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Abstract

Mercury (Hg) methylation is a microbially mediated process that converts inorganic Hg into the
bioaccumulative neurotoxin methylmercury (MeHg). Exploring the diversity and metabolic
potential of the dominant Hg-methylating microorganisms can provide insights into how
biogeochemical cycles and water quality parameters underlie MeHg production. However, our
understanding of the ecophysiology of methylators in natural ecosystems is still limited. Here,
we used shotgun metagenomics paired with biogeochemical data to identify likely hotspots for
MeHg production in a lake with elevated sulfate levels and characterize the microbial
methylators and the flanking microbial community. Identified putative methylators were
dominated by hgcA sequences divergent from those in canonical, experimentally confirmed
methylators. Using genome-resolved metagenomics, these sequences were identified within
genomes associated with Bacteroidetes and the recently described phylum Kiritimatiellaeota.
Over half of the hgcA abundance comes from genomes corresponding to obligately
fermentative organisms, many of which have a large number of glucoside hydrolases for
polysaccharide degradation. Sulfate-reducing genomes encoding hgcA were also identified, but
only accounted for 22% of the abundance of hgcA+ genomes. This work highlights the diverse

dispersal of the methylation trait across the microbial anoxic food web.
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Introduction

Mercury (Hg) contamination of aquatic food webs is an environmental concern and a public
health hazard. Environmental levels of Hg have increased drastically due to anthropogenic
inputs, such as burning coal for electricity and artisanal gold mining.! Much of this
anthropogenic Hg is in the form of elemental (Hg(0)) or inorganic (Hg(Il)) Hg.2 However, Hg
bioaccumulates in tissues and biomagnifies up food webs in the form of methylmercury
(MeHg), making the production of MeHg the gateway process to food web contamination.?
MeHg production is mediated by microorganisms in aquatic anoxic environments such as
sediments, periphyton, rice paddy soils, and the freshwater and marine water column.*® MeHg
accumulation in freshwater hypolimnia has historically been attributed to production in the
sediment and diffusion across the sediment-water interface.>° However, methylation has
been shown to occur in the water column and may account for a substantial fraction of the
MeHg hypolimnetic accumulation, especially in lakes with a large anoxic hypolimnion 811713
Despite this, water column methylation in freshwater lakes is understudied relative to sediment

methylation.

The production of MeHg is driven largely by local geochemical conditions. Sulfide levels and the
quality and quantity of dissolved organic matter (DOM) impact the complexation and
aggregation of Hg(l1).1*** This has a direct impact on MeHg production by controlling the
bioavailability of Hg to methylating organisms. Additionally, the identity and quantity of
electron acceptors and donors can indirectly drive MeHg production by fueling the metabolic

activity of methylating microorganisms.1%® The identification and characterization of these
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organisms can illuminate how biogeochemical processes are influencing MeHg production.
Early experiments on cultured isolates and in situ assays showing molybdate inhibition of MeHg
production in sediments provided a link between sulfate-reducing bacteria (SRBs) and the
production of MeHg.>° Later studies identified several iron-reducing bacteria (FeRBs) and
methanogenic archaea as methylators as well.1”8 More generally, MeHg production often
increases with increasing overall heterotrophic activity, suggesting that increased carbon and

energy flux through the microbial food web can drive MeHg production.®19

The recent identification of the hgcAB gene cluster has provided a robust molecular marker for
methylation potential.?° This marker has been used to search publicly available genomes,
metagenomes and metagenome-assembled genomes, which has expanded the phylogenetic
and metabolic diversity of confirmed and putative methylators.?172°> Several PCR primer sets
have been developed to identify hgcA sequences in natural systems.?6-3% Studies using this
approach in habitats such as rice paddies, soils/sediments, periphyton, and many others have
shown that the hgcA+ community can be quite different phylogenetically across environments,
and that this can sometimes be linked to biogeochemical conditions at the site.?®2°-32 While this
approach works well in some systems, these primers do not always accurately characterize the
hgcA+ community in natural ecosystems, especially for hgcA sequences that are highly
divergent compared to reference methylators.??233334 Shotgun metagenomics offers a more
robust method of identifying hgcA sequences from environmental samples, since
computational tools such as BLAST and Hidden Markov Models (HMMs) are better equipped to
identify divergent sequences.3> For example, Gionfriddo et al used an assembly-based

metagenomic approach to identify a divergent hgcA sequence fragment from the Antarctic sea
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87 ice and determined it was likely from a nitrite-oxidizing Nitrospina.3® While this approach

88 improves gene detection, it does not provide key information on the metabolic capabilities of
89  hgcA+ organisms and relies on relatively small databases with relevant sequences for

90 comparison. As an alternative, genome-resolved metagenomics yields population genomes

91  (bins) from complex environmental samples.3” This approach enables phylogenetic

92 identification of hgcA+ lineages and characterization of their metabolic potential. Recently,

93  Jones et al. applied this approach in two sulfate-enriched lakes and identified a broad diversity
94  of hgcA+ groups, including some previously unknown methylators, and metabolically

95 characterized each of these draft genomes.!?

96 The primary objective of this study was to identify and characterize the Hg-methylating
97  microorganisms in the anoxic hypolimnion of a eutrophic, sulfate-enriched lake. We monitored
98 the biogeochemical and redox status of the hypolimnion throughout the ice-free season and
99 generated Hg speciation profiles. We selected samples for shotgun metagenomic sequencing
100 from sites where we suspected in situ MeHg production. We used assembly-based and bin-
101  based analyses to characterize the phylogenetic diversity and metabolic potential of the hgcA+
102  microbial community. We show that the hgcAB+ community in Lake Mendota is dominated by
103  non-canonical methylators and that fermentative organisms account for over half of the
104  hgcAB+ population, but that microorganisms throughout the anaerobic food web are

105  potentially involved, either directly or indirectly, in MeHg production.

106 Materials and Methods

107  Detailed methods can be found in the Supplementary Methods online.


https://doi.org/10.1101/2020.04.01.018762
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.018762; this version posted April 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

108 Field sampling. Lake Mendota is a large, dimictic lake located in Madison, Wisconsin, USA.

109  Sampling was conducted within 100m of the North Temperate Lakes Long-Term Ecological

110 Research buoy (GPS coordinates: 43.09885, -89.40545) at the Deep Hole, the deepest basin in
111  Lake Mendota. Samples were collected approximately monthly in 2017 from the onset of

112  anoxia until turnover. Detailed profiles of temperature, dissolved oxygen and turbidity were
113  collected with a YSI Exo2 multiparameter sonde (YSI Incorporated, Yellow Springs, OH). These
114  profiles were viewed in real-time to guide sampling. All samples were collected through an

115  acid-washed Teflon sampling line using a peristaltic pump. Samples for sulfide analysis were
116  preservedin 1% ZnAc. Water samples for dissolved metal analysis were filtered through a

117  0.45um PES Acrodisc filter and acidified to 1% HCI. Hg samples were collected using clean

118  hands/dirty hands. Samples were collected into a new PETG 2.5L bottle, which was allowed to
119  overflow before capping. Hg samples were double-bagged and stored in a cooler, then at 4°Cin
120 the dark. Water was filtered through a quartz fiber filter (QFF) within 24 hours and preserved
121 with 1% HCI for dissolved Hg species analysis. The filters were frozen for particulate Hg analysis.
122  DNA samples were collected onto 0.22um pore-size PES filters (Pall Corp.) and flash-frozen on

123 liquid nitrogen within 90 seconds.

124  Geochemical analyses. Sulfide was quantified spectrophotometrically using the Cline method.38
125 Iron and manganese were quantified by inductively-coupled plasma optical emission

126  spectrometry (ICP-OES) on a Varian Vista-MPX CCD ICP-OES. Processing and analysis of Hg

127  samples was done at the U.S. Geological Survey (USGS) Wisconsin Mercury Research

128 Laboratory. Dissolved total Hg (THg) was quantified after purge and trap using cold vapor

129  atomic fluorescence spectrometry, using a Tekran Model 2500 CVAFS Mercury Detector (Tekran
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130 Instruments Corps., Toronto, ON, Canada). Particulate THg was extracted from the filter using
131 5% bromium chloride before purge and trap. This protocol follows the U.S. Environmental
132  Protection Agency (EPA) Method 1631. Dissolved MeHg was quantified using isotope dilution
133 by distillation, gas chromatography separation and inductively-coupled plasma-mass

134  spectrometry (ICP-MS) on a Thermo ICAP-RQ ICP-MS (Thermo).

135 DNA extraction, sequencing, and assembly. DNA was extracted by enzymatic and physical lysis
136  followed by phenol-chloroform extraction and purification by isopropanol precipitation. DNA
137  library preparation was done at the Functional Genomics Lab and sequencing was done in the
138  Vincent J. Coates Genomics Sequencing Lab, both within the California Institute for Quantitative
139  Biosciences (QB3-Berkeley, Berkeley, CA). Library preparation was done with a Kapa Biosystem
140 Library Prep kit, targeting inserts ~600bp in length (Roche Sequencing and Life Science, Kapa
141  Biosystems, Wilmington, MA). Libraries were pooled and sequenced on a single lane of an

142  lllumina HiSeq4000 for paired-end reads of 150bp (lllumina, Inc., San Diego, CA). Raw reads
143  were trimmed using Sickle to maintain a QC score of 20 over a sliding window of 15.3° Trimmed
144  reads shorter than 100bp were cut. Metagenomes were both assembled individually and co-
145  assembled using metaSPADes (v3.12).%° Assembly-based analyses were run on all scaffolds at

146  least 500bp in length.

147  Metagenomic analysis, binning and annotation. A custom HMM for HgcA amino acid

148  sequences was built using hmmbuild from hmmer (v3.1b2) using experimentally verified HgcA
149  amino acid sequences (Data File 2).2%*! This HMM was used to identify HgcA sequences from
150 the open reading frames of each assembly using the trusted cutoff score of 128.60. Each

151  putative HgcA sequence was manually screened and discarded if it did not contain the cap helix
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152  domain (N(V/I)WCA(A/G)(A/G)(K/R)) and at least 4 transmembrane domains (Figure S2).2° We
153  dereplicated the HgcA sequences across assemblies using CD-HIT, clustering them at 0.97

154  identity.*? Reads from all metagenomes were mapped to the scaffolds from each assembly

155 individually using BBMap (v35) with default settings.** Open reading frames were predicted
156  using Prodigal (v2.6.2).** Automatic binning was done individually on each assembly, using only
157  scaffolds >1000bp in length. Bins were generated using Metabat2, MaxBin (v2.1.1), and

158 CONCOCT (v0.4.1), then aggregated using Das Tool.*>~* Bins across assemblies were clustered
159 into “high matching sets” (HMSs) if they shared at least 98% ANI over at least 50% of the

160 genome. CheckM was used to estimate the completeness and redundancy of each bin.*® One
161  bin from each HMS was selected for analysis, based primarily on percent completeness, and
162  quality of the assembly. Bins were then decontaminated using the anvi-refine interface in

163  Anvi’o (v5.2).%° All hgcA+ bins were reassembled using SPADes and manually re-binned in

164  Anvi’o. Manual comparison of the GC content, tetranucleotide frequency, differential coverage,
165 and taxonomy of adjacent genes was conducted on binned hgcA+ scaffolds, relative to other
166  scaffolds in the bin, to confirm the inclusion of these scaffolds within the bin. Taxonomy of each
167  bin was automatically assigned using the GTDB-TK software.>! Preliminary annotations were
168  done using MetaPathways.>?> Annotations of metabolic genes of interest were confirmed using
169  Hidden Markov Models (HMMs) from TIGRFAM and PFAM.3° In many cases, gene

170 neighborhoods and phylogenies were also used to confirm annotations.

171  Phylogenetic analyses. Bin phylogenies were based on 16 ribosomal protein sequences.>® For
172 both bin and HgcA phylogenies, amino acid sequences were aligned using MUSCLE (v3.8.31).%*

173  For the bin alignment, all 16 rp16 gene alignments were concatenated into a single alighnment.
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174  Sequences with less than half of the aligned residues were manually removed. Alignments were
175  manually inspected in Geneious and trimmed using BMGE1.1 with the BLOSUM30 substitution
176  matrix.>> RAXML (v8.2.11) was used to generate a maximum likelihood (ML) tree under the

177 GAMMA distribution with the LG model.>® Branch support was generated by rapid

178  bootstrapping. For HgcA phylogenies, we used RogueNaRok (v1.0) to identify and remove

179  “rogue taxa” interfering with proper tree generation.>’ The best-scoring ML tree for HgcA was
180  mid-point rooted using the Phangorn R package and visualized using ggtree.>®>° The rp16 ML

181 tree was rooted using an archaeal outgroup and visualized using ggtree.

182 Results and Discussion

183  Hg and redox biogeochemistry in Lake Mendota. Lake Mendota is a eutrophic lake enriched in
184  sulfate, with a watershed dominated by agriculture, leading to high levels of nutrient inflow and
185  productivity. Physical and biogeochemical profiles were collected approximately monthly over
186 the stratified period in 2017. A subset of the profiles are shown in Figure 1 and S1. Anoxia

187 developed in the hypolimnion as early as June, likely due to the intense spring blooms sinking
188 and decomposing. Reduced iron (Fe) and manganese (Mn) accumulated in the hypolimnion
189 immediately following anoxia onset. While the Fe was quickly precipitated out by sulfide, Mn
190  continued to accumulate in the hypolimnion up to ~5uM.®°® We observed an enrichment of
191  dissolved and particulate Mn near the oxic/anoxic interface during late stratification

192  (September and October), suggesting enhanced redox cycling in this region (particulate data
193 not shown). Mendota has relatively high sulfate concentrations, with up to ~175-200uM in the

194  epilimnion. Combined with early anoxia and continued primary production in the epilimnion,
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this provides a rich habitat for sulfate reduction, which has previously been shown to occur in
both the sediments and the water column.®! Sulfide was detectable within 1 meter below the

oxycline as early as August and accumulated to over 150uM by October.

Once oxygen was depleted, both THg and (MeHg) began to accumulate in the hypolimnion
(Figure 1, Figure S1). THg in the hypolimnion increased throughout the summer, starting at
~0.5ng/L in the epilimnion and increasing down the water column. MeHg and THg continued to
increase in the hypolimnion in August. In September and October, THg continued to increase in
concentration, reaching nearly 2ng/L in the bottom waters. However, the MeHg increased
across the oxic/anoxic interface, then stayed approximately even or decreased slightly with
increasing depth. Correspondingly, the fraction MeHg relative to THg peaked at the oxic/anoxic
interface. This mid-column peak of fraction MeHg is an indication of in situ production. This
coincided with a peak in turbidity, which has been previously shown to co-localize with elevated

microbial activity and MeHg production.’3

HgcA identification. To identify potential hgcA+ groups in Lake Mendota, we selected five
samples for shotgun metagenomic DNA sequencing and analysis (Figure 1, Table S1). Three of
these samples were selected to coincide with the mid-column peak in MeHg on three different
dates. These chemocline samples will be referred to as CHE1, CHE2, and CHE3, based on their
temporal order. The other two samples were collected from deeper, more euxinic (oxygen-
depleted and sulfide-rich) waters on two separate dates. These euxinic samples will be referred
to as EUX1 and EUX2, also based on their temporal order. Notably, the water from which CHE3
was sampled was relatively high in sulfide despite its proximity to the oxic-anoxic interface

(Figure 1C). Metagenomes were assembled (statistics in Table S2) and binned (bin information

10
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in Data File 1). We retrieved 228 bins that were more than 75% complete and less than 10%

redundant, which accounted for only 33% of the total number of reads.

We identified 108 unique HgcA sequences in the unbinned metagenomic assemblies using a
custom-built HgcA HMM (Data File 2). The HgcA amino acid sequences are in Data File 3, and
the nucleic acid files in Data File 4. Each identified HgcA was manually screened for the cap
helix domain and at least 4 transmembrane domains (Figure S2)?°. Ninety of the corresponding
hgcA genes had a putative hgcB sequence downstream. Seven of the 18 hgcA+ scaffolds lacking
hgcB ended just downstream of hgcA, and it is possible that hgcB simply did not assemble into
the scaffold. The remaining 11 hgcA genes without an hgcB partner had a similar phylogenetic
and coverage distribution to those with a downstream hgcB (Figure S3, Data File 5).
Methylation has been experimentally verified in Desulfovibrio africanus sp. Walvis Bay, in which
hgcA is separated from hgcB by a single ORF.2%62 While there are no other studies on the
methylation capacity of hgcA genes without a downstream hgcB that we know of, we included

all identified sequences in our analysis for completeness.

We also searched for hgcA in the bins and discovered 41 hgcA+ bins. Manual comparisons of
the GC content, tetranucleotide frequency, differential coverage, and adjacent gene
phylogenies were conducted on binned hgcA+ scaffolds, relative to other scaffolds in the bin, to
gather more evidence in support of the inclusion of these sequences within the bin. One of
these bins (LEN_0031) included two copies of the hgcA gene. However, bins represent
composite population genomes rather than individual genomes.® Thus, we cannot confirm that
the two hgcA sequences were present together in a single organism. These 41 bins accounted

for 51% of the total hgcA coverage in our assemblies. This limited coverage highlights an

11
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inability to recover quality genomes harboring the most abundant hgcA genes. For example, 13
out of the 30 most abundant sequences were not binned even though they were on relatively
long scaffolds (Figure S4). Efforts to recover highly abundant hgcA+ bins through read
subsampling, contig curation using assembly graphs, reassembly, and manual binning and

curation were unable to recover these highly abundant populations.

Despite the constraints of population genome recovery, our hgcA+ bins were representative of
the overall hgcA diversity. We successfully binned contigs from most of the HgcA phylogenetic
clusters identified using the unbinned contigs (Figure 2). The hgcA+ bins accounted for 17% of
the total read coverage from all bins, and included some of the most abundant bins in our
metagenomes (Figure S5a). They had slightly less coverage per bin than hgcA- bins (not
significant), but this could be due to the greater degree of manual curation of the hgcA+ bins
(Figure 5b). Overall, the hgcA+ bins recruited 6% of the total number of reads from our
metagenomic datasets. Because the hgcA+ bins accounted for only 51% of the total coverage of
all recovered hgcA sequences, we estimate that hgcA+ genomes account for ~12% of the total

metagenomic reads across our five samples.

Phylogenetic diversity of hgcA+ community. Of the 108 HgcA sequences, 43 of them clustered
with experimentally verified HgcA sequences in the HgcA phylogenetic tree and accounted for
27% of the total coverage (Figure 2). Some of these sequences (21 sequences, 17% of total
coverage) clustered with HgcA sequences from Deltaproteobacteria genomes. These included
three major groups associated with three different microbial orders: Desulfobacterales (5% of
total hgcA coverage), Geobacterales (<1%), and Syntrophobacterales (~12%). No sequences

associated with Desulfovibrionales, the order including the well-studied sulfate-reducing

12
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261  Desulfovibrio desulfuricans ND132, were detected.®* This relatively low number of hgcA genes
262  associated with Deltaproteobacteria is not due to a predominance of hgcA- organisms from this
263  class; rather, we only retrieved 15 total bins associated with Deltaproteobacteria, 9 of which
264  were hgcA+. Two of these hgcA- bins (from the Desulfobacterales order) were the second and
265  third most abundant bins across our five metagenomes. The only two Geobacterales hgcA

266  genes were binned, and no hgcA- bins were recovered from Geobacterales. We retrieved three
267  hgcA+ Syntrophobacterales bins, one of which (SYN_0007) was the most abundant hgcA+ bin
268  we recovered, accounting for nearly 3% of the overall bin coverage. We also recovered HgcA
269  sequences that clustered with Clostridia-derived HgcA sequences. The main group of these

270  sequences, including 4 binned HgcA sequences, forms a monophyletic cluster with weak

271  bootstrap support (Figure S3). However, there were also two hgcA+ Clostridia bins (CLO_0015,
272  CLO_0016) with HgcA sequences that fall outside of this monophyletic cluster and clustered
273 weakly with an array of divergent sequences, highlighting the limitations of an exclusively

274  assembly-based analysis as compared to genome-resolved binning. Other previously known
275  methylators that were detected in our metagenomes included methanogenic archaea (4 HgcA
276  sequences, 3.5% of hgcA coverage, 1 hgcA+ bin) and Chloroflexi (5 HgcA sequences, 1.3% of
277  hgcA coverage, and 1 hgcA+ bin). Overall, methanogenic archaea were very rare, with only one
278  bin accounting for about a half percent of the total bin coverage. Chloroflexi bins accounted for
279  ~3% of the total metagenomic reads, but most of these reads came from hgcA- bins in different

280  orders than the hgcA+ bin.

281  The majority of hgcA read coverage was accounted for by two large groups of bacteria, neither

282  of which are experimentally verified methylators. Fourteen of these sequences, accounting for
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283  13% of the total coverage, formed a monophyletic cluster with substantial bootstrap support
284  (Figure S3). Taxonomic analysis by GTDB and the rp16-based phylogeny of the four hgcA+ bins
285  in this cluster identified them as Bacteroidetes. This is supported by the co-clustering of HgcA
286  sequences from Bacteroidetes bins downloaded from NCBI, which are mostly bins

287  reconstructed from aquifer metagenomes, but also include a bin from a thiocyanate

288  reactor®3®%7 The four hgcA+ bins from this study were all within a subset of the Bacteroidales
289  order, which also contained eight hgcA- bins (Figure S7). An additional 12 hgcA- Bacteroidales
290  bins fall outside of the above-mentioned cluster. We did identify one hgcA+ Bacteroidales

291 isolate, Paludibacter jiangxiensis, that was cultivated from a rice paddy field,®® but the

292  methylation phenotype has not been experimentally confirmed in this species or any other
293  Bacteriodales member. The other large cluster of 33 HgcA sequences accounted for 50% of the
294  total hgcA coverage. We could only recover a few genes from the NCBI non-redundant

295 database that clustered with these sequences, and none from reference isolate genomes.

296  Phylogenetic analysis of the 15 bins with these HgcA sequences identified them as members of
297  the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum (Figure S6, Figure 3). Bin
298  rpl6 phylogenies show that 11 of the bins are within the newly-proposed Kiritimatiellaeota
299  phylum,® two are from the Lentisphaerae phylum, and one each from the Verrucomicrobia and
300 Planctomycetes phyla. The PVC superphylum dominates the overall read coverage of our bins
301 as well, with 79 PVC bins accounting for 42% of total bin coverage. The Kiritimatiellaeota

302  phylum alone accounts for 37 bins and ~30% of total bin coverage, including four of the eight
303 most abundant bins (Figure 3, Data File 1). There are very few publicly available

304 Kiritimatiellaeota genomes and only one cultured representative.®®’° Notably, a recent paper
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also identified several hgcA+ bins associated with the Kiritimatiellaeota phylum in a sulfate-
enriched lake, but the HgcA sequences from those bins did not cluster closely to those from this
study (Figure S3). Instead, they clustered just outside of the PVC superphylum cluster, along
with two unbinned HgcA sequences from our metagenome contigs. This is consistent with the
rpl6-based bin phylogeny, where Kiritimatiellaeota genomes from Jones et al., (2019) were also
distinct from the Mendota hgcA+ Kiritimatiellaeota (Figure 3). For both the Kiritimatiellaeota
and the Bacteroidales, the presence of hgcA within bins was not phylogenetically conserved
(Figure 3, Figure S7). That is, bins with and without hgcA genes cluster together within these
lineages. Additionally, the hgcA+ bin read coverage from these two groups was not significantly
different from their hgcA- counterparts (data not shown). We also identified several other
novel putative methylators that were lower in number and abundance, including

Margulisbacteria, Firestonebacteria, and Actinobacteria.

Metabolic potential of methylating bins. To understand how methylating organisms in Lake
Mendota might be linking biogeochemical processes to MeHg production, we explored the
major metabolic pathways encoded in our hgcA+ bins. Due to the abundance of sulfate in Lake
Mendota and the extensive literature linking MeHg production to SRBs, we hypothesized that
most hgcA+ genomes would harbor genes enabling sulfate reduction. Three of the four
Desulfobacterales genomes contained the dsrAB gene cluster, dsrD, aprAB, sat, and the
gmoABC genes requisite for sulfate reduction, with only DES_0017 lacking these genes (Figure
S8). SYN_0007, the highest coverage hgcA+ bin, and SYN_0037 also contained this set of
canonical sulfate-reduction genes. Just over half of the SRBs by coverage (52%) were hgcA+,

and there were only three hgcA- sulfate reducers. Five of our hgcA+ bins, including two of the
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aforementioned sulfate reducers, contain molybdopterin oxidoreductase (MoOR) sequences
that are homologous to polysulfide reductase (psr) (Figure S9). These genes are in
neighborhoods with the classic complex iron—sulfur molybdoenzyme (CISM) architecture, with
downstream Fe-S binding proteins and an integral membrane anchor protein similar to the nrfD
protein (Figure S9).”! Some of these clusters also have rhodanese domain-containing proteins
nearby. These genes likely confer the ability to respire partially reduced inorganic sulfur
compounds such as tetrathionate or thiosulfate.”* However, these three bins also have the
genetic machinery to mediate other terminal respiration processes and are unlikely to be

exclusively reliant on the psrA for respiration.

MeHg production has also been linked to Fe reduction. We retrieved several hgcA+ bins with
potential for extracellular electron transfer (EET), which is often used to respire insoluble metal
complexes such as Fe or Mn oxides (Figure S10). Both Geobacterales bins have a porin-
cytochrome c complex (PCC) operon that is homologous to the ExtEFG operon from Geobacter
sulfurreducens and 23 and 25 MHC proteins, respectively (Figure S8, $10).”2 The two
Geobacterales bins had very low read coverage, but were most abundant in CHE3, where we
saw evidence for enhanced Mn cycling and peaks in fraction MeHg (Data File 1). Combined with
the observation that Geobacterales methylators often produce MeHg at a high rate in culture,
this suggests that Mn cycling at the oxic-anoxic interface may be playing a role in MeHg
production. To our knowledge, Mn reduction has not previously been associated with Hg
methylation. However, further work is needed to experimentally verify this. These are the only
two bins from this study with PCCs homologous to experimentally verified metal-reducing

complexes. The PCC operon identified in VER_0023 is homologous to PCCs identified in
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Verrucomicrobia genomes recovered from bog lakes, where they are thought to mediate the
dispersal of electrons onto either iron or humic substances. However, to our knowledge the
function of these PCCs have not been experimentally verified.”® The other PCC operons were
found in Bacteroidetes and Kiritimatiellaeota bins and were not closely related to gene clusters
with experimentally verified EET function, but the corresponding organisms appear to be
capable of respiration (complex |, complete TCA cycle). The relatively low coverage of these
bins at depths with enhanced Mn cycling suggests that EET-mediated Mn reduction is not their

primary respiratory pathway (Data File 1).

We also detected the machinery for nitrogen species reduction in our methylating organisms
(Figure S8). GEO_0030 and DES_0034 have at least one nitrate reductase (napDAGHB, narG)
and nrfA, suggesting they are capable of mediating dissimilatory nitrate reduction to ammonia
(DNRA). Three other hgcA+ bins (PLA_0021, KIR_0036, DES_0019) have only the nrfHA gene
cluster, and thus likely support nitrite reduction to ammonia. While nrfHA can be used for
energy conservation, it is also implicated in nitrite detoxification, sulfite reduction, and reducing
power dispersal during fermentation.”*”> This, in combination with low nitrate/nitrite levels in
the water column during this time of year (data not shown) and the presence of sulfur cycling
genes and/or PCCs in these bins suggest that nitrogen-based respiration does not play a major
role in MeHg production in this system. The various DNRA and denitrifying genes, as well as
oxidases, were wide-spread throughout the hgcA- bins we recovered. However, due to the lack
of oxidized nitrogen species and oxygen throughout the hypolimnion during this time, we
suspect that these bins correspond to either facultative aerobes that are living fermentatively

or that are metabolically inactive at these sites.
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We only recovered one bin derived from a methanogen (MET_0028) that accounted for 0.3% of
the total read coverage and was hgcA+ (Figure S7). This bin was most abundant in the highly
reduced deep hypolimnetic samples. MET_0028 is a member of the Methanomicrobiales order,
the current representatives of which are strictly CO;-reducing methanogens, using either
formate or H; for reducing power. Indeed, MET_0028 has a number of hydrogenases, formate
dehydrogenase, and a complete Wood-Ljundahl pathway. The corresponding methanogen is
likely dependent on the production of H, and/or formate by fermentative organisms. The
overall scarcity of methanogens suggests that methanogenesis in the water column is
insignificant, and that sulfate reduction is the driving terminal respiratory process in the anoxic

hypolimnion.

The remaining 27 hgcA+ bins lack canonical machinery for terminal electron-accepting
processes and are likely to be involved in fermentative or syntrophic lifestyles (Figure S11).
Several of these bins do have cyd operons, encoding cytochrome bd oxidases, but the lack of
other machinery facilitating a respiratory metabolism suggests that these are used to minimize
oxidative stress.”® Some bins also have the nrfHA operon, but likely use this for nitrite
detoxification or fermentative metabolism.”*”> One likely mechanism for electron dispersal
among these groups is through hydrogen production, since 24 of them have hydrogenases
commonly involved in the fermentative evolution of H,, mostly [FeFe] Group A hydrogenases,
with some from [NiFe] Group 4. Fourteen of these, including all of the highly abundant
Kiritimatiellaeota hgcA+ bins, also have an Rnf complex, which can facilitate reverse electron
transport to drive the replenishment of oxidized ferredoxin and NAD+ when coupled with the

evolution of H, from confurcating hydrogenases such as those found in these genomes.”’
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Coupled with the prevalence of hydrogenases enabling H, consumption in bins carrying
respiratory machinery (both hgcA+ and hgcA-), these data hint that H,-mediated syntrophy
could be an important driver of both overall community metabolism and MeHg production in
Lake Mendota. We also looked at pathways potentially conferring the ability to ferment via
pyruvate. Nearly all of the hgcA+ bins likely corresponding to fermenters had
pyruvate:ferredoxin (PFOR), and many of them also had acetate kinase (ack) and phosphate
acetyltransferase (pta), which together can mediate pyruvate fermentation to acetate. Eight
hgcA+ bins had pyruvate formate lyase (pfIB). This mediates another pyruvate fermentation
pathway, where pyruvate is broken down to acetyl-CoA and formate. The formate can either be
taken up for biosynthetic purposes through formate dehydrogenase (FDH) or exported and
used by other organisms as an electron donor. While none of the hgcA+ bins corresponding to
obligate fermenters encode FDH, all of the sulfate-reducer bins and many more of the bins
carrying other respiratory machinery do have FDH, suggesting that the formate formed is
exported and used by other organisms. Notably, the eight pfIB+ bins fall into two distinct
phylogenetic clusters, one within Kiritimatiellaeota and one within Clostridia (data not shown).
They also possess an array of aldehyde and alcohol dehydrogenases that could facilitate the
production of a range of short chain fatty acids. Bins linked to obligate fermentation were also
common in the total microbial community, as they represent 106 of the 228 bins, accounting
for almost 50% of the bin coverage. This does not include the many bins containing genes for
dissimilatory nitrogen reduction or oxidases that were likely maintaining fermentative
metabolism at these depths. Many of the hgcA+ bins associated with obligate fermentation also

encoded genes mediating the primary degradation of particulate organic carbon. Thirteen of
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these bins have at least 40 glucoside hydrolases (GHs), suggesting that their associated
organisms are adapted to degrading polysaccharides. The highly abundant Kiritimatiellaeota
hgcA+ bins, in particular, appear to be well adapted to polymer degradation, with bins carrying
up to 468 GHs. In fact, 100 total bins each carried over 40 GH genes, suggesting that primary
polysaccharide degradation is one of the dominant metabolic strategies in the anoxic water
column in Lake Mendota. Of these, 49 represent obligate fermenters, while 50 are suspected to
represent facultative aerobes. One bin with 44 GHs corresponds to a sulfate-reducing
Chloroflexi. The bins also possess a wide diversity of peptidases, although these genes are also

prevalent among the hgcA+ bins associated with respiratory lifestyles.

We know little about the mass flux constraints on carbon degradation in the anoxic water
column of freshwater lakes, and even less about how they influence the production of MeHg. In
other natural anoxic environments such as marine sediments, the hydrolysis and primary
fermentation of large polymers, such as polysaccharides, is thought to be the rate-limiting step
in anoxic microbial community metabolism.”®8% Lake Mendota is a eutrophic system with a
multi-year residence time, and thus the DOC pool is dominated by autochthonous inputs.8!
Primary production in the lake is dominated by cyanobacteria, which have a high proportion of
EPS in their biomass.®%%3 This could explain the abundance of polysaccharide-degrading obligate
fermenters, which account for ~¥50% of both the hgcA+ and overall bin coverage. Such
organisms break down and ferment carbohydrates, producing smaller carbon compounds that
can be further metabolized by secondary fermenters or syntrophs, or directly consumed by
respiratory bacteria. Of the bins linked to respiration, SRB accounted for 22% of the total hgcA+

bin coverage and only 7% of the overall bin coverage. Methanogenic archaea and EET-capable
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437  Geobacterales bins accounted for a very small percentage of both the hgcA+ and the overall
438 read coverage. Aerobic and nitrate/nitrite-reducing organisms were also prevalent, but due to
439  the redox status of the sampling depth we do not expect them to be respiring at these depths.
440 Thus, sulfate reduction is likely the dominant respiratory pathway in this community, despite
441  the relatively low abundance of SRBs. The breakdown of large polymers and their subsequent
442  degradation through the anaerobic food web drive community metabolism, and probably also
443  drive MeHg production. However, we know very little about differences in MeHg production
444  between different hgcA+ microbes or the specific rate-limiting steps for microbial community
445  metabolism in this system. This highlights the need for further research to probe how

446  biogeochemical conditions can indirectly influence MeHg production in situ by mediating

447  changes in the carbon and energy flux through the anaerobic food web.
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706  Figure 1. Physical and geochemical profiles of Lake Mendota from 2017 on September 8th (A),
707  October 4th (B) and October 19th (C). The first column displays parameters measured

708  continuously with an Exo2 sonde and includes orange diamonds where samples for

709  metagenomic sequencing were collected. Names of the metagenomes are displayed near the
710 orange diamonds. Equipment failure resulted in a slightly truncated sonde profile on October
711  4th (B). The second column displays sulfide and filter-passing manganese values at discrete
712  depths. The total and methylmercury measurements, in the third column, are a bulk value,
713  representing the sum total of the dissolved and particulate fractions. Dissolved and particulate
714  fractions are plotted individually in Figure S1. Note the changed scale for depth on the y-axis
715  and for turbidity on the x-axis in the October 19th profiles (C). The metagenomic samples

716  collected near the metalimnion for October 4th and October 19th were both collected

717  coincident with the observed spike in turbidity. Abbreviations: Temp. - Temperature (°C), ODO -
718  Optical dissolved oxygen in mg/L, Turb. - Turbidity in Formazin Nephelometric Units (FNU), MG
719 - metagenome sample, Mn - Filter-passing manganese, THg - Total mercury, MeHg -

720  Methylmercury, %MeHg - Methylmercury concentration divided by total mercury

721  concentration.
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Figure 2. Unconfirmed methylators dominate hgcA sequence diversity in Lake Mendota, both
numerically (A) and by coverage (B). A: Phylogenetic tree of 108 hgcA sequences from this
study. Asterisks at the end of branches indicate sequence was binned. All other branches are
unbinned hgcA sequences from this study. Sequences were assigned a predicted taxonomic
group based on phylogenetic clustering with hgcA reference sequences from NCBI and bin
phylogenies of binned hgcA sequences (for detailed tree with reference sequences, see Figure
S3). Binned sequences outside of a monophylogenetic cluster are labeled with their bin name.
The yellow star indicates the branch to the monophyletic Bacteroidetes sequences. B: Sum of
coverage of hgcA sequences within predicted taxonomic groups across 5 metagenomic

samples. Coverage refers to the average depth of coverage across hgcA+ scaffolds.
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Figure 3. The hgcA gene is widespread in Mendota Kiritimatiellaeota bins, but is not
phylogenetically conserved. Maximum-likelihood tree is based on a concatenated alignment of
rpl6 proteins. Names in orange are hgcA+ bins from this study, and green names are hgcA- bins
from this study. Names in black are genomes or bins pulled from NCBI, and genomes with the
asterisks indicate cultured isolate reference genomes. The accession version numbers are in
parentheses following the bin or genome name. The bin names in blue correspond to two
hgcA+ bins from a recent publication.! The tree was generated in RAXML and rooted using the
two Lentisphaerae genomes (Lentisphaera araneosa and Victivallis vadensis). Bootstrap values

of less than 50 are not shown.
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Figure 4. Fermentative organisms are the most abundant hgcA+ organisms in Lake Mendota.
Total coverage of hgcA+ bins in different metabolic guilds across each metagenome. Plots of
coverage in the different metagenomes are arranged by decreasing redox potential, which

corresponds to increasing sulfide concentrations. Abbreviations: GHs - glucoside hydrolases.
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Figure S1. Representative profiles of Lake Mendota from across the open water season in 2017.
The dissolved Hg species are operationally defined as everything that passes a quartz fiber filter
(QFF), and the particulate fraction is what is retained on a QFF. Both iron and manganese are
the dissolved fraction only (0.45um PES filter). Abbreviations: Temp. - Temperature (°C), ODO -
Optical dissolved oxygen in mg/L, Turb. - Turbidity in Formazin Nephelometric Units (FNU), THg
- Total mercury, MeHg - Methylmercury, %MeHg - Methylmercury concentration divided by

total mercury concentration.
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Figure S2. Alignments of identified hgcA and hgcB amino acid sequences from all five
metagenomes. Green bars indicate regions of predicted transmembrane domains in the
alignments. The zoomed-in portion of the hgcA alignment highlights a portion of the corrinoid-
binding domain for a subset of the sequences, and includes the characteristic highly conserved
cap-helix domain. For hgcB, we highlighted a portion of the alignment that includes one of the

two highly conserved ferredoxin-binding motifs from a subset of the sequences.
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Figure S3. Maximum likelihood tree of hgcA sequences and overall coverage across five
metagenomes. Names in black indicate unbinned hgcA sequences. For hgcA sequences that
were binned, the scaffold name was replaced with the bin name (red names). Dark blue names
indicate hgcA sequences from bins from a recent paper in a similar system.1 These bins are
followed by the IMG Taxon ID in parentheses. Grey names indicate hgcA sequences
downloaded from NCBI’s non-redundant database that did not come from the genome of a
confirmed methylating organisms. Remaining colored names are from genomes of confirmed
methylators and match the color scheme in Figure 2 (yellow - Clostridia; green -
Desulfobacterales; pink - methanogens; orange - Geobacterales; light blue -
Syntrophobacterales). All reference sequence names are followed by their accession version
number in parentheses. Scaffold coverage is the average coverage of nucleotides in the
corresponding hgcA+ scaffold across all five metagenomes. Sequence names from this study

that are followed by a pound sign do not have a trailing hgcB sequence.
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Figure S4. Overview of binning of hgcA sequences. A: Rank abundance curve of hgcA sequences
across all metagenomes. Bars colored in red indicate a binned sequence. B: Plot of average
coverage of scaffold vs. length of scaffold of hgcA sequences, with red dots indicating that the

sequence was binned.
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Figure S5. Comparison of coverage between hgcA+ and hgcA- bins. A: Rank abundance curve of
all bins across all metagenomes. Bins encoding hgcA are colored green. B: Log coverage of

hgcA+ vs. hgcA- bins.
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Figure S6. Maximum likelihood tree of rp16 genes from all bacterial hgcA+ bins and reference
genomes from NCBI. Bootstrap values below 50 have been removed. Tree was rooted using

three archaeal bins from this study.
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Figure S7. Maximum likelihood tree of rp16 gene from all Bacteroidales bins from this study.
Bin names in green are hgcA- bins, while those in orange are hgcA+ bins. Sequences in black are
bins downloaded from NCBI, and bin names surrounded by asterisks are reference genomes
from isolate cultures. The Bacteroidales tree was rooted using two Flavobacteriales reference

genomes (Owenweeksia hongkongensis DSM 17368 and Fluviicola taffensis DSM 16823).
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Figure S8. Heatmap of metabolic potential of hgcA+ bins with respiratory metabolic genes and
overall bin abundance. Dissimilatory nitrogen cycling genes are in red: narG = membrane-bound
nitrate reductase, napA = periplasmic nitrate reductase, nrfHA = cytochrome c nitrite reductase.
Genes for nitrite reduction by denitrification were not identified in any hgcA+ bins. Putative
external electron transfer proteins are in orange: PCC = Porin-cytochrome ¢ complex. Sulfur
cycling genes in blue: dsrAB = dissimilatory sulfite reductase; psrA = polysulfide-reductase
homolog. Methanogenesis refers to the overall phenotype indicated by the bin. In green are

complex | (the 11 and/or 14 subunit version) and complex Il of the electron transport chain.
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Figure S9. Phylogenetic tree of polysulfide reductase (psr) homologs from hgcA+ bins. In the
branch labels, the bin names are followed by the scaffold number and ORF number in
parentheses. Names in orange are from hgcA+ bins, green are from hgcA- bins. Names in black
correspond to reference sequences. The gene neighborhoods within 2500bp upstream and
downstream of the corresponding MoOR from this study are shown to the right of the tree. The
canonical complex iron—sulfur molybdoenzyme (CISM) architecture includes the MoOR (shown
in blue), a four-cluster protein (FCP) with four Fe-S clusters (shown in green), and a membrane
anchor protein (MAP), such as the nrfD subunit from the nitrite reductase complex NrfABCD
(shown in red). Rhodenase-domain proteins (RDP), involved in sulfur transport, are shown in

purple.
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Figure S10. Phylogenetic tree and gene neighborhoods of beta-barrel outer membrane protein
(BB-OMP) genes from hgcA+ bins. Sequence names in red are from hgcA+ bins, and the
following numbers in parentheses indicate the scaffold and ORF, respectively. The gene
neighborhoods within 4000bp upstream and downstream of the BB-OMP genes are shown to
the right of the tree. BB-OMP sequences are shown in blue, and the predicted number of
transmembrane sheets within the protein are provided above the gene. Predicted multiheme
cytochrome c proteins are shown in green, with the number of the heme-binding sites above
the gene. The predicted localization of the protein is shown below the gene (E indicates

extracellular, P indicates perisplasmic).
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Figure S11. Abundance and metabolic gene features of fermentative bins. The percentage of
bin coverage is relative to the total coverage of all the bins from this study. Genes potentially
involved in fermentative hydrogen evolution are shown in orange: Rnf = Rhodobacter nitrogen
fixation complex; FeFe GA = [FeFe]-hydrogenase, group A; NiFe G4e = [NiFe]-hydrogenase,
group 4e. Genes or gene clusters involved in fermentation of pyruvate are shown in green: PFL
= pyruvate-formate lyase; FDH = formate dehydrogenase; PFOR = pyruvate-ferredoxin

oxidoreductase; ackA = acetate kinase (ADP-forming); pta = phosphate acetyltransferase.
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Figure S12. Rank abundance curve of hgcA+ bins across all five metagenomes, colored by
predicted metabolic potential. The bin coverage is relativized to the total coverage of all the

bins (both hgcA+ and hgcA-).
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Metagenome Depth Sulfide Manganese Diss. MeHg Part. MeHg Diss. THg Part. THg
Metagenome ID Date
Name (m)  (uM) (1) (ng/L) (ng/L) (ng/L) (ng/L)
CHE1 KMBP001B 2017-09-08 13.4 37 3.2 0.31 0.08 0.52 0.28
CHE2 KMBP001C 2017-10-04 14.5 52 4.3 0.38 0.06 0.66 0.36
CHES3 KMBPOO1E 2017-10-19 17.8 109 6.2 0.63 0.08 0.95 0.45
EUX1 KMBPOO1A 2017-09-08 22.2 121 4.8 0.33 0.01 1.67 0.20
EUX2 KMBP001D 2017-10-04 19.8 159 4.5 0.56 0.01 1.59 0.20
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Table S1. Summary of metadata and geochemical data associated with metagenomic samples.
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Assembly ID

CHE1l
CHEZ2
CHES
EUX1
EUX2
coassembly

Number of
scaffolds

1,185,495
1,241,217
1,613,022
1,319,783
1,111,274
3,908,837

N50

1630
1528
1471
1486
1307
1844

L50

201,484
227,330
306,579
235,323
227,854
611,093

length (bp)
1.603e+09
1.622e+09
2.057e+09
1.698e+09
1.327e+09
5.651e+09

Total assembly  Total number

of ORFs
4,160,915
4,254,833
5,639,867
4,641,626
3,862,047
13,999,347
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Table S2. Assembly statistics for each of the assemblies, after removing all scaffolds <500bp in

length.
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Data File Legends.

Data File 1. Bin information and statistics. Completeness and redundancy estimates are based
on universal conserved proteins set in CheckM. Inferred taxonomy is based on a rp16-based
ML-tree tree with a large reference data set. Coverage of each bin in each metagenome has
been normalized to the number of reads in the smallest metagenome.

Data File 2. Custom hgcA Hidden Markov Model, based on HgcA amino acid sequences from 30
confirmed methylating isolates. See Supplementary Methods for details of HMM construction.
Data File 3. Fasta file of dereplicated amino acid sequences of HgcA sequences identified in
assemblies.

Data File 4. Fasta file of dereplicated nucleic acid sequences of hgcA genes identified in
assemblies.

Data File 5. Aggregated information for each hgcA gene from the dereplicated set. Classification
of hgcA is based on the bin phylogenies, for the binned genes, and on the HgcA phylogenies, for
the unbinned genes. “Rogue taxa” indicates that the HgcA sequence was highly divergent and
interfering with phylogenetic reconstruction. These sequences were classified using pplacer
with the hgcA phylogeny. The hgcB column indicates whether or not there was an hgcB gene
immediately downstream of the hgcA gene on the scaffold. The abundance of each sequence is
presented as the percentage of hgcA coverage within a metagenome that each gene accounts

for.
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