

1 **Mercury methylation trait dispersed across diverse anaerobic**
2 **microbial guilds in a eutrophic sulfate-enriched lake**

3

4 Benjamin D. Peterson¹, Elizabeth A. McDaniel², Anna G. Schmidt², Ryan F. Lepak¹, Patricia Q.
5 Tran^{2,3}, Robert A. Marick⁴, Jacob M. Ogorek⁵, John F. DeWild⁵, David P. Krabbenhoft⁵, and
6 Katherine D. McMahon^{2,6}

7

8 ¹Environmental Science & Technology Program, University of Wisconsin - Madison, Madison,
9 WI

10 ²Department of Bacteriology, University of Wisconsin - Madison, Madison, WI

11 ³Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI

12 ⁴Department of Biochemistry, University of Wisconsin - Madison, Madison, WI

13 ⁵U.S. Geological Survey, Middleton, WI

14 ⁶Department of Civil and Environmental Engineering, University of Wisconsin – Madison,
15 Madison WI

16

17 *Corresponding author: bpeterson26@wisc.edu

18

19

20

21

22 **Abstract**

23 Mercury (Hg) methylation is a microbially mediated process that converts inorganic Hg into the
24 bioaccumulative neurotoxin methylmercury (MeHg). Exploring the diversity and metabolic
25 potential of the dominant Hg-methylating microorganisms can provide insights into how
26 biogeochemical cycles and water quality parameters underlie MeHg production. However, our
27 understanding of the ecophysiology of methylators in natural ecosystems is still limited. Here,
28 we used shotgun metagenomics paired with biogeochemical data to identify likely hotspots for
29 MeHg production in a lake with elevated sulfate levels and characterize the microbial
30 methylators and the flanking microbial community. Identified putative methylators were
31 dominated by *hgcA* sequences divergent from those in canonical, experimentally confirmed
32 methylators. Using genome-resolved metagenomics, these sequences were identified within
33 genomes associated with Bacteroidetes and the recently described phylum Kiritimatiellaeota.
34 Over half of the *hgcA* abundance comes from genomes corresponding to obligately
35 fermentative organisms, many of which have a large number of glucoside hydrolases for
36 polysaccharide degradation. Sulfate-reducing genomes encoding *hgcA* were also identified, but
37 only accounted for 22% of the abundance of *hgcA*+ genomes. This work highlights the diverse
38 dispersal of the methylation trait across the microbial anoxic food web.

39

40

41

42

43

44 Introduction

45 Mercury (Hg) contamination of aquatic food webs is an environmental concern and a public
46 health hazard. Environmental levels of Hg have increased drastically due to anthropogenic
47 inputs, such as burning coal for electricity and artisanal gold mining.¹ Much of this
48 anthropogenic Hg is in the form of elemental (Hg(0)) or inorganic (Hg(II)) Hg.² However, Hg
49 bioaccumulates in tissues and biomagnifies up food webs in the form of methylmercury
50 (MeHg), making the production of MeHg the gateway process to food web contamination.³
51 MeHg production is mediated by microorganisms in aquatic anoxic environments such as
52 sediments, periphyton, rice paddy soils, and the freshwater and marine water column.⁴⁻⁸ MeHg
53 accumulation in freshwater hypolimnia has historically been attributed to production in the
54 sediment and diffusion across the sediment-water interface.^{5,9,10} However, methylation has
55 been shown to occur in the water column and may account for a substantial fraction of the
56 MeHg hypolimnetic accumulation, especially in lakes with a large anoxic hypolimnion.^{8,11-13}
57 Despite this, water column methylation in freshwater lakes is understudied relative to sediment
58 methylation.

59 The production of MeHg is driven largely by local geochemical conditions. Sulfide levels and the
60 quality and quantity of dissolved organic matter (DOM) impact the complexation and
61 aggregation of Hg(II).^{14,15} This has a direct impact on MeHg production by controlling the
62 bioavailability of Hg to methylating organisms. Additionally, the identity and quantity of
63 electron acceptors and donors can indirectly drive MeHg production by fueling the metabolic
64 activity of methylating microorganisms.^{10,16} The identification and characterization of these

65 organisms can illuminate how biogeochemical processes are influencing MeHg production.

66 Early experiments on cultured isolates and *in situ* assays showing molybdate inhibition of MeHg

67 production in sediments provided a link between sulfate-reducing bacteria (SRBs) and the

68 production of MeHg.^{9,10} Later studies identified several iron-reducing bacteria (FeRBs) and

69 methanogenic archaea as methylators as well.^{17,18} More generally, MeHg production often

70 increases with increasing overall heterotrophic activity, suggesting that increased carbon and

71 energy flux through the microbial food web can drive MeHg production.^{8,19}

72 The recent identification of the *hgcAB* gene cluster has provided a robust molecular marker for

73 methylation potential.²⁰ This marker has been used to search publicly available genomes,

74 metagenomes and metagenome-assembled genomes, which has expanded the phylogenetic

75 and metabolic diversity of confirmed and putative methylators.^{21–25} Several PCR primer sets

76 have been developed to identify *hgcA* sequences in natural systems.^{26–30} Studies using this

77 approach in habitats such as rice paddies, soils/sediments, periphyton, and many others have

78 shown that the *hgcA*+ community can be quite different phylogenetically across environments,

79 and that this can sometimes be linked to biogeochemical conditions at the site.^{26,29–32} While this

80 approach works well in some systems, these primers do not always accurately characterize the

81 *hgcA*+ community in natural ecosystems, especially for *hgcA* sequences that are highly

82 divergent compared to reference methylators.^{12,23,33,34} Shotgun metagenomics offers a more

83 robust method of identifying *hgcA* sequences from environmental samples, since

84 computational tools such as BLAST and Hidden Markov Models (HMMs) are better equipped to

85 identify divergent sequences.³⁵ For example, Gionfriddo et al used an assembly-based

86 metagenomic approach to identify a divergent *hgcA* sequence fragment from the Antarctic sea

87 ice and determined it was likely from a nitrite-oxidizing *Nitrospina*.³⁶ While this approach
88 improves gene detection, it does not provide key information on the metabolic capabilities of
89 hgcA+ organisms and relies on relatively small databases with relevant sequences for
90 comparison. As an alternative, genome-resolved metagenomics yields population genomes
91 (bins) from complex environmental samples.³⁷ This approach enables phylogenetic
92 identification of hgcA+ lineages and characterization of their metabolic potential. Recently,
93 Jones et al. applied this approach in two sulfate-enriched lakes and identified a broad diversity
94 of hgcA+ groups, including some previously unknown methylators, and metabolically
95 characterized each of these draft genomes.¹²

96 The primary objective of this study was to identify and characterize the Hg-methylating
97 microorganisms in the anoxic hypolimnion of a eutrophic, sulfate-enriched lake. We monitored
98 the biogeochemical and redox status of the hypolimnion throughout the ice-free season and
99 generated Hg speciation profiles. We selected samples for shotgun metagenomic sequencing
100 from sites where we suspected *in situ* MeHg production. We used assembly-based and bin-
101 based analyses to characterize the phylogenetic diversity and metabolic potential of the hgcA+
102 microbial community. We show that the hgcAB+ community in Lake Mendota is dominated by
103 non-canonical methylators and that fermentative organisms account for over half of the
104 hgcAB+ population, but that microorganisms throughout the anaerobic food web are
105 potentially involved, either directly or indirectly, in MeHg production.

106 **Materials and Methods**

107 Detailed methods can be found in the Supplementary Methods online.

108 **Field sampling.** Lake Mendota is a large, dimictic lake located in Madison, Wisconsin, USA.
109 Sampling was conducted within 100m of the North Temperate Lakes Long-Term Ecological
110 Research buoy (GPS coordinates: 43.09885, -89.40545) at the Deep Hole, the deepest basin in
111 Lake Mendota. Samples were collected approximately monthly in 2017 from the onset of
112 anoxia until turnover. Detailed profiles of temperature, dissolved oxygen and turbidity were
113 collected with a YSI Exo2 multiparameter sonde (YSI Incorporated, Yellow Springs, OH). These
114 profiles were viewed in real-time to guide sampling. All samples were collected through an
115 acid-washed Teflon sampling line using a peristaltic pump. Samples for sulfide analysis were
116 preserved in 1% ZnAc. Water samples for dissolved metal analysis were filtered through a
117 0.45 μ m PES Acrodisc filter and acidified to 1% HCl. Hg samples were collected using clean
118 hands/dirty hands. Samples were collected into a new PETG 2.5L bottle, which was allowed to
119 overflow before capping. Hg samples were double-bagged and stored in a cooler, then at 4°C in
120 the dark. Water was filtered through a quartz fiber filter (QFF) within 24 hours and preserved
121 with 1% HCl for dissolved Hg species analysis. The filters were frozen for particulate Hg analysis.
122 DNA samples were collected onto 0.22 μ m pore-size PES filters (Pall Corp.) and flash-frozen on
123 liquid nitrogen within 90 seconds.

124 **Geochemical analyses.** Sulfide was quantified spectrophotometrically using the Cline method.³⁸
125 Iron and manganese were quantified by inductively-coupled plasma optical emission
126 spectrometry (ICP-OES) on a Varian Vista-MPX CCD ICP-OES. Processing and analysis of Hg
127 samples was done at the U.S. Geological Survey (USGS) Wisconsin Mercury Research
128 Laboratory. Dissolved total Hg (THg) was quantified after purge and trap using cold vapor
129 atomic fluorescence spectrometry, using a Tekran Model 2500 CVAFS Mercury Detector (Tekran

130 Instruments Corps., Toronto, ON, Canada). Particulate THg was extracted from the filter using
131 5% bromium chloride before purge and trap. This protocol follows the U.S. Environmental
132 Protection Agency (EPA) Method 1631. Dissolved MeHg was quantified using isotope dilution
133 by distillation, gas chromatography separation and inductively-coupled plasma-mass
134 spectrometry (ICP-MS) on a Thermo ICAP-RQ ICP-MS (Thermo).

135 **DNA extraction, sequencing, and assembly.** DNA was extracted by enzymatic and physical lysis
136 followed by phenol-chloroform extraction and purification by isopropanol precipitation. DNA
137 library preparation was done at the Functional Genomics Lab and sequencing was done in the
138 Vincent J. Coates Genomics Sequencing Lab, both within the California Institute for Quantitative
139 Biosciences (QB3-Berkeley, Berkeley, CA). Library preparation was done with a Kapa Biosystem
140 Library Prep kit, targeting inserts ~600bp in length (Roche Sequencing and Life Science, Kapa
141 Biosystems, Wilmington, MA). Libraries were pooled and sequenced on a single lane of an
142 Illumina HiSeq4000 for paired-end reads of 150bp (Illumina, Inc., San Diego, CA). Raw reads
143 were trimmed using Sickle to maintain a QC score of 20 over a sliding window of 15.³⁹ Trimmed
144 reads shorter than 100bp were cut. Metagenomes were both assembled individually and co-
145 assembled using metaSPADEs (v3.12).⁴⁰ Assembly-based analyses were run on all scaffolds at
146 least 500bp in length.

147 **Metagenomic analysis, binning and annotation.** A custom HMM for HgcA amino acid
148 sequences was built using hmmbuild from hmmer (v3.1b2) using experimentally verified HgcA
149 amino acid sequences (Data File 2).^{21,41} This HMM was used to identify HgcA sequences from
150 the open reading frames of each assembly using the trusted cutoff score of 128.60. Each
151 putative HgcA sequence was manually screened and discarded if it did not contain the cap helix

152 domain (N(V/I)WCA(A/G)(A/G)(K/R)) and at least 4 transmembrane domains (Figure S2).²⁰ We
153 dereplicated the HgcA sequences across assemblies using CD-HIT, clustering them at 0.97
154 identity.⁴² Reads from all metagenomes were mapped to the scaffolds from each assembly
155 individually using BBMap (v35) with default settings.⁴³ Open reading frames were predicted
156 using Prodigal (v2.6.2).⁴⁴ Automatic binning was done individually on each assembly, using only
157 scaffolds >1000bp in length. Bins were generated using Metabat2, MaxBin (v2.1.1), and
158 CONCOCT (v0.4.1), then aggregated using Das Tool.⁴⁵⁻⁴⁸ Bins across assemblies were clustered
159 into “high matching sets” (HMSs) if they shared at least 98% ANI over at least 50% of the
160 genome. CheckM was used to estimate the completeness and redundancy of each bin.⁴⁹ One
161 bin from each HMS was selected for analysis, based primarily on percent completeness, and
162 quality of the assembly. Bins were then decontaminated using the anvi-refine interface in
163 Anvi’o (v5.2).⁵⁰ All hgcA+ bins were reassembled using SPADes and manually re-binned in
164 Anvi’o. Manual comparison of the GC content, tetranucleotide frequency, differential coverage,
165 and taxonomy of adjacent genes was conducted on binned hgcA+ scaffolds, relative to other
166 scaffolds in the bin, to confirm the inclusion of these scaffolds within the bin. Taxonomy of each
167 bin was automatically assigned using the GTDB-TK software.⁵¹ Preliminary annotations were
168 done using MetaPathways.⁵² Annotations of metabolic genes of interest were confirmed using
169 Hidden Markov Models (HMMs) from TIGRFAM and PFAM.³⁵ In many cases, gene
170 neighborhoods and phylogenies were also used to confirm annotations.

171 **Phylogenetic analyses.** Bin phylogenies were based on 16 ribosomal protein sequences.⁵³ For
172 both bin and HgcA phylogenies, amino acid sequences were aligned using MUSCLE (v3.8.31).⁵⁴
173 For the bin alignment, all 16 rp16 gene alignments were concatenated into a single alignment.

174 Sequences with less than half of the aligned residues were manually removed. Alignments were
175 manually inspected in Geneious and trimmed using BMGE1.1 with the BLOSUM30 substitution
176 matrix.⁵⁵ RAxML (v8.2.11) was used to generate a maximum likelihood (ML) tree under the
177 GAMMA distribution with the LG model.⁵⁶ Branch support was generated by rapid
178 bootstrapping. For HgcA phylogenies, we used RogueNaRok (v1.0) to identify and remove
179 “rogue taxa” interfering with proper tree generation.⁵⁷ The best-scoring ML tree for HgcA was
180 mid-point rooted using the Phangorn R package and visualized using ggtree.^{58,59} The rp16 ML
181 tree was rooted using an archaeal outgroup and visualized using ggtree.

182 **Results and Discussion**

183 **Hg and redox biogeochemistry in Lake Mendota.** Lake Mendota is a eutrophic lake enriched in
184 sulfate, with a watershed dominated by agriculture, leading to high levels of nutrient inflow and
185 productivity. Physical and biogeochemical profiles were collected approximately monthly over
186 the stratified period in 2017. A subset of the profiles are shown in Figure 1 and S1. Anoxia
187 developed in the hypolimnion as early as June, likely due to the intense spring blooms sinking
188 and decomposing. Reduced iron (Fe) and manganese (Mn) accumulated in the hypolimnion
189 immediately following anoxia onset. While the Fe was quickly precipitated out by sulfide, Mn
190 continued to accumulate in the hypolimnion up to ~5 μ M.⁶⁰ We observed an enrichment of
191 dissolved and particulate Mn near the oxic/anoxic interface during late stratification
192 (September and October), suggesting enhanced redox cycling in this region (particulate data
193 not shown). Mendota has relatively high sulfate concentrations, with up to ~175-200 μ M in the
194 epilimnion. Combined with early anoxia and continued primary production in the epilimnion,

195 this provides a rich habitat for sulfate reduction, which has previously been shown to occur in
196 both the sediments and the water column.⁶¹ Sulfide was detectable within 1 meter below the
197 oxycline as early as August and accumulated to over 150µM by October.

198 Once oxygen was depleted, both THg and (MeHg) began to accumulate in the hypolimnion
199 (Figure 1, Figure S1). THg in the hypolimnion increased throughout the summer, starting at
200 ~0.5ng/L in the epilimnion and increasing down the water column. MeHg and THg continued to
201 increase in the hypolimnion in August. In September and October, THg continued to increase in
202 concentration, reaching nearly 2ng/L in the bottom waters. However, the MeHg increased
203 across the oxic/anoxic interface, then stayed approximately even or decreased slightly with
204 increasing depth. Correspondingly, the fraction MeHg relative to THg peaked at the oxic/anoxic
205 interface. This mid-column peak of fraction MeHg is an indication of *in situ* production. This
206 coincided with a peak in turbidity, which has been previously shown to co-localize with elevated
207 microbial activity and MeHg production.¹³

208 **HgcA identification.** To identify potential hgcA+ groups in Lake Mendota, we selected five
209 samples for shotgun metagenomic DNA sequencing and analysis (Figure 1, Table S1). Three of
210 these samples were selected to coincide with the mid-column peak in MeHg on three different
211 dates. These chemocline samples will be referred to as CHE1, CHE2, and CHE3, based on their
212 temporal order. The other two samples were collected from deeper, more euxinic (oxygen-
213 depleted and sulfide-rich) waters on two separate dates. These euxinic samples will be referred
214 to as EUX1 and EUX2, also based on their temporal order. Notably, the water from which CHE3
215 was sampled was relatively high in sulfide despite its proximity to the oxic-anoxic interface
216 (Figure 1C). Metagenomes were assembled (statistics in Table S2) and binned (bin information

217 in Data File 1). We retrieved 228 bins that were more than 75% complete and less than 10%
218 redundant, which accounted for only 33% of the total number of reads.

219 We identified 108 unique HgcA sequences in the unbinned metagenomic assemblies using a
220 custom-built HgcA HMM (Data File 2). The HgcA amino acid sequences are in Data File 3, and
221 the nucleic acid files in Data File 4. Each identified HgcA was manually screened for the cap
222 helix domain and at least 4 transmembrane domains (Figure S2)²⁰. Ninety of the corresponding
223 *hgcA* genes had a putative *hgcB* sequence downstream. Seven of the 18 *hgcA*+ scaffolds lacking
224 *hgcB* ended just downstream of *hgcA*, and it is possible that *hgcB* simply did not assemble into
225 the scaffold. The remaining 11 *hgcA* genes without an *hgcB* partner had a similar phylogenetic
226 and coverage distribution to those with a downstream *hgcB* (Figure S3, Data File 5).

227 Methylation has been experimentally verified in *Desulfovibrio africanus* sp. Walvis Bay, in which
228 *hgcA* is separated from *hgcB* by a single ORF.^{20,62} While there are no other studies on the
229 methylation capacity of *hgcA* genes without a downstream *hgcB* that we know of, we included
230 all identified sequences in our analysis for completeness.

231 We also searched for *hgcA* in the bins and discovered 41 *hgcA*+ bins. Manual comparisons of
232 the GC content, tetranucleotide frequency, differential coverage, and adjacent gene
233 phylogenies were conducted on binned *hgcA*+ scaffolds, relative to other scaffolds in the bin, to
234 gather more evidence in support of the inclusion of these sequences within the bin. One of
235 these bins (LEN_0031) included two copies of the *hgcA* gene. However, bins represent
236 composite population genomes rather than individual genomes.⁶³ Thus, we cannot confirm that
237 the two *hgcA* sequences were present together in a single organism. These 41 bins accounted
238 for 51% of the total *hgcA* coverage in our assemblies. This limited coverage highlights an

239 inability to recover quality genomes harboring the most abundant *hgcA* genes. For example, 13
240 out of the 30 most abundant sequences were not binned even though they were on relatively
241 long scaffolds (Figure S4). Efforts to recover highly abundant *hgcA*+ bins through read
242 subsampling, contig curation using assembly graphs, reassembly, and manual binning and
243 curation were unable to recover these highly abundant populations.

244 Despite the constraints of population genome recovery, our *hgcA*+ bins were representative of
245 the overall *hgcA* diversity. We successfully binned contigs from most of the HgcA phylogenetic
246 clusters identified using the unbinned contigs (Figure 2). The *hgcA*+ bins accounted for 17% of
247 the total read coverage from all bins, and included some of the most abundant bins in our
248 metagenomes (Figure S5a). They had slightly less coverage per bin than *hgcA*- bins (not
249 significant), but this could be due to the greater degree of manual curation of the *hgcA*+ bins
250 (Figure 5b). Overall, the *hgcA*+ bins recruited 6% of the total number of reads from our
251 metagenomic datasets. Because the *hgcA*+ bins accounted for only 51% of the total coverage of
252 all recovered *hgcA* sequences, we estimate that *hgcA*+ genomes account for ~12% of the total
253 metagenomic reads across our five samples.

254 **Phylogenetic diversity of *hgcA*+ community.** Of the 108 HgcA sequences, 43 of them clustered
255 with experimentally verified HgcA sequences in the HgcA phylogenetic tree and accounted for
256 27% of the total coverage (Figure 2). Some of these sequences (21 sequences, 17% of total
257 coverage) clustered with HgcA sequences from Deltaproteobacteria genomes. These included
258 three major groups associated with three different microbial orders: Desulfobacterales (5% of
259 total *hgcA* coverage), Geobacterales (<1%), and Syntrophobacterales (~12%). No sequences
260 associated with Desulfovibrionales, the order including the well-studied sulfate-reducing

261 *Desulfovibrio desulfuricans* ND132, were detected.⁶⁴ This relatively low number of *hgcA* genes
262 associated with Deltaproteobacteria is not due to a predominance of *hgcA*- organisms from this
263 class; rather, we only retrieved 15 total bins associated with Deltaproteobacteria, 9 of which
264 were *hgcA*+. Two of these *hgcA*- bins (from the Desulfobacterales order) were the second and
265 third most abundant bins across our five metagenomes. The only two Geobacterales *hgcA*
266 genes were binned, and no *hgcA*- bins were recovered from Geobacterales. We retrieved three
267 *hgcA*+ Syntrophobacterales bins, one of which (SYN_0007) was the most abundant *hgcA*+ bin
268 we recovered, accounting for nearly 3% of the overall bin coverage. We also recovered HgcA
269 sequences that clustered with Clostridia-derived HgcA sequences. The main group of these
270 sequences, including 4 binned HgcA sequences, forms a monophyletic cluster with weak
271 bootstrap support (Figure S3). However, there were also two *hgcA*+ Clostridia bins (CLO_0015,
272 CLO_0016) with HgcA sequences that fall outside of this monophyletic cluster and clustered
273 weakly with an array of divergent sequences, highlighting the limitations of an exclusively
274 assembly-based analysis as compared to genome-resolved binning. Other previously known
275 methylators that were detected in our metagenomes included methanogenic archaea (4 HgcA
276 sequences, 3.5% of *hgcA* coverage, 1 *hgcA*+ bin) and Chloroflexi (5 HgcA sequences, 1.3% of
277 *hgcA* coverage, and 1 *hgcA*+ bin). Overall, methanogenic archaea were very rare, with only one
278 bin accounting for about a half percent of the total bin coverage. Chloroflexi bins accounted for
279 ~3% of the total metagenomic reads, but most of these reads came from *hgcA*- bins in different
280 orders than the *hgcA*+ bin.

281 The majority of *hgcA* read coverage was accounted for by two large groups of bacteria, neither
282 of which are experimentally verified methylators. Fourteen of these sequences, accounting for

283 13% of the total coverage, formed a monophyletic cluster with substantial bootstrap support
284 (Figure S3). Taxonomic analysis by GTDB and the rp16-based phylogeny of the four hgcA+ bins
285 in this cluster identified them as Bacteroidetes. This is supported by the co-clustering of HgcA
286 sequences from Bacteroidetes bins downloaded from NCBI, which are mostly bins
287 reconstructed from aquifer metagenomes, but also include a bin from a thiocyanate
288 reactor^{53,65–67}. The four hgcA+ bins from this study were all within a subset of the Bacteroidales
289 order, which also contained eight hgcA- bins (Figure S7). An additional 12 hgcA- Bacteroidales
290 bins fall outside of the above-mentioned cluster. We did identify one hgcA+ Bacteroidales
291 isolate, *Paludibacter jiangxiensis*, that was cultivated from a rice paddy field,⁶⁸ but the
292 methylation phenotype has not been experimentally confirmed in this species or any other
293 Bacteroidales member. The other large cluster of 33 HgcA sequences accounted for 50% of the
294 total *hgcA* coverage. We could only recover a few genes from the NCBI non-redundant
295 database that clustered with these sequences, and none from reference isolate genomes.
296 Phylogenetic analysis of the 15 bins with these HgcA sequences identified them as members of
297 the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum (Figure S6, Figure 3). Bin
298 rp16 phylogenies show that 11 of the bins are within the newly-proposed Kiritimatiellaeota
299 phylum,⁶⁹ two are from the Lentisphaerae phylum, and one each from the Verrucomicrobia and
300 Planctomycetes phyla. The PVC superphylum dominates the overall read coverage of our bins
301 as well, with 79 PVC bins accounting for 42% of total bin coverage. The Kiritimatiellaeota
302 phylum alone accounts for 37 bins and ~30% of total bin coverage, including four of the eight
303 most abundant bins (Figure 3, Data File 1). There are very few publicly available
304 Kiritimatiellaeota genomes and only one cultured representative.^{69,70} Notably, a recent paper

305 also identified several hgcA+ bins associated with the Kiritimatiellaeota phylum in a sulfate-
306 enriched lake, but the HgcA sequences from those bins did not cluster closely to those from this
307 study (Figure S3). Instead, they clustered just outside of the PVC superphylum cluster, along
308 with two unbinned HgcA sequences from our metagenome contigs. This is consistent with the
309 rp16-based bin phylogeny, where Kiritimatiellaeota genomes from Jones et al., (2019) were also
310 distinct from the Mendota hgcA+ Kiritimatiellaeota (Figure 3). For both the Kiritimatiellaeota
311 and the Bacteroidales, the presence of *hgcA* within bins was not phylogenetically conserved
312 (Figure 3, Figure S7). That is, bins with and without *hgcA* genes cluster together within these
313 lineages. Additionally, the hgcA+ bin read coverage from these two groups was not significantly
314 different from their hgcA- counterparts (data not shown). We also identified several other
315 novel putative methylators that were lower in number and abundance, including
316 Margulisbacteria, Firestonebacteria, and Actinobacteria.

317 **Metabolic potential of methylating bins.** To understand how methylating organisms in Lake
318 Mendota might be linking biogeochemical processes to MeHg production, we explored the
319 major metabolic pathways encoded in our hgcA+ bins. Due to the abundance of sulfate in Lake
320 Mendota and the extensive literature linking MeHg production to SRBs, we hypothesized that
321 most hgcA+ genomes would harbor genes enabling sulfate reduction. Three of the four
322 Desulfobacterales genomes contained the *dsrAB* gene cluster, *dsrD*, *aprAB*, *sat*, and the
323 *qmoABC* genes requisite for sulfate reduction, with only DES_0017 lacking these genes (Figure
324 S8). SYN_0007, the highest coverage hgcA+ bin, and SYN_0037 also contained this set of
325 canonical sulfate-reduction genes. Just over half of the SRBs by coverage (52%) were hgcA+,
326 and there were only three hgcA- sulfate reducers. Five of our hgcA+ bins, including two of the

327 aforementioned sulfate reducers, contain molybdopterin oxidoreductase (MoOR) sequences
328 that are homologous to polysulfide reductase (*psr*) (Figure S9). These genes are in
329 neighborhoods with the classic complex iron–sulfur molybdoenzyme (CISM) architecture, with
330 downstream Fe-S binding proteins and an integral membrane anchor protein similar to the *nrfD*
331 protein (Figure S9).⁷¹ Some of these clusters also have rhodanese domain-containing proteins
332 nearby. These genes likely confer the ability to respire partially reduced inorganic sulfur
333 compounds such as tetrathionate or thiosulfate.⁷¹ However, these three bins also have the
334 genetic machinery to mediate other terminal respiration processes and are unlikely to be
335 exclusively reliant on the *psrA* for respiration.

336 MeHg production has also been linked to Fe reduction. We retrieved several *hgcA*+ bins with
337 potential for extracellular electron transfer (EET), which is often used to respire insoluble metal
338 complexes such as Fe or Mn oxides (Figure S10). Both Geobacterales bins have a porin-
339 cytochrome c complex (PCC) operon that is homologous to the ExtEFG operon from *Geobacter*
340 *sulfurreducens* and 23 and 25 MHC proteins, respectively (Figure S8, S10).⁷² The two
341 Geobacterales bins had very low read coverage, but were most abundant in CHE3, where we
342 saw evidence for enhanced Mn cycling and peaks in fraction MeHg (Data File 1). Combined with
343 the observation that Geobacterales methylators often produce MeHg at a high rate in culture,
344 this suggests that Mn cycling at the oxic-anoxic interface may be playing a role in MeHg
345 production. To our knowledge, Mn reduction has not previously been associated with Hg
346 methylation. However, further work is needed to experimentally verify this. These are the only
347 two bins from this study with PCCs homologous to experimentally verified metal-reducing
348 complexes. The PCC operon identified in VER_0023 is homologous to PCCs identified in

349 Verrucomicrobia genomes recovered from bog lakes, where they are thought to mediate the
350 dispersal of electrons onto either iron or humic substances. However, to our knowledge the
351 function of these PCCs have not been experimentally verified.⁷³ The other PCC operons were
352 found in Bacteroidetes and Kiritimatiellaeota bins and were not closely related to gene clusters
353 with experimentally verified EET function, but the corresponding organisms appear to be
354 capable of respiration (complex I, complete TCA cycle). The relatively low coverage of these
355 bins at depths with enhanced Mn cycling suggests that EET-mediated Mn reduction is not their
356 primary respiratory pathway (Data File 1).

357 We also detected the machinery for nitrogen species reduction in our methylating organisms
358 (Figure S8). GEO_0030 and DES_0034 have at least one nitrate reductase (*napDAGHB*, *narG*)
359 and *nrfA*, suggesting they are capable of mediating dissimilatory nitrate reduction to ammonia
360 (DNRA). Three other hgcA+ bins (PLA_0021, KIR_0036, DES_0019) have only the *nrfHA* gene
361 cluster, and thus likely support nitrite reduction to ammonia. While *nrfHA* can be used for
362 energy conservation, it is also implicated in nitrite detoxification, sulfite reduction, and reducing
363 power dispersal during fermentation.^{74,75} This, in combination with low nitrate/nitrite levels in
364 the water column during this time of year (data not shown) and the presence of sulfur cycling
365 genes and/or PCCs in these bins suggest that nitrogen-based respiration does not play a major
366 role in MeHg production in this system. The various DNRA and denitrifying genes, as well as
367 oxidases, were wide-spread throughout the hgcA- bins we recovered. However, due to the lack
368 of oxidized nitrogen species and oxygen throughout the hypolimnion during this time, we
369 suspect that these bins correspond to either facultative aerobes that are living fermentatively
370 or that are metabolically inactive at these sites.

371 We only recovered one bin derived from a methanogen (MET_0028) that accounted for 0.3% of
372 the total read coverage and was hgcA+ (Figure S7). This bin was most abundant in the highly
373 reduced deep hypolimnetic samples. MET_0028 is a member of the Methanomicrobiales order,
374 the current representatives of which are strictly CO₂-reducing methanogens, using either
375 formate or H₂ for reducing power. Indeed, MET_0028 has a number of hydrogenases, formate
376 dehydrogenase, and a complete Wood-Ljundahl pathway. The corresponding methanogen is
377 likely dependent on the production of H₂ and/or formate by fermentative organisms. The
378 overall scarcity of methanogens suggests that methanogenesis in the water column is
379 insignificant, and that sulfate reduction is the driving terminal respiratory process in the anoxic
380 hypolimnion.

381 The remaining 27 hgcA+ bins lack canonical machinery for terminal electron-accepting
382 processes and are likely to be involved in fermentative or syntrophic lifestyles (Figure S11).
383 Several of these bins do have *cyd* operons, encoding cytochrome bd oxidases, but the lack of
384 other machinery facilitating a respiratory metabolism suggests that these are used to minimize
385 oxidative stress.⁷⁶ Some bins also have the *nrfHA* operon, but likely use this for nitrite
386 detoxification or fermentative metabolism.^{74,75} One likely mechanism for electron dispersal
387 among these groups is through hydrogen production, since 24 of them have hydrogenases
388 commonly involved in the fermentative evolution of H₂, mostly [FeFe] Group A hydrogenases,
389 with some from [NiFe] Group 4. Fourteen of these, including all of the highly abundant
390 Kiritimatiellaeota hgcA+ bins, also have an Rnf complex, which can facilitate reverse electron
391 transport to drive the replenishment of oxidized ferredoxin and NAD⁺ when coupled with the
392 evolution of H₂ from confurcating hydrogenases such as those found in these genomes.⁷⁷

393 Coupled with the prevalence of hydrogenases enabling H₂ consumption in bins carrying
394 respiratory machinery (both hgcA+ and hgcA-), these data hint that H₂-mediated syntrophy
395 could be an important driver of both overall community metabolism and MeHg production in
396 Lake Mendota. We also looked at pathways potentially conferring the ability to ferment via
397 pyruvate. Nearly all of the hgcA+ bins likely corresponding to fermenters had
398 pyruvate:ferredoxin (PFOR), and many of them also had acetate kinase (*ack*) and phosphate
399 acetyltransferase (*pta*), which together can mediate pyruvate fermentation to acetate. Eight
400 hgcA+ bins had pyruvate formate lyase (pflB). This mediates another pyruvate fermentation
401 pathway, where pyruvate is broken down to acetyl-CoA and formate. The formate can either be
402 taken up for biosynthetic purposes through formate dehydrogenase (FDH) or exported and
403 used by other organisms as an electron donor. While none of the hgcA+ bins corresponding to
404 obligate fermenters encode FDH, all of the sulfate-reducer bins and many more of the bins
405 carrying other respiratory machinery do have FDH, suggesting that the formate formed is
406 exported and used by other organisms. Notably, the eight pflB+ bins fall into two distinct
407 phylogenetic clusters, one within Kiritimatiellaeota and one within Clostridia (data not shown).
408 They also possess an array of aldehyde and alcohol dehydrogenases that could facilitate the
409 production of a range of short chain fatty acids. Bins linked to obligate fermentation were also
410 common in the total microbial community, as they represent 106 of the 228 bins, accounting
411 for almost 50% of the bin coverage. This does not include the many bins containing genes for
412 dissimilatory nitrogen reduction or oxidases that were likely maintaining fermentative
413 metabolism at these depths. Many of the hgcA+ bins associated with obligate fermentation also
414 encoded genes mediating the primary degradation of particulate organic carbon. Thirteen of

415 these bins have at least 40 glucoside hydrolases (GHs), suggesting that their associated
416 organisms are adapted to degrading polysaccharides. The highly abundant Kiritimatiellaeota
417 hgcA+ bins, in particular, appear to be well adapted to polymer degradation, with bins carrying
418 up to 468 GHs. In fact, 100 total bins each carried over 40 GH genes, suggesting that primary
419 polysaccharide degradation is one of the dominant metabolic strategies in the anoxic water
420 column in Lake Mendota. Of these, 49 represent obligate fermenters, while 50 are suspected to
421 represent facultative aerobes. One bin with 44 GHs corresponds to a sulfate-reducing
422 Chloroflexi. The bins also possess a wide diversity of peptidases, although these genes are also
423 prevalent among the hgcA+ bins associated with respiratory lifestyles.

424 We know little about the mass flux constraints on carbon degradation in the anoxic water
425 column of freshwater lakes, and even less about how they influence the production of MeHg. In
426 other natural anoxic environments such as marine sediments, the hydrolysis and primary
427 fermentation of large polymers, such as polysaccharides, is thought to be the rate-limiting step
428 in anoxic microbial community metabolism.⁷⁸⁻⁸⁰ Lake Mendota is a eutrophic system with a
429 multi-year residence time, and thus the DOC pool is dominated by autochthonous inputs.⁸¹
430 Primary production in the lake is dominated by cyanobacteria, which have a high proportion of
431 EPS in their biomass.^{82,83} This could explain the abundance of polysaccharide-degrading obligate
432 fermenters, which account for ~50% of both the hgcA+ and overall bin coverage. Such
433 organisms break down and ferment carbohydrates, producing smaller carbon compounds that
434 can be further metabolized by secondary fermenters or syntrophs, or directly consumed by
435 respiratory bacteria. Of the bins linked to respiration, SRB accounted for 22% of the total hgcA+
436 bin coverage and only 7% of the overall bin coverage. Methanogenic archaea and EET-capable

437 Geobacterales bins accounted for a very small percentage of both the hgcA+ and the overall
438 read coverage. Aerobic and nitrate/nitrite-reducing organisms were also prevalent, but due to
439 the redox status of the sampling depth we do not expect them to be respiring at these depths.
440 Thus, sulfate reduction is likely the dominant respiratory pathway in this community, despite
441 the relatively low abundance of SRBs. The breakdown of large polymers and their subsequent
442 degradation through the anaerobic food web drive community metabolism, and probably also
443 drive MeHg production. However, we know very little about differences in MeHg production
444 between different hgcA+ microbes or the specific rate-limiting steps for microbial community
445 metabolism in this system. This highlights the need for further research to probe how
446 biogeochemical conditions can indirectly influence MeHg production *in situ* by mediating
447 changes in the carbon and energy flux through the anaerobic food web.

448 **Acknowledgements**

449 The authors acknowledge the North Temperate Lakes Long Term Ecological Research (NTL-
450 LTER) site, Lake Mendota Microbial Observatory field crews, UW Center for Limnology for field
451 and logistical support. In particular we thank graduate students Tylor Rosera, Stephanie Berg,
452 and Marissa Kneer for sampling assistance, and Joseph Skarupka for computational assistance.
453 We also thank undergraduate researchers Mykala Sobieck for sampling design and sampling
454 assistance, and Diana Mendez and Ariel Sorg for sampling assistance. Geochemical analyses
455 were performed at the Water Science and Engineering Laboratory at the University of
456 Wisconsin – Madison. Mercury analyses were performed in the Mercury Research Laboratory in
457 the Water Science Center at the U.S. Geological Survey in Middleton, WI. This research was

458 performed in part using the Wisconsin Energy Institute computing cluster, which is supported
459 by the Great Lakes Bioenergy Research Center as part of the U.S. Department of Energy Office
460 of Science. Katherine D. McMahon received funding from the United States National Science
461 Foundation Microbial Observatories program (MCB-0702395), the Long-Term Ecological
462 Research Program (NTL-LTER DEB-1440297), and an INSPIRE award (DEB-1344254), the
463 Wisconsin Alumni Research Foundation, and the National Oceanic and Atmospheric
464 Administration (NA10OAR4170070 via the Wisconsin Sea Grant College Program Project #HCE-
465 22). Benjamin Peterson was supported by the National Science Foundation Graduate Research
466 Fellowship Program under grant no. XXXXX during this research.

467 **References**

468 1. Amos HM, Jacob DJ, Streets DG, Sunderland EM. Legacy impacts of all-time anthropogenic
469 emissions on the global mercury cycle. *Global Biogeochem Cycles*. 2013;27(2):410-421.
470 doi:[10.1002/gbc.20040](https://doi.org/10.1002/gbc.20040)

471 2. UN. *Global Mercury Assessment.*; 2018.

472 3. Bloom NS. On the chemical form of mercury in edible fish and marine invertebrate tissue.
473 *Can J Fish Aquat Sci*. 1992;49(5):1010-1017. doi:[10.1139/f92-113](https://doi.org/10.1139/f92-113)

474 4. Cleckner LB, Gilmour CC, Hurley JP, Krabbenhoft DP. Mercury methylation in periphyton of
475 the Florida Everglades. *Limnol Oceanogr*. 1999;44(7):1815-1825. doi:[10.4319/lo.1999.44.7.1815](https://doi.org/10.4319/lo.1999.44.7.1815)

476 5. Jensen S, Jernelöv A. Biological methylation of mercury in aquatic organisms. *Nature*.
477 1969;223:753-754. doi:[10.1038/223754b0](https://doi.org/10.1038/223754b0)

478 6. Rothenberg SE, Feng X. Mercury cycling in a flooded rice paddy. *J Geophys Res.*

479 2012;117(G3003). doi:[10.1029/2011JG001800](https://doi.org/10.1029/2011JG001800)

480 7. Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM. Mercury sources,

481 distribution, and bioavailability in the North Pacific Ocean: Insights from data and models.

482 *Global Biogeochem Cycles.* 2009;23(2). doi:[10.1029/2008GB003425](https://doi.org/10.1029/2008GB003425)

483 8. Watras CJ, Bloom NS, Claas SA, Morrison KA, Gilmour CC, Craig SR. Methylmercury

484 production in the anoxic hypolimnion of a dimictic seepage lake. *Water, Air, and Soil Pollution.*

485 1995;80:735-745.

486 9. Compeau GC, Bartha R. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic

487 estuarine sediment. *Appl Environ Microbiol.* 1985;50(2):498-502.

488 10. Gilmour CC, Henry EA, Mitchell R. Sulfate stimulation of mercury methylation in freshwater

489 sediments. *Environ Sci Technol.* 1992;26(11):2281-2287. doi:[10.1021/es00035a029](https://doi.org/10.1021/es00035a029)

490 11. Eckley CS, Watras CJ, Hintelmann H, Morrison K, Kent AD, Regnell O. Mercury methylation

491 in the hypolimnetic waters of lakes with and without connection to wetlands in northern

492 Wisconsin. *Can J Fish Aquat Sci.* 2005;62(2):400-411. doi:[10.1139/f04-205](https://doi.org/10.1139/f04-205)

493 12. Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular

494 evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. *ISME J.*

495 February 2019. doi:[10.1038/s41396-019-0376-1](https://doi.org/10.1038/s41396-019-0376-1)

496 13. Watras CJ, Bloom NS. The vertical distribution of mercury species in Wisconsin lakes:
497 Accumulation in plankton layers. In: *Mercury Pollution: Integration and Synthesis*. Lewis
498 Publications; 1994:137-151.

499 14. Graham AM, Aiken GR, Gilmour CC. Dissolved organic matter enhances microbial mercury
500 methylation under sulfidic conditions. *Environ Sci Technol*. 2012;46(5):2715-2723.
501 doi:[10.1021/es203658f](https://doi.org/10.1021/es203658f)

502 15. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury
503 bioavailability for methylating microorganisms in the aquatic environment: A critical review.
504 *Environ Sci Technol*. 2013;47(6):2441-2456. doi:[10.1021/es304370g](https://doi.org/10.1021/es304370g)

505 16. Warner KA, Roden EE, Bonzongo J-C. Microbial mercury transformation in anoxic freshwater
506 sediments under iron-reducing and other electron-accepting conditions. *Environ Sci Technol*.
507 2003;37(10):2159-2165. doi:[10.1021/es0262939](https://doi.org/10.1021/es0262939)

508 17. Hamelin S, Amyot M, Barkay T, Wang Y, Planas D. Methanogens: Principal methylators of
509 mercury in lake periphyton. *Environ Sci Technol*. 2011;45(18):7693-7700.
510 doi:[10.1021/es2010072](https://doi.org/10.1021/es2010072)

511 18. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by
512 dissimilatory iron-reducing bacteria. *Appl Environ Microbiol*. 2006;72(12):7919-7921.
513 doi:[10.1128/AEM.01602-06](https://doi.org/10.1128/AEM.01602-06)

514 19. Guimarães JRD, Mauro JBN, Meili M, et al. Simultaneous radioassays of bacterial production
515 and mercury methylation in the periphyton of a tropical and a temperate wetland. *Journal of*
516 *Environmental Management*. 2006;81(2):95-100. doi:[10.1016/j.jenvman.2005.09.023](https://doi.org/10.1016/j.jenvman.2005.09.023)

517 20. Parks JM, Johs A, Podar M, et al. The genetic basis for bacterial mercury methylation.
518 *Science*. 2013;339(6125):1332-1335. doi:[10.1126/science.1230667](https://doi.org/10.1126/science.1230667)

519 21. Gilmour CC, Podar M, Bullock AL, et al. Mercury Methylation by Novel Microorganisms from
520 New Environments. *Environ Sci Technol*. 2013;47(20):11810-11820. doi:[10.1021/es403075t](https://doi.org/10.1021/es403075t)

521 22. Gilmour CC, Bullock AL, McBurney A, Podar M, Elias DA. Robust Mercury Methylation across
522 Diverse Methanogenic Archaea. *mBio*. 2018;9(2):1-13. doi:[10.1128/mBio.02403-17](https://doi.org/10.1128/mBio.02403-17)

523 23. McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded
524 phylogenetic diversity and metabolic flexibility of microbial mercury methylation. *bioRxiv*.
525 [preprint](2020-01). doi:[10.1101/2020.01.16.909358](https://doi.org/10.1101/2020.01.16.909358)

526 24. Podar M, Gilmour CC, Brandt CC, et al. Global prevalence and distribution of genes and
527 microorganisms involved in mercury methylation. *Sci Adv*. 2015;1:1-12.
528 doi:[10.1126/sciadv.1500675](https://doi.org/10.1126/sciadv.1500675)

529 25. Villar E, Cabrol L, Heimbürger-Boavida L. Widespread microbial mercury methylation genes
530 in the global ocean. *Environ Microbiol Reports*. February 2020:1-11. doi:[10.1111/1758-2229.12829](https://doi.org/10.1111/1758-2229.12829)

532 26. Bae H-S, Dierberg FE, Ogram A. Syntrophs dominate sequences associated with the mercury
533 methylation-related gene *hgcA* in the Water Conservation Areas of the Florida Everglades. *Appl*
534 *Environ Microbiol.* 2014;80(20):6517-6526. doi:[10.1128/AEM.01666-14](https://doi.org/10.1128/AEM.01666-14)

535 27. Christensen GA, Wymore AM, King AJ, et al. Development and validation of broad-range
536 qualitative and clade-specific quantitative molecular probes for assessing mercury methylation
537 in the environment. *Appl Environ Microbiol.* 2016;82(19):6068-6078. doi:[10.1128/AEM.01271-16](https://doi.org/10.1128/AEM.01271-16)

539 28. Gionfriddo CM, Wymore AM, Jones DS, et al. An improved *hgcAB* primer set and direct high-
540 throughput sequencing expand Hg-methylator diversity in nature. *bioRxiv*. [preprint](2020-03-
541 11). doi:[10.1101/2020.03.10.983866](https://doi.org/10.1101/2020.03.10.983866)

542 29. Liu Y-R, Yu R-Q, Zheng Y-M, He J-Z. Analysis of the microbial community structure by
543 monitoring an Hg methylation gene (*hgcA*) in paddy soils along an Hg gradient. *Appl Environ*
544 *Microbiol.* 2014;80(9):2874-2879. doi:[10.1128/AEM.04225-13](https://doi.org/10.1128/AEM.04225-13)

545 30. Schaefer JK, Kronberg R-M, Morel FMM, Skyllberg U. Detection of a key Hg methylation
546 gene, *hgcA*, in wetland soils: Detection of the Hg methylation gene, *hgcA*, in soils. *Environ*
547 *Microbiol Reports.* 2014;6(5):441-447. doi:[10.1111/1758-2229.12136](https://doi.org/10.1111/1758-2229.12136)

548 31. Bouchet S, Goñi-Urriza M, Monperrus M, et al. Linking microbial activities and low-
549 molecular-weight thiols to Hg methylation in biofilms and periphyton from high-altitude
550 tropical lakes in the Bolivian Altiplano. *Environ Sci Technol.* 2018;52(17):9758-9767.
551 doi:[10.1021/acs.est.8b01885](https://doi.org/10.1021/acs.est.8b01885)

552 32. Bravo AG, Zopfi J, Buck M, et al. Geobacteraceae are important members of mercury-
553 methylating microbial communities of sediments impacted by waste water releases. *ISME J.*
554 2018;12(3):802-812. doi:[10.1038/s41396-017-0007-7](https://doi.org/10.1038/s41396-017-0007-7)

555 33. Christensen GA, Gionfriddo CM, King AJ, et al. Determining the Reliability of Measuring
556 Mercury Cycling Gene Abundance with Correlations with Mercury and Methylmercury
557 Concentrations. *Environ Sci Technol.* 2019;53(15):8649-8663. doi:[10.1021/acs.est.8b06389](https://doi.org/10.1021/acs.est.8b06389)

558 34. Liu Y-R, Johs A, Bi L, et al. Unraveling microbial communities associated with methylmercury
559 production in paddy soils. *Environ Sci Technol.* 2018;52(22):13110-13118.
560 doi:[10.1021/acs.est.8b03052](https://doi.org/10.1021/acs.est.8b03052)

561 35. Eddy SR. Hidden Markov Models. *Current Opinion in Structural Biology.* 1996;6:361-365.

562 36. Gionfriddo CM, Tate MT, Wick RR, et al. Microbial mercury methylation in Antarctic sea ice.
563 *Nature Microbiology.* 2016;1(10). doi:[10.1038/nmicrobiol.2016.127](https://doi.org/10.1038/nmicrobiol.2016.127)

564 37. Tyson GW, Chapman J, Hugenholtz P, et al. Community structure and metabolism through
565 reconstruction of microbial genomes from the environment. *Nature.* 2004;428(6978):37-43.
566 doi:[10.1038/nature02340](https://doi.org/10.1038/nature02340)

567 38. Cline JD. Spectrophotometric determine of hydrogen sulfide in natural waters. *Limnol*
568 *Oceanogr.* 1969;14(3):454-458. doi:[10.4319/lo.1969.14.3.0454](https://doi.org/10.4319/lo.1969.14.3.0454)

569 39. Joshi N, Fass J. *Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ*
570 *Files.*; 2011. <https://github.com/najoshi/sickle>.

571 40. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: A new versatile
572 metagenomic assembler. *Genome Research*. 2017;27(5):824-834. doi:[10.1101/gr.213959.116](https://doi.org/10.1101/gr.213959.116)

573 41. Eddy SR. *Hmmer.*; 2015. <http://hmmer.org/>.

574 42. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the next-generation
575 sequencing data. *Bioinformatics*. 2012;28(23):3150-3152. doi:[10.1093/bioinformatics/bts565](https://doi.org/10.1093/bioinformatics/bts565)

576 43. Bushnell B. *BBMap Short Read Aligner.*; 2015. <https://sourceforge.net/projects/bbmap/>.

577 44. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene
578 recognition and translation initiation site identification. *BMC Bioinformatics*. 2010;11(1):119.
579 doi:[10.1186/1471-2105-11-119](https://doi.org/10.1186/1471-2105-11-119)

580 45. Alneberg J, Bjarnason BS, de Bruijn I, et al. Binning metagenomic contigs by coverage and
581 composition. *Nat Methods*. 2014;11(11):1144-1146. doi:[10.1038/nmeth.3103](https://doi.org/10.1038/nmeth.3103)

582 46. Kang DD, Li F, Kirton E, et al. MetaBAT 2: An adaptive binning algorithm for robust and
583 efficient genome reconstruction from metagenome assemblies. *PeerJ*. 2019;7:e7359.
584 doi:[10.7717/peerj.7359](https://doi.org/10.7717/peerj.7359)

585 47. Sieber CMK, Probst AJ, Sharrar A, et al. Recovery of genomes from metagenomes via a
586 dereplication, aggregation and scoring strategy. *Nat Microbiol*. 2018;3(7):836-843.
587 doi:[10.1038/s41564-018-0171-1](https://doi.org/10.1038/s41564-018-0171-1)

588 48. Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: An automated binning algorithm to recover
589 genomes from multiple metagenomic datasets. *Bioinformatics*. 2016;32(4):605-607.
590 doi:<https://doi.org/10.1093/bioinformatics/btv638>

591 49. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the
592 quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome*
593 *Res.* 2015;25(7):1043-1055. doi:[10.1101/gr.186072.114](https://doi.org/10.1101/gr.186072.114)

594 50. Eren AM, Esen ÖC, Quince C, et al. Anvi'o: An advanced analysis and visualization platform
595 for 'omics data. *PeerJ*. 2015;3:e1319. doi:[10.7717/peerj.1319](https://doi.org/10.7717/peerj.1319)

596 51. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify genomes
597 with the Genome Taxonomy Database. *Bioinformatics*. November 2019:btz848.
598 doi:[10.1093/bioinformatics/btz848](https://doi.org/10.1093/bioinformatics/btz848)

599 52. Konwar KM, Hanson NW, Pagé AP, Hallam SJ. MetaPathways: A modular pipeline for
600 constructing pathway/genome databases from environmental sequence information. *BMC*
601 *Bioinformatics*. 2013;14(202). doi:[10.1186/1471-2105-14-202](https://doi.org/10.1186/1471-2105-14-202)

602 53. Anantharaman K, Brown CT, Hug LA, et al. Thousands of microbial genomes shed light on
603 interconnected biogeochemical processes in an aquifer system. *Nat Commun*. 2016;7(13219):1-
604 11. doi:[10.1038/ncomms13219](https://doi.org/10.1038/ncomms13219)

605 54. Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space
606 complexity. *BMC Bioinformatics*. 2004;5(113):1-19. doi:[10.1186/1471-2105-5-113](https://doi.org/10.1186/1471-2105-5-113)

607 55. Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): A new software
608 for selection of phylogenetic informative regions from multiple sequence alignments. *BMC Evol
609 Biol.* 2010;10(210):1-21. doi:[10.1186/1471-2148-10-210](https://doi.org/10.1186/1471-2148-10-210)

610 56. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large
611 phylogenies. *Bioinformatics*. 2014;30(9):1312-1313. doi:[10.1093/bioinformatics/btu033](https://doi.org/10.1093/bioinformatics/btu033)

612 57. Aberer AJ, Krompass D, Stamatakis A. Pruning rogue taxa improves phylogenetic accuracy:
613 An efficient algorithm and webservice. *Systematic Biology*. 2013;62(1):162-166.
614 doi:[10.1093/sysbio/sys078](https://doi.org/10.1093/sysbio/sys078)

615 58. Schliep KP. Phangorn: Phylogenetic analysis in R. *Bioinformatics*. 2011;27(4):592-593.
616 doi:[10.1093/bioinformatics/btq706](https://doi.org/10.1093/bioinformatics/btq706)

617 59. Yu G, Smith DK, Zhu H, Guan Y, Lam TT. Ggtree: An R package for visualization and
618 annotation of phylogenetic trees with their covariates and other associated data. *Methods Ecol
619 Evol.* 2017;8:28-36. doi:[10.1111/2041-210X.12628](https://doi.org/10.1111/2041-210X.12628)

620 60. Stauffer RE. Cycling of manganese and iron in Lake Mendota, Wisconsin. *Environ Sci
621 Technol.* 1986;20(5):449-457. doi:[10.1021/es00147a002](https://doi.org/10.1021/es00147a002)

622 61. Ingvorsen K, Zeikus JG, Brock TD. Dynamics of bacterial sulfate reduction in a eutrophic lake.
623 *Appl Environ Microbiol.* 1981;42(6):1029-1036. doi:[10.1128/AEM.42.6.1029-1036.1981](https://doi.org/10.1128/AEM.42.6.1029-1036.1981)

624 62. Ranchou-Peyruse M, Monperrus M, Bridou R, et al. Overview of mercury methylation
625 capacities among anaerobic bacteria including representatives of the sulphate-reducers:

626 Implications for environmental studies. *Geomicrobiology Journal*. 2009;26(1):1-8.

627 doi:[10.1080/01490450802599227](https://doi.org/10.1080/01490450802599227)

628 63. Sczyrba A, Hofmann P, Belmann P, et al. Critical assessment of metagenome

629 interpretation—a benchmark of metagenomics software. *Nat Methods*. 2017;14(11):1063-

630 1071. doi:[10.1038/nmeth.4458](https://doi.org/10.1038/nmeth.4458)

631 64. Gilmour CC, Elias DA, Kucken AM, et al. Sulfate-reducing bacterium *Desulfovibrio*

632 *Desulfuricans ND132* as a model for understanding bacterial mercury methylation. *Appl Environ*

633 *Microbiol*. 2011;77(12):3938-3951. doi:[10.1128/AEM.02993-10](https://doi.org/10.1128/AEM.02993-10)

634 65. Hernsdorf AW, Amano Y, Miyakawa K, et al. Potential for microbial H₂ and metal

635 transformations associated with novel bacteria and archaea in deep terrestrial subsurface

636 sediments. *ISME J*. 2017;11(8):1915-1929. doi:[10.1038/ismej.2017.39](https://doi.org/10.1038/ismej.2017.39)

637 66. Kantor RS, Huddy RJ, Iyer R, et al. Genome-resolved meta-omics ties microbial dynamics to

638 process performance in biotechnology for thiocyanate degradation. *Environ Sci Technol*.

639 2017;51(5):2944-2953. doi:[10.1021/acs.est.6b04477](https://doi.org/10.1021/acs.est.6b04477)

640 67. Probst AJ, Ladd B, Jarett JK, et al. Differential depth distribution of microbial function and

641 putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. *Nat*

642 *Microbiol*. 2018;3(3):328-336. doi:[10.1038/s41564-017-0098-y](https://doi.org/10.1038/s41564-017-0098-y)

643 68. Qiu Y-L, Tourlousse DM, Matsuura N, Ohashi A, Sekiguchi Y. Draft genome sequence of

644 *Paludibacter Jiangxiensis* NM7^T, a propionate-producing fermentative bacterium. *Genome*

645 *Announc*. 2017;5(29):e00667-17, /ga/5/29/e00667-17.atom. doi:[10.1128/genomeA.00667-17](https://doi.org/10.1128/genomeA.00667-17)

646 69. Spring S, Bunk B, Spröer C, et al. Characterization of the first cultured representative of
647 Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. *ISME J*.
648 2016;10(12):2801-2816. doi:[10.1038/ismej.2016.84](https://doi.org/10.1038/ismej.2016.84)

649 70. Spring S, Brinkmann N, Murrja M, Spröer C, Reitner J, Klenk H-P. High diversity of culturable
650 prokaryotes in a lithifying hypersaline microbial mat. *Geomicrobiology Journal*. 2015;32(3-
651 4):332-346. doi:[10.1080/01490451.2014.913095](https://doi.org/10.1080/01490451.2014.913095)

652 71. Rothery RA, Workun GJ, Weiner JH. The prokaryotic complex iron–sulfur molybdoenzyme
653 family. *Biochimica et Biophysica Acta*. 2008;1778:1897-1929.
654 doi:[10.1016/j.bbamem.2007.09.002](https://doi.org/10.1016/j.bbamem.2007.09.002)

655 72. Jiménez Otero F, Chan CH, Bond DR. Identification of different putative outer membrane
656 electron conduits necessary for Fe(III) citrate, Fe(III) oxide, Mn(IV) oxide, or electrode reduction
657 by *Geobacter Sulfurreducens*. *J Bacteriol*. 2018;200(19):e00347-18, /jb/200/19/e00347-
658 18.atom. doi:[10.1128/JB.00347-18](https://doi.org/10.1128/JB.00347-18)

659 73. He S, Stevens SLR, Chan L-K, Bertilsson S. Ecophysiology of freshwater Verrucomicrobia
660 inferred from metagenome-assembled genomes. *mSphere*. 2017;2(5):1-17.

661 74. Simon J. Enzymology and bioenergetics of respiratory nitrite ammonification. *FEMS*
662 *Microbiol Rev*. 2002;26(3):285-309. doi:[10.1111/j.1574-6976.2002.tb00616.x](https://doi.org/10.1111/j.1574-6976.2002.tb00616.x)

663 75. Simon J, Kern M, Hermann B, Einsle O, Butt JN. Physiological function and catalytic
664 versatility of bacterial multihaem cytochromes c involved in nitrogen and sulfur cycling.
665 *Biochemical Society Transactions*. 2011;39(6):1864-1870. doi:[10.1042/BST20110713](https://doi.org/10.1042/BST20110713)

666 76. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM. Cytochrome bd oxidase, oxidative
667 stress, and dioxygen tolerance of the strictly anaerobic bacterium *Moorella Thermoacetica*.
668 *Journal of Bacteriology*. 2005;187(6):2020-2029. doi:[10.1128/JB.187.6.2020-2029.2005](https://doi.org/10.1128/JB.187.6.2020-2029.2005)

669 77. Nobu MK, Narihiro T, Rinke C, et al. Microbial dark matter ecogenomics reveals complex
670 synergistic networks in a methanogenic bioreactor. *ISME J*. 2015;9(8):1710-1722.
671 doi:[10.1038/ismej.2014.256](https://doi.org/10.1038/ismej.2014.256)

672 78. Billen G. Modelling the processes of organic matter degradation and nutrients recycling in
673 sedimentary systems. In: *Sediment Microbiology (Special Publications of the Society for General*
674 *Microbiology, Book 7)*. 1st ed. Academic Press Inc; 1982:15-52.

675 79. Boschker HTS. Decomposition of organic matter in the littoral sediments of a lake. 1997.

676 80. Meyer-Reil L-A. Seasonal and spatial distribution of extracellular enzymatic activities and
677 microbial incorporation of dissolved organic substrates in marine sediments. *Appl Environ*
678 *Microbiol*. 1987;53(8):1748-1755. doi:[10.1128/AEM.53.8.1748-1755.1987](https://doi.org/10.1128/AEM.53.8.1748-1755.1987)

679 81. Brock TD. *A Eutrophic Lake: Lake Mendota, Wisconsin*. 1st ed. Springer; 1985.

680 82. Bertocchi C, Navarini L, Cesaro A, Anastasio M. Polysaccharides from cyanobacteria.
681 *Carbohydrate Polymers*. 1990;12:127-153.

682 83. Beversdorf LJ, Miller TR, McMahon KD. The role of nitrogen fixation in cyanobacterial bloom
683 toxicity in a temperate, eutrophic lake. *PLoS ONE*. 2013;8(2):e56103.
684 doi:[10.1371/journal.pone.0056103](https://doi.org/10.1371/journal.pone.0056103)

685 **Figures**

686

687

688

689

690

691

692

693

694

695

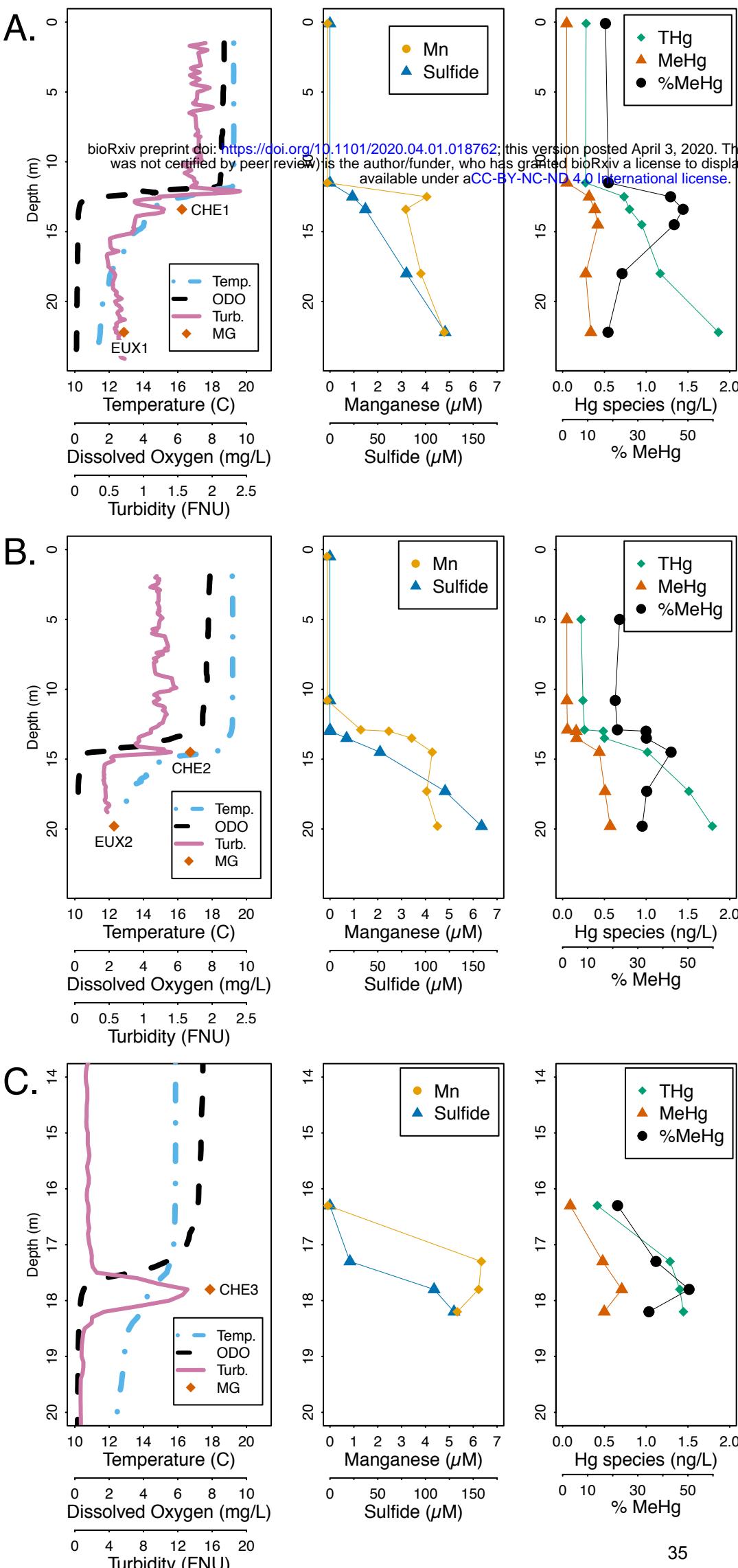
696

697

698

699

700


701

702

703

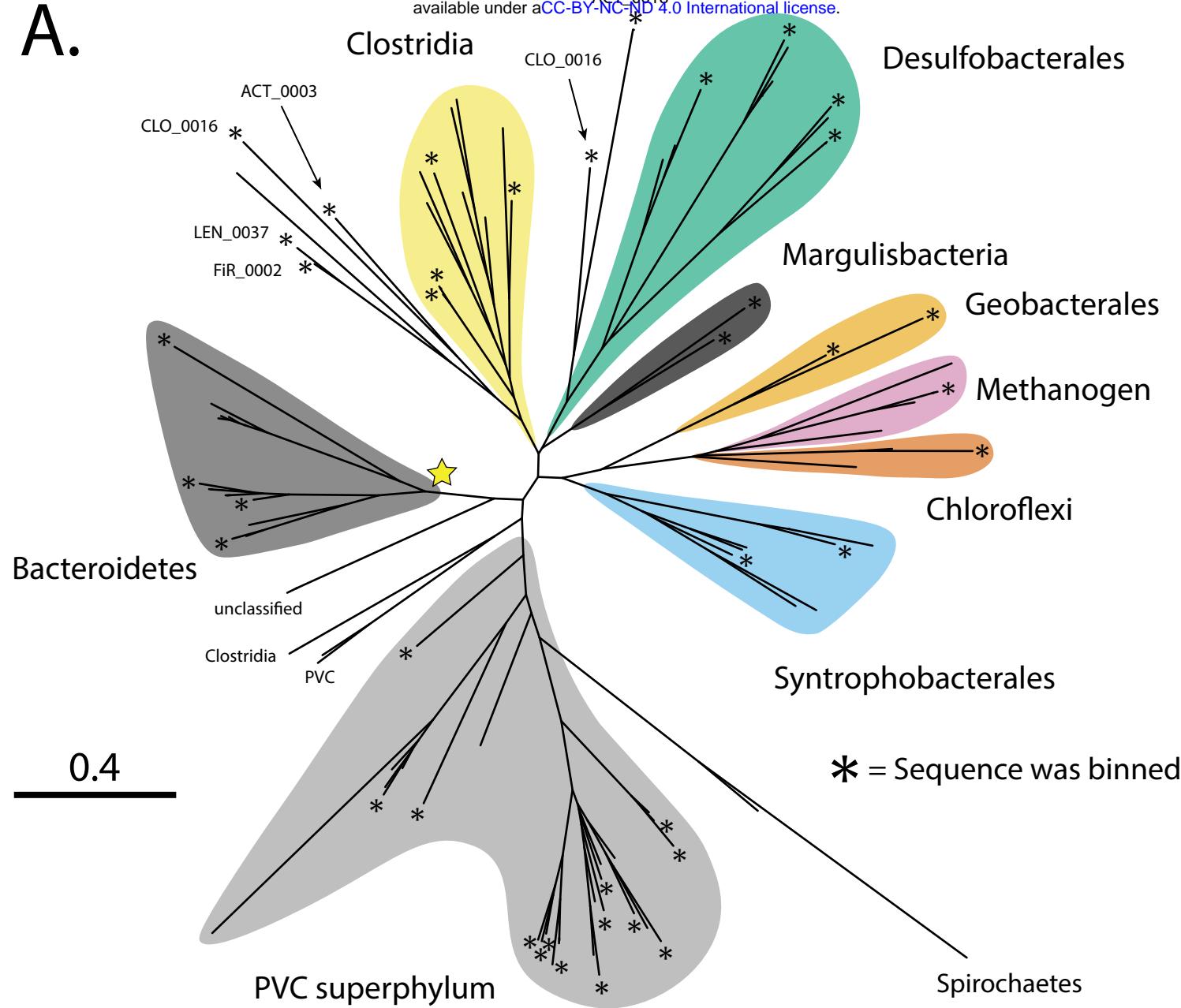
704

705

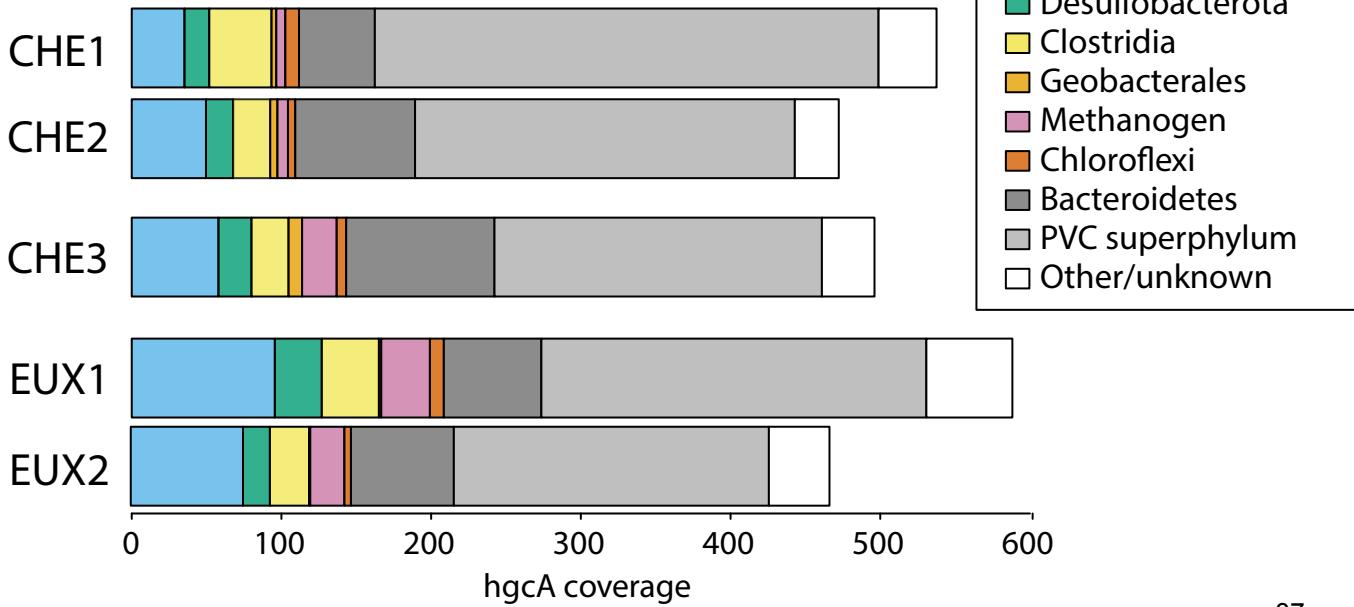
706 **Figure 1.** Physical and geochemical profiles of Lake Mendota from 2017 on September 8th (A),
707 October 4th (B) and October 19th (C). The first column displays parameters measured
708 continuously with an Exo2 sonde and includes orange diamonds where samples for
709 metagenomic sequencing were collected. Names of the metagenomes are displayed near the
710 orange diamonds. Equipment failure resulted in a slightly truncated sonde profile on October
711 4th (B). The second column displays sulfide and filter-passing manganese values at discrete
712 depths. The total and methylmercury measurements, in the third column, are a bulk value,
713 representing the sum total of the dissolved and particulate fractions. Dissolved and particulate
714 fractions are plotted individually in Figure S1. Note the changed scale for depth on the y-axis
715 and for turbidity on the x-axis in the October 19th profiles (C). The metagenomic samples
716 collected near the metalimnion for October 4th and October 19th were both collected
717 coincident with the observed spike in turbidity. Abbreviations: Temp. - Temperature (°C), ODO -
718 Optical dissolved oxygen in mg/L, Turb. - Turbidity in Formazin Nephelometric Units (FNU), MG
719 - metagenome sample, Mn - Filter-passing manganese, THg - Total mercury, MeHg -
720 Methylmercury, %MeHg - Methylmercury concentration divided by total mercury
721 concentration.

722

723


724

725


726

727

A.

B.

728 **Figure 2.** Unconfirmed methylators dominate hgcA sequence diversity in Lake Mendota, both
729 numerically (A) and by coverage (B). A: Phylogenetic tree of 108 hgcA sequences from this
730 study. Asterisks at the end of branches indicate sequence was binned. All other branches are
731 unbinned hgcA sequences from this study. Sequences were assigned a predicted taxonomic
732 group based on phylogenetic clustering with hgcA reference sequences from NCBI and bin
733 phylogenies of binned hgcA sequences (for detailed tree with reference sequences, see Figure
734 S3). Binned sequences outside of a monophylogenetic cluster are labeled with their bin name.
735 The yellow star indicates the branch to the monophyletic Bacteroidetes sequences. B: Sum of
736 coverage of hgcA sequences within predicted taxonomic groups across 5 metagenomic
737 samples. Coverage refers to the average depth of coverage across hgcA+ scaffolds.

738

739

740

741

742

743

744

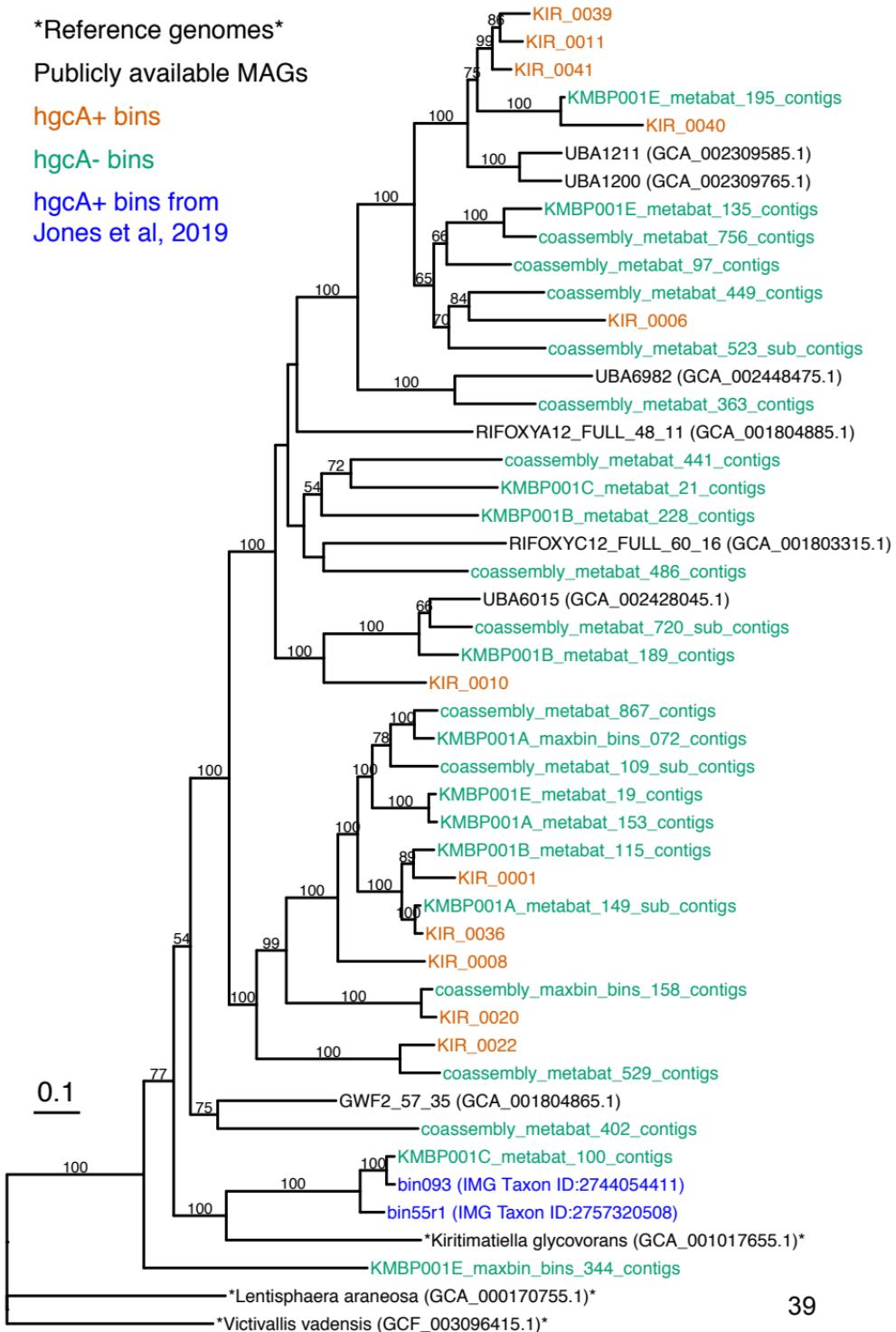
745

746

747

748

749


Reference genomes

Publicly available MAGs

hgcA+ bins

hgcA- bins

hgcA+ bins from
Jones et al, 2019

750 **Figure 3.** The hgcA gene is widespread in Mendota Kiritimatiellaeota bins, but is not
751 phylogenetically conserved. Maximum-likelihood tree is based on a concatenated alignment of
752 rp16 proteins. Names in orange are hgcA+ bins from this study, and green names are hgcA- bins
753 from this study. Names in black are genomes or bins pulled from NCBI, and genomes with the
754 asterisks indicate cultured isolate reference genomes. The accession version numbers are in
755 parentheses following the bin or genome name. The bin names in blue correspond to two
756 hgcA+ bins from a recent publication.¹ The tree was generated in RAxML and rooted using the
757 two Lentisphaerae genomes (*Lentisphaera araneosa* and *Victivallis vadensis*). Bootstrap values
758 of less than 50 are not shown.

759

760

761

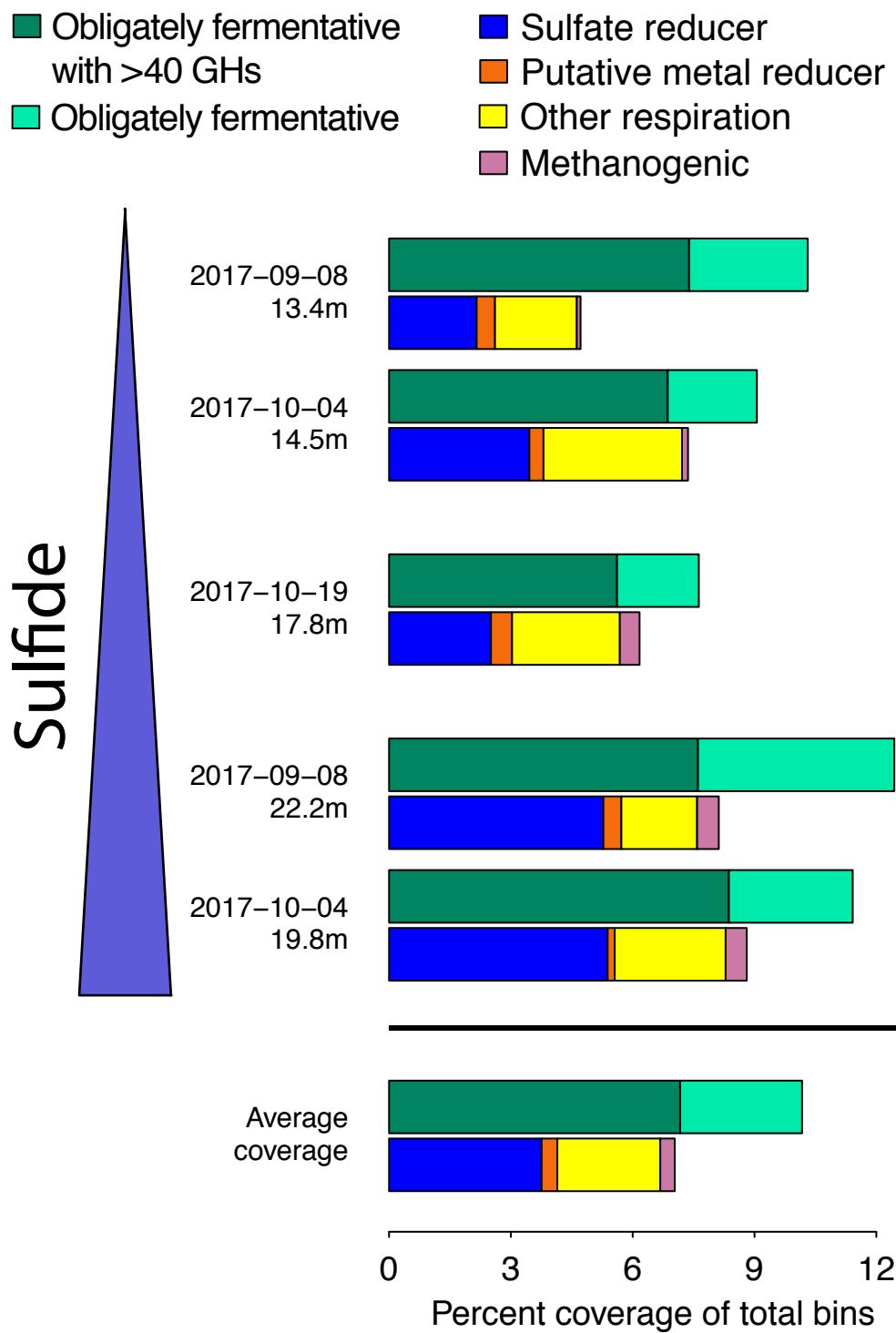
762

763

764

765

766


767

768

769

770

771

772 **Figure 4.** Fermentative organisms are the most abundant hgcA+ organisms in Lake Mendota.

773 Total coverage of hgcA+ bins in different metabolic guilds across each metagenome. Plots of

774 coverage in the different metagenomes are arranged by decreasing redox potential, which

775 corresponds to increasing sulfide concentrations. Abbreviations: GHs - glucoside hydrolases.

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794 **Supplementary Figures**

795

796

797

798

799

800

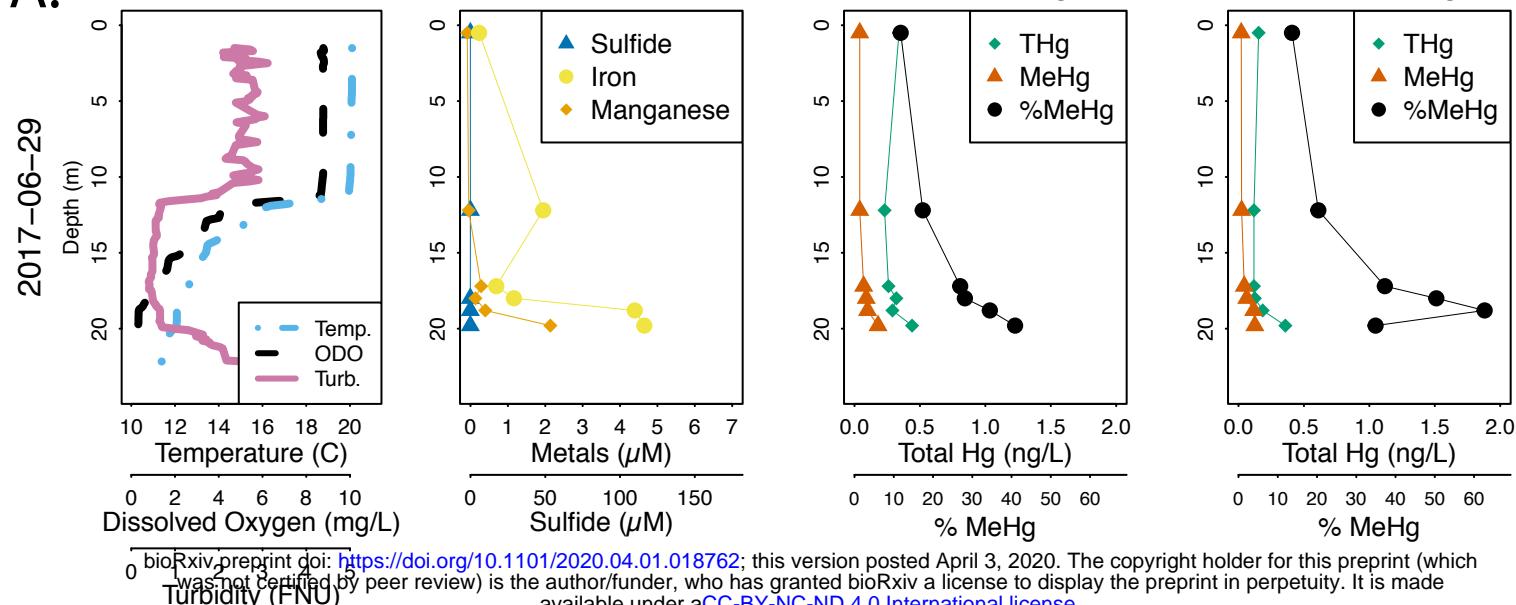
801

802

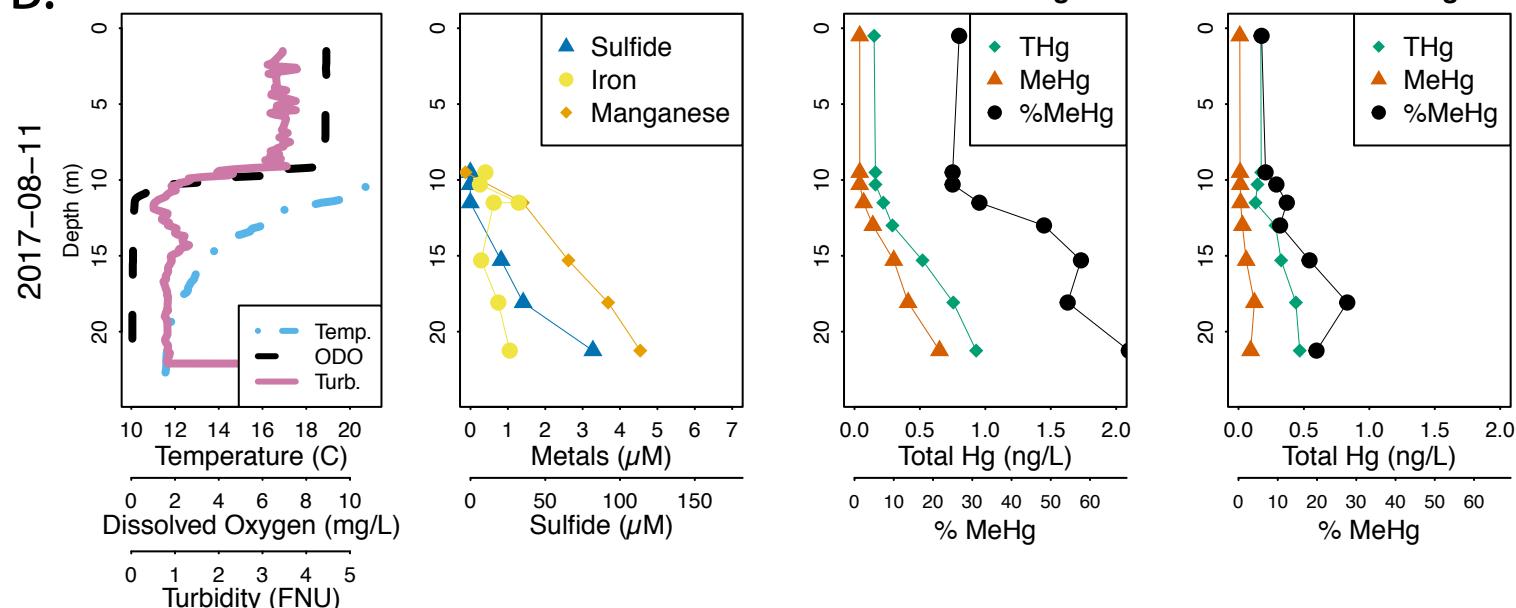
803

804

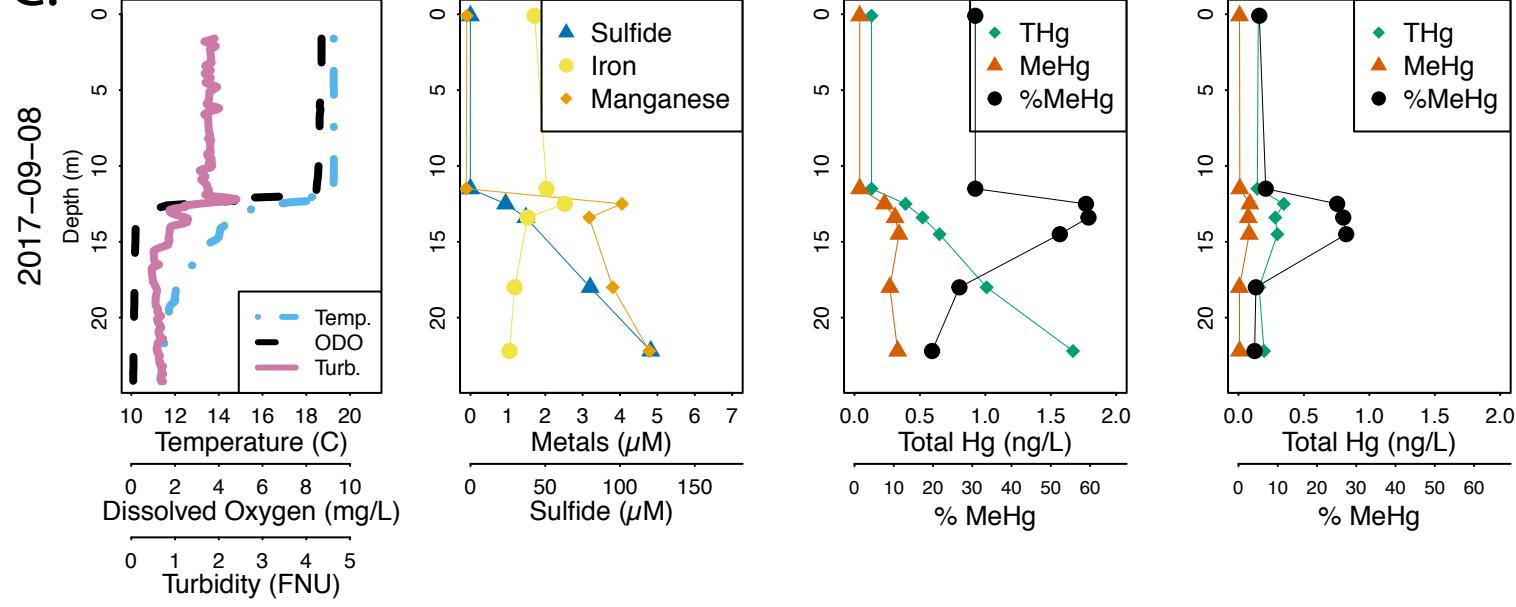
805

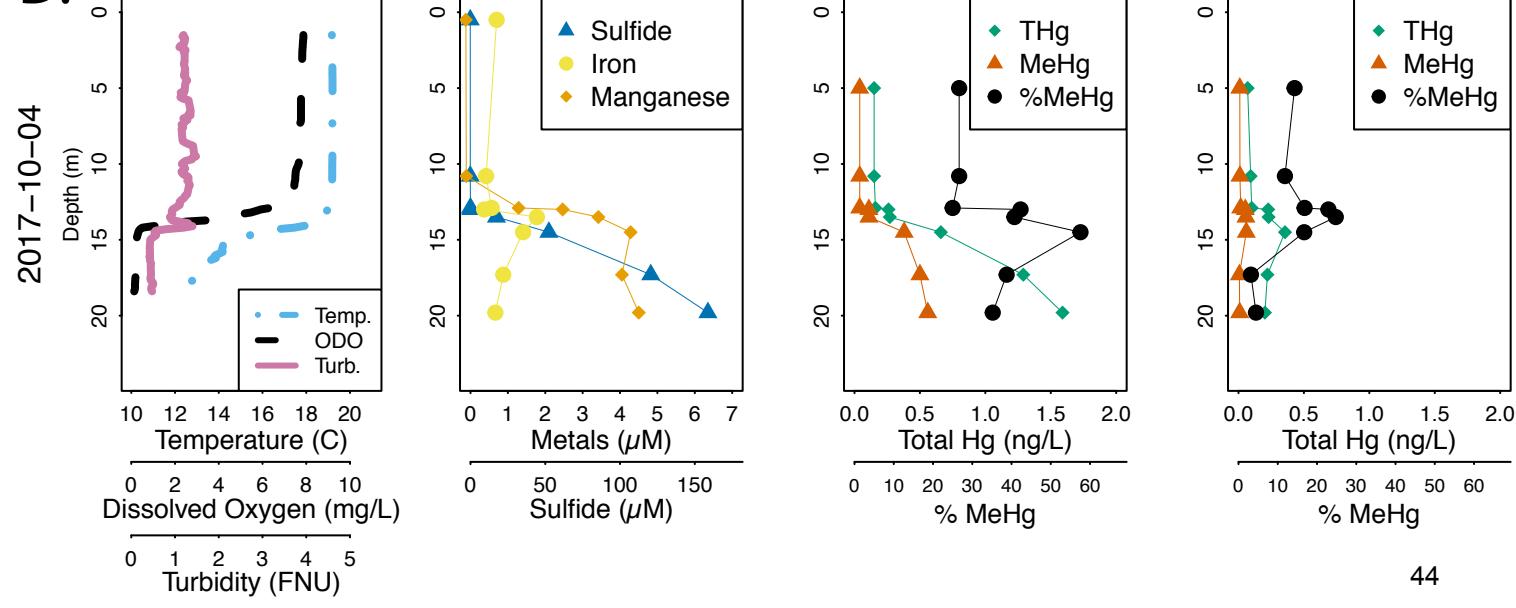

806

807


808

809


A.


B.

C.

D.

810 **Figure S1.** Representative profiles of Lake Mendota from across the open water season in 2017.
811 The dissolved Hg species are operationally defined as everything that passes a quartz fiber filter
812 (QFF), and the particulate fraction is what is retained on a QFF. Both iron and manganese are
813 the dissolved fraction only (0.45 μ m PES filter). Abbreviations: Temp. - Temperature (°C), ODO -
814 Optical dissolved oxygen in mg/L, Turb. - Turbidity in Formazin Nephelometric Units (FNU), THg
815 - Total mercury, MeHg - Methylmercury, %MeHg - Methylmercury concentration divided by
816 total mercury concentration.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

hgcA

hgcB

coassembly_NODE_2586_length_46247_cov_1.076474_139/219
coassembly_NODE_35428_length_10964_cov_1.707076/368-95
coassembly_NODE_331906_length_2755_cov_0.456621/268-95
coassembly_NODE_556866_length_1959_cov_0.479252/26-95
coassembly_NODE_1845395_length_865_cov_0.619241/18-35
coassembly_NODE_1282787_length_514_cov_0.742527/2-29
coassembly_NODE_638341_length_1793_cov_0.289916/230-57
KMBP001A_NODE_165955_length_1846_cov_0.495055/1-29
KMBP001D_NODE_243022_length_1261_cov_0.340388/161-88
coassembly_NODE_551531_length_1975_cov_2.308442/213-140
coassembly_NODE_204131_length_3758_cov_0.862848/44-31
KMBP001E_NODE_264185_length_1612_cov_0.217300/390-117
coassembly_NODE_94574_length_6080_cov_0.729884/388-115
coassembly_NODE_1915029_length_843_cov_0.324022/1/441
coassembly_NODE_274156_length_3117_cov_0.890769/80-107
coassembly_NODE_8361_length_24845_cov_1.117081/207-108
coassembly_NODE_579701_length_1911_cov_0.706839/155-82
coassembly_NODE_430264_length_2327_cov_1.454091/399/126
KMBP001D_NODE_80925_length_2321_cov_0.702370/299-126
coassembly_NODE_4988_length_32982_cov_2.847238/309/126
coassembly_NODE_217695_length_3607_cov_1.522989/373-100
coassembly_NODE_284712_length_3042_cov_0.930945/377-104
coassembly_NODE_513690_length_2070_cov_4.400412/275-102
KMBP001A_NODE_61744_length_3370_cov_0.563367/2/29
KMBP001B_NODE_311907_length_1230_cov_0.330916/252-79
KMBP001E_NODE_139038_length_2362_cov_0.676515/492-119
coassembly_NODE_372757_length_2556_cov_0.600247/1/16-125
coassembly_NODE_334_length_115439_cov_2.490478/597-100
coassembly_NODE_1066188_length_1266_cov_0.698859/1/17-44
coassembly_NODE_363683_length_2597_cov_2.031984/148-111
KMBP001A_NODE_372156_length_1121_cov_0.414487/163-90
coassembly_NODE_215494_length_3631_cov_2.808219/384-111
coassembly_NODE_410887_length_2398_cov_0.026852/283-110
coassembly_NODE_10961_length_21489_cov_1.431935/984-111
coassembly_NODE_2390_length_47868_cov_2.601307/398/111
coassembly_NODE_29708_length_12151_cov_14.627246/968-111
coassembly_NODE_238376_length_3448_cov_1.130684/584-111
KMBP001E_NODE_383236_length_1283_cov_0.452422/1/44-1
coassembly_NODE_1857681_length_861_cov_0.588556/113-40
KMBP001E_NODE_527026_length_1052_cov_0.247568/2-13
KMBP001E_NODE_1134433_length_2662_cov_0.467456/284-111
coassembly_NODE_1480244_length_1010_cov_0.267271/231-58
KMBP001A_NODE_3990_length_17503_cov_1.053465/284-111
coassembly_NODE_21041_length_14869_cov_1.405575/543-70
coassembly_NODE_28855_length_12352_cov_1.062904/486-113
coassembly_NODE_54293_length_8504_cov_1.528426/412-139
KMBP001A_NODE_26549_length_5592_cov_1.524794/1.151-142
coassembly_NODE_22401_length_14334_cov_0.0264968/275-102
coassembly_NODE_944_length_74961_cov_4.606305/4670-97
coassembly_NODE_326244_length_2786_cov_0.757428/4/43-70
coassembly_NODE_21182_length_14811_cov_1.953487/289/116
coassembly_NODE_235545_length_3433_cov_0.626739/207/134
coassembly_NODE_1442_length_61135_cov_1.789576/213/59
coassembly_NODE_158530_length_4408_cov_0.748190/493-120
coassembly_NODE_54119_length_8521_cov_1.009054/4/2-29
coassembly_NODE_576890_length_1917_cov_1.363128/216/153
KMBP001C_NODE_113188_length_2328_cov_0.497475/1-29

AWLVLIDTRGIVNVWCAAGKGFNSTNEVLT
AWLVLIDTRGIVNVWCAAGKGFNSTEEIA
LWLLVIDTRGIVNVWCAAGKGFNSTEEIA
VWLLVIDTRGIVNVWCAAGKGFNSTEEIA
VWLLVIDTRGIVNVWCAAGKGFNSTEEIA
AWLVLDSFGIVNVWCAAGKGFNSTQELV
AWLVLDTLGVNVWCAAGKGFNSTKELV
AWLVLDTKGIVNVWCAAGKGFNSTKELV
TWLVLCDTRGIVNVWCAAGKGFNSTKELV
TWLVLCDTRGIVNVWCAAGKGFNSTGEVEVA
AWMVICDTSGIVNVWCAAGKGFNSTSVEVA
AWMVICDTSGIVNVWCAAGKGFNSTSVEVA
AWLVLDTKGIVNVWCAAGKGFNSTSVEVA
AWLVLDTKGIVNVWCAAGKGFNSTSVEVA
AYILVINTFGIVNVWCAAGKHTFGTEEELV
AYILVINTFGIVNVWCAAGKHTFGTEEELV
AYILVLDTKGIVNVWCAAGKHTFGTEEELV
AHLVLDTKGIVNVWCAAGKHTFGTDELV
AFILVLDTKGIVNVWCAAGKHTFGTDELV
AFILVLDTKGIVNVWCAAGKHTFGTDELV
AYILVLDTGIVNVWCAAGKHTFGTDELV
AYILVLDTGIVNVWCAAGKHTFGTDELV
AYILVLDTGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
LWILVLDTKGIVNVWCAAGKHTFGTSEIME
AWLVLVDTRGIVNVWCAAGKHTFGCAEEVA
AWLVLVDTRGIVNVWCAAGKHTFGCAEEVA
AWLVLDTKGIVNVWCAAGKHTFGTSEELL
AWLVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
GWILVLDTKGIVNVWCAAGKHTFGTKEIV
GWIMLDTKGIVNVWCAAGKHTFGTKEIV
GWILVLDTKGIVNVWCAAGKHTFGTKEIV
AYILVINTFGIVNVWCAAGKGPFGTKEIV
AWMVLDTKGIVNVWCAAGKHTFGTKEIV
- - - IDTKGIVNVWCAAGKHTFGTKEIV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
VWLLVLETFGIVNVWCAAGKHTFGTDELV
AWLVLLETFGIVNVWCAAGKHTFGTDELV
SFILVLDTKGIVNVWCAAGKHTFGTDELV
CFILVLDTKGIVNVWCAAGKHTFGTDELV
AWLVLDTKGIVNVWCAAGKHTFGTDELV
VWLLVLDTGIVNVWCAAGKHTFGTDELV
IWLVLDTKGIVNVWCAAGKHTFGTDELV
AWTLLVLDTGIVNVWCAAGKHTFGTDELV
GWILVLDTKGIVNVWCAAGKHTFGTDELV
LWLLVLDTANVNVWCAAGKGLFGTDELV
AWLVLNTFGIVNVWCAAGKHTFGTDELV
LWILVLDTKGIVNVWCAAGKHTFGTDELV
LWILVLDTKGIVNVWCAAGKHTFGTDELV
LWILVLDTKGIVNVWCAAGKHTFGTDELV

NODE_2586_length_46247_cov_0.1076472_10/40-63
NODE_94574_length_6080_cov_0.729884_4/40-63
NODE_53703_length_8559_cov_0.1807403_3/41-64
NODE_718556_length_1655_cov_23.3686518_1/41-64
NODE_21849_length_14543_cov_5.513457_3/41-64
NODE_6731_length_11682_cov_1.341151_14/41-64
NODE_189197_length_3945_cov_0.623625_3/41-64
NODE_113853_length_1927_cov_0.353333_3/41-64
NODE_48406_length_9099_cov_1.064243_10/41-64
NODE_13673_length_19017_cov_1.055214_9/41-64
NODE_10961_length_21489_cov_0.341935_10/41-64
NODE_204131_length_3758_cov_0.862848_3/41-64
NODE_334_length_115439_cov_0.2490748_60/41-64
NODE_106188_length_1266_cov_0.698859_2/41-64
NODE_215494_length_3631_cov_2.808219_4/41-64
NODE_410887_length_2398_cov_0.2068252_3/41-64
NODE_527026_length_1052_cov_0.247568_1/41-64
NODE_29706_length_12151_cov_14.627246_8/41-64
NODE_2390_length_47686_cov_0.261037_38/41-64
NODE_233876_length_3448_cov_1.130684_6/41-64
NODE_11002_length_9879_cov_18.968007_7/38-61
NODE_95141_length_6058_cov_1.913674_38/36-61
NODE_1971_length_52312_cov_9.820542_8/38-61
NODE_35428_length_10966_cov_1.707076_4/41-64
NODE_558668_length_1959_cov_0.479258_3/41-64
NODE_220974_length_3573_cov_11.888857_3/38-6
NODE_488340_length_2141_cov_0.613704_2/38-61
NODE_235545_length_3433_cov_0.626739_3/41-64
NODE_28855_length_12352_cov_1.062904_3/41-64
NODE_1442_length_61135_cov_1.789569_20/38-61
NODE_21041_length_14869_cov_0.1405576_6/41-64
NODE_68014_length_7428_cov_1.459252_30/46-63
NODE_2710_length_45090_cov_7.511999_38/40-63
NODE_83390_length_6565_cov_1.461789_6/40-63
NODE_575_length_43650_cov_1.643453_9/38-61
NODE_353_length_113169_cov_9.936332_48/40-63
NODE_2708_length_45114_cov_4.435103_5/40-63
NODE_11411_length_21040_cov_8.349440_13/40-64
NODE_37578_length_10589_cov_1.165552_5/40-63
NODE_300_length_120869_cov_11.366641_37/40-6
NODE_109541_length_5547_cov_1.197556_8/40-64
NODE_37910_length_10538_cov_1.709250_4/40-63
NODE_1929_length_52923_cov_0.083431_27/40-63
NODE_645870_length_1778_cov_1.099334_3/40-63
NODE_504133_length_2097_cov_0.415736_2/40-63
NODE_22401_length_14334_cov_0.2064968_3/41-64
NODE_61744_length_3370_cov_0.563367_3/41-64
NODE_696125_length_1691_cov_0.783248_2/38-61
NODE_23398_length_13977_cov_3.597545_13/38-6
NODE_62220_length_7843_cov_2.409409_3/38-61
NODE_572_length_45322_cov_1.273548_21/38-61
NODE_97341_length_2099_cov_0.513185_2/41-64
NODE_113188_length_2328_cov_0.494775_2/38-61
NODE_148846_length_4584_cov_1.881535_2/38-61
NODE_372757_length_2556_cov_0.600247_2/50-73
NODE_22053_length_6526_cov_0.971246_5/40-63
NODE_542933_length_8504_cov_1.529426_5/38-61

KLA | VDL DACME CGAC GAC AL NCNP FDA
 KAA | AER GR CMEC GAC AR NCNP SAA
 HAV | ONDR DACME CGAC GAC SNCNCP ADA
 KIR | GNDK DA IEC GCA KAC KNCP VEA
 KIR | KDR DACME CGAC GAC KNCP VEA
 KIR | KDR DACME CGAC GAC KNCP VEA
 AVA | ONDR DACME CGAC SNCNCP VEA
 QAL | VDR DACME CGAC CAR NCNCP VEA
 RVR | RNR DACME CGAC SNCNCP VEA
 RVR | RNR DACME CGAC SNCNCP VEA
 RSR | INID KDCM EC GAC AMNCN CERE
 KAA | I DPDG CMEC GAC AT NCNP VEA
 KAS | I KDR DACME CGAC GAC INADG A
 KAR | VDID DCME CGAC GAC LNCO FGA
 KAR | VDID DCME CGAC GAC LNCO FGA
 RAV | RHDK FCMEC GAC KAC NCGA EGA
 KAA | RNKD LCMEC GAC GAC KNCE EGA
 KAV | LHKD SCME CGAC GAC KNCN EGA
 RAV | RRRD FCMEC GAC GAC KNCP EGA
 RSKL | QRDR DACME CGAC GAC LNCP VEA
 RGKL | LNRD DACME CGAC CAR NCNCP VEA
 RSR | GSRD DACME CGAC GAC NCNP VEA
 RAE | VDRG A CMEC GAC GAI NCPT QEA
 KAE | VDR DACME CGAC GAK VKNCP T
 KVR | TDL DACME CGAC GAC KNCP VEA
 KAR | MVRD DACME CGAC GAC LNCP SEA
 PAR | TELD DACME CGAC GAC NCNP VEA
 RAA | VDR DACME CGAC GAC NCNP VDA
 KVT | FSDR DACME CGAC GAC LNCP VKA
 KAA | VLQD DACME CGAC GAC NCNP TRA
 KAA | AVRD DACME CGAC GAC NCNP SHA
 KAR | GDRD DACME CGAC GAC NCNP VSA
 KAO | NDRA DACME CGAC GAC NCNP VCA
 KVRV | GARD DACME CGAC GAC NCNP VGA
 RCK | VDRD DACME CGAC GAC NCNP VEA
 KSR | VDRD DACME CGAC GAC NCNP VDA
 RSR | TDRD DACME CGAC GAC NCNP VDA
 KSR | DERD DACME CGAC GAC NCNP VDA
 KSR | IADR DACME CGAC GAC NCNP VEA
 KSR | VDRD DACME CGAC GAC NCNP VEA
 KSR | IADR DACME CGAC GAC NCNP VDA
 KCR | AERD DACME CGAC GAC NCNP VNA
 KAQL | VLDR DRD IEC GCA GAG NCNP VDA
 KVI | GNDK SCME CGAC SKNC STKA
 KAAV | SRSR DACME CGAC GAC NCNP VEA
 KARL | LDDA DACME CGAC GAC NCNP VEA
 KARL | LDDR DACME CGAC GAC NCNP VEA
 KARL | LDR DACME CGAC GAC NCNP VEA
 KVT | QALD RCME CGAC GAC NCNP VEA
 KVA | RDRD DACME CGAC GAC NCNP FDA
 KVA | RDRD DACME CGAC GAC NCNP FDA
 KSK | VNRD SCME CGAC SKNCN TGA
 KVK | VDRD RCME CGAC GAD MNCR SDA
 KSV | I SFD SCME CGAC KRNRCN A

832 **Figure S2.** Alignments of identified hgcA and hgcB amino acid sequences from all five
833 metagenomes. Green bars indicate regions of predicted transmembrane domains in the
834 alignments. The zoomed-in portion of the hgcA alignment highlights a portion of the corrinoid-
835 binding domain for a subset of the sequences, and includes the characteristic highly conserved
836 cap-helix domain. For hgcB, we highlighted a portion of the alignment that includes one of the
837 two highly conserved ferredoxin-binding motifs from a subset of the sequences.

838

839

840

841

842

843

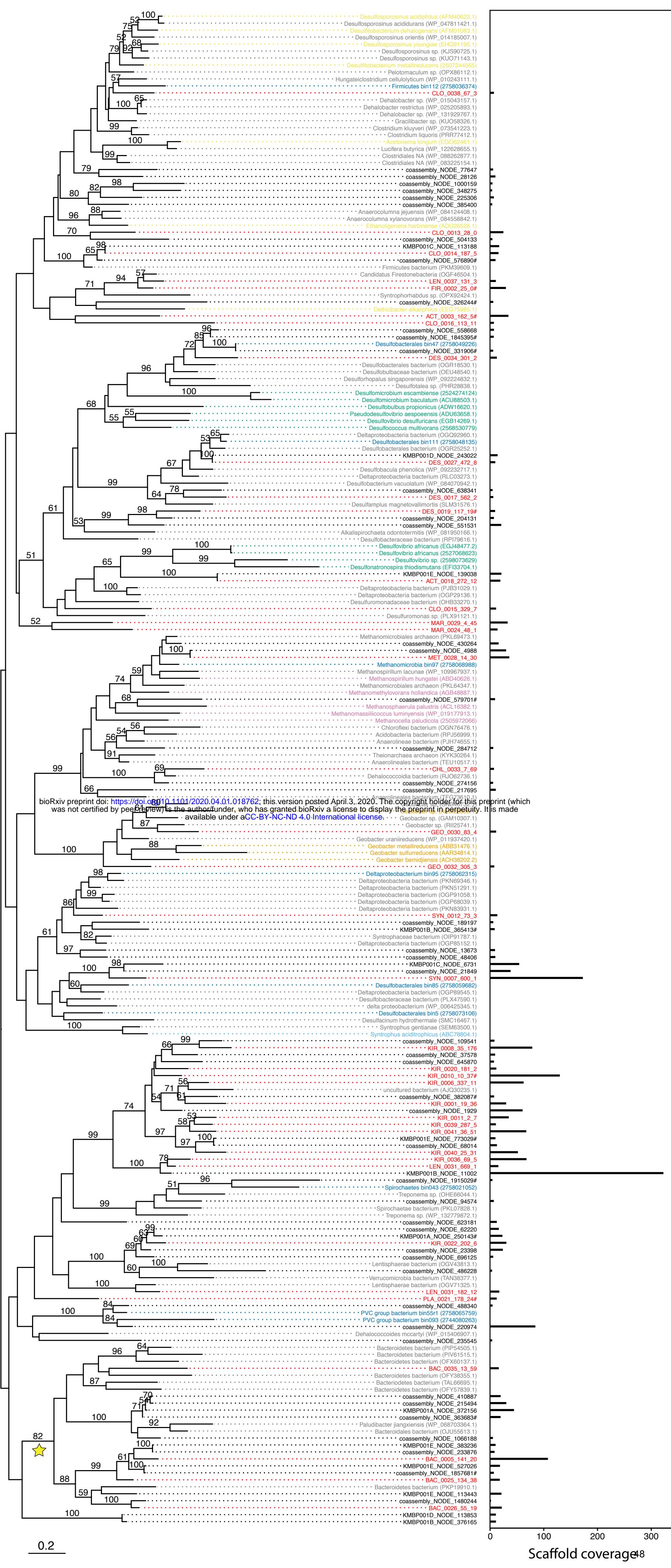
844

845

846

847

848


849

850

851

852

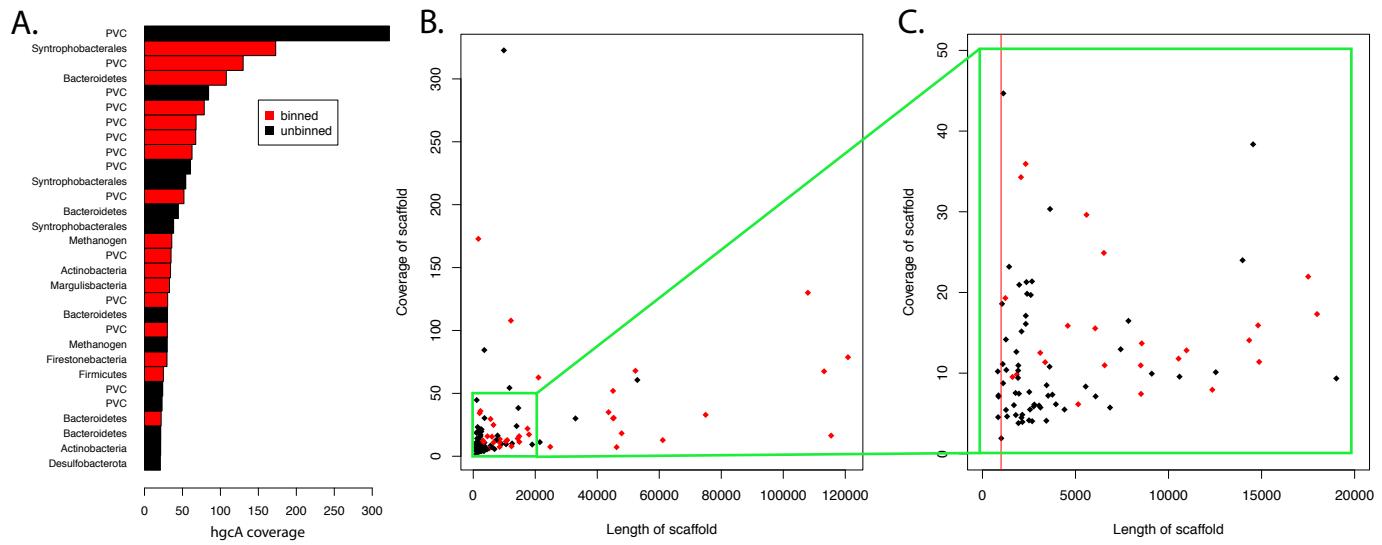
853

854 **Figure S3.** Maximum likelihood tree of hgcA sequences and overall coverage across five
855 metagenomes. Names in black indicate unbinned hgcA sequences. For hgcA sequences that
856 were binned, the scaffold name was replaced with the bin name (red names). Dark blue names
857 indicate hgcA sequences from bins from a recent paper in a similar system.¹ These bins are
858 followed by the IMG Taxon ID in parentheses. Grey names indicate hgcA sequences
859 downloaded from NCBI's non-redundant database that did not come from the genome of a
860 confirmed methylating organisms. Remaining colored names are from genomes of confirmed
861 methylators and match the color scheme in Figure 2 (yellow - Clostridia; green -
862 Desulfobacterales; pink - methanogens; orange - Geobacterales; light blue -
863 Syntrophobacterales). All reference sequence names are followed by their accession version
864 number in parentheses. Scaffold coverage is the average coverage of nucleotides in the
865 corresponding hgcA+ scaffold across all five metagenomes. Sequence names from this study
866 that are followed by a pound sign do not have a trailing hgcB sequence.

867

868

869


870

871

872

873

874

875 **Figure S4.** Overview of binning of hgcA sequences. A: Rank abundance curve of hgcA sequences
876 across all metagenomes. Bars colored in red indicate a binned sequence. B: Plot of average
877 coverage of scaffold vs. length of scaffold of hgcA sequences, with red dots indicating that the
878 sequence was binned.

879

880

881

882

883

884

885

886

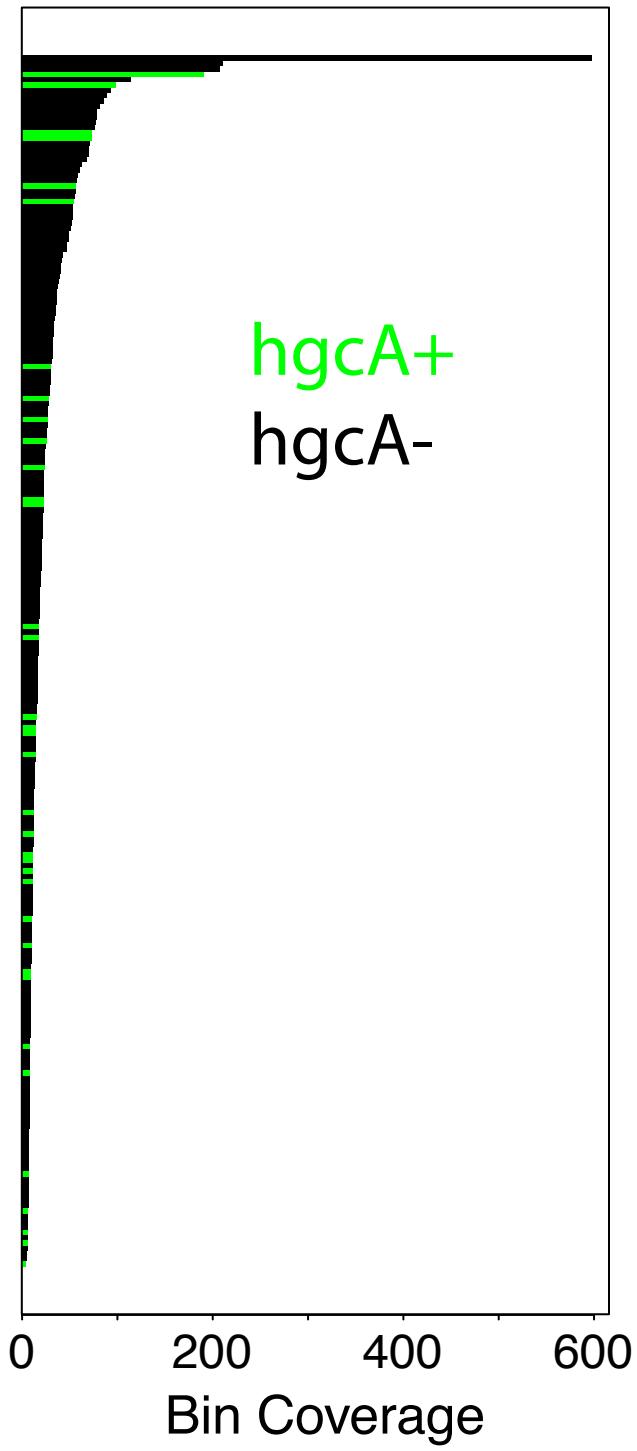
887

888

889

890

891


892

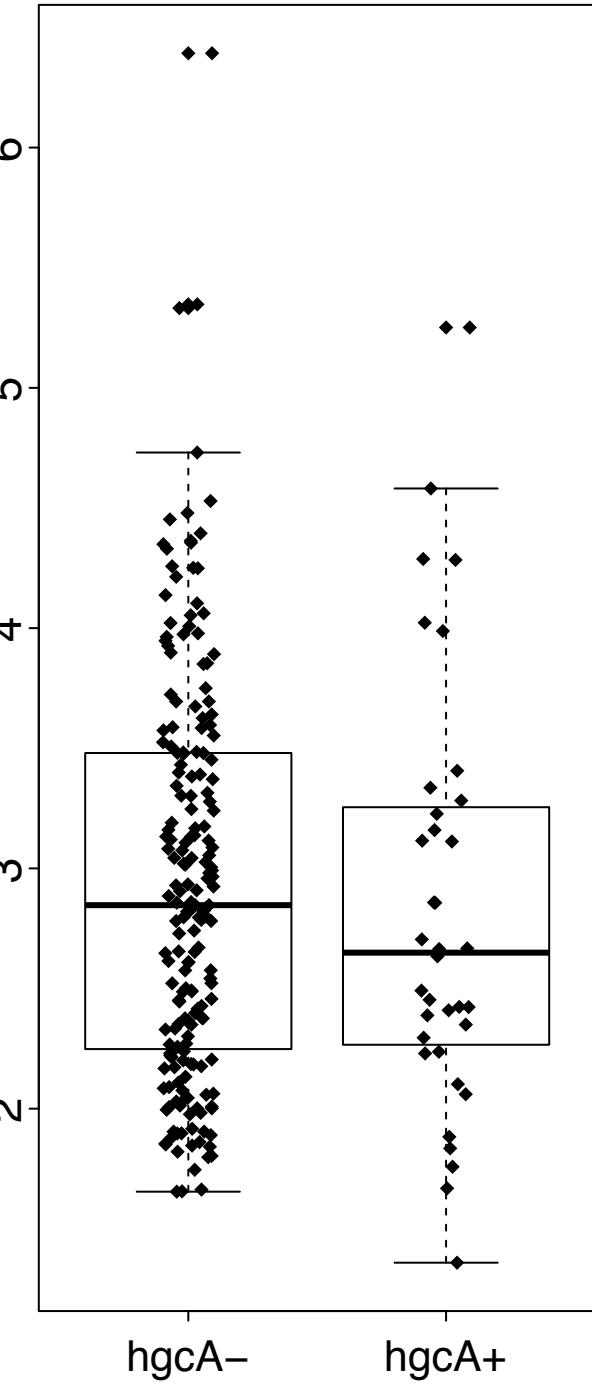
893

894

All bins

hgcA+
hgcA-

B.


Log coverage of bins

2 3 4 5 6

hgcA-

hgcA+

52

895 **Figure S5.** Comparison of coverage between hgcA+ and hgcA- bins. A: Rank abundance curve of
896 all bins across all metagenomes. Bins encoding hgcA are colored green. B: Log coverage of
897 hgcA+ vs. hgcA- bins.

898

899

900

901

902

903

904

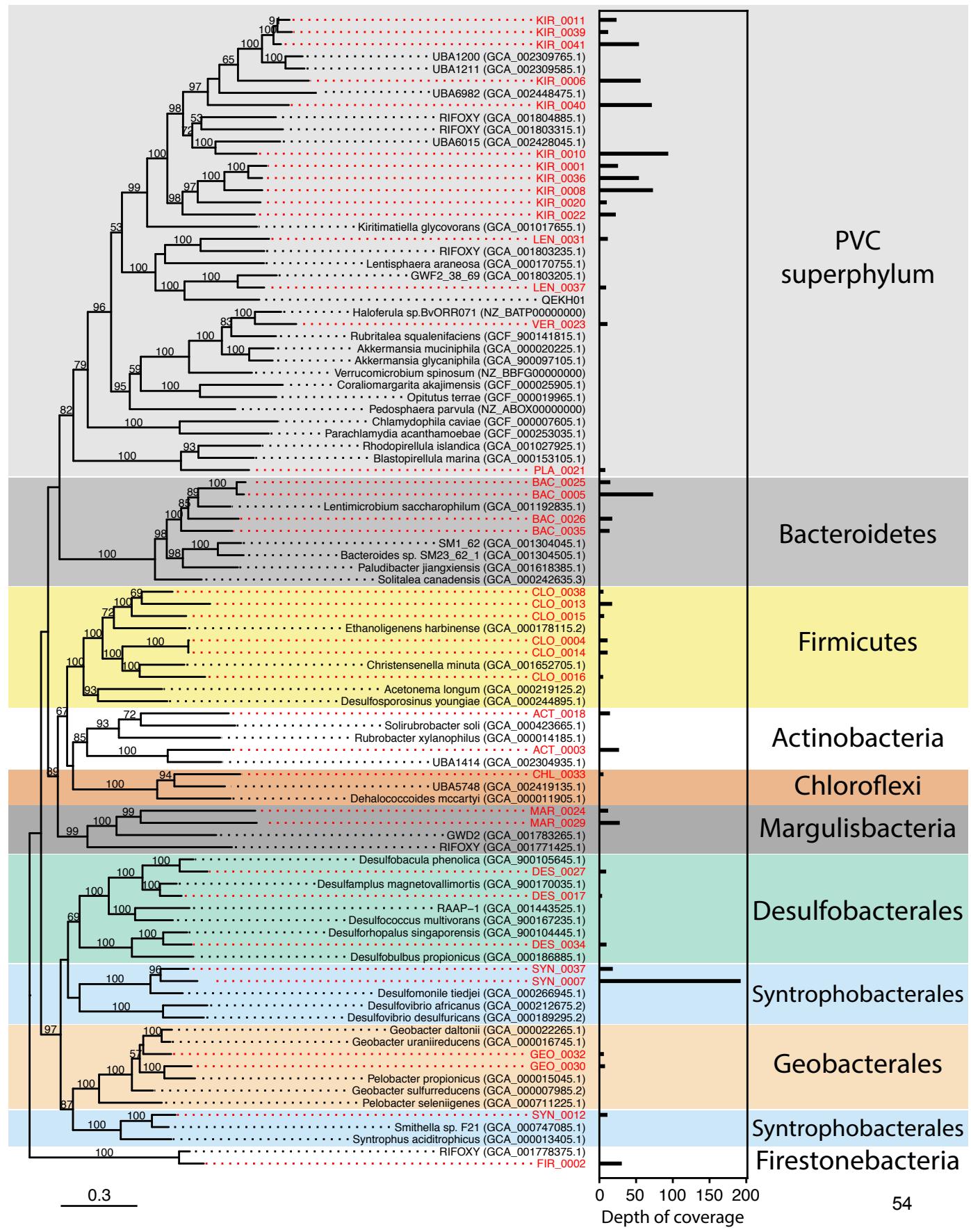
905

906

907

908

909


910

911

912

913

914

915 **Figure S6.** Maximum likelihood tree of rp16 genes from all bacterial hgcA+ bins and reference
916 genomes from NCBI. Bootstrap values below 50 have been removed. Tree was rooted using
917 three archaeal bins from this study.

918

919

920

921

922

923

924

925

926

927

928

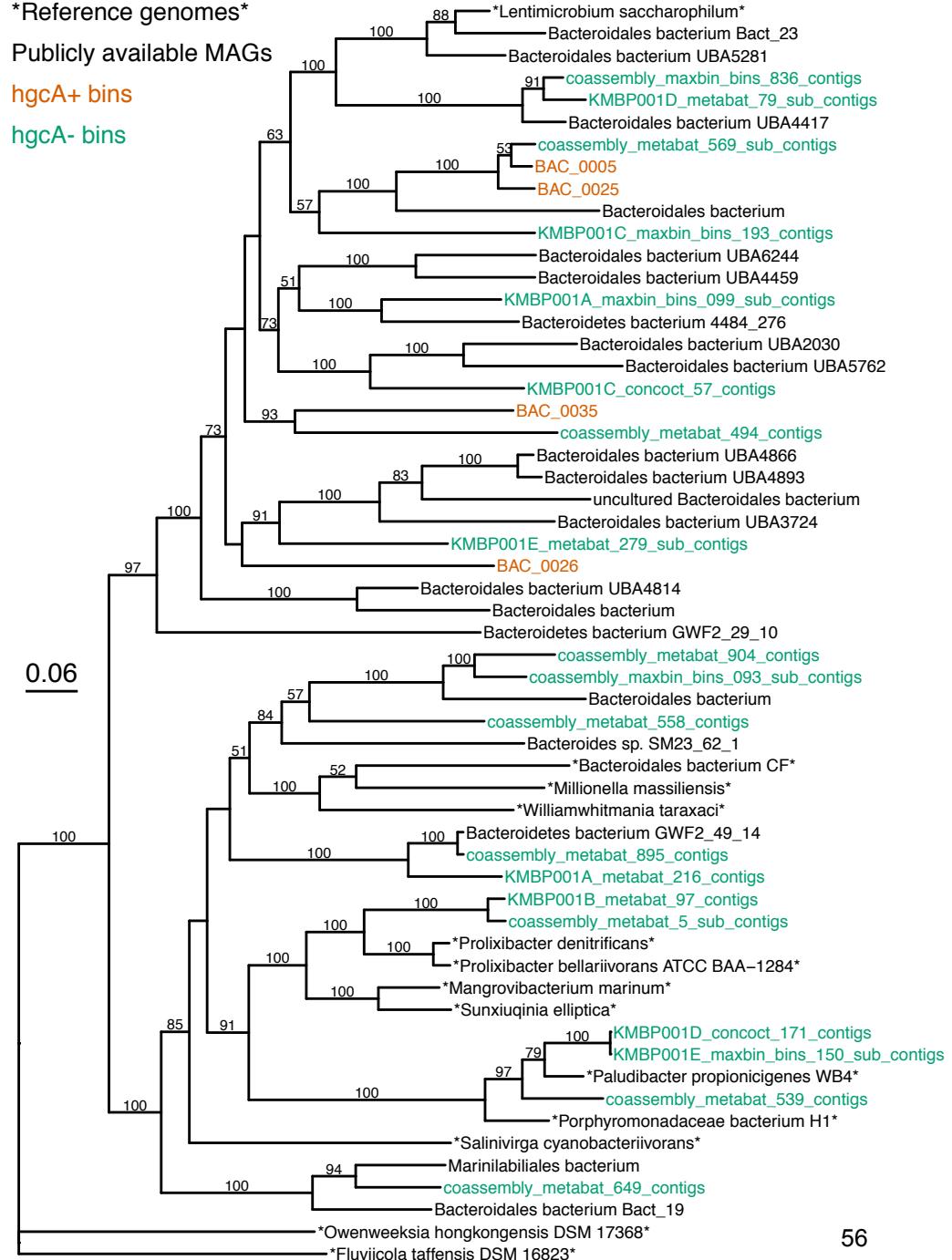
929

930

931

932

933


934

935

Reference genomes

Publicly available MAGs

hgcA+ bins
hgcA- bins

936 **Figure S7.** Maximum likelihood tree of rp16 gene from all Bacteroidales bins from this study.

937 Bin names in green are hgcA- bins, while those in orange are hgcA+ bins. Sequences in black are

938 bins downloaded from NCBI, and bin names surrounded by asterisks are reference genomes

939 from isolate cultures. The Bacteroidales tree was rooted using two Flavobacteriales reference

940 genomes (*Owenweeksia hongkongensis* DSM 17368 and *Fluviicola taffensis* DSM 16823).

941

942

943

944

945

946

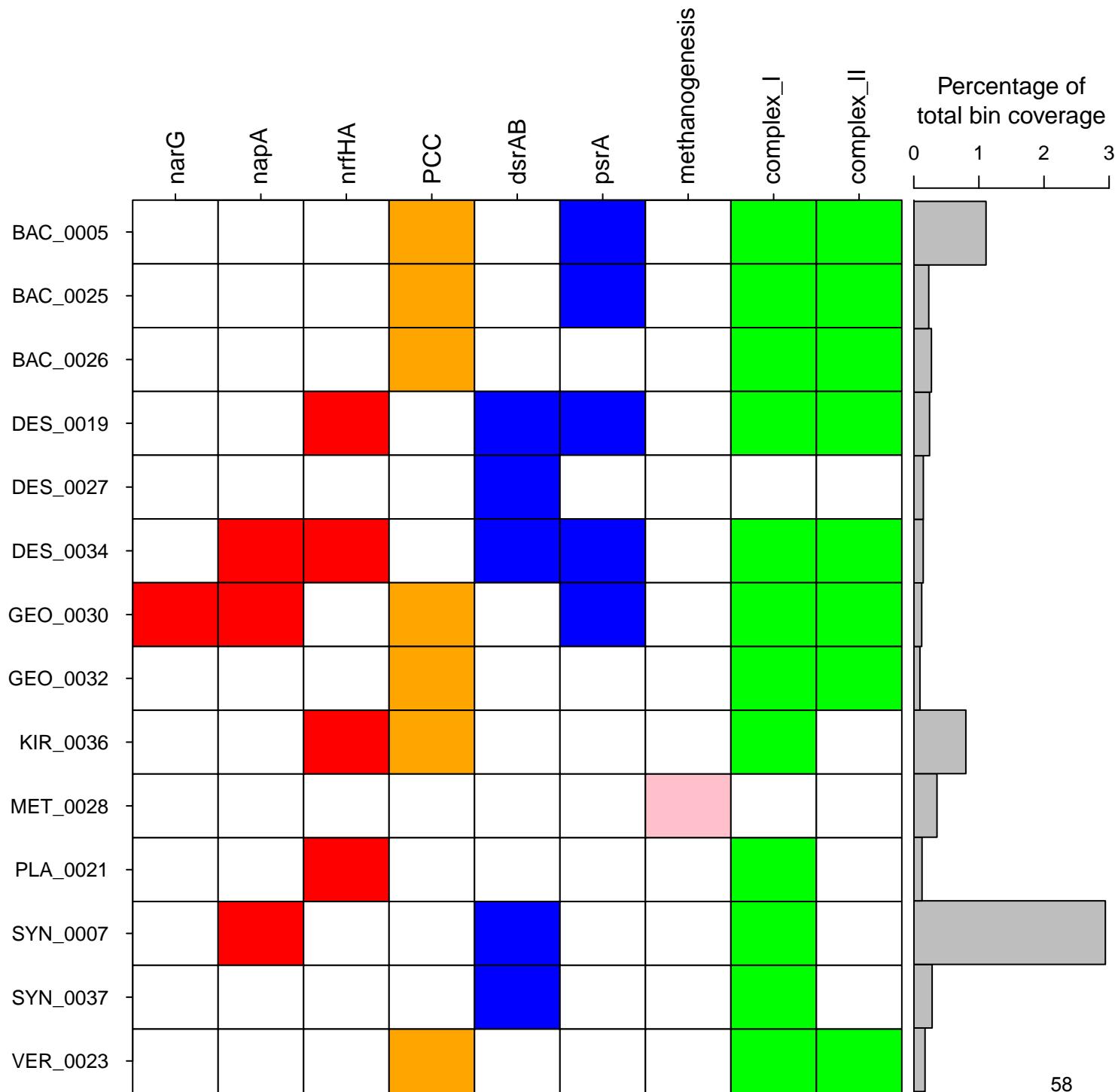
947

948

949

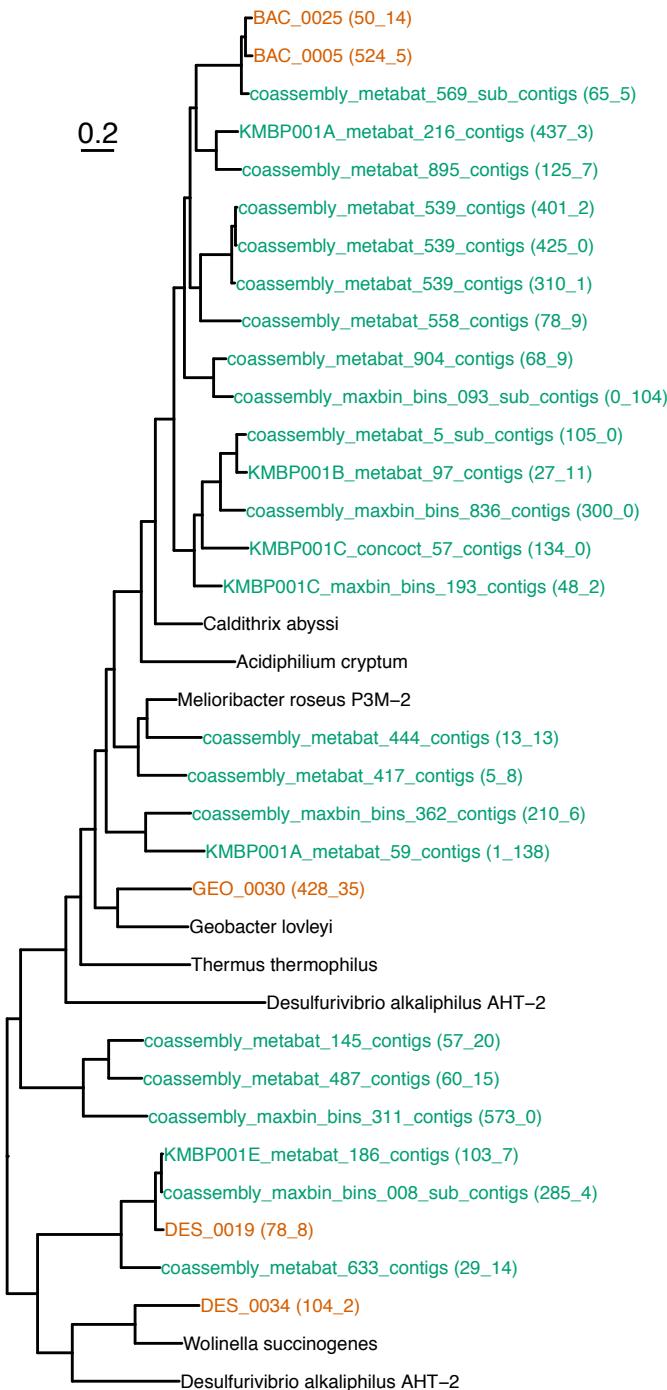
950

951

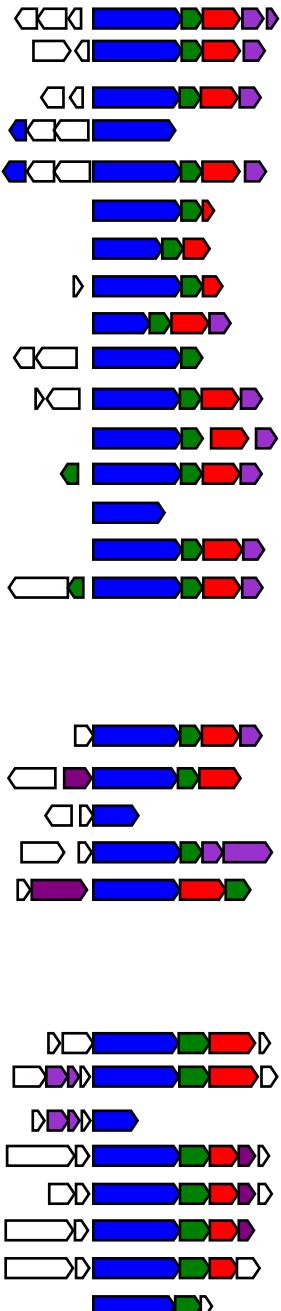

952

953

954


955

956



957 **Figure S8.** Heatmap of metabolic potential of hgcA+ bins with respiratory metabolic genes and
958 overall bin abundance. Dissimilatory nitrogen cycling genes are in red: narG = membrane-bound
959 nitrate reductase, napA = periplasmic nitrate reductase, nrfHA = cytochrome c nitrite reductase.
960 Genes for nitrite reduction by denitrification were not identified in any hgcA+ bins. Putative
961 external electron transfer proteins are in orange: PCC = Porin-cytochrome c complex. Sulfur
962 cycling genes in blue: dsrAB = dissimilatory sulfite reductase; psrA = polysulfide-reductase
963 homolog. Methanogenesis refers to the overall phenotype indicated by the bin. In green are
964 complex I (the 11 and/or 14 subunit version) and complex II of the electron transport chain.
965
966
967
968
969
970
971
972
973
974
975
976
977
978

Reference sequences
 Genes from hgcA+ bins
 Genes from hgcA- bins

MoOR	FCP
MAP	RDP

979 **Figure S9.** Phylogenetic tree of polysulfide reductase (psr) homologs from hgcA+ bins. In the
980 branch labels, the bin names are followed by the scaffold number and ORF number in
981 parentheses. Names in orange are from hgcA+ bins, green are from hgcA- bins. Names in black
982 correspond to reference sequences. The gene neighborhoods within 2500bp upstream and
983 downstream of the corresponding MoOR from this study are shown to the right of the tree. The
984 canonical complex iron–sulfur molybdoenzyme (CISM) architecture includes the MoOR (shown
985 in blue), a four-cluster protein (FCP) with four Fe-S clusters (shown in green), and a membrane
986 anchor protein (MAP), such as the nrfD subunit from the nitrite reductase complex NrfABCD
987 (shown in red). Rhodenase-domain proteins (RDP), involved in sulfur transport, are shown in
988 purple.

989

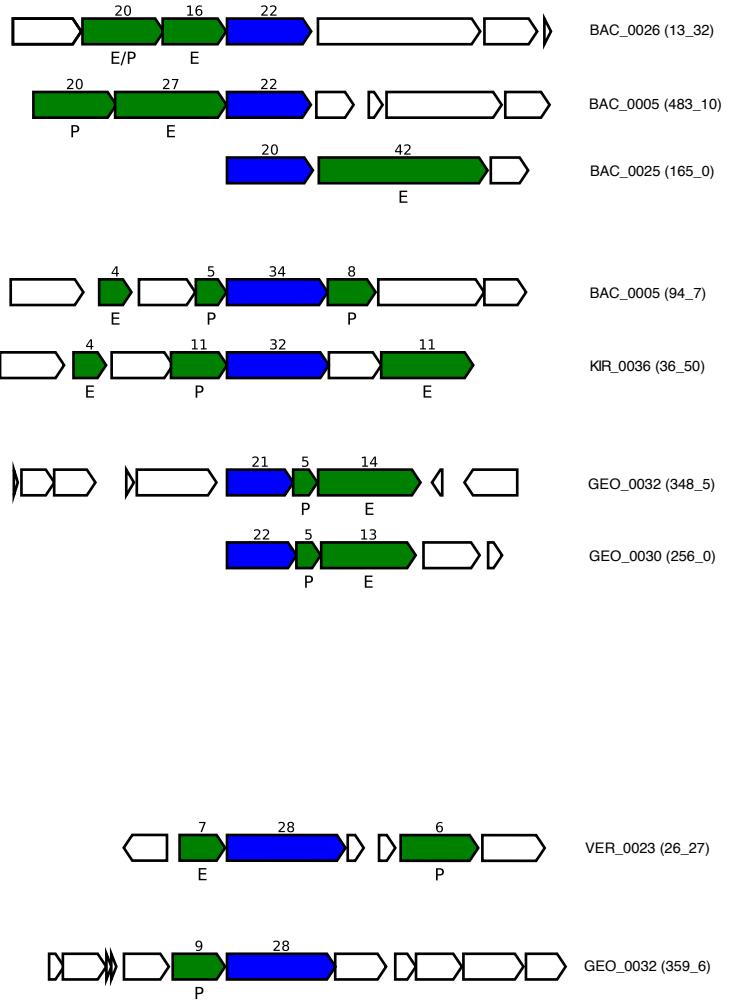
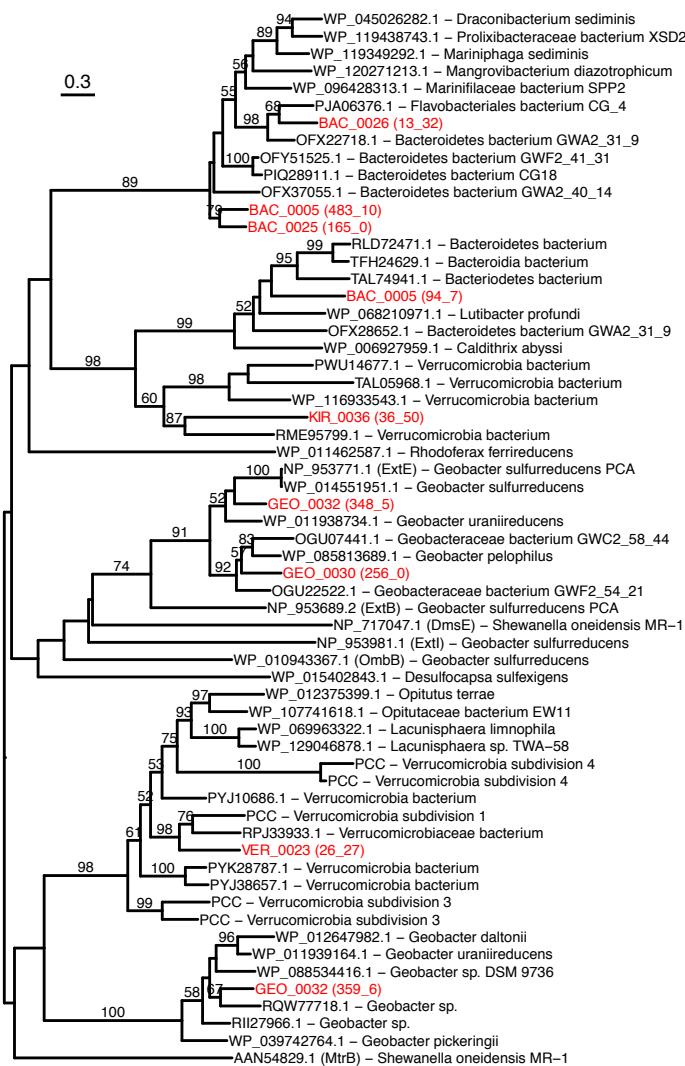
990

991

992

993

994



995

996

997

998

999

1000 **Figure S10.** Phylogenetic tree and gene neighborhoods of beta-barrel outer membrane protein
1001 (BB-OMP) genes from hgcA+ bins. Sequence names in red are from hgcA+ bins, and the
1002 following numbers in parentheses indicate the scaffold and ORF, respectively. The gene
1003 neighborhoods within 4000bp upstream and downstream of the BB-OMP genes are shown to
1004 the right of the tree. BB-OMP sequences are shown in blue, and the predicted number of
1005 transmembrane sheets within the protein are provided above the gene. Predicted multiheme
1006 cytochrome c proteins are shown in green, with the number of the heme-binding sites above
1007 the gene. The predicted localization of the protein is shown below the gene (E indicates
1008 extracellular, P indicates periplasmic).

1009

1010

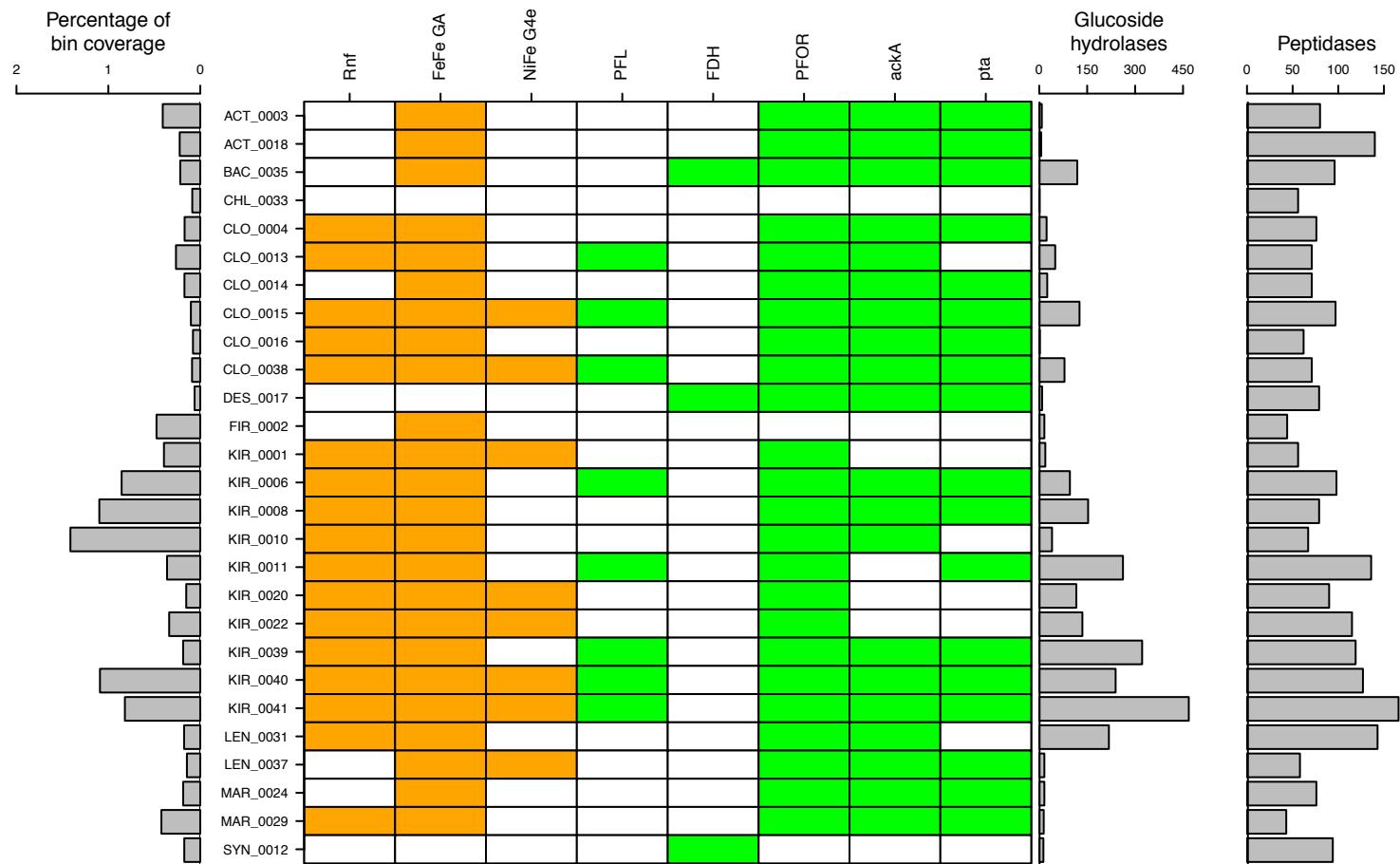
1011

1012

1013

1014

1015


1016

1017

1018

1019

1020

1021 **Figure S11.** Abundance and metabolic gene features of fermentative bins. The percentage of
1022 bin coverage is relative to the total coverage of all the bins from this study. Genes potentially
1023 involved in fermentative hydrogen evolution are shown in orange: Rnf = Rhodobacter nitrogen
1024 fixation complex; FeFe GA = [FeFe]-hydrogenase, group A; NiFe G4e = [NiFe]-hydrogenase,
1025 group 4e. Genes or gene clusters involved in fermentation of pyruvate are shown in green: PFL
1026 = pyruvate-formate lyase; FDH = formate dehydrogenase; PFOR = pyruvate-ferredoxin
1027 oxidoreductase; ackA = acetate kinase (ADP-forming); pta = phosphate acetyltransferase.

1028

1029

1030

1031

1032

1033

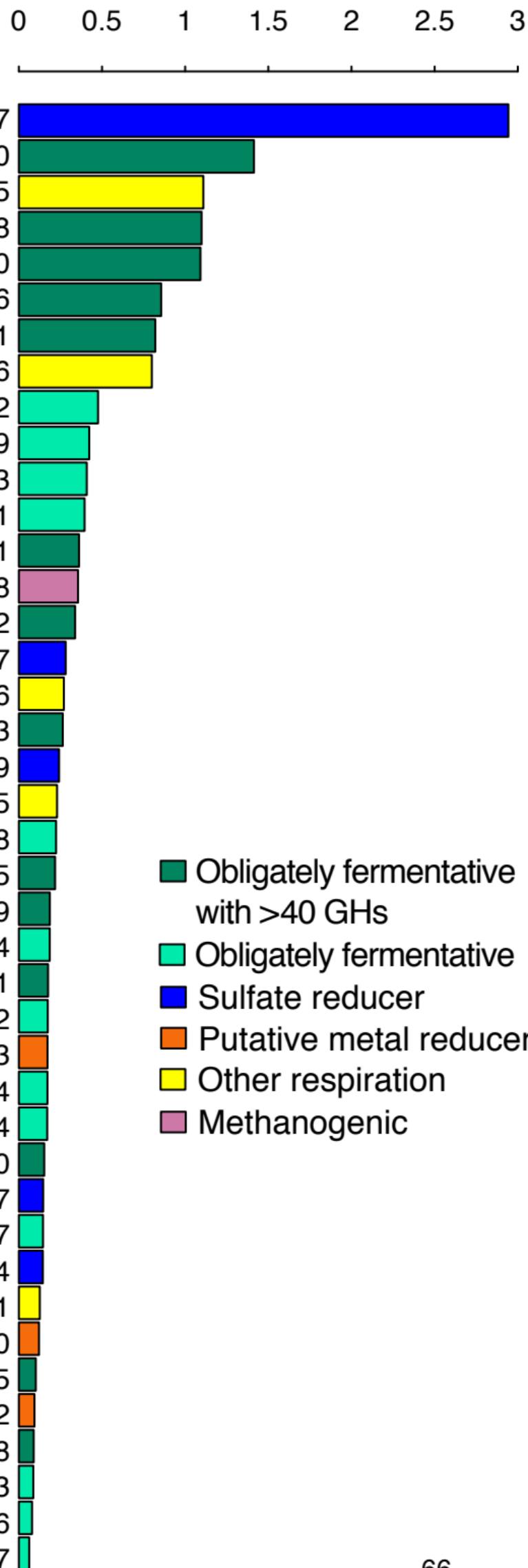
1034

1035

1036

1037

1038


1039

1040

1041

1042

Percent coverage of bins

1043 **Figure S12.** Rank abundance curve of hgcA+ bins across all five metagenomes, colored by
1044 predicted metabolic potential. The bin coverage is relativized to the total coverage of all the
1045 bins (both hgcA+ and hgcA-).

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

Metagenome Name	Metagenome ID	Date	Depth (m)	Sulfide (μM)	Manganese (μM)	Diss. MeHg (ng/L)	Part. MeHg (ng/L)	Diss. THg (ng/L)	Part. THg (ng/L)
CHE1	KMBP001B	2017-09-08	13.4	37	3.2	0.31	0.08	0.52	0.28
CHE2	KMBP001C	2017-10-04	14.5	52	4.3	0.38	0.06	0.66	0.36
CHE3	KMBP001E	2017-10-19	17.8	109	6.2	0.63	0.08	0.95	0.45
EUX1	KMBP001A	2017-09-08	22.2	121	4.8	0.33	0.01	1.67	0.20
EUX2	KMBP001D	2017-10-04	19.8	159	4.5	0.56	0.01	1.59	0.20

1065 **Table S1.** Summary of metadata and geochemical data associated with metagenomic samples.

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

Assembly ID	Number of scaffolds	N50	L50	Total assembly length (bp)	Total number of ORFs
CHE1	1,185,495	1630	201,484	1.603e+09	4,160,915
CHE2	1,241,217	1528	227,330	1.622e+09	4,254,833
CHE3	1,613,022	1471	306,579	2.057e+09	5,639,867
EUX1	1,319,783	1486	235,323	1.698e+09	4,641,626
EUX2	1,111,274	1307	227,854	1.327e+09	3,862,047
coassembly	3,908,837	1844	611,093	5.651e+09	13,999,347

1086 **Table S2.** Assembly statistics for each of the assemblies, after removing all scaffolds <500bp in

1087 length.

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108 **Data File Legends.**

1109 **Data File 1.** Bin information and statistics. Completeness and redundancy estimates are based

1110 on universal conserved proteins set in CheckM. Inferred taxonomy is based on a rp16-based

1111 ML-tree tree with a large reference data set. Coverage of each bin in each metagenome has

1112 been normalized to the number of reads in the smallest metagenome.

1113 **Data File 2.** Custom hgcA Hidden Markov Model, based on HgcA amino acid sequences from 30

1114 confirmed methylating isolates. See Supplementary Methods for details of HMM construction.

1115 **Data File 3.** Fasta file of dereplicated amino acid sequences of HgcA sequences identified in

1116 assemblies.

1117 **Data File 4.** Fasta file of dereplicated nucleic acid sequences of hgcA genes identified in

1118 assemblies.

1119 **Data File 5.** Aggregated information for each hgcA gene from the dereplicated set. Classification

1120 of hgcA is based on the bin phylogenies, for the binned genes, and on the HgcA phylogenies, for

1121 the unbinned genes. “Rogue taxa” indicates that the HgcA sequence was highly divergent and

1122 interfering with phylogenetic reconstruction. These sequences were classified using pplacer

1123 with the hgcA phylogeny. The hgcB column indicates whether or not there was an hgcB gene

1124 immediately downstream of the hgcA gene on the scaffold. The abundance of each sequence is

1125 presented as the percentage of hgcA coverage within a metagenome that each gene accounts

1126 for.