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Abstract: 

 

For mass spectrometry-based peptide and protein quantification, label-free quantification 

(LFQ) based on precursor mass peak (MS1) intensities is considered reliable due to its dynamic 

range, reproducibility, and accuracy. In LFQ workflows, protein abundance changes are inferred 

from peptide-level information, including microbial peptides (for metaproteomics) and peptides 

carrying post-translational modifications (for proteomics) and/or variant sequences (for 

proteogenomics). Multi-omics studies (such as proteogenomics and metaproteomics) rely on 

peptide detection and quantification to identify and quantify peptides that map to unique 

proteoforms and metaproteins. The Galaxy for proteomics (Galaxy-P) platform has proven useful 

for the development of accessible workflows to identify proteins in these complex multi-omic 

studies. However, proteomics workflows within the Galaxy platform have lacked well-tested 

label-free quantification tools. 

 

In this study, our main goals were to evaluate two recently published open-source LFQ 

tools and to implement them within the Galaxy platform, enabling their easy integration with 

established workflows. These two tools, moFF and FlashLFQ, were selected based on their 

described peptide quantification capabilities and amenability to Galaxy implementation. Through 

rigorous testing and communication with the tools’ developers, we gained insights into the 
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software features necessary for maximizing the performance of each tool. Software features 

evaluated included: a) match-between-runs (MBR); b) using both Thermo .raw and HUPO 

standards .mzML file formats as input for improved quantification; c) use of containers and/or 

conda packages; d) parameters needed for analyzing large input datasets; and e) optimization and 

validation of software performance. This work 1) establishes a process for software 

implementation, optimization and validation within Galaxy; and 2) makes powerful new tools for 

LFQ available which should prove highly useful for a variety of proteomics and multi-omics 

applications employing the Galaxy platform.  

 
Introduction: 
 

Peptide- and protein-level quantification (either labeled or label-free) is routinely used in 

mass spectrometry (MS)-based shotgun proteomics data analysis workflows to determine the 

relative abundance of peptides or proteins in a given sample [1], including post-translationally 

modified peptides [2] and amino acid sequence variants identified by proteogenomics[3,4]. In the 

field of metaproteomics, where protein samples obtained from environmental microbiomes are 

studied, the quantification of microbial peptides or ‘metapeptides’ (peptides obtained from 

shotgun sequencing of microbial communities) is essential to perform taxonomic and functional 

quantification of proteins expressed from the microbiome[5].  

 

In the case of the label-free quantification (LFQ) methods, the peak intensity or area 

under the curve of a detected peptide ion allows relative quantification of peptides across 

different samples. LFQ [6,7] is a useful method for quantification when the introduction of stable 

isotopes is impractical (for example, in human or animal model studies) or for applications such 

as proteogenomics or metaproteomics which rely on peptide-level quantification. Currently, 

there are several software packages available for LFQ analysis [8]. LFQ analysis can be 

performed by  public domain software suites such as MaxQuant [9] and Skyline [10], or by 

commercial software such as PEAKS [11], and Progenesis [12]. Although commercial and 

actively-supported software offers reliability and ease of use, its usage comes with a cost and 

usually includes canned features that are used for most standard datasets. Open-source software, 

on the other hand, has the benefit of being amenable to testing and optimization for emerging 

disciplines to offer economical options for data analysis.  
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In this study, through a rigorous testing and evaluation process, we have incorporated and 

optimized two established, open source tools – moFF [13] and FlashLFQ [14] in the Galaxy 

platform. In order to achieve this, we worked with the software developers of these tools and 

tested features using two benchmark datasets—ABRF Proteomics Research Group (PRG) 2015 

dataset [15] and a Universal Proteomics Standard (UPS) dataset [1]—and compared the outputs 

with results from MaxQuant, a highly used standalone software platform capable of LFQ 

analysis. Based on feedback, the tool developers for moFF and FlashLFQ made changes to 

software capabilities which included a) using match-between-runs (MBR); b) ability to process 

and analyze large input datasets; c) compatibility with a variety of input file formats. After this 

rigorous evaluation and optimization, these tools were implemented in the accessible and 

reproducible Galaxy[16] platform. Galaxy tools are maintained and developed by an 

international community of developers (https://galaxyproject.org/iuc/) so as to facilitate ease of 

usage and maintain its contemporary status for any emerging software tools or applications. An 

additional advantage of having these tools available via the Galaxy platform is the ability to 

process the data in workflows, wherein multiple tools can be used in a sequential manner to 

generate processed outputs from the input data. The Galaxy for proteomics (Galaxy-P) team has 

developed workflows related to MS-based multi-omic studies such as, proteogenomics [17,18] 

and metaproteomics [19,20]. Addition of these precursor intensity-based LFQ tools to the 

existing workflows will facilitate peptide level quantification for multi-omics research studies, as 

well as more standard proteomics applications.  

 
As a result of this study, we made two quantitative software tools available to researchers 

via the Galaxy platform. These software are available via the Galaxy Tool Shed 

(https://toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_moff/7af419c90f5f, 

https://toolshed.g2.bx.psu.edu/view/galaxyp/flashlfq/908ab13490dc ), GitHub and on Galaxy 

public instances. 

 
Methods: 
 

We used two datasets, a) an ABRF dataset [15] and b) a spiked-in benchmark UPS dataset 

[1] to determine the accuracy of each tool with regards to their calculated protein fold-changes. 
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We obtained the MS (.raw) data from publicly available repositories and converted them to MGF 

(Mascot generic format) files using MSConvert (vendor support) [21] to make it compatible with 

search algorithms within the Galaxy Platform. moFF and FlashLFQ processing were performed 

within the Galaxy platform. 

 

A) ABRF dataset: 
The spiked-in dataset from the ABRF PRG 2015 study was used to determine the accuracy of 

each software tool. This dataset, generated through the collaborative work of the ABRF 

Proteomics Research Group (https://abrf.org/research-group/proteomics-research-group-prg) 

contains four proteins added to human cell lysate samples: ABRF-1 (beta galactosidase from 

Escherichia coli), ABRF-2 (lysozyme from Gallus gallus), ABRF-3 (amylase from Aspergillus 

niger) and ABRF-4 (protein G from Streptococcus) [15]. Each sample contained the four 

proteins at the same concentration, while the concentrations varied across the four samples (0 

[blank/negative control], 20, 100 and 500 fmol). 

 

B) Spiked-In UPS benchmark dataset: 

To evaluate these tools, we downloaded publicly available data [1]( PRIDE #5412; 

ProteomeXchange repository PXD000279), wherein UPS1 and UPS2 standards (Sigma Aldrich) 

were spiked into E. coli K12 strain samples. The UPS1 and UPS2 standards contain 48 human 

proteins at either the same (5000 fmol, UPS1) or varying concentration (50000 fmol to 0.5 fmol, 

UPS2), respectively. 

 
Peptide Identification: 

For both datasets, we used SearchGUI (SG) [22] (version 3.3.3.0) and Peptide Shaker 

(PS) [23] (version 1.16.26) to search the MS/MS spectra against respective protein FASTA 

databases along with contaminants from cRAP database (https://www.thegpm.org/crap/). 

Although SearchGUI has the option to use as many as 8 search algorithms, we used only four 

search algorithms (X!tandem, OMSSA, MSGF+, and Comet) for this evaluation study.  

For the spiked-in ABRF PRG dataset, a protein FASTA file was generated by merging 

the UniProt human reference database with spiked-in proteins and contaminant proteins (73,737 

protein sequences database generated on February 6th 2019). Search parameters used were 

trypsin enzyme for digestion, where two missed cleavages were allowed. Carbamidomethylation 
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of cysteine was selected as a fixed modification and methionine oxidation was selected as a 

variable modification. The precursor mass tolerance was set to 10 ppm and the fragment mass 

tolerance to 0.5 Da, with minimum charge as 2 and maximum charge of 6. For Peptide Shaker, 

the false discovery rate (FDR) was set at 1% at the PSM, peptide and protein level, along with 

filtering the peptide length ranging from 6-65 peptides. 

For the spiked-in UPS dataset, the mass spectra were searched against a protein FASTA 

database provided by Cox. et al., 2014 [1] - (4,494 protein sequences database generated on July 

25th 2019). The parameters for SearchGUI-Peptide Shaker analysis were as follows: precursor 

mass tolerance was set to 10 ppm and the fragment mass tolerance to 20 ppm with minimum and 

maximum charge as 2 and 6 respectively.  

For MaxQuant analysis (version 1.6.7.0), the built-in Andromeda search engine [24] was 

used. The parameters for MaxQuant were matched with the SearchGUI-PeptideShaker search. 

The fixed modification was set for carbamidomethylation of cysteine and oxidation of 

methionine as a variable modification. The FDR was set at 1% and the MS/MS tolerance was set 

at 10 ppm. The tabular output data from Peptide Shaker (PSM.tab) and Andromeda (msms.txt) 

were used for protein quantification. 

 
Quantification tools: 

moFF and FlashLFQ, were initially tested outside of the Galaxy platform. We tested 

various releases for moFF (versions 1.2.0 to 2.0.2) and FlashLFQ (versions 0.1.99 to 1.0.3) and 

provided developers with feedback to improve software stability and data quality. We then 

implemented these updated tools within Galaxy. The results from moFF (version 2.0.2) and 

FlashLFQ (version 1.0.3) were then compared with MaxQuant (version 1.6.0.16), a widely used 

LFQ quantification software suite. For testing, all the quantification tools were set at 

monoisotopic tolerance of 10 ppm and run with or without MBR, where indicated.  

 

Normalization and Protein Quantification:  
After peptide-level precursor intensity values were generated, normalization was 

performed using limma [25]  and peptides were summarized into protein-level abundances with 

Protein Expression Control Analysis (PECA) [26]. Specifically, the “normalizeBetweenArrays” 

limma function was used for most normalization methods (i.e., scale, cyclic loess, and quantile). 

For VSN (variance stabilizing normalization), the “normalizeVSN” limma function was used 
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[27,28]. After normalization, PECA was used to combine the peptide-level measurements to 

protein-level values for detection of differentially expressed proteins. These two tools were run 

via custom R scripts, which can be accessed via the Supplementary Document 2 . 

 
Results: 
 

Both moFF and FlashLFQ are established software tools and contain useful features such 

as amenability to Galaxy implementation, compatibility with existing Galaxy upstream and 

downstream tools, ability to read .mzML and Thermo .raw file formats, open-source code, MBR 

functionality, and results that can be easily evaluated with performance metrics.  

 

 moFF is an extensible quantification tool amenable to any operating system. The input 

for moFF is peptide search engine output and Thermo .raw files and/or .mzML files; it performs 

both MS/MS as well as MBR quantification. moFF tool also has a novel filtering option for 

MBR peak intensities [29] . moFF has been wrapped in Galaxy (Figure 1A) using a Bioconda 

package [30]. The Galaxy version of moFF is available via Galaxy toolshed 

(https://toolshed.g2.bx.psu.edu/repos/galaxyp/proteomics_moff), GitHub 

(https://github.com/compomics/moFF), and Galaxy public instances (proteomics.usegalaxy.eu, 

usegalaxy.be and z.umn.edu/metaproteomicsgateway).  

 

FlashLFQ is a peptide and protein LFQ algorithm developed for proteomics data 

analysis. It was developed to quantify peptides and proteins from any search tool, including 

MetaMorpheus, which also performs PTM identification from MS/MS data. It uses Bayesian 

statistics to estimate the difference in the abundance of inferred proteins between samples, 

though this feature was not evaluated here. FlashLFQ can normalize fractionated datasets by 

using a bounded Nelder-Mead optimizer [31] to find a normalization coefficient for each 

fraction, similar to MaxLFQ. FlashLFQ was implemented in Galaxy (Fig 1B) within a 

Singularity container [32] as FlashLFQ is a Windows application requiring the .NET core 

framework for deployment in the Unix-based Galaxy environment. Singularity provides a secure 

means of running such tools in Galaxy.  The Galaxy version of FlashLFQ is available via Galaxy 

toolshed (https://toolshed.g2.bx.psu.edu/repos/galaxyp/flashlfq), GitHub 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.04.01.003988doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.003988
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

(https://github.com/smith-chem-wisc/FlashLFQ) and via Galaxy public instances 

(proteomics.usegalaxy.eu and z.umn.edu/metaproteomicsgateway). 
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Figure 1): Galaxy interface of moFF and FlashLFQ: A) Bioconductor package of moFF is 
wrapped within Galaxy and available via Galaxy toolshed 
(https://toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_moff/7af419c90f5f), and Galaxy public 
instances (proteomics.usegalaxy.eu). 
B) A docker/singularity container of FlashLFQ is wrapped within Galaxy and available via 
Galaxy toolshed (https://toolshed.g2.bx.psu.edu/view/galaxyp/flashlfq/908ab13490dc), and 
Galaxy public instances (proteomics.usegalaxy.eu). 
 

Relevant features of moFF and FlashLFQ, as well as the design of the evaluation study 

are summarized in Figure 2. An essential aspect to this study was both of these tools being in 

active development by groups amenable to collaboration, which greatly helped optimization 

based tests and feedback from the Galaxy-P team members. 

 
Figure 2. Experimental Design of the evaluation study: Spectra files are converted to MGF 
before mass spectra are matched with peptides using respective search engines. Each of the 
quantification tools use RAW files and the peptide identification tabular output as inputs. The 
figure also shows features of each tool. The outputs from all of the tools were then compared 
against each other. 
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To generate peptide identification inputs for moFF and FlashLFQ, datasets were searched 

against appropriate protein databases using SearchGUI/PeptideShaker. The speed and accuracy 

of FlashLFQ and moFF were evaluated in comparison to MaxQuant, a popular software tool 

used for LFQ. For MaxQuant, searches were performed by MaxQuant’s built-in Andromeda 

search algorithm. All three software programs have a MBR feature, where unidentified peaks are 

“matched” to identify peaks in other runs based on similar m/z and retention time. MaxLFQ, an 

algorithm within MaxQuant, normalizes raw intensities and also aggregates them into protein 

groups [1]. For moFF and FlashLFQ, limma was used to normalize peptide intensities and PECA 

was used to determine protein fold-changes and associated p-values. The limma tool within 

Galaxy implements different normalization techniques such as quantile, VSN, cyclicLOESS, and 

scale normalization. Users can choose between these normalization methods. FlashLFQ also has 

built-in normalization and protein quantification functions which we have used in this study.  

 
A) 

 
 

B) 
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Figure 3A) Effect of MBR after software version updates: The log10 values of the intensities 
(Blue bars) from each of the four ABRF spiked-in proteins (ABRF-1: Beta Galactosidase from E. 
coli, ABRF-2: Lysozyme from Gallus gallus, ABRF-3: Amylase from Aspergillus, ABRF-4: 
Protein G Streptococcus) were plotted. The results from prior versions of moFF (v1.2.1) and 
FlashLFQ (v0.1.99) (before) shows that MBR detects ABRF proteins (shown in red) in the negative 
control sample in both software. The results from the current versions of moFF (v2.0.2) and 
FlashLFQ (v1.0.3.0) implemented in Galaxy (after), shows that the MBR feature does not detect 
ABRF proteins in the negative control. 
B) Accuracy of fold-change estimation: For evaluating the accuracy of quantified results, we 
estimated the fold change of the spiked-in proteins in the 500 fmol sample as compared to 100 
fmol sample. The Root Mean Squared Log Error (RMSLE) was calculated for fold change 
estimation. For this dataset, moFF with MBR displayed significantly higher RMSLE value, 
whereas FlashLFQ’s MBR performed similarly to MaxQuant’s MBR. 
 

 
After ascertaining that moFF and FlashLFQ results correlate well with MaxQuant results 

(Supplementary Figure S1), we set out to evaluate the MBR feature of the software tools. For 

this, we used the ABRF PRG datasets, with four spiked-in proteins at 3 different concentrations 

(20 fmol, 100 fmol and 500 fmol) and a negative control (see methods). The spiked-in proteins 

should not be detected in the negative control, either with or without MBR. We observed that 

moFF and FlashLFQ outputs showed non-zero intensity values for the spiked-in proteins in 
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blank control samples if MBR was enabled (Figure 3A, left). We worked with the developers to 

improve their MBR algorithms so that intensity values for these proteins in the blank control 

samples were correctly reported as zero (Figure 3A, right).  

 
The 500 fmol and 100 fmol datasets from the ABRF dataset were used to determine the 

fold-change accuracy (Fig 3B). In order to determine the accuracy of the fold-change, root mean 

squared log error (RMSLE) [33] was calculated.  

 

����� �  �∑ 
��
�� �� � ��
����� ���

��� �   
Where, ri is the true ratio, �̂� is the estimated ratio and N is the number of proteins identified via 

sequence database searching of the sample 
 

Root mean squared log error is a metric to evaluate the difference between predicted and 

observed values. In this case, the values being compared are the predicted (known) fold-changes 

and the observed fold-changes. RMSLE being an error based metric provides the true picture of 

prediction quality, however, deciding a suitable threshold value is challenging. The objective 

was to obtain a RMSLE value closer to zero for all the tools.  The RMSLE values for the three 

tools are shown in Figure 3B, with the MBR feature enabled. We observed that moFF with 

MBR had slightly higher error compared to the other tools. MaxQuant’s MBR and FlashLFQ’s 

MBR perform quite similarly, though all three tools show low error when the MBR is enabled.  

 

Although MaxLFQ and FlashLFQ have their own in-built methods for normalizing 

peptide abundance, for a more direct comparison of moFF and FlashLFQ performance we 

normalized the peptide intensity levels using limma and obtained differentially expressed 

proteins through the PECA bioconductor package. Normalized peptide intensity values from 

moFF and FlashLFQ were input into PECA, wherein, the tool calculates the p-values of the 

peptide level data and then groups the values into protein level data. The PECA output was then 

compared with MaxQuant values using the UPS benchmark dataset. For this, quantitative 

information for the 48 proteins from the UPS dataset was extracted using an R-script to generate 

a tabular output with fold-change values.  
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The fold-change accuracy of all quantified UPS proteins after normalization was 

calculated by comparing the estimated protein fold-change with the true fold-change using the 

RMSLE (Figure 4A).  

 

A) 

 

 
B) 
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Figure 4A) Fold-change accuracy (MBR) of all proteins: After normalization, the estimated 
protein abundance ratios for all the identified UPS proteins were compared to the true abundance 
ratios, using the Root mean squared log error (RMSLE). The plot represents the RMSLE values 
using different normalization methods. Note that LFQ values represent FlashLFQ’s and 
MaxQuant’s inbuilt normalization value. The value on the top of the bars denotes the number of 
proteins that were quantified. 
B) Fold change accuracy (MBR) of proteins with similar estimated ratios: In total there are 
48 UPS proteins, we classified the UPS proteins into different groups based on the UPS2/UPS1 
ratio estimation, the true ratios run from 10 to 10-4 .The value on the top of the bars denotes the 
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number of proteins that were quantified using each normalization method. The RMSLE of the 
intensity ratio was used to measure the accuracy of the estimated fold change.  
 

Figure 4A shows the comparison of different normalizations using the MBR values. 

Although the bar graph shows that MaxQuant’s MaxLFQ performs the best compared to all, it 

does so at the cost of the number of proteins quantified. However, we noticed that FlashLFQ’s 

MBR with its in-built normalization (light blue bar in Figure 4A) performed better overall in 

terms of quantification and the number of proteins identified. Meanwhile, moFF and FlashLFQ 

provide higher numbers of quantified proteins while still maintaining low RMSLE values. We 

also performed comparison studies of MBR vs. no MBR, the results of which are shown in 

Supplementary Figure S3A. We also found that moFF and FlashLFQ quantify similar numbers 

of peptides across the ABRF and UPS datasets (Supplementary Figures S2). 

   

After evaluating the RMSLE for all proteins, we estimated the accuracy for similarly 

abundant UPS proteins (Figure 4B). We categorized the UPS standards by their concentration 

ratio (UPS2/UPS1) which resulted in 6 different categories (i.e. ratios of 1 to 0.0001). The results 

showed that MaxQuant quantification works optimally for high and medium abundant proteins. 

However, for low abundance proteins the fold-accuracy is lower, presumably because of missing 

intensity values. Another important observation is that MaxLFQ denotes a smaller error 

compared to the other tools in the low abundance samples, but quantifies fewer proteins. An 

evaluation study for MBR vs noMBR was also performed showing a similar trend represented in 

Supplementary figure S3B.  

 
After evaluation of the moFF and FlashLFQ tools, we worked with the developers of 

these tools to implement their optimized software in Galaxy, enabling integration into diverse 

MS-based proteomics workflows and promoting their usage by the Galaxy community. Our 

implementation will allow the users to choose their choice of tool and normalization (Fig S4) 

which will benefit their research.   

Discussion: 

Protein and peptide-level quantification has been used by proteomics researchers to 

determine how the proteome responds to biological perturbation [34]. In particular, precursor-
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intensity based LFQ has enabled researchers to perform quantitative proteogenomics analyses 

[35]. Quantitative changes in the proteome can also be correlated with transcript abundance 

changes [36] to get a more complete picture of how an organism responds to a stimulus. For 

example, in cancer proteogenomics studies, these abundance measurements help identify 

differential expression patterns of variant peptides that may have functional significance in 

cancer [37,38]. 

Peptide-level quantification also aids in functional studies of microbial communities and 

microbiomes using metaproteomics. For example, in metaproteomics studies, metapeptides or 

metaproteins detected from environmental [39] or host-derived samples [40] can be quantified to 

shed light on the dynamics of the taxa, biological function, and their abundance [41]. Our group 

has developed and optimized Galaxy-based tools and workflows for proteogenomics [42] and 

metaproteomics analyses [19,20].  Tools implemented through this study will extend these 

workflows to enable quantification of metapeptides and/or metaproteins. 

In our analyses, the three LFQ tools – moFF, FlashLFQ, and MaxQuant - correlate well 

in their results according to our evaluation. In this study, we have added moFF and FlashLFQ to 

the Galaxy framework, which not only facilitates the dissemination of these tools, but also 

enables automated data analysis by using them within workflows [16]. We also highlight the 

importance of the process of careful user evaluation, feedback to developers and optimization of 

the tools and workflows. Preliminary testing was performed on the command line or GUI 

versions of the tool. These tools were then packaged into the Galaxy platform, where results 

were compared to the command-line/GUI versions and also optimized more usage in automated 

workflows.  

Open-source software usage has faced challenges due to dependencies such as operating 

system (Windows, Linux, OSX), language or platforms (Python, C++, Java), lack of adhering to 

HUPO standards [43] , and installation or usability issues [44]. To overcome these issues, the 

Galaxy-P project, as well as others in the Galaxy community, have sought collaborations with 

many research groups that have developed these tools, following a protocol which includes 

defining key input and output data types, establishing key operating parameters for the Galaxy 

tool, overcoming operating system compatibility issues (e.g., Singularity containers for Windows 
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tools), along with rigorous testing and optimization. This collaborative and iterative process of 

development and optimization ensures the software performs accurately and efficiently within 

the Galaxy platform. 

Ideally, software tools which are UNIX based – such as moFF - are easier for deployment 

within Galaxy. We also demonstrate here that tools such as FlashLFQ can be packaged within a 

Singularity container to enable easy and secure implementation within Galaxy. MaxQuant, 

which is a popular, public-domain proteomics software package, is available in both Windows 

and Linux-compatible versions [45]. Although in early development and testing phase, the LFQ 

module that uses MS1 precursor intensity data within MaxQuant (MaxLFQ) was made available 

within Galaxy toolshed (https://toolshed.g2.bx.psu.edu/view/galaxyp/maxquant/175e062b6a17). 

Once fully tested and evaluated, accessibility to this software via the Galaxy platform will offer 

even more choices for precursor-intensity based quantification.  Offering users a choice of 

multiple validated software tools also highlights benefits of a workflow engine such as Galaxy, 

where users can easily develop parallel workflows using different combinations of tools to 

determine methods that provide optimal results based on user requirements. 

In our tests, we observed that FlashLFQ has a faster runtime as compared to the other two 

tools.  MaxQuant processing time is longer, presumably since it performs peptide identification 

and quantitation simultaneously. For example, on the same computing device, the UPS dataset 

was processed by FlashLFQ in approximately 15 mins for quantification only, whereas 

MaxQuant and moFF took 34 minutes and 3 hours respectively.  Again, our evaluation and 

availability of these tools within a unified platform such as Galaxy offers users a choice for their 

workflows where speed of analysis can also be considered. 

This study demonstrates a successful collaborative effort in software tool development 

and dissemination, which is a hallmark of the Galaxy community and the Galaxy-P project [19]. 

This community-driven approach brings together users and software developers who work 

together to validate and make the tool accessible and usable for other researchers across the 

world. The study described here provides a model of success for the process used to ultimately 

provide optimized, well-validated tools for community use. We did not seek a goal to determine 

the single best tool for LFQ use, but rather focused on offering users a choice of validated 
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quantification tools amenable to customizable analytical workflows. In addition to our work 

here, others from the Galaxy community are also working on integrating tools within the 

MaxQuant suite http://www.mol-med.uni-freiburg.de/mom-en/schilling/pub), which will extend 

the choices for LFQ quantification available.  As a result of this study, Galaxy users can now 

confidently use two rigorously validated LFQ software tools (moFF and FlashLFQ) for their 

quantitative proteomic studies. We are currently working on incorporating the quantitative 

capabilities of moFF and FlashLFQ within existing metaproteomics and proteogenomics 

workflows, so that they can be used by the research community in their quantitative multi-omics 

studies. 
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              All the data files used for this study are uploaded onto a Zenodo repository at 

https://doi.org/10.5281/zenodo.3733904, we have provided the input and output files of our data 

analysis. Supplementary 2 ( https://github.com/jraysajulga/quant-tools-analysis )  is the GitHub 

repository of the Rscripts. The original dataset for UPS study is available via ProteomeXchange 

identifier-PXD000279 (spiked-in Universal Proteomic Standard). 
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