bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.003988; this version posted April 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Precur sor intensity-based label-fr ee quantification softwar e toolsfor proteomic and multi-
omic analysiswithin the Galaxy Platfor m.

Authors: SubinaMehta, Caleb Easterly, Ray Sajulga, Robert J. Millikin, Andrea Argentini,
Ignacio Eguinoa, Lennart Martens, Michadl R. Shortreed, LIoyd M. Smith, Thomas McGowan,
Praveen Kumar, James E. Johnson, Timothy J. Griffin and Pratik Jagtap

Affiliation:

Key wor ds. Proteomics, |abel-free quantification, Galaxy framework, workflows

Abstract:

For mass spectrometry-based peptide and protein quantification, label-free quantification
(LFQ) based on precursor mass peak (MS1) intensities is considered reliable due to its dynamic
range, reproducibility, and accuracy. In LFQ workflows, protein abundance changes are inferred
from peptide-level information, including microbial peptides (for metaproteomics) and peptides
carrying post-trandlational  modifications (for proteomics) and/or variant sequences (for
proteogenomics). Multi-omics studies (such as proteogenomics and metaproteomics) rely on
peptide detection and quantification to identify and quantify peptides that map to unique
proteoforms and metaproteins. The Galaxy for proteomics (Galaxy-P) platform has proven useful
for the development of accessible workflows to identify proteins in these complex multi-omic
studies. However, proteomics workflows within the Galaxy platform have lacked well-tested

|abel-free quantification tools.

In this study, our main goals were to evaluate two recently published open-source LFQ
tools and to implement them within the Galaxy platform, enabling their easy integration with
established workflows. These two tools, moFF and FlashLFQ, were selected based on their
described peptide quantification capabilities and amenability to Galaxy implementation. Through
rigorous testing and communication with the tools developers, we gained insights into the
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software features necessary for maximizing the performance of each tool. Software features
evaluated included: a) match-between-runs (MBR); b) using both Thermo .raw and HUPO
standards .mzML file formats as input for improved quantification; c) use of containers and/or
conda packages, d) parameters needed for analyzing large input datasets; and €) optimization and
validation of software performance. This work 1) establishes a process for software
implementation, optimization and validation within Galaxy; and 2) makes powerful new tools for
LFQ available which should prove highly useful for a variety of proteomics and multi-omics

applications employing the Galaxy platform.

I ntroduction:

Peptide- and protein-level quantification (either labeled or label-free) is routinely used in
mass spectrometry (MS)-based shotgun proteomics data analysis workflows to determine the
relative abundance of peptides or proteins in a given sample [1], including post-translationally
modified peptides [2] and amino acid sequence variants identified by proteogenomics[3,4]. In the
field of metaproteomics, where protein samples obtained from environmental microbiomes are
studied, the quantification of microbial peptides or ‘metapeptides (peptides obtained from
shotgun sequencing of microbial communities) is essential to perform taxonomic and functional

guantification of proteins expressed from the microbiome[5].

In the case of the label-free quantification (LFQ) methods, the peak intensity or area
under the curve of a detected peptide ion allows relative quantification of peptides across
different samples. LFQ [6,7] isa useful method for quantification when the introduction of stable
isotopes is impractical (for example, in human or animal model studies) or for applications such
as proteogenomics or metaproteomics which rely on peptide-level quantification. Currently,
there are several software packages available for LFQ analysis [8]. LFQ anaysis can be
performed by public domain software suites such as MaxQuant [9] and Skyline [10], or by
commercial software such as PEAKS [11], and Progenesis [12]. Although commercial and
actively-supported software offers reliability and ease of use, its usage comes with a cost and
usually includes canned features that are used for most standard datasets. Open-source software,
on the other hand, has the benefit of being amenable to testing and optimization for emerging

disciplinesto offer economical options for data analysis.
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In this study, through arigorous testing and evaluation process, we have incorporated and
optimized two established, open source tools — moFF [13] and FashLFQ [14] in the Galaxy
platform. In order to achieve this, we worked with the software developers of these tools and
tested features using two benchmark datasets—ABRF Proteomics Research Group (PRG) 2015
dataset [15] and a Universal Proteomics Standard (UPS) dataset [1]—and compared the outputs
with results from MaxQuant, a highly used standalone software platform capable of LFQ
analysis. Based on feedback, the tool developers for moFF and FlashLFQ made changes to
software capabilities which included a) using match-between-runs (MBR); b) ability to process
and analyze large input datasets, ¢) compatibility with a variety of input file formats. After this
rigorous evaluation and optimization, these tools were implemented in the accessible and
reproducible Galaxy[16] platform. Galaxy tools are maintained and developed by an

international community of developers (https.//galaxyproject.org/iuc/) so as to facilitate ease of

usage and maintain its contemporary status for any emerging software tools or applications. An
additional advantage of having these tools available via the Galaxy platform is the ability to
process the data in workflows, wherein multiple tools can be used in a sequential manner to
generate processed outputs from the input data. The Galaxy for proteomics (Galaxy-P) team has
developed workflows related to M S-based multi-omic studies such as, proteogenomics [17,18]
and metaproteomics [19,20]. Addition of these precursor intensity-based LFQ tools to the
existing workflows will facilitate peptide level quantification for multi-omics research studies, as

well as more standard proteomics applications.

As aresult of this study, we made two quantitative software tools available to researchers
via the Galaxy platform. These software are avallable via the Galaxy Tool Shed
(https://toolshed.g2.bx.psu.edu/view/galaxyp/proteomics moff/7af419c90f5f,
https.//toolshed.g2.bx.psu.edu/view/gal axyp/flashlfg/908ab13490dc ), GitHub and on Galaxy
public instances.

M ethods:

We used two datasets, a) an ABRF dataset [15] and b) a spiked-in benchmark UPS dataset
[1] to determine the accuracy of each tool with regards to their calculated protein fold-changes.
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We obtained the M S (.raw) data from publicly available repositories and converted them to MGF
(Mascot generic format) files using M SConvert (vendor support) [21] to make it compatible with
search algorithms within the Galaxy Platform. moFF and FlashLFQ processing were performed
within the Galaxy platform.

A) ABRF dataset:
The spiked-in dataset from the ABRF PRG 2015 study was used to determine the accuracy of

each software tool. This dataset, generated through the collaborative work of the ABRF
Proteomics Research Group (https://abrf.org/research-group/proteomics-research-group-prg)
contains four proteins added to human cell lysate samples. ABRF-1 (beta galactosidase from
Escherichia cali), ABRF-2 (lysozyme from Gallus gallus), ABRF-3 (amylase from Aspergillus
niger) and ABRF-4 (protein G from Streptococcus) [15]. Each sample contained the four
proteins at the same concentration, while the concentrations varied across the four samples (0
[blank/negative control], 20, 100 and 500 fmal).

B) Spiked-In UPS benchmark dataset:

To evauate these tools, we downloaded publicly available data [1]( PRIDE #5412
ProteomeX change repository PXD000279), wherein UPS1 and UPS2 standards (Sigma Aldrich)
were spiked into E. coli K12 strain samples. The UPS1 and UPS2 standards contain 48 human
proteins at either the same (5000 fmol, UPS1) or varying concentration (50000 fmol to 0.5 fmoal,
UPS2), respectively.

Peptide I dentification:
For both datasets, we used SearchGUI (SG) [22] (version 3.3.3.0) and Peptide Shaker

(PS) [23] (version 1.16.26) to search the MS/MS spectra against respective protein FASTA
databases along with contaminants from cRAP database (https.//www.thegpm.org/crap/).

Although SearchGUI has the option to use as many as 8 search algorithms, we used only four
search algorithms (X!tandem, OM SSA, MSGF+, and Comet) for this evaluation study.

For the spiked-in ABRF PRG dataset, a protein FASTA file was generated by merging
the UniProt human reference database with spiked-in proteins and contaminant proteins (73,737
protein sequences database generated on February 6th 2019). Search parameters used were
trypsin enzyme for digestion, where two missed cleavages were alowed. Carbamidomethylation
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of cysteine was selected as a fixed modification and methionine oxidation was selected as a
variable modification. The precursor mass tolerance was set to 10 ppm and the fragment mass
tolerance to 0.5 Da, with minimum charge as 2 and maximum charge of 6. For Peptide Shaker,
the false discovery rate (FDR) was set at 1% at the PSM, peptide and protein level, along with
filtering the peptide length ranging from 6-65 peptides.

For the spiked-in UPS dataset, the mass spectra were searched against a protein FASTA
database provided by Cox. et al., 2014 [1] - (4,494 protein sequences database generated on July
25th 2019). The parameters for SearchGUI-Peptide Shaker analysis were as follows: precursor
mass tolerance was set to 10 ppm and the fragment mass tolerance to 20 ppm with minimum and
maximum charge as 2 and 6 respectively.

For MaxQuant analysis (version 1.6.7.0), the built-in Andromeda search engine [24] was
used. The parameters for MaxQuant were matched with the SearchGUI-PeptideShaker search.
The fixed modification was set for carbamidomethylation of cysteine and oxidation of
methionine as a variable modification. The FDR was set at 1% and the MS/M S tolerance was set
at 10 ppm. The tabular output data from Peptide Shaker (PSM.tab) and Andromeda (msms.txt)

were used for protein quantification.

Quantification tools:
moFF and FlashLFQ, were initially tested outside of the Galaxy platform. We tested

various releases for moFF (versions 1.2.0 to 2.0.2) and FlashLFQ (versions 0.1.99 to 1.0.3) and
provided developers with feedback to improve software stability and data quality. We then
implemented these updated tools within Galaxy. The results from moFF (version 2.0.2) and
FlashLFQ (version 1.0.3) were then compared with MaxQuant (version 1.6.0.16), a widely used
LFQ quantification software suite. For testing, al the quantification tools were set at

monoisotopic tolerance of 10 ppm and run with or without MBR, where indicated.

Normalization and Protein Quantification:
After peptide-level precursor intensity values were generated, normalization was

performed using limma [25] and peptides were summarized into protein-level abundances with
Protein Expression Control Analysis (PECA) [26]. Specifically, the “normalizeBetweenArrays’
limma function was used for most normalization methods (i.e., scale, cyclic loess, and quantile).

For VSN (variance stabilizing normalization), the “normalizeVSN” limma function was used


https://doi.org/10.1101/2020.04.01.003988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.003988; this version posted April 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[27,28]. After normalization, PECA was used to combine the peptide-level measurements to
protein-level values for detection of differentially expressed proteins. These two tools were run
via custom R scripts, which can be accessed via the Supplementary Document 2 .

Results:

Both moFF and FlashLFQ are established software tools and contain useful features such
as amenability to Galaxy implementation, compatibility with existing Galaxy upstream and
downstream tools, ability to read .mzML and Thermo .raw file formats, open-source code, MBR
functionality, and results that can be easily evaluated with performance metrics.

moFF is an extensible quantification tool amenable to any operating system. The input
for moFF is peptide search engine output and Thermo .raw files and/or . mzML files; it performs
both MS/MS as well as MBR quantification. moFF tool also has a novel filtering option for
MBR peak intensities [29] . moFF has been wrapped in Galaxy (Figure 1A) using a Bioconda
package [30]. The Galaxy verson of moFF is available via Galaxy toolshed
(https://toolshed.g2.bx.psu.edu/repos/gal axyp/proteomics_moff), GitHub
(https://github.com/compomics/moFF), and Galaxy public instances (proteomics.usegalaxy.eu,
usegalaxy.be and z.umn.edu/metaproteomi csgateway).

FlashLFQ is a peptide and protein LFQ algorithm developed for proteomics data
analysis. It was developed to quantify peptides and proteins from any search tool, including
MetaMorpheus, which also performs PTM identification from MSMS data. It uses Bayesian
statistics to estimate the difference in the abundance of inferred proteins between samples,
though this feature was not evaluated here. FlashLFQ can normalize fractionated datasets by
using a bounded Nelder-Mead optimizer [31] to find a normalization coefficient for each
fraction, smilar to MaxLFQ. FlashLFQ was implemented in Galaxy (Fig 1B) within a
Singularity container [32] as FlashLFQ is a Windows application requiring the .NET core
framework for deployment in the Unix-based Galaxy environment. Singularity provides a secure
means of running such toolsin Galaxy. The Galaxy version of FlashLFQ is available via Galaxy
toolshed (https://toolshed.g2.bx.psu.edu/repos/gal axyp/flashlfq), GitHub
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(https.//github.com/smith-chem-wisc/FlashLFQ) and via Galaxy public  instances
(proteomics.usegalaxy.eu and z.umn.edu/metaproteomi csgateway).
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Figure 1): Galaxy interface of moFF and FlashLFQ: A) Bioconductor package of moFF is
wrapped within Galaxy and available via Galaxy toolshed
(https://tool shed.g2.bx.psu.edu/view/gal axyp/proteomics_moff/7af419c90f5f), and Galaxy public
instances (proteomics.usegal axy.eu).

B) A docker/singularity container of FlashLFQ is wrapped within Galaxy and available via
Galaxy toolshed (https://toolshed.g2.bx.psu.edu/view/gal axyp/flashlfg/908ab13490dc), and
Galaxy public instances (proteomics.usegalaxy.eu).

Relevant features of moFF and FlashLFQ, as well as the design of the evaluation study
are summarized in Figure 2. An essential aspect to this study was both of these tools being in
active development by groups amenable to collaboration, which greatly helped optimization
based tests and feedback from the Galaxy-P team members.

Database Search Database Search
MaxQuant SearchGUI/PeptideShaker

MaxQuant moFF

|

Accessibility to code  Closed Source, although publicly | Open Source Open Source
available for use

Operating System Windows and Linux ‘Windows and Linux Windows, Linux, OSX

Galaxy Yes, limited functionality Yes Yes

Implementation

Match Between Runs Yes Yes Yes

Outputs Multiple tabular outputs with Log file, Quantitation outputs Quantified Base Sequence,
peptide and protein quantitation and Peptide summary Modified Sequence, Peaks and
outputs Protein tabular files.

Time for Analysis ~ 34 mins for 8 datafiles * ~1 hour for 8 datafiles* ~15 mins for 8 datafiles*

Figure 2. Experimental Design of the evaluation study: Spectra files are converted to MGF
before mass spectra are matched with peptides using respective search engines. Each of the
guantification tools use RAW files and the peptide identification tabular output as inputs. The
figure also shows features of each tool. The outputs from all of the tools were then compared
against each other.
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To generate peptide identification inputs for moFF and FlashL FQ, datasets were searched
against appropriate protein databases using SearchGUI/PeptideShaker. The speed and accuracy
of FlashLFQ and moFF were evaluated in comparison to MaxQuant, a popular software tool
used for LFQ. For MaxQuant, searches were performed by MaxQuant’s built-in Andromeda
search algorithm. All three software programs have a MBR feature, where unidentified peaks are
“matched” to identify peaks in other runs based on similar m/z and retention time. MaxLFQ, an
algorithm within MaxQuant, normalizes raw intensities and also aggregates them into protein
groups [1]. For moFF and FlashLFQ, limma was used to normalize peptide intensities and PECA
was used to determine protein fold-changes and associated p-values. The limma tool within
Galaxy implements different normalization techniques such as quantile, VSN, cyclicLOESS, and
scale normalization. Users can choose between these normalization methods. FlashLFQ also has

built-in normalization and protein quantification functions which we have used in this study.
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Figure 3A) Effect of MBR after software version updates: The logl0 values of the intensities
(Blue bars) from each of the four ABRF spiked-in proteins (ABRF-1: Beta Galactosidase from E.
coli, ABRF-2: Lysozyme from Gallus gallus, ABRF-3: Amylase from Aspergillus, ABRF-4:
Protein G Streptococcus) were plotted. The results from prior versions of moFF (v1.2.1) and
FlashLFQ (v0.1.99) (before) shows that MBR detects ABRF proteins (shown in red) in the negative
control sample in both software. The results from the current versions of moFF (v2.0.2) and
FlashLFQ (v1.0.3.0) implemented in Galaxy (after), shows that the MBR feature does not detect
ABREF proteins in the negative control.

B) Accuracy of fold-change estimation: For evaluating the accuracy of quantified results, we
estimated the fold change of the spiked-in proteins in the 500 fmol sample as compared to 100
fmol sample. The Root Mean Squared Log Error (RMSLE) was calculated for fold change
estimation. For this dataset, moFF with MBR displayed significantly higher RMSLE value,
whereas FlashLFQ's MBR performed similarly to MaxQuant’s MBR.

After ascertaining that moFF and FlashLFQ results correlate well with MaxQuant results
(Supplementary Figure S1), we set out to evaluate the MBR feature of the software tools. For
this, we used the ABRF PRG datasets, with four spiked-in proteins at 3 different concentrations
(20 fmol, 100 fmol and 500 fmol) and a negative control (see methods). The spiked-in proteins
should not be detected in the negative control, either with or without MBR. We observed that
moFF and FHashLFQ outputs showed non-zero intensity values for the spiked-in proteins in
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blank control samples if MBR was enabled (Figure 3A, left). We worked with the developers to
improve their MBR algorithms so that intensity values for these proteins in the blank control
samples were correctly reported as zero (Figur e 3A, right).

The 500 fmol and 100 fmol datasets from the ABRF dataset were used to determine the
fold-change accuracy (Fig 3B). In order to determine the accuracy of the fold-change, root mean
squared log error (RMSLE) [33] was calculated.

ZI,-V=1(10.9'10 r; —logqoT,)?
N

Where, r; isthetrue ratio, 7; isthe estimated ratio and N is the number of proteins identified via
sequence database searching of the sample

RMSLE =

Root mean squared log error is a metric to evaluate the difference between predicted and
observed values. In this case, the values being compared are the predicted (known) fold-changes
and the observed fold-changes. RMSLE being an error based metric provides the true picture of
prediction quality, however, deciding a suitable threshold value is challenging. The objective
was to obtain a RMSLE value closer to zero for al the tools. The RMSLE values for the three
tools are shown in Figure 3B, with the MBR feature enabled. We observed that moFF with
MBR had dightly higher error compared to the other tools. MaxQuant’s MBR and FlashLFQ's
MBR perform quite similarly, though all three tools show low error when the MBR is enabled.

Although MaxLFQ and FlashLFQ have their own in-built methods for normalizing
peptide abundance, for a more direct comparison of moFF and FlashLFQ performance we
normalized the peptide intensity levels using limma and obtained differentially expressed
proteins through the PECA bioconductor package. Normalized peptide intensity values from
moFF and FashLFQ were input into PECA, wherein, the tool calculates the p-values of the
peptide level data and then groups the values into protein level data. The PECA output was then
compared with MaxQuant values using the UPS benchmark dataset. For this, quantitative
information for the 48 proteins from the UPS dataset was extracted using an R-script to generate
atabular output with fold-change values.
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The fold-change accuracy of all quantified UPS proteins after normalization was
calculated by comparing the estimated protein fold-change with the true fold-change using the

RMSLE (Figure4A).
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Figure 4A) Fold-change accuracy (MBR) of all proteins: After normalization, the estimated
protein abundance ratios for al the identified UPS proteins were compared to the true abundance
ratios, using the Root mean squared log error (RMSLE). The plot represents the RMSLE values
using different normalization methods. Note that LFQ values represent FlashLFQ's and
MaxQuant’s inbuilt normalization value. The value on the top of the bars denotes the number of
proteins that were quantified.

B) Fold change accuracy (MBR) of proteinswith similar estimated ratios: In total there are
48 UPS proteins, we classified the UPS proteins into different groups based on the UPS2/UPS1
ratio estimation, the true ratios run from 10 to 10* . The value on the top of the bars denotes the
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number of proteins that were quantified using each normalization method. The RMSLE of the
intensity ratio was used to measure the accuracy of the estimated fold change.

Figure 4A shows the comparison of different normalizations using the MBR values.
Although the bar graph shows that MaxQuant’s MaxLFQ performs the best compared to all, it
does so at the cost of the number of proteins quantified. However, we noticed that FlashLFQ’s
MBR with its in-built normalization (light blue bar in Figure 4A) performed better overall in
terms of quantification and the number of proteins identified. Meanwhile, moFF and FlashLFQ
provide higher numbers of quantified proteins while still maintaining low RMSLE values. We
also performed comparison studies of MBR vs. no MBR, the results of which are shown in
Supplementary Figure S3A. We also found that moFF and FlashLFQ quantify similar numbers
of peptides across the ABRF and UPS datasets (Supplementary Figures S2).

After evaluating the RMSLE for all proteins, we estimated the accuracy for similarly
abundant UPS proteins (Figure 4B). We categorized the UPS standards by their concentration
ratio (UPS2/UPSL) which resulted in 6 different categories (i.e. ratios of 1 to 0.0001). The results
showed that MaxQuant quantification works optimally for high and medium abundant proteins.
However, for low abundance proteins the fold-accuracy is lower, presumably because of missing
intensity values. Another important observation is that MaxLFQ denotes a smaller error
compared to the other tools in the low abundance samples, but quantifies fewer proteins. An
evaluation study for MBR vs noMBR was also performed showing a similar trend represented in

Supplementary figure S3B.

After evaluation of the moFF and FlashLFQ tools, we worked with the developers of
these tools to implement their optimized software in Galaxy, enabling integration into diverse
MS-based proteomics workflows and promoting their usage by the Galaxy community. Our
implementation will allow the users to choose their choice of tool and normalization (Fig $4)

which will benefit their research.
Discussion:

Protein and peptide-level quantification has been used by proteomics researchers to
determine how the proteome responds to biological perturbation [34]. In particular, precursor-
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intensity based LFQ has enabled researchers to perform quantitative proteogenomics analyses
[35]. Quantitative changes in the proteome can also be correlated with transcript abundance
changes [36] to get a more complete picture of how an organism responds to a stimulus. For
example, in cancer proteogenomics studies, these abundance measurements help identify
differential expression patterns of variant peptides that may have functional significance in
cancer [37,38].

Peptide-level quantification also aids in functional studies of microbial communities and
microbiomes using metaproteomics. For example, in metaproteomics studies, metapeptides or
metaproteins detected from environmental [39] or host-derived samples [40] can be quantified to
shed light on the dynamics of the taxa, biological function, and their abundance [41]. Our group
has developed and optimized Galaxy-based tools and workflows for proteogenomics [42] and
metaproteomics analyses [19,20]. Tools implemented through this study will extend these
workflows to enable quantification of metapeptides and/or metaproteins.

In our analyses, the three LFQ tools — moFF, FlashLFQ, and MaxQuant - correlate well
in their results according to our evaluation. In this study, we have added moFF and FlashLFQ to
the Galaxy framework, which not only facilitates the dissemination of these tools, but also
enables automated data analysis by using them within workflows [16]. We also highlight the
importance of the process of careful user evaluation, feedback to developers and optimization of
the tools and workflows. Preliminary testing was performed on the command line or GUI
versions of the tool. These tools were then packaged into the Galaxy platform, where results
were compared to the command-line/GUI versions and also optimized more usage in automated

workflows.

Open-source software usage has faced challenges due to dependencies such as operating
system (Windows, Linux, OSX), language or platforms (Python, C++, Java), lack of adhering to
HUPO standards [43] , and installation or usability issues [44]. To overcome these issues, the
Galaxy-P project, as well as others in the Galaxy community, have sought collaborations with
many research groups that have developed these tools, following a protocol which includes
defining key input and output data types, establishing key operating parameters for the Galaxy
tool, overcoming operating system compatibility issues (e.g., Singularity containers for Windows
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tools), along with rigorous testing and optimization. This collaborative and iterative process of
development and optimization ensures the software performs accurately and efficiently within
the Galaxy platform.

Ideally, software tools which are UNIX based — such as moFF - are easier for deployment
within Galaxy. We also demonstrate here that tools such as FlashLFQ can be packaged within a
Singularity container to enable easy and secure implementation within Galaxy. MaxQuant,
which is a popular, public-domain proteomics software package, is available in both Windows
and Linux-compatible versions [45]. Although in early development and testing phase, the LFQ
module that uses M S1 precursor intensity data within MaxQuant (MaxLFQ) was made available
within Galaxy toolshed (https://toolshed.g2.bx.psu.edu/view/gal axyp/maxquant/175e062b6al7).
Once fully tested and evaluated, accessibility to this software via the Galaxy platform will offer
even more choices for precursor-intensity based quantification. Offering users a choice of
multiple validated software tools also highlights benefits of a workflow engine such as Galaxy,
where users can easily develop parallel workflows using different combinations of tools to

determine methods that provide optimal results based on user requirements.

In our tests, we observed that FlashLFQ has a faster runtime as compared to the other two
tools. MaxQuant processing time is longer, presumably since it performs peptide identification
and quantitation simultaneously. For example, on the same computing device, the UPS dataset
was processed by FlashLFQ in approximately 15 mins for quantification only, whereas
MaxQuant and moFF took 34 minutes and 3 hours respectively. Again, our evaluation and
availability of these tools within a unified platform such as Galaxy offers users a choice for their

workflows where speed of analysis can also be considered.

This study demonstrates a successful collaborative effort in software tool development
and dissemination, which is a hallmark of the Galaxy community and the Galaxy-P project [19].
This community-driven approach brings together users and software developers who work
together to validate and make the tool accessible and usable for other researchers across the
world. The study described here provides a model of success for the process used to ultimately
provide optimized, well-validated tools for community use. We did not seek a goal to determine
the single best tool for LFQ use, but rather focused on offering users a choice of validated
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guantification tools amenable to customizable analytical workflows. In addition to our work
here, others from the Galaxy community are also working on integrating tools within the
MaxQuant suite http://www.mol-med.uni-freiburg.de/mom-en/schilling/pub), which will extend

the choices for LFQ quantification available. As a result of this study, Galaxy users can now
confidently use two rigorously validated LFQ software tools (moFF and FlashLFQ) for ther
quantitative proteomic studies. We are currently working on incorporating the quantitative
capabilities of moFF and FashLFQ within existing metaproteomics and proteogenomics
workflows, so that they can be used by the research community in their quantitative multi-omics

studies.
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All the data files used for this study are uploaded onto a Zenodo repository at

https://doi.org/10.5281/zenodo.3733904, we have provided the input and output files of our data

analysis. Supplementary 2 ( https://github.com/jraysajulga/quant-tools-analysis ) is the GitHub

repository of the Rscripts. The original dataset for UPS study is available via ProteomeXchange
identifier-PXD000279 (spiked-in Universal Proteomic Standard).
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