catalytic enzyme: v; < k., ;" [E]; , where [E]; is the concentration of enzyme i;
2) the total enzyme amount is constrained by the experimental measurement: ), [E]; < [E]:-Once the
temperature dependent denaturation and k_,, were considered, [E]; in the first constraint should be [E]y ;
which is the concentration of individual active enzymes. [E]; in the second constraint should be
[El;; = [E]n,; + [E]y,, which is the total concentration of enzymes in both active and denatured forms (Fig
1a). In addition, to capture the increased expenditure for maintenance under increased heat stress, a
temperature dependent Non-Growth Associated ATP maintenance term can be assumed from

experimental measurements. In summary, the updated constraints constraints in etcGEM are

Sv=0
0=<y< kcat,i(T) . [E]N,i(T)

D (BT + [Elos () < [E]e

NGAM(T) = f(T)

(1)

The effect of temperature on k., values can be described with an expanded Arrhenius equation
(macromolecular rate theory), by including a non-zero heat-capacity change (Asz) between the transition
state and the ground state of the enzyme catalytic process 32-%:

AGE(T)

’”’TTe_ RT (2)

kcat(T) X

in which kg is the Boltzmann constant, h is Planck’s constant, R is the universal gas constant, and AG*(T)
is the free energy difference between the ground state and the transition state. The latter can be expanded

as

At i ¥ i L
AGH(T) = AH} + ACH(T —To) — T (ASTO +ACG Inin (TT,) ) ®)

where AH} , AST and AC; are the differences in enthalpy, entropy and heat capacity change between the

transition and ground states, respectively, and T, is the reference temperature. This theory has been

successfully applied to study the temperature dependence of enzyme activity 323 and evolution 3.

Since there is not enough detailed information regarding the heat-induced denaturation process of yeast

proteins, a simple two-state model denaturation was assumed as in many other studies 202", In such a
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model, a protein molecule could be either in a native state (N) or a denatured state (U), and an equilibrium

state was assumed: N < U. Thereby

[Eln; = —x5zm [Elei (4)
RT

1+e

in which [E],; = [E]y; + [E]y,, where [E],;is the concentration of enzyme i and AG, (T) is the free energy

difference between the denatured state and the native state and can be expressed as
AG,(T) = AH,(T) — TAS,(T) (5)

where AH,,(T) and AS,,(T)are the enthalpy and entropy changes between the denatured and native states
at temperature T. It has been found that convergence temperatures T;; (373.5 K) and T¢ (385 K) exist for
AH, and AS,respectively 425758 At such temperatures, the AH,, and AS, converge to a common value of
AH* and AS*. Thereby,

AG,(T) = AH* + AC, (T — Tyy) — TAS™ — TAC,,log (%) (6)
S

in which AC, ,, is the difference in heat-capacity change between the denatured and native states.

In summary, the values of AG*(T) and AG,(T) need to be determined in order to model the temperature

dependence of enzyme activities, and they can be associated with six unknown parameters: AH*O, Asioand

AC;,F for AG*(T), and AH*, AS*and AC,,, for AG, (T).
M2. Computation of thermal parameters

Since it is difficult to directly measure those six thermal parameters (AH*O, ASﬁO, AC{f , AH*, AS*and AC,,,)

for each enzyme, indirect measurements have to be used to approximate the larger set of thermal
parameters. As there are six free variables in the system, six different equations are required to solve for

those parameters.
1) At the protein melting temperature T,,;:
AG,(T)=0 (7)

2) At the enzyme optimal temperature T,,,, the enzyme activity is maximized:

pt>
d
d_; |T=Topt =0 (8)
in which 7 = k. [E]y;

3) kcqe at the enzyme optimal temperature T, is known:

GF(Topt)
R T,

k -
kcat(Topt) = %Te 8 ovt (9)
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4) ACj value can be approximate from temperature dependence of cell growth rate 3

5) We found that there is a very strong linear correlation (r? = 0.998, Pearson’s correlation) between
AH*and AS* of 116 proteins from Sawle L et al 42 (Fig S9)

AH* = 299.58AS* + 20008 J/mol (10)

6) For some enzymes, T,,, where a 90% possibility exists that an enzyme molecule is in the denatured

state, is experimentally measured:
AG,(Ty)=-RToIn9 (11)

As a result, the six thermal parameters AH*O, ASiO, AC{f AH", AS*and AC,, can be obtained by solving the

above equations.

In the case of lacking Ty, or failed to obtain a positive AC, ,,, protein sequence length was used to estimate

AH* and AS* %2 as below:
AH* = (4.0N + 143) x 1000 (12)

AS* = 13.27N + 448 (13)

M3. Sequential Monte Carlo based Approximate Bayesian Computation (SMC-ABC)

Approximate Bayesian Computation 3* was applied to infer parameter sets from Posterior distributions.
Given an observed dataset D and a model specified by 8 sampled from the Prior distribution P(8), if the
distance between simulated data D and observed D is less than a given threshold ¢, then this 8 is accepted
as the one sampled from P(p(D,D) < €). P(p(D,D) < €) is often used to approximate the Posterior P(6|D)
when ¢ is sufficiently small. In case of high-dimensional parameter space and/or when the P(9) is very
different from P(0|D), the acceptance rate would be very low and thus this approach becomes
computationally expensive to generate a population of  from P(p(D,D) < €). In this work, a sequential

Monte Carlo approach was designed as follows to generate a population of § sampled from P(p(D,D) < €):

Input: Observed data D, distance function p and the distance threshold e

Output: 100 samples from P(p(D,D) < ¢)

Initialize an empty set S to store all § simulated
Initialize an empty set B to store the best 100 8 after each step
Repeat:
Sample 128 8 from Prior distribution P(8)
Simulate observed data D to get D for all §
Calculate distance p(D, D) for all §
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Add those 128 8 into population set §
Select the best 100 & from S with smallest p(D, D) and replace old 8 in B
Update €, with the minimal p(D,D) of § in B
If €, < €, break
Else: update Prior distribution P(6) with # in B. Assume a normal distribution for each
parameter 6; in 8 and use the mean and variance of 6; in all 100 8 in B as the new mean
and variance.
End

M4. Collection and estimation of enzyme thermal parameters in etcYeast7.6
The enzyme-constrained model for yeast with minimal medium was taken from €.

Melting temperatures Among the 764 enzymes included in ecYeast7, the T,, (melting temperature) and
Ts, (the temperature at which 90% of the protein is in the denatured state) for 266 yeast proteins have been
reported previously 7. For enzymes lacking an experimentally measured T,,, a melting temperature of
51.9 °C (the average of existing T,,s of 707 yeast proteins) was assumed. In the original paper 7, the 95%
confidence interval was reported for peptides measured in the experiments and the average standard error
was estimated at 3.4 °C. This same value was used as the uncertainty measure for the experimentally
determined T,,;s, since the standard error for protein T,, was not available. The T, of the 266 enzymes was
then described with a normal distribution N(T,;, 3.4), in which T, ; is the experimentally measured melting
temperature of protein i. For enzymes that uses the mean T,, of 707 proteins 7 as T,, estimation, the
corresponding uncertainty is described as the the standard deviation of the the 707 T, s, equalling 5.9 °C.

Thereby, a normal distribution N(51.9,5.9) was used.

Enzyme optimal temperature T,,, values of all enzymes in this study were calculated using a previously
described machine learning method 22, which predicts enzyme T,pcbased on primary sequences. This

model has a coefficient of determination (R2 score) of 0.5 on the test dataset. Root-mean-squared error
(RMSE) of the prediction was then estimated with:

n L F)2 lz’ﬂ_ (yi=f?
R2:1_21n=1 (i f1)2=1_,; Ln—l Vi 12: _I:TSE (14)
Sty (iy) Al (vimy) b5

RMSE =+MSE = /(1 — R?)8%; =/ (1—0.5)x337=13.0°C  (15)

where f; is the predicted value and y; is the observed true value of enzyme i. Then each one of these

predicted T,,.s was described with a normal distribution N (T, ;, 13.0).

Heat capacity change AC,f value was approximated by assuming temperature dependence of yeast cell

growth rate as -6.3 kJ/mol/K for all enzymes 2. Given that ACj should be in general negative for most
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enzymes 33, a standard variance of 2.0 was selected from testing a wide range values because it covers a
broad range of ACj and with a very low possibility of getting a positive value (Fig S10). A normal distribution

of N(—6.3,2.0) was subsequently used to describe the AC,f of all enzymes.

NGAM To capture the increased expenditure for maintenance under increased heat stress, an empirical
equation (Fig S1) was constructed to estimate the Non-Growth Associated ATP Maintenance at different

temperatures:

5.893
1+¢31.920—(T—273.15)

NGAM(T) = 0.740 + +6.12 X 1076 x (T — 273.15 — 16.72)* (16)

based on the experimental data 5. Since the experimental data only covers the temperature range of
between 5-40°C, any NGAM for temperatures lower than 5°C was set to the value at 5°C and for those
higher than 40°C was set to the value at 40°C. The equation (16) was used for the anaerobic growth data

as well as for aerobic growth, since no experimental data was available for this condition.

M5. FBA simulations with etcYeast7.6

[£]

At a given temperature, first the k,, values and ﬁ were calculated and integrated into the enzyme-
N,i D,i

constrained model and then the NGAM at this temperature was calculated and included in the model.

Batch cultivation For batch growth simulations, unlimited substrates were used, the same as described in
'8, The enzyme saturation factor o of 0.5 was used “°. For simulation of anaerobic growth, in addition to the
above changes, the uptake of oxygen was blocked and fatty acids and sterols were supplied into the
medium as described in '®. The growth associated ATP maintenance (GAM) was estimated from

experimental data® as 70.17 mmol ATP/gdw. Other parameters were unchanged.

Chemostat cultivation For the simulation of fluxes at aerobic chemostat conditions, with the same model
settings as aerobic batch condition, the simulation was carried out by first fixing the growth rate to a given
dilution rate (0.1 h™") and minimizing the glucose uptake rate. Then the glucose uptake rate was fixed to the
simulated value multiplied by a factor of 1.001 (for simulation purposes). Finally, the total enzyme usage

was minimized (same as used in '°).

Flux Sensitivity Analysis. To get the flux sensitivity coefficient of an enzyme at a given temperature, the
k... of all reactions that associated with this enzyme were perturbed by a factor of (1 + §). Then the maximal

growth rates were simulated before (u) and after (u,) perturbation. Finally, the flux sensitivity coefficient of
Uup—p
enzyme i was calculated as — where p and u

» are maximal specific growth rate before and after

perturbation. § of 10 was used in this study.

M6. Analysis of models generated with the Bayesian approach
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Distance function The observed data used in this study was the maximal specific growth rate in aerobic *
and anaerobic ° batch cultivations at different temperatures, and glucose, carbon dioxide and ethanol flux
values at different temperatures measured in chemostat cultivations with a dilution rate of 0.1 h™' 23. The
distance function was designed as follows: first, the coefficient of determination (R?) between simulated
and experimental data was calculated for each of the above conditions. Then the average R? across these
three conditions multiplied by -1 was used to represent the distance p(D, D). € of -0.9 was used in the SMC-

ABC simulation.

Statistical tests for comparison between P(6) and P(0|D) The significance test for the difference in
mean values between Prior and Posterior was carried out by Welch's t-test %°. The significance test for
reduced variance was carried out by the one-tailed F-test. p-values were adjusted with the correction ¢

using a family-wise error rate of 0.01. The significance cutoff was set to 0.01 (Fig 2e).

Machine learning applied to score the importance of parameters 2292 parameters of 21,504 parameter
sets were used as the input feature matrix and the average R? scores obtained with the Bayesian approach
were used as target labels. The dataset was split into train (80%), validation (10%) and test (10%) datasets.
A random forest regressor with 1000 estimators was used. The train and validation datasets were used to
optimize the hyper-parameter. The obtained model could explain in total 23% the variance in the test

dataset. The feature importance scores were extracted directly from the obtained model.
M7. Experimentally validate ERG1

Genetic Manipulation. The background strain we used in this study was IMX581 derived from
CEN.PK113-5D, which contains an integrated Cas9 expression cassette controlled by TEFp promoter 6.
All the genetic manipulations were conducted based on the CRISPR/cas9 system. The codon-optimized
kmERG1 were ordered from GenScript (Table S1), and the PrimerSTAR HS polymerase was utilized for
gene amplification through PCR. Based on strain IMX581, the codon-optimized gene ERG1 from K.
marxianus (kmERG1) was integrated to replace the native ERG1 (scERG1) using CRISPR/cas9, yielding
HLO1. All the design and construction of the plasmid follows the previously described method ¢'. The gRNA
cassette for target gene scERG1 was obtained using the single-stranded oligos gRNA-ERG1-F/ gRNA-
ERG1-R, followed by assembling with the linearized backbone plasmid pMEL10, the single gRNA plasmid
was constructed by Gibson assembly. The repair fragment containing kmERG1 with round 60bp overlap
was amplified by primers kmEGR1-scERG1up-F/ kmEGR1-scERG1dn-R using codon-optimized kmERG1
as template. Then the repair fragment and single gRNA plasmid were co-transformed into IMX58. All the

strains and primers used in this study were listed in Tables S2 and S3.

Strain Cultivation Under Different Temperatures. The thermotolerance was tested and compared
between S. cerevisiae IMX581 and HLO1. Five single colonies of each strain were selected and pre-cultured

in YPD media at 30 °C, and cells were then transferred to flasks in 20 mL YPD media to reach 0.1 initial
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OD600 cultured at 40 +/- 0.1 °C, 200 rpm. After that, the cells were transferred into fresh YPD media every
24h with 0.1 initial OD600 and cultivated at 40 +/- 0.1 °C, 200 rpm.
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Software and Code availability All simulations of genome-scale models were carried out with Cobrapy ©'
with  Gurobi (Gurobi Optimization, LLC) solver. All code is available on Github
(https://github.com/Gangl2016/GETCool).
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