

1 **Overexpression of the chloroplastic 2-oxoglutarate/malate transporter in rice**
2 **disturbs carbon and nitrogen homeostasis**

3

4 Running title: Overexpression of OMT1 in rice

5

6 Shirin Zamani-Nour^{1*}, Hsiang-Chun Lin^{2*}, Berkley J. Walker¹, Tabea Mettler-
7 Altmann¹, Roxana Khoshravesh³, Shanta Karki⁵, Efren Bagunu², Tammy L. Sage³,
8 W. Paul Quick², Andreas P.M. Weber^{1**}

9

10

11 ¹ Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University,
12 Universitätsstrasse 1, D- 40225 Düsseldorf, Germany

13 ² International Rice Research Institute Los Baños, Laguna, Philippines

14 ³ Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario
15 M5S3B2, Canada

16 ⁴ Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

17 ⁵ National Center for Fruit Development, Kirtipur, Kathmandu, Nepal

18

19

20 *These authors contributed equality to this paper

21

22

23 **Correspondence

24

25 Andreas P.M. Weber

26

27 Institute of Plant Biochemistry,
28 Heinrich-Heine-University,
29 Universitätsstraße 1,
30 D-40225 Düsseldorf,
31 E-Mail: andreas.weber@uni-duesseldorf.de

32

33

34

35

36 **Abstract:**

37 The chloroplastic oxaloacetate/malate transporter (OMT1 or DiT1) takes part in the
38 malate valve that protects chloroplasts from excessive redox poise through export of
39 malate and import of oxaloacetate (OAA). Together with the glutamate/malate
40 transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by
41 providing α -ketoglutarate for the GS/GOGAT reaction and exporting glutamate to the
42 cytoplasm. OMT1 further plays a prominent role in C₄ photosynthesis. OAA resulting
43 from PEP-carboxylation is imported into the chloroplast, reduced to malate by
44 plastidic NADP-MDH, and then exported for transport to bundle sheath cells. Both
45 transport steps are catalyzed by OMT1, at the rate of net carbon assimilation.
46 Therefore, to engineer C₄ photosynthesis into C₃ crops, OMT1 must be expressed in
47 high amounts on top of core C₄ metabolic enzymes. We report here high-level
48 expression of *ZmOMT1* from maize in rice (*Oryza sativa* ssp. *indica* IR64). Increased
49 activity of the transporter in transgenic rice was confirmed by reconstitution of
50 transporter activity into proteoliposomes. Unexpectedly, over-expression of *ZmOMT1*
51 in rice negatively affected growth, CO₂ assimilation rate, total free amino acid
52 contents, TCA cycle metabolites, as well as sucrose and starch contents.
53 Accumulation of high amounts of aspartate and the impaired growth phenotype of
54 OMT1 rice lines could be suppressed by simultaneous over-expression of *ZmDiT2*.
55 Implications for engineering C₄-rice are discussed.

56

57 **Keywords:** C₄-rice, oxaloacetate/malate transporter, glutamate/malate transporter,
58 photosynthesis, carbon and nitrogen assimilation, gas exchange

59

60

61

62

63

64

65 **Introduction**

66 Population growth, climate change, and lack of arable land are placing greater
67 dependence on crop yield improvement. However, crop demand is already outpacing
68 the yield gains achieved by conventional breeding and hence, step-wise changes in
69 crop yield are needed (Kromdijk and Long, 2016). Rice (*Oryza sativa* L.) is a C₃ plant
70 that belongs to the Gramineae family and is one of the most important staple crops in
71 the world. Its highest consumption is in Asia (Muthayya *et al.*, 2014) where 60% of
72 the world population exists (Bai *et al.*, 2018), with the highest and lowest rates of
73 poverty and income, respectively (FAO, 2017). Therefore, boosting rice yield and
74 performance is an important goal for improving the quality of life for a large share of
75 the global population. Engineering the C₃ crop rice to perform C₄ photosynthesis
76 would greatly improve rice productivity by up to 50% per year (Wang *et al.*, 2016),
77 through maximizing the conversion of the captured solar energy into chemical energy
78 and biomass (Hibberd *et al.*, 2008).

79 C₃ photosynthesis performs both initial carbon fixation and Calvin-Benson cycle
80 reactions in the mesophyll (M). In C₄ photosynthesis, initial carbon fixation and the
81 Calvin-Benson cycle are carried out separately in M and one or more layers of
82 sheath cells (bundle and/or mestome sheath) surrounding the vascular tissue,
83 respectively. This spatial separation concentrates CO₂ around the enzyme Ribulose-
84 1,5-bisphosphate carboxylase/oxygenase (RubisCO), thereby, reducing RubisCO
85 oxygenase activity and the subsequent loss of energy and previously fixed CO₂
86 during photorespiration (Sage *et al.*, 2012). Suppressing the energy- and CO₂-loss
87 from photorespiration leads to greater plant biomass, nitrogen- and water-use
88 efficiency (Ghannoum *et al.*, 2011). C₄ photosynthesis also represents an adaptation
89 for coping with stressful conditions, such as drought, high temperature, and light
90 intensity (Edwards *et al.*, 2010).

91 Chloroplasts with their double-envelope membrane and internal compartments play a
92 critical role in carbon fixation and photosynthesis. Since biological membranes form
93 barriers for the diffusion of hydrophilic metabolites, membrane transporters are
94 required for the selective flux of polar molecules and metabolites across the
95 chloroplast membrane (Haferkamp and Linka, 2012). One of the transporters that
96 resides in the plastid inner envelope membrane is known as oxaloacetate/malate
97 transporter 1 (OMT1) or dicarboxylate transporter 1 (DiT1). The gene is expressed
98 ubiquitously in roots, stems, leaves, florescence, and siliques of mature *Arabidopsis*

99 plants (Taniguchi *et al.*, 2002) and the protein is an oxaloacetate/malate antiporter
100 with 12 α -helical transmembrane domains. OMT1/DIT1 functions to transport
101 substrates according to the electrochemical gradient generated by solutes in and
102 outside the chloroplast membrane (Weber *et al.*, 1995). This transporter, in concert
103 with malate dehydrogenase (plastidic and cytosolic isoforms), forms the malate shunt
104 that plays a key role in exporting excess reducing compounds from the chloroplast, to
105 protect photosystem II and to balance stromal redox potential (Selinski and Scheibe,
106 2019).

107 Redox balancing through the OMT1/DIT1-mediated malate valve is expected to be
108 more beneficial when photorespiratory rates are increased, since higher relative rates
109 of photorespiration increase the ATP/NADPH demand of central metabolism resulting
110 in an excess of reduced NADPH in the plastid (Kramer and Evans, 2011; Walker *et*
111 *al.*, 2014). The malate valve can serve to oxidize the over-reduced NADPH pool to
112 regenerate oxidized NADP⁺ carriers that are needed to maintain electron transport.
113 The NADH generated in the cytosol from the malate valve activity is consumed in
114 other reactions such as nitrate reduction. The resulting nitrite is imported into
115 chloroplasts where it is further reduced to ammonia that is subsequently assimilated
116 into glutamate by the GS/GOGAT (glutamine synthase/glutamate synthase) pathway
117 (Tobin and Yamaya, 2001, Selinski and Scheibe, 2019). Glutamate itself is a building
118 block for the biosynthesis of many amino acids (Forde and Lea, 2007). OMT1, jointly
119 with the DiT2/DCT1 transporter (a glutamate/malate transporter), therefore, connects
120 carbon and nitrogen metabolism while equilibrating the ATP/NADPH ratio in
121 chloroplast stroma (Taniguchi *et al.*, 2002, Kinoshita *et al.*, 2011, Taniguchi and
122 Miyake, 2012). The strong, visibly perturbed phenotypes of *omt1* mutants in
123 *Arabidopsis* (Kinoshita *et al.*, 2011) and in tobacco (Schneidereit *et al.*, 2006) confirm
124 its crucial role in carbon and nitrogen assimilation pathways as well in plant growth
125 and development.

126 OMT1 also plays an important role in C₄ photosynthesis. The transporter imports
127 oxaloacetate (OAA) that is formed by cytosolic phosphoenolpyruvate carboxylase
128 (PEPC) into M cell chloroplasts where it is reduced to malate by NADP-malate
129 dehydrogenase (NADP-MDH). OMT1 also facilitates the export of malate to the
130 cytosol. These transport steps occur at the same rate as CO₂ assimilation and thus,
131 for engineering C₄ photosynthesis into C₃ crops such as rice, high expression and
132 activity of OMT1 are required. In this study, as part of the effort to engineer C₄ rice,

133 we introduced the *ZmOMT1* gene from C₄-maize into C₃-rice to achieve sufficiently
134 highly transport capacity for OAA and malate across the chloroplast envelope.
135 Additionally, since C₄ photosynthesis requires a complex array of biochemical and
136 anatomical components, we investigate whether *ZmOMT1* expression triggers
137 anatomical features found in C₄ plants, which could further aid continued C₄
138 engineering efforts.

139

140 **Materials and methods**

141 **Rice transformation and growth conditions**

142 To express maize *ZmOMT1* in rice M cells, we transferred the pSC110:
143 *ZmOMT1*:AcV5 construct into *Oryza sativa* spp. *indica* cultivar IR64 (Mackill and
144 Khush, 2018). The construct contains the full-length cDNA of the *ZmOMT1* gene
145 (GRMZM2G383088) from maize (*Zea mays* var. B73) with a C-terminal AcV5 epitope
146 tag, driven by the maize M-specific *ZmPEPC* promoter from pSC110 vector
147 (Supplementary Fig. 1A). The Fwd_primer 5'-CACCATGGTCGACGCGTCCTCCAC
148 and the Rev_primer 5'-
149 TCAAGACCAGCCGCTCGCATCTTCCAAGACCACAGCCCGATTATCTTC were
150 used to clone the coding sequence via the pENTR vector into the pSC110
151 expression vector utilizing the Gateway cloning system (Thermo Fisher Scientific).
152 The pSC110 vector was generated as previously described (Osborn *et al.*, 2017).
153 The AcV5 epitope tag was placed downstream of *ZmOMT1* coding sequence for later
154 detection of expressed protein using commercially available AcV5 antibody. The final
155 construct was transferred into freshly harvested immature embryos 8-12 days after
156 anthesis using an *Agrobacterium*-mediated transformation protocol as described in
157 Yin *et al.*, (2019). After one week of co-cultivation and following 5 days on non-
158 selective medium, emerging resistant calli were selected with 30 mg/l hygromycin B.
159 The transgenic plants generated from hygromycin-resistant calli were transferred to
160 Yoshida hydroponic solution (Yoshida *et al.*, 1972) for 2 weeks and then transplanted
161 into 0.5 L pots filled with soil. Plants were grown in a greenhouse at the International
162 Rice Research Institute (IRRI, Los Baños, Philippines: 14°9'53.58"S
163 121°15'32.19"E). The average day/night temperatures were 35±3°C and 28±3°C,
164 respectively. The average and maximum light intensities were 825 µmol photons m⁻²
165 s⁻¹ and 2000 µmol photons m⁻² s⁻¹, respectively. Seeds of transgenic plants were
166 germinated in distilled water for one week and transplanted into soil in 100 ml

167 Rootrainers (<http://rootrainers.co.uk/>). After 2 weeks, plants were transplanted to 7 L
168 soil pots. Plants were grown at Heinrich-Heine University (HHU) Düsseldorf,
169 Germany under semi-controlled greenhouse conditions (16h day/8h night and 25°C).
170 Assessment of leaf gas exchange, as well as metabolite, C:N ratio, total free amino
171 acids, and transporter activity measurements were performed at HHU.

172

173 **PCR screening**

174 Transgenic plants were screened by genomic PCR to obtain homozygous transgenic
175 lines. Leaf samples were harvested 7 days after transplanting into soil. PCR
176 amplification was performed using the KAPA 3G plant PCR kit (Kapa Biosystem,
177 USA). The scraped leaf tissue was directly used as the template for PCR
178 amplification in a total volume of 10 µl employing the gene-specific primers;
179 Fwd_primer 5'-CGTGGGATACCCTTACATGG and Rev_primer 5'-
180 CCCGATTATCTTCCACCAGA. PCR conditions were: 95°C for 5 min, 32 cycles of
181 95°C for 20 sec, 60°C for 15 sec and 72°C for 30 sec; and 72°C for 1 min. The
182 plasmid DNA was used as a positive control and non-transgenic rice leaf tissue or
183 water were used as negative controls.

184

185 **Quantitative real time PCR (qRT-PCR)**

186 qRT-PCR was performed to quantify the level of transcript expression for both
187 *OsOMT1* and *ZmOMT1* genes in 8-week-old plants. RNA was extracted from leaf
188 materials comprising 3 biological replicates using QIAGEN RNeasy Mini Kit. The
189 one-step cDNA synthesis was carried out using LunaScript™ RT SuperMix Kit (NEB
190 Biolabs, USA) followed by qRT-PCR master mix preparation using Luna® Universal
191 qPCR Master Mix (NEB Biolabs, USA) which was finally performed in 7500 Fast
192 Real-Time PCR System (Invitrogen, USA) in a total volume of 20 µl. PCR was guided
193 using primer pairs as follows: *OsOMT1*_Fwd 5'-ATGGAATTGGGTCTGCTCCTG,
194 *OsOMT1*_Rev 5'-AATCCATACCCCCACCACTG, *ZmOMT1*_Fwd 5'-
195 GTGGGGCTATGGGTTGTCA and *ZmOMT1*_Rev 5'-
196 TATCTTCCACCAAGCCGC. The PCR conditions were: 95°C for 60 sec, 40
197 cycles of 95°C for 15 sec and 60°C for 30 sec followed by the measurement of the
198 melting curve after 40 cycles for primer specificity. The primer efficiency was
199 calculated as described by Udvardi *et al.*, (2008) using different dilutions of cDNA
200 together with the a highly stable housekeeping gene from rice, *OseEF-1a*

201 (Os03g0177500) that was identified in a previous experiment by Jain *et al.*, (2006).
202 The mean normalized expression (MNE) for calculation of average CT was used as
203 described by Simon (2003).

204

205 ***Real-time PCR (RT-PCR)***

206 To detect the mRNA expression of *ZmOMT1* and *ZmDiT2* genes in OMT1/DiT2
207 double cross lines, RT-PCR analysis was performed in 8 week-old plants. RNA was
208 extracted from leaf materials using TRIzol reagent (Invitrogen, USA) and treated with
209 DNase (Promega, USA). A 1 µg RNA was used to synthesize cDNA using a first-
210 stand cDNA synthesis kit (Roche Diagnostics, Switzerland). The cDNA was
211 normalized to 100 ng µl⁻¹ and used for PCR analysis in a 10 µl reaction with gene-
212 specific primers (5'-CGTGGGATACCCTTACATGG and 5'-
213 CCCGATTATCTTCCACCAGA for *ZmOMT1*, 5'-GTTGGAATGGCAGGACAAC and
214 5'-ACCCAGCCTGAAAACATCTG for *ZmDiT2*, 5'-CAACATTGTGGTCATTGGCC and
215 5'-GCAGTAGTACTTGGTGGTCT for *OseEF-1a*). *OseEF-1a* was used as a positive
216 and quality control. The PCR condition were as follows: pre-denaturation for 3 min at
217 95°C; 40 cycles of the polymerization reaction consisting of a denaturation step for
218 20 sec at 95°C, for 30 sec at 55°C and an extension step for 45 sec 72°C; and a final
219 extension step for 3 min at 72°C.

220

221 ***Leaf chlorophyll content and plant growth analysis***

222 The upper fully expanded leaves of rice plants at mid-tillering stage (50-60 days old)
223 were used to determine leaf chlorophyll content using the SPAD chlorophyll meter
224 (Konica Minolta, Japan). The plant height and tiller number were measured at
225 booting stage. The plant height was measured from soil level to the base of the flag
226 leaf on the main tiller.

227

228 ***Western blot and immunodetection of recombinant protein*** 229 ***(ZmOMT1)***

230 The presence of the AcV5-tagged *ZmOMT1* protein in leaf membrane extracts of rice
231 lines overexpressing *ZmOMT1* was checked by fractionating the isolated protein on
232 12% SDS-PAGE gel, followed by Western-blot analysis. Primary mouse anti-AcV5
233 tag 1:2,000 (Abcam plc, UK) and peroxidase-conjugated secondary (Goat anti-

234 Mouse IgG (H+L) HRP, 1:2,500, ThermoFisher Scientific, Germany) antibodies were
235 used for the detection of the AcV5 tag. Visualization of the stained protein on
236 nitrocellulose membranes was carried out by a LAS-4000 Mini luminescence image
237 analyzer (GE Healthcare, Germany) using the ECL Western Blotting Detection
238 Reagents (GE Healthcare, Germany).

239

240 **DNA blot analysis**

241 Genomic DNA was extracted from the leaves of mature rice plants using the
242 potassium acetate method as described by Guillemaut and Maréchal-Drouard,
243 (1992). A total of 16 µg genomic DNA was digested with HindIII restriction
244 endonuclease (NEB Biolabs, UAS). Digested DNA was separated by electrophoresis
245 on a 0.8 % agarose gel and then transferred onto Hybond N+ membrane (GE
246 Healthcare, UK). Blots were hybridized with a digoxigenin (DIG)-labeled *ZmPEPC*
247 promoter-specific probe synthesized using primers (Fwd 5'-
248 TCCCGAGTTCCCTAACCAACAG; and Rev 5'-GTGGCTGAGGCTTCTTTTG) and the
249 PCR DIG Probe Synthesis Kit (Roche Diagnostics, Switzerland). The signals were
250 detected by CDP-Star (Roche Diagnostics, Switzerland) following the manufacturer's
251 instructions.

252

253 **Immunolocalization**

254 The seventh leaf at the mid-tillering stage was fixed and prepared for
255 immunolocalization analysis as described in Lin *et al.*, (2016). The fixed leaf sections
256 were probed with the anti-AcV5 mouse monoclonal antibody (Abcam plc, UK) diluted
257 1:25 in blocking solution. Alexa Fluor 488 (fluorescent dye) goat anti-mouse IgG
258 (Invitrogen, USA) secondary antibody was used for detection and sections were
259 examined on a BX61 using the Disk Scanning Unit attachment microscope
260 (Olympus, Japan) with fluorescence functions.

261

262

263 **Total leaf membrane protein isolation**

264 The fully expanded 3rd leaf of rice at the mid-tillering stage was used for protein
265 extraction. Leaves were homogenized to a fine powder using a nitrogen-cooled
266 mortar and pestle. The powder was used as starting materials and total leaf
267 membrane protein was isolated using an extraction buffer consisting of 250 mM Tris

268 (HCl, pH=8.5), 25 mM EDTA, 30 % (w/v) sucrose, 5 mM DTT, and appropriate
269 protease inhibitors. Two subsequent centrifugation steps at 10,000 g and 100,000 g
270 were then performed, using a bench top centrifuge and ultra-centrifuge, respectively.
271 Ultimately, the isolated membrane was re-suspended in 50 mM HEPES (KOH, pH
272 7.5), 5 mM EDTA, 2 mM DTT together with protease inhibitors (*for detailed*
273 *procedure see Furbank et al., 2001 and Roell et al., 2017*). Finally, the protein
274 concentration was measured utilizing the Pierce BCA Protein Assay Kit
275 (ThermoFisher Scientific, Germany) following the manufacturer's instructions.

276

277 ***Reconstitution of total leaf membrane into liposomes***

278 *In-vitro* analysis of transporter activity was carried out using a freeze-thaw-sonication
279 reconstitution procedure in concert with forward exchange of the substrate (Palmieri
280 *et al.*, 1995). Following reconstitution, the proteoliposomes were preloaded with
281 unlabeled malic acid to a final concentration of 30 mM (pH=7.5). Reconstituted
282 proteins were separated from the non-reconstituted ones utilizing the size-based
283 column chromatography technique (Sephadex G-25M columns (PD-10 column, GE
284 Healthcare, USA) (*for detailed procedure see Roell et al., 2017*).

285

286 ***Radioactive labeled [¹⁴C]-malate uptake measurement***

287 Uptake of radiolabeled substrates in counter-exchange with non-labeled substrates
288 was carried out during the course of one hour at six different time points (2, 4, 8, 16,
289 32 and 64 minutes). The reaction was started by adding 950 µl of proteoliposomes
290 into 50 µl of [¹⁴C]-malate diluted in transport medium (7 mM malic acid, pH=7.5), and
291 stopped at each of the above-mentioned time points by loading an 150 µl aliquot of
292 the reaction mixture to an anion exchange resin column (acetate form, 100-200
293 mesh, Dowex AG1-X8 Resin, Bio-Rad, UAS). The resin column was previously
294 equilibrated five times using 150 mM sodium acetate (pH=7.5). Unincorporated [¹⁴C]-
295 malate was replaced by acetate in the resin column and the incorporated label was
296 washed through a scintillation vial containing 10 ml Rotiszint® eco plus scintillation
297 cocktail (Carl Roth, Germany). Finally, the uptake of radio-labeled substrate was
298 measured as counts per minute (CPM) by scintillation counting. To correct for
299 background and false positives, the entire experiment was repeated using
300 proteoliposomes without pre-loading of the substrate of interest (*for detailed*
301 *procedure see Roell et al., 2017*). The uptake data were further assessed relative to

302 both internal standards and total protein content (mg) in each sample. Related
303 graphs were made using the one-phase association equation in GraphPad Prism 6
304 (<http://www.graphpad.com/prism/prism.htm>).
305

306 ***Photosynthetic CO₂ assimilation, light response and dark
307 respiration rates***

308 Two individual fully expanded leaves per plant and three plants per line were
309 measured for leaf photosynthetic CO₂ assimilation and dark respiration rates during
310 the tillering stage using a LI-6400XT portable photosynthesis system (LI-COR
311 Biosciences, USA) in which a single leaf was clamped in the standard LI-COR leaf
312 chamber. Measurements were performed on the mid-portion of the leaf blade
313 between 08:00 h and 13:00 h at a constant airflow rate of 400 $\mu\text{mol s}^{-1}$, leaf
314 temperature of 30°C, and a leaf-to-air vapor pressure deficit of between 1.0 and 1.5
315 kPa. Leaves were acclimated in the cuvette for 30 min before measurements were
316 started. The response curves of the net rate of CO₂ assimilation (A, $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)
317 to changing intercellular CO₂ concentration (C_i, $\mu\text{mol CO}_2 \text{ mol}^{-1}$) were acquired by
318 decreasing C_a (CO₂ concentration in the cuvette) from 2,000 to 20 $\mu\text{mol CO}_2 \text{ mol}^{-1}$ at
319 a photosynthetic photon flux density (PPFD) of 2,000 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$. The 2 %
320 oxygen entering the cuvette was set by mixing different concentration of nitrogen and
321 oxygen in the CO₂ free airstream through two mass flow controllers (model GFC17,
322 Aalborg Mass Flow Systems, USA) at a flow rate of 1.5 ml m⁻¹. Maximum Rubisco
323 activity (V_{cmax}) and maximum electron transport activity (J_{max}) were determined
324 using the PsFit Model (Bernacchi *et al.*, 2001, 2003; Farquhar *et al.*, 1980). The light-
325 response curves were measured by increasing the PPFD from 20 to 2,000 μmol
326 photons m⁻² s⁻¹ at a C_a of 400 $\mu\text{mol CO}_2 \text{ mol}^{-1}$. The carboxylation efficiency (CE, μmol
327 CO₂ m⁻² s⁻¹ $\mu\text{mol CO}_2 \text{ mol}^{-1}$), CO₂ compensation point (Γ , $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) and
328 quantum yield (\square , mol CO₂ mol⁻¹ photons) were calculated as described by Lin *et al.*,
329 (2016). The dark respiration rate (R_d) measurements were made on leaves in
330 darkness following an acclimation at a photosynthetic photon flux density (PPFD) of
331 1,000 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ for 10 min at a C_a of 400 $\mu\text{mol CO}_2 \text{ mol}^{-1}$. The dark
332 respiration rate (R_d, $\mu\text{mole CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) was calculated over a period of 1100-1200 s
333 in the dark.
334

335 ***Leaf gas exchange and photosynthetic measurement in tandem***
336 ***with the metabolite analysis***

337 To normalize metabolite pool sizes by photosynthetic flux, two sets of rice plants of
338 different ages (Set one: 30-35 days old and Set two: 50-55 days old) were analyzed.
339 In order to measure photosynthetic CO₂ assimilation and collect the samples for
340 metabolite analysis under steady-state conditions, a custom gas exchange chamber
341 was interfaced with a LI-COR 6400XT portable photosynthesis system (LI-COR
342 Biosciences, USA) (Fig. S1B). The custom gas exchange chamber encased the leaf
343 to be measured within a low-gas permeable sausage casing (5 cm diameter
344 Nalophan, Kalle GmbH, Germany) to allow for rapid freeze-quenching of the sample.
345 The chamber was constructed using two stainless-steel pipe sections fitted with
346 Swagelok connections to the LI-COR sample line, one of which was capped on the
347 end with a welded end cap. Prior to each measurement, a ~20 cm section of
348 sausage casing was positioned between the pipe sections and sealed to the outside
349 of the pipe sections using a small amount of silicone vacuum grease. The proximal
350 end of a leaf blade was then sandwiched between two halves of a silicone stopper
351 and inserted into the open pipe section with the adaxial side up. Actinic light was
352 delivered via an LED ring light (Model R300, F&N Lighting, USA) which allowed
353 constant, homogenous illumination of the leaf surface. Metabolic activity was rapidly
354 quenched by freeze clamping the leaves with a liquid nitrogen-cooled copper disk
355 attached to an aluminum handle. Fully expanded leaves of different tillers from five
356 biological replicates were measured in the LICOR 6400XT that was attached to the
357 sausage chamber. Flow through in the custom chamber was maintained at 700 μmol
358 s^{-1} , light intensity at 500 μmol photons $\text{m}^{-2} \text{s}^{-1}$ and CO₂ concentration was set to 200,
359 400 or 1,000 μmol CO₂ mol⁻¹. Leaf surface area was determined by taking a
360 photograph and analyzing in ImageJ v1.51m9 (Schneider *et al.*, 2012). Leaf
361 temperature was not controlled but ranged between 25-27°C as determined from
362 energy balance calculations. Leaves were sealed within the chamber until steady-
363 state conditions were reached (as determined from a constant net CO₂ fixation rate)
364 and gas exchange measurements logged. After logging gas exchange data, the
365 liquid nitrogen-cooled piston was inserted rapidly through the ring light onto the leaf
366 and onto a plastic anvil, and then transferred rapidly to an aluminum-foil pouch and
367 into liquid nitrogen. To avoid potential diurnal artifacts, all measurements (genotypes

368 and CO₂ treatments) were randomized and performed only during the peak
369 photosynthetic activity of the rice plants between 9:00 am to 3:00 pm.
370

371 ***Metabolite analysis (GC/MS)***

372 The GC/MS-based metabolite measurements were performed as described by Fiehn,
373 (2007), using ribitol as an internal standard. Leaf samples were collected by rapid
374 freeze-quenching from the custom gas exchange chamber describe above. Freeze-
375 quenched tissue was ground into a fine powder in liquid nitrogen using a mortar and
376 pestle. Extracted metabolites were injected into a gas chromatograph (Agilent 7890B
377 GC System, Agilent Technologies, USA) that was in line with a mass spectrometer
378 (Agilent 7200 Accurate-Mass Q-TOF GC/MS, Agilent Technologies, USA). Metabolite
379 peaks were evaluated using Mass Hunter Software (Agilent Technologies, UAS). The
380 relative amount of each metabolite was calculated from the peak area, taking into
381 account both the initial fresh weight used for extraction and the internal standard.
382

383 ***Total free amino acid (FAA) content***

384 FAA contents were measured using the Ninhydrin colorimetric method as described
385 by Smith and Agiza, (1951), with minor changes. Briefly, 10 µl of metabolite extract
386 together with 40 µl of methanol: water mixture (2.5:1 ratio) was added to 50 µl of 1 M
387 citrate (NaOH, pH=5.2) and 100 µl of 1% (w/v) Ninhydrin (prepared in methanol:
388 H₂O, 2.5:1 ratio), and then heated to 95°C for 20 min. The solution was then
389 transferred to a micro-well plate after a short centrifugation of 10 sec at 10,000 rpm.
390 The total amino acid content was then measured in a Synergy HT plate reader
391 (BioTek, Germany) at a wavelength of 550 nm. Data were adjusted based on the L-
392 leucine standard curve and related dilution factor.
393

394 ***Starch and sucrose contents***

395 The youngest fully expanded leaf during the tillering stage was harvested at 10:00
396 am and frozen immediately. Frozen leaf samples were ground in liquid nitrogen using
397 a mortar and pestle. 50 mg of homogenized leaf powder was then extracted in 500 µl
398 of ice-cold 0.7 M perchloric acid. For separating the soluble and insoluble fractions,
399 the sample was centrifuged at 21,100 g for 10 min at 4°C. The insoluble fraction
400 containing the starch was further washed five times with 1 ml of 80% (v/v) ethanol.
401 After centrifugation, the supernatant was discarded, and the pellet was air dried and

402 resuspended in 500 μ l of water. The starch sample was gelatinized by boiling for 4
403 hours and hydrolyzed overnight at 37°C with 0.5 U of amyloglucosidase and 5 U of α -
404 amylase. The starch content was measured as described in Smith and Zeeman,
405 (2006). The soluble fraction containing sucrose was neutralized to pH=6 with
406 neutralization buffer (2 M KOH, 0.4 M MES, 0.4 M KCl). After centrifugation at 21,100
407 g for 10 min at 4°C, the supernatant was transferred into a new tube and the
408 remaining insoluble potassium perchlorate was discarded. The supernatant was
409 assayed for sucrose content by enzymatic determination as described by Smith and
410 Zeeman, (2006).

411

412 ***Carbon: Nitrogen (C/N) ratio measurement***

413 The ratio of carbon to nitrogen as well as $\delta^{13}\text{C}$ were analyzed based on leaf dry-
414 weight (mg) of 30-day-old and 50-day-old transgenic using the ISOTOPE cube
415 elemental analyzer connected to an Isoprime 100 isotope ratio mass spectrometer,
416 EA-IRMS; Elemental Analyzer- Isotope ratio mass spectrometry (Elementar,
417 Germany). The $\delta^{13}\text{C}$ ratio is expressed as parts per thousand (‰) using the
418 international standard of the Vienna Pee Dee Belemnite (VPDB).

419

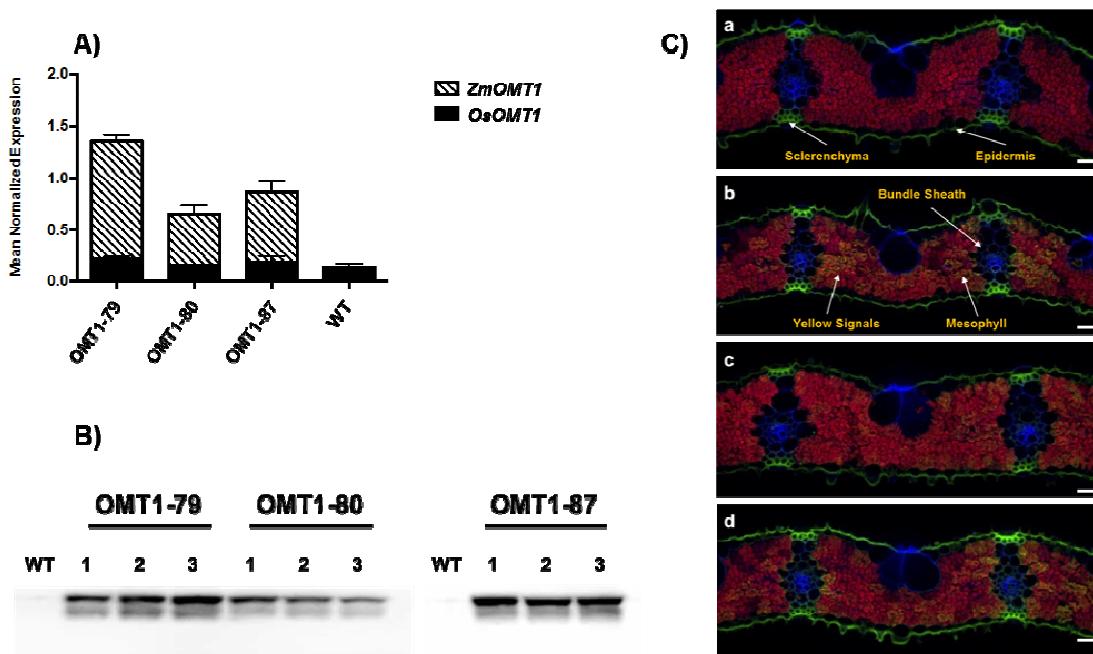
420 ***Transmission electron microscopy***

421 Rice seeds were germinated in petri dishes in distilled water for 4 days and then
422 placed on a floating net in distilled water in a 19 L bin in greenhouses at the
423 University of Toronto. Seedlings were fertilized with 1/3 strength hydroponic media at
424 day three after transfer and then with full strength media every 4 days (Makino and
425 Osmond, 1991). Plants were sampled from 09:30 am to 11:00 am when day length
426 was over 11.5 h and light intensity in the unshaded greenhouse regularly exceeded
427 1,400 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$. The middle section of the most recently fully expanded
428 leaf was dissected into 2 mm pieces and prepared for transmission electron
429 microscopy as previously described Khoshravesh *et al.*, (2017). Leaf sections were
430 fixed in 1 % glutaraldehyde, 1 % paraformaldehyde in cacodylate buffer (pH=6.9) and
431 post-fixed in 2 % osmium tetroxide in cacodylate buffer (pH=6.9). Tissue samples
432 were dehydrated in an ethanol series, embedded in Araldite 502 epoxy resin and
433 sectioned at 60 nm for imaging with a Phillips 201 transmission electron microscope
434 equipped with an Advantage HR camera system (Advanced Microscopy Techniques,
435 USA).

436

437 ***Generation of rice lines overexpressing both ZmOMT1 and ZmDiT2***

438 To generate transgenic rice plants co-expressing *ZmOMT1* and *ZmDiT2*,
439 homozygous *ZmOMT1* single transgenic T₂ lines (OMT1-79, OMT1-80, and OMT1-
440 45) were crossed with homozygous *ZmDiT2* single transgenic T₂ lines (DiT2-27,
441 DiT2-39 and DiT2-44) (Fig. S2A). The F₁ progeny were selfed to produce
442 segregating F₂ populations that were used for all experiments reported here. The
443 pSC110:*ZmDiT2*:AcV5 construct used for generating DiT2 lines contained the coding
444 sequence of *ZmDiT2* (GRMZM2G40933) from *Zea mays* of the B73 variety and
445 included an AcV5 epitope tag at the C-terminal end of the coding sequence. *ZmDiT2*
446 was cloned using the primers: Fwd 5'-CACCATGGAGCTCCACCTCGGCCAC and Rev
447 5'-
448 TCAAGACCAGCCGCTCGCATCTTCCAAGAGTACAGACCCAAAAATTCCACCA
449 GATG. Homozygous *ZmDiT2* lines were selected by PCR analysis and protein
450 accumulation was determined on western blots (Fig. S2B).


451

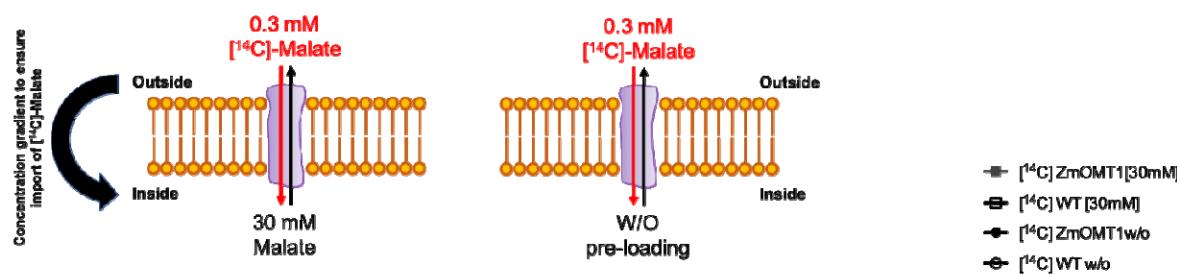
452 **Results**

453 ***Three independent single transgene insertion lines accumulate***
454 ***ZmOMT1 protein in mesophyll cells***

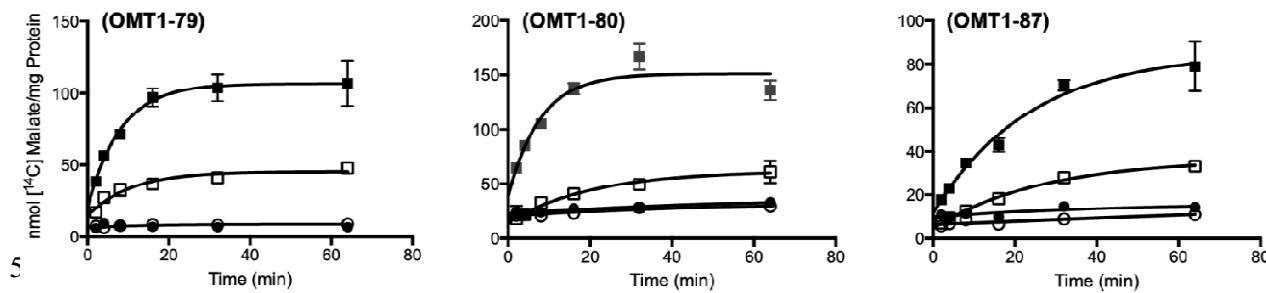
455 A total of 198 T₀ plants were generated, of which 87 were positive for *ZmOMT1* as
456 determined by PCR analysis of genomic DNA, 40 of which carried a single copy of
457 the *ZmOMT1* transgene as determined by DNA gel blot analysis. Three single-
458 insertion lines (OMT1-79, OMT1-80 and OMT1-87; Fig. S3) were advanced to
459 succeeding generations to obtain homozygous lines. Homozygous plants in either
460 the T₃ or T₄ generation were used for all subsequent experiments. To compare
461 steady-state transcript levels of native rice *OsOMT1* and the introduced *ZmOMT1*,
462 qRT-PCR was performed. Expression of the native *OsOMT1* was not affected by
463 expression of *ZmOMT1* in any of the three over-expressing lines, with similar
464 transcript levels observed as in wild-type rice (Fig. 1A). *ZmOMT1* transcripts
465 accumulated in all three lines with the highest levels in OMT1-79 and the lowest in
466 OMT1-80 (Fig. 1A). To test whether the high amounts of *ZmOMT1* mRNA in the
467 transgenic lines was accompanied by increased transporter protein abundance, the
468 amounts of *ZmOMT1* protein in extracted total membrane leaf protein were examined
469 via Western-blot, taking advantage of the C-terminal AcV5-tag. The *ZmOMT1* protein

470 was clearly detectable in all three lines (OMT1-79, OMT1-80 and OMT1-87) by
471 immunoblotting (Fig. 1B). As with the transcript levels, OMT1-79 and OMT1-87 lines
472 accumulated more *ZmOMT1* protein than the OMT1-80 line. We further examined
473 the spatial localization of *ZmOMT1* in the transgenic lines by immunolocalization. Fig.
474 1C shows that the *ZmOMT1* protein accumulated primarily in chloroplasts of M cells.
475 Collectively, these data show that the *ZmPEPC* promoter drives expression of
476 *ZmOMT1* predominantly in M cells of rice leaf tissues and that the protein can be
477 detected in the chloroplasts of those cells.

478
479


480 **Fig. 1:** Transcript accumulation of *OsOMT1* and *ZmOMT1* genes via quantitative real time PCR analysis in the
481 leaf blade of transgenic rice OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) together with wild-type plants (WT)
482 as a control. Data represent the mean normalized expression \pm SEM of three and two biological and technical
483 replicates, respectively (A). Assessment of expressed *ZmOMT1* protein in transgenic lines (OMT1-79, OMT1-80
484 and OMT1-87) together with wild-type rice (WT) as a control via Western-blot using 12% SDS-PAGE and two-
485 step antibody immunodetection with 5 seconds exposure time (B). Immunolocalization of *ZmOMT1* protein in
486 leaves of (A) wild-type, (B) OMT1-79, (C) OMT1-80 and (D) OMT1-87 plants in which the yellow signal is easiest
487 to see in line OMT1-79 where the levels are highest. Anti-AcV5 tag primary antibody diluted 1:25 plus Alexa Fluor
488 (fluorescent dye) goat anti-mouse IgG secondary antibody diluted 1:200 was used to probe for AcV5 tag
489 (shown in green color). Chlorophylls are shown as a red autofluorescence. The cell wall was co-stained with
490 calcofluor white and is shown in blue. Magnification: 200x. Scale bar: 20 μ m (C).

491
492


493 **OMT1 membrane transporter activity is significantly increased in
494 transgenic rice lines**

495 To test whether expression of the *ZmOMT1* transgene led to increased OMT1
496 transporter activity in transgenic lines, we measured malate counter-exchange
497 activity in liposomes reconstituted with membrane proteins isolated from wild-type
498 and overexpressing lines (Fig. 2A). We detected significantly higher malate-malate
499 counter-exchange activity in liposomes reconstituted with membrane proteins from
500 overexpression lines as compared to liposomes reconstituted with membrane
501 proteins isolated from the wild types. These data clearly indicate that the
502 recombinantly introduced *ZmOMT1* transporter protein is active in rice (Fig. 2B).

A)

B)

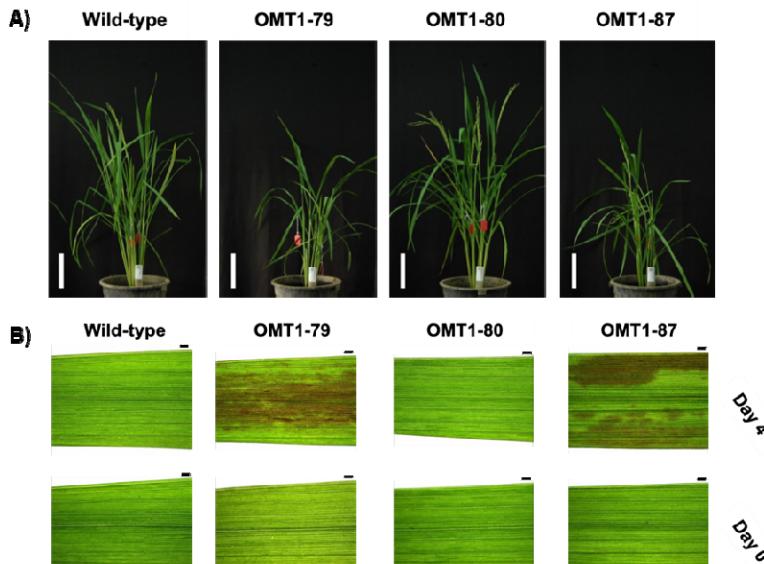


Fig. 2: Illustration of proteoliposome after reconstitution of the total leaf membrane protein. Uptake of [¹⁴C]-malate was measured with 30 mM or without (w/o) pre-loading of unlabeled malate inside the proteoliposome. The activity was initiated with a final concentration of 0.3 mM [¹⁴C]-malate (A). Uptake of malate by total crude membrane protein of wild type rice (WT) as a control together with three different transgenic OMT1 lines (OMT1-79, OMT1-80 and OMT1-87). Values represent the mean \pm SEM, n=3 (B).

Slower growth and leaf lesion phenotypes of OMT1 lines

The transgenic plants with the highest *ZmOMT1* protein levels (OMT1-79 and OMT1-87) displayed perturbed phenotypes at the whole plant level. The OMT1-79 and OMT-87 lines were shorter (Fig. 3A and Table 1) than wild-type and displayed lesions in mature leaves in IRRI (Fig. 3B). An ELISA test for detection of infection caused by tungro virus was negative (data not shown), indicating that the lesions were not caused by tungro virus infection. The OMT1-80 line that accumulates lower levels of *ZmOMT1* (Fig. 1) had more and longer tillers compared to wild-type (Fig. 3A)

520 and Table 1) and did not have a lesion mimic phenotype (Fig. 3B). Despite the
521 different lesion mimic phenotypes, chlorophyll content was similar in the youngest
522 fully expanded leaves of all three transgenic lines and wild-type (Table 1). These
523 results suggest that high levels of *ZmOMT1* expression in rice inhibit plant growth
524 and induce a lesion mimic phenotype in mature leaves, without altering chlorophyll
525 content in young leaves.

526
527

528 **Fig. 3:** Representative pictures of wild-type, OMT1-79, OMT1-80 and OMT1-87 lines grown under ambient
529 conditions; 70 days post germination (DPG). Scale bar: 15 cm (A). Representative pictures of youngest fully
530 expanded leaves (Day 0) and the same leaves after 4 days (Day 4) of wild-type, OMT1-79, OMT1-80 and OMT1-
531 87 plants. The middle portions of youngest fully expanded leaves were taken when their next leaf needles started
532 to emerge (Day 0) and the same positions from the same leaves were taken after 4 days (Day 4). Scale bar: 1
533 mm (B).

534
535

Table 1: Leaf chlorophyll content, plant height and tiller number of wild-type and OMT1 lines.

	Chl (SPAD value)	Tiller number	Plant height (cm)
Wild-type	42.1±0.7 ^{ns}	9±0.5 ^{ab}	56.4±1.1 ^a
OMT1-79	42.4±1.4 ^{ns}	8±2 ^b	42.3±0.4 ^c
OMT1-80	41.3±1 ^{ns}	12±1 ^a	60±1.5 ^a
OMT1-87	42.2±0.8 ^{ns}	6.8±0.9 ^b	47.8±2.9 ^b

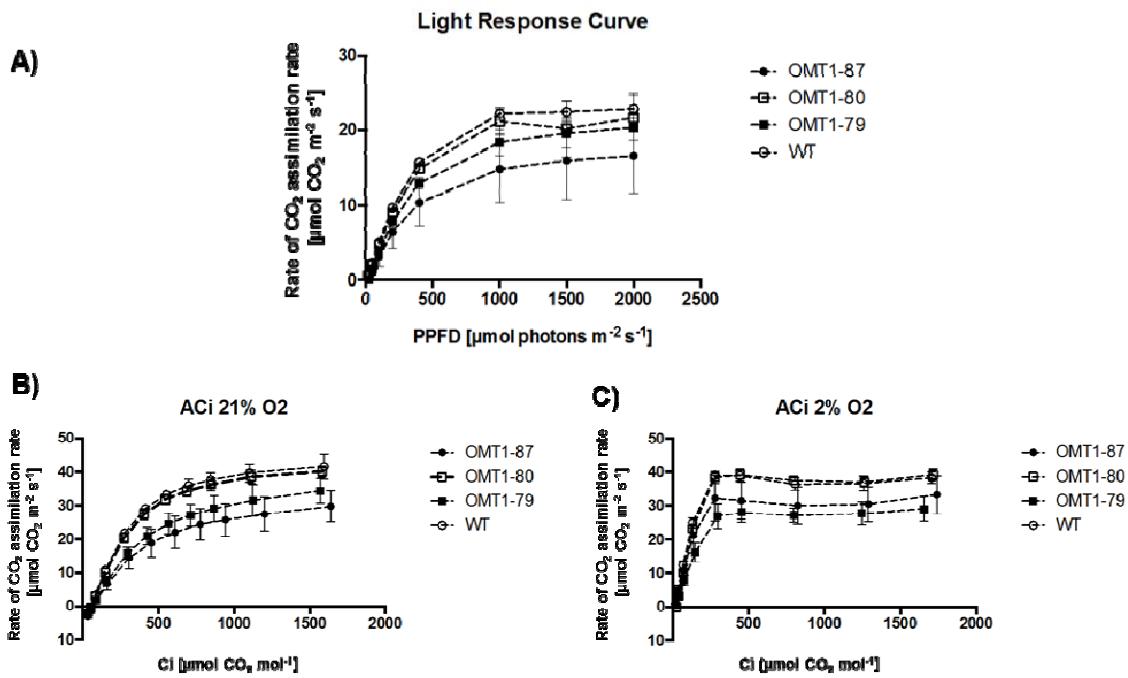
536
537
538

Chl SPAD values are the average ± SEM of three leaves from four plants at mid-tillering stage using the upper
fully expanded leaves.

539
540

Tiller number and plant height are the average ± SEM of four individual T_3 plants; 70 days post-germination.

541
542
543


Different letters within groups indicate that values are statistically different $p \leq 0.05$, Tukey's multiple comparison
test. ns indicates non-significant, $p > 0.05$.

544

545 ***Photorespiratory-deficient phenotypes of ZmOMT1 transgenic lines***

546 To examine the effect of overexpressing ZmOMT1 on photosynthesis in response to
547 changing light conditions, the CO₂ assimilation rate (A) in response to photosynthetic
548 photon flux density (PPFD) was measured at ambient CO₂ condition (400 μmol CO₂
549 mol⁻¹). The transgenic lines with highest *ZmOMT1* expression (OMT1-79 and OMT1-
550 87) had slightly lower CO₂ assimilation rates than wild-type whereas OMT1-80 had a
551 similar rate (Fig. 4a). At 2000 μmol photon m⁻² s⁻¹, photosynthesis in the OMT-80 line
552 and wild-type was already saturated, but this was not the case for OMT-79 and OMT-
553 87 lines. The *ZmOMT1* over-expressing lines had similar quantum efficiency (QE)
554 from the initial slope of light response curves (PPFD < 100 μmol photons m⁻² s⁻¹) to
555 wild-type (Table 2) suggesting that overexpressing ZmOMT1 protein doesn't affect
556 the efficiency of using light energy to fix CO₂ in rice plants. The dark respiration rates
557 were twice as high in OMT1-79 and OMT1-87 lines compared to OMT1-80 and wild-
558 type (Table 2) suggested that the carbon balance is possible altered in OMT1-79 and
559 OMT1-87 compared to wild-type. Moreover, the CO₂ assimilation rate (A) in response
560 to intercellular CO₂ concentration (C_i) under non-photorespiratory (2% O₂) versus
561 photorespiratory (21% O₂) conditions was measured under saturating light intensity
562 of 2000 μmol photons m⁻²s⁻¹. At 21% O₂, lower photosynthetic rates were observed in
563 OMT1-79 and OMT1-87 lines compared to wild-type and the OMT1-80 line (Fig. 4B).
564 OMT1-79 and OMT1-87 lines also had higher CO₂ compensation points (Γ) and
565 lower carboxylation efficiencies (CE) (Table 2). Under low photorespiratory conditions
566 (2% O₂), wild-type, OMT1-80, and OMT1-87 had similar photosynthetic rates at ~ 40
567 μmol CO₂ mol⁻¹, and similar CO₂ compensation points (Γ) (Fig. 4C). Above a C_i of
568 400 μmol CO₂ mol⁻¹, the assimilation rate was lower in OMT1-79 and OMT1-87 lines.
569 The maximum rate of Rubisco carboxylation (V_{cmax}) and the maximum rate of
570 electron transport (J_{max}) were reduced in OMT1-79 and OMT1-87 lines under high
571 photorespiratory conditions (Table S1). Together, these results indicate that the
572 transgenic lines are Rubisco-limited under high photorespiratory conditions (21% O₂)
573 and that when *ZmOMT1* is expressed, ribulose 1,5-bisphosphate (RuBP)
574 regeneration is limited at high CO₂ concentrations. Together, these data indicate that
575 *ZmOMT1* over-expression lines leads to higher rates of photorespiration, a
576 suggestion supported by the observation that transgenic lines have a higher CO₂
577 compensation point (Γ) than wild-type at 21% but not at 2 % O₂.

578

579

580

581 **Fig. 4:** Rate of CO₂ assimilation in response to photosynthetic photon flux density (PPFD). Light response curve
582 measurements were carried out under 400 μmol CO₂ mol⁻¹ and leaf temperature of 30°C. Values represent the
583 mean ± SEM of two leaves of four individual T₄ plants of OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) and
584 wild-type rice (WT) **(A)**. Rate of CO₂ assimilation in response to intercellular CO₂ concentration (Ci) at 21% **(B)**
585 and 2% O₂ **(C)**. The measurements were carried out under the light intensity of 2000 μmol photons m⁻² s⁻¹ with the
586 leaf temperature of 30°C. Values represent the mean ± SEM of two leaves of four individual T₄ plants of OMT1
587 lines (OMT1-79, OMT1-80 and OMT1-87) and wild-type rice (WT).

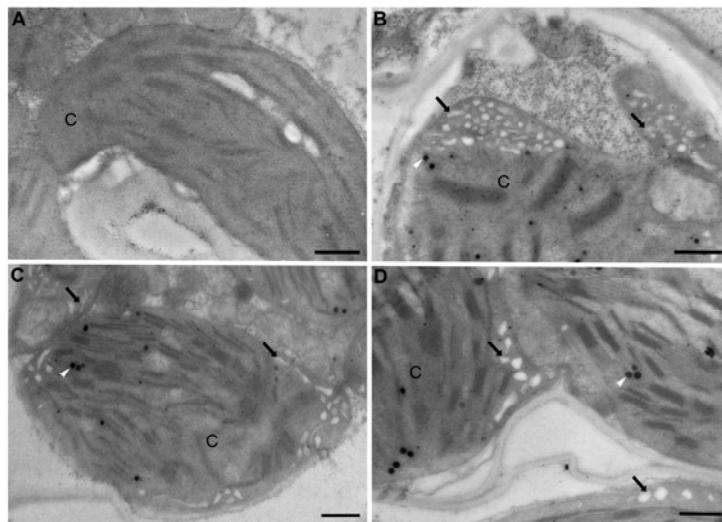
588

589

Table 2: Comparison of photosynthesis parameters.

	QE ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \mu\text{mol photons mol}^{-1}$)	R_d ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)	Γ ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)	CE ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \mu\text{mol CO}_2 \text{ mol}^{-1}$)	Γ ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$)	CE ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \mu\text{mol CO}_2 \text{ mol}^{-1}$)
	21% O_2			2% O_2		
Wild-type	0.05 \pm 0.003 ^{ns}	0.42 \pm 0.26 ^a	54.86 \pm 5.23 ^b	0.12 \pm 0.01 ^a	13.72 \pm 1.93 ^{ns}	0.23 \pm 0.013 ^a
OMT1-79	0.043 \pm 0.003 ^{ns}	0.93 \pm 0.20 ^{ab}	64.55 \pm 3.47 ^b	0.08 \pm 0.01 ^{bc}	17.89 \pm 4.76 ^{ns}	0.12 \pm 0.02 ^b
OMT1-80	0.047 \pm 0.002 ^{ns}	0.41 \pm 0.21 ^a	53.81 \pm 3.17 ^b	0.11 \pm 0.01 ^{ab}	22.63 \pm 0.8 ^{ns}	0.22 \pm 0.2 ^a
OMT1-87	0.037 \pm 0.011 ^{ns}	1.06 \pm 0.12 ^b	67.9 \pm 7.23 ^a	0.07 \pm 0.02 ^c	12.55 \pm 6.54 ^{ns}	0.17 \pm 0.05 ^{ab}

Measurements of quantum efficiency (QE) were made at 400 $\mu\text{mol CO}_2 \text{ mol}^{-1}$ and a leaf temperature of 30°C. Values represent the mean \pm SEM of two leaves from four individual T₄ generation plants.


Measurements of dark respiration rate (R_d) were made on leaves dark adapted for 1100 sec. Values represent the mean \pm SEM of measurements made every 10 sec for 100 sec from two leaves of four individual T₄ generation plants.

Measurements of CO₂ compensation point (Γ) and carboxylation efficiency (CE) were made at a photosynthetic photon flux density (PPFD) of 2000 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ and a leaf temperature of 30°C at either 21% or 2% O₂. Values represent the mean \pm SEM of two leaves of four individual T₄ generation plants.

Different letters within groups indicate that values are statistically different $p \leq 0.05$, Tukey's multiple comparison test. ns indicates non-significant, $p > 0.05$.

Chloroplast ultrastructure is perturbed in OMT1 transgenic lines

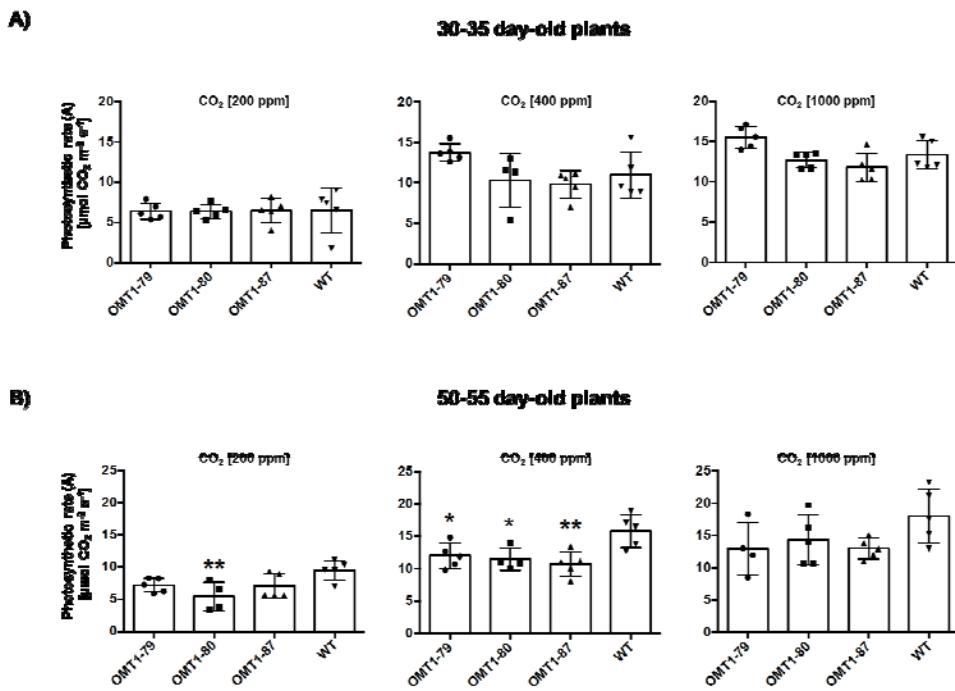

The macroscopic and physiological phenotypes of OMT1 lines were accompanied by ultrastructural changes in M cell chloroplasts. In contrast to wild-type plants, M cell chloroplasts of the OMT1 lines developed a peripheral reticulum (PR; Fig. 5) which is an internal network of tubules and vesicles continuous with the chloroplast inner membrane of chloroplasts (Rosado-Alberio *et al.*, 1968, Laetsch, 1974). Plastoglobules (PG), not observed in wild-type plants, were also present in chloroplasts of the over-expressing lines. PGs are lipid microcompartments posited to function in lipid metabolism, redox and photosynthetic regulation and thylakoid repair and disposal during chloroplast biogenesis and stress (Rottet *et al.*, 2015; van Wijk and Kessler, 2017).

Fig. 5: Transmission electron micrographs illustrating chloroplasts without peripheral reticulum in **(A)** wild-type and with peripheral reticulum (black arrows) in OMT1 transgenic lines **(B)** OMT1-79, **(C)** OMT1-80 and **(D)** OMT1-87. White arrows mark plastoglobules; C, chloroplast; Scale bar = 500 nm.

CO₂ assimilation rate and leaf metabolite profiles of transgenic lines

The photosynthetic rate of the older *ZmOMT1* transgenic plants (50-55 days old) measured in our custom-build gas exchange cuvette (Fig. S1B) was affected more than that of younger ones (30-35 days old) (Fig. 6A and B), in which the photosynthesis rate became significantly lower in *ZmOMT1* transgenic lines under ambient CO₂ concentration (400 ppm) (Fig. 6 B). The photosynthetic rate was partially restored under high CO₂ concentration (1000 ppm) for older plants (Fig. 6B).

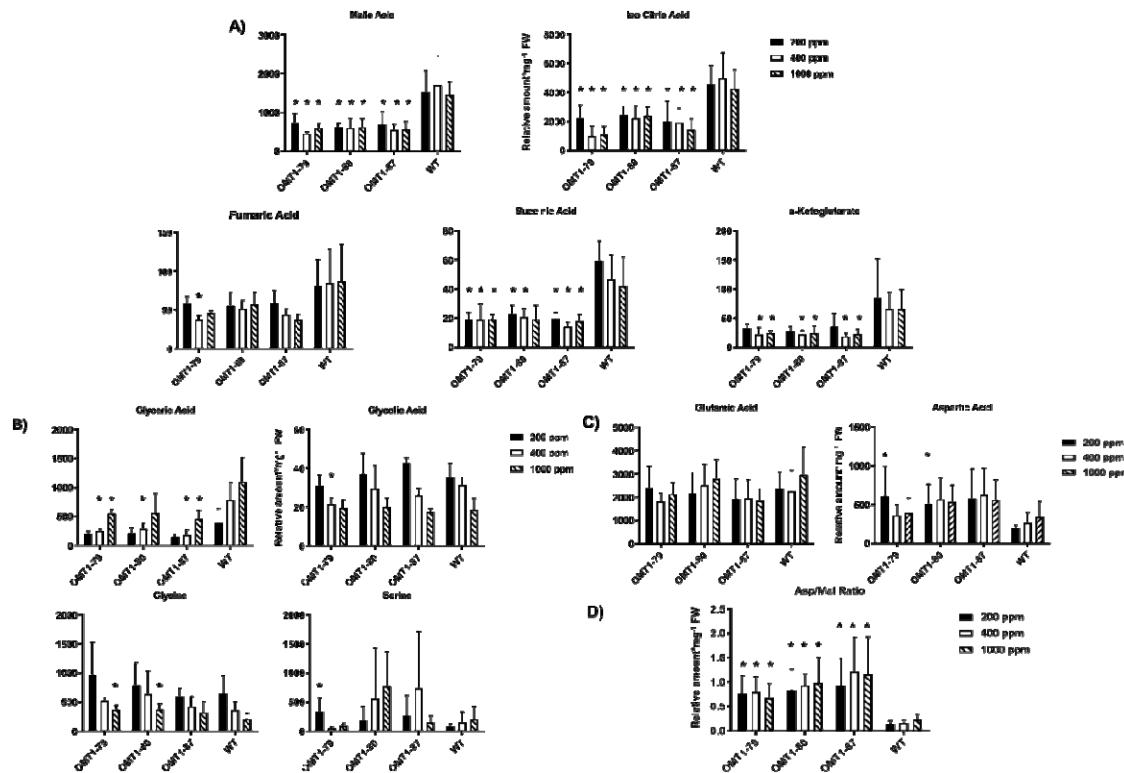


Figure 6: Impact of three CO₂ concentrations (200, 400 and 1000 ppm) on photosynthetic rate measured inside a custom gas exchange cuvette of two different plants set [OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) and wild-type (WT)] differed in age younger: 30-35 days old (**A**) and older: 50-55 days old (**B**). Values represent the mean \pm SEM, n=4-5. Significantly differences to WT are indicated by * $P \leq 0.05$ and ** $P \leq 0.01$, Tukey's multiple comparison test.

Metabolite profiles of *ZmOMT1* lines and wild-type rice reveal altered steady state pools of TCA intermediates and aspartate

The metabolic state of 30-35-day-old *ZmOMT1* transgenic rice lines and wild-type under different CO₂ conditions was examined using GC/MS analysis. Large differences were observed among the measured metabolites of the mitochondrial tricarboxylic acid cycle between the transgenic lines and wild-type. Malic acid, fumaric acid, iso-citric acid, succinic acid, and α -ketoglutarate were significantly lower in all *ZmOMT1* transgenic rice lines than wild-type under different CO₂ concentrations (Fig. 7A). Among photorespiratory intermediates, only glyceric acid displayed a lower amount in OMT1 lines. Others, such as glycolic acid, glycine, and serine were similar to the wild type or tended to be higher, in some cases significantly (Fig. 7B). Of the substrates transported by OMT1 and DiT2, apparently, aspartic acid was significantly increased in the overexpression lines (Fig. 7C). Malic acid and α -ketoglutarate, as previously mentioned, were significantly lower and glutamic acid remained unchanged for all three OMT1 transgenic rice lines in comparison with wild-

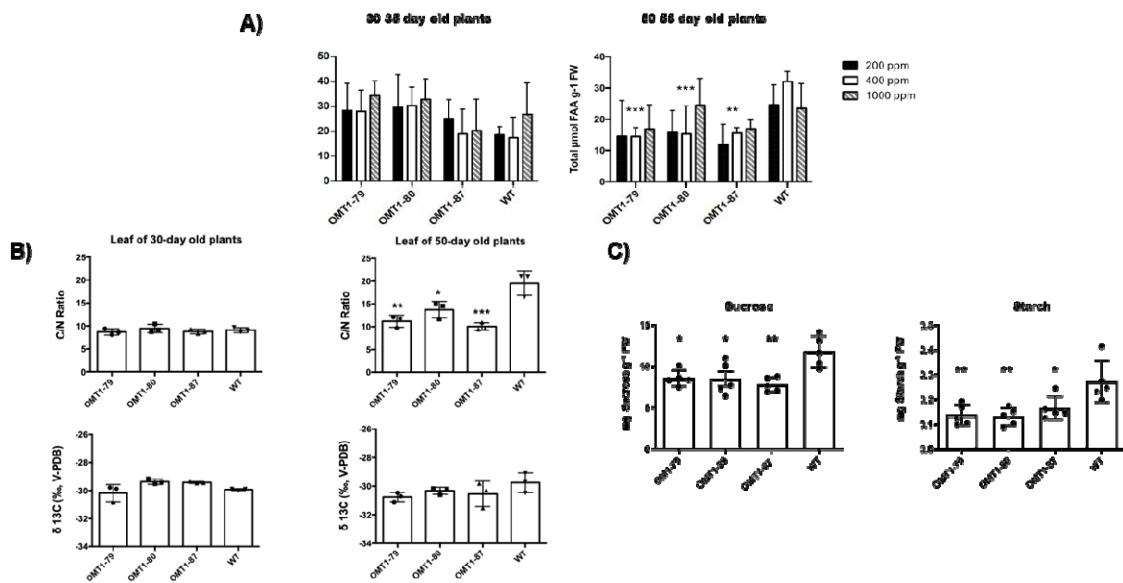

type under different CO_2 concentrations (Fig. 7A and 7C). We further calculated the aspartate/malate ratio for all transgenic rice lines and compared to wild-type. As shown in Figure 7D, the aspartate to malate ratio was significantly higher in transgenic *ZmOMT1* lines relative to wild-type under different CO_2 concentrations.

Fig. 7: Relative amount of metabolites involved in the citric acid cycle extracted from OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) and wild-type (WT) rice leaves under different CO_2 concentrations (200, 400 and 1000 ppm). Values represent the mean \pm SEM, $n=5$, significantly differences to WT are indicated by * $P \leq 0.05$, Student's t-test (A). Relative amount of metabolites related to photorespiration extracted from OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) and wild-type (WT) rice leaves under different CO_2 concentrations (200, 400 and 1000 ppm). Values represent the mean \pm SEM, $n=5$, significantly differences to WT are indicated by * $P \leq 0.05$, Student's t-test (B). Relative amount of metabolites known as the key substrates of OMT1 and DiT2 membrane transporters extracted from OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) and wild-type (WT) rice leaves under different CO_2 concentrations (200, 400 and 1000 ppm). Values represent the mean \pm SEM, $n=5$, significantly differences to WT are indicated by * $P \leq 0.05$, Student's t-test (C). Aspartate/malate ratio of OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) and wild-type (WT) rice under different CO_2 concentrations (200, 400 and 1000 ppm). Values represent the mean \pm SEM, $n=5$, significantly differences to WT are indicated by * $P \leq 0.05$. Student's t-test (D).

Total free amino acids, carbon:nitrogen ratios, and carbohydrate contents are decreased in leaves of *ZmOMT1* lines

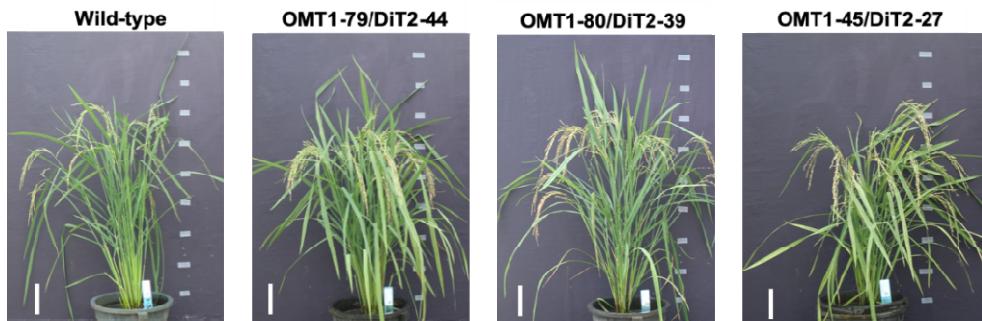

The absolute FAA contents of *ZmOMT1* lines and wild-type rice were determined to assess the effect of altered plastidial dicarboxylate transport capacity on amino acid metabolism. Levels were lower in older plants of *ZmOMT1* lines (50-55 days old) under all CO₂ concentrations but were significantly decreased under ambient CO₂ (400 ppm) compared to wild-type rice (Fig. 8A). As plants aged, the C/N ratio also decreased significantly in *ZmOMT1* transgenic lines but the $\delta^{13}\text{C}$ value did not differ between wild-type and transgenic lines (Fig. 8B). Sucrose and starch amounts were significantly reduced in the OMT1 lines compared to wild-type plants (Fig. 8c).

Figure 8: Absolute amounts of total free amino acid (FAA) content of OMT1 lines (OMT1-79, OMT1-80 and OMT1-87) and wild-type (WT) rice under different CO₂ concentrations (200, 400 and 1000 ppm). Values represent the mean \pm SEM, n=5, significantly differences to WT are indicated by ** $P \leq 0.01$ and *** $P \leq 0.001$, Tukey's multiple comparison test (A). The C/N ratio and $\delta^{13}\text{C}$ value of 30 and 50 days old OMT1 lines and wild-type rice (WT). Values represent the mean \pm SEM, n=3, significantly differences to WT are indicated by * $P \leq 0.05$, ** $P \leq 0.01$ and *** $P \leq 0.001$, Tukey's multiple comparison test (B). Sucrose and starch content in OMT1 lines (79, 80 and 87) and wild-type rice (WT). Sample materials were collected at 10:00 h at the mid-tillering stage. Values represent the mean \pm SEM, n=5, significantly differences to WT are indicated by * $P \leq 0.05$, and ** $P \leq 0.01$, Tukey's multiple comparison test (C).

Simultaneous expression of *ZmOMT1* and *ZmDiT2* in transgenic rice lines restored the wild-type growth phenotype

We hypothesized that the phenotypes observed in rice lines overexpressing *ZmOMT1* might be caused by an imbalance between the transport capacities for malate, oxaloacetate, and α -ketoglutarate (transported by OMT1), and glutamate and aspartate (transported by DiT2). If this assumption was true, then the phenotypes of *ZmOMT1* single transgenic lines should be rescued by simultaneous overexpression of *ZmDiT2*. We, hence, generated double transgenic lines in which both, *ZmOMT1* and *ZmDiT2* were expressed (Fig. S5 and S6). Notably, double transgenic lines displayed similar physiological phenotypes as wild-type plants when grown under ambient conditions (Fig. 9). Leaf chlorophyll content, number of tillers, and plant height were comparable to wild-type in two of three independent *ZmOMT1/ZmDiT2* double over-expressing plants.

Fig. 9: Growth phenotype of wild-type together with the double over-expressed lines of OMT1-79/DiT2-44, OMT1-80/DiT2-39, and OMT1-45/DiT2-27. All plants were grown under ambient conditions; 90 days post germination (DPG). Scale bar: 10 cm.

Table 3: Leaf Chlorophyll content, plant height and tiller number of wild-type and OMT1/DiT2 double over-expressed lines.

	Chl (SPAD value)	Tiller number	Plant height (cm)
Wild-type	43.8 \pm 1.1 ^a	17.3 \pm 1.6 ^{ns}	99.3 \pm 3.8 ^{ab}
OMT1-79/DiT2-44	39.9 \pm 1.6 ^{ab}	24.7 \pm 6.4 ^{ns}	97.7 \pm 1.8 ^a
OMT1-80/DiT2-39	40.9 \pm 1.6 ^{ab}	13 \pm 0.7 ^{ns}	96.7 \pm 3.1 ^{ab}
OMT1-45/DiT2-27	36.6 \pm 1.5 ^b	18 \pm 3.3 ^{ns}	87.7 \pm 4.7 ^b

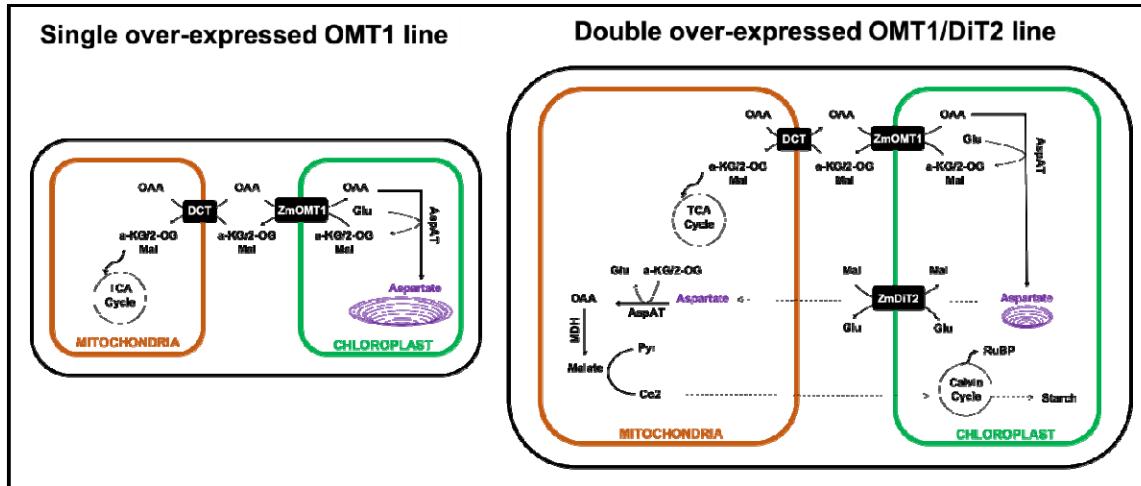
Chl SPAD values are the average \pm SEM of three leaves from three plants at mid-tillering stage using the upper fully expanded leaves.

Tiller number and plant height are the average \pm SEM of three individual F_2 plants at 90 days post-germination. Different letters within groups indicate that values are statistically different $p \leq 0.05$, Tukey's multiple comparison test. ns indicates non-significant, $p > 0.05$.

Discussion

C_4 plants require a higher transport capacity of oxaloacetate and malate across the chloroplast envelope of leaf M cells because OAA generated by the PEP carboxylase reaction in the cytoplasm is further converted to malate by plastidial NADP-malate dehydrogenase. Malate is then exported from M chloroplasts and transported to the carbon concentrating sheath cells. In this study, as part of the effort to engineer C_4 rice, transgenic rice lines were generated that over-express the chloroplast envelope malate/oxaloacetate/ α -ketoglutarate antiporter OMT1 from maize, *ZmOMT1*.

A striking feature of chloroplasts in the *ZmOMT1* overexpressing lines was the development of the peripheral reticulum (PR). This peripheral matrix of tubules and vesicles is continuous with the inner envelope which is the site where metabolite exchange occurs (Pottosin and Shabala, 2016). Although PR has been reported to be present in M and bundle sheath cells of other C_3 grasses such as wheat (Szczepanik and Sowinski, 2014), this cellular feature has not been observed in other *Oryza* species or cultivars (Sage and Sage, 2009; Giuliani *et al.*, 2013). The PR is also present in M and sheath cells of C_4 species of grasses and eudicots, although in comparison to C_3 grasses, the PR in C_4 species is much more abundant (Rosado-Alberio *et al.*, 1968; Laetsch, 1968; Laetsch, 1969; Szczepanik and Sowinski, 2014). Chloroplast envelope proliferation in association with over-expression of envelope proteins has been previously reported (Breuers *et al.*, 2012), supporting the idea that the *ZmOMT1* transporter is accumulating to high amounts in the inner envelope of M chloroplasts. Given that the presence of PR is posited to be correlated with high rates of metabolite exchange (Gracen *et al.*, 1972a, Hilliard and West, 1971; Laetsch, 1974; Gracen *et al.*, 1972b), the PR phenotype in *ZmOMT1* transgenic lines is consistent with the altered metabolic profiles observed.


In general, OAA transported by OMT1 enters the chloroplast and is subsequently converted to either malate by NADP-MDH or aspartate by plastidial aspartate aminotransferase. Whereas, malate can be transported back to the cytosol by OMT1, export of aspartate out of chloroplast requires the activity of DiT2. Enhanced accumulation of aspartate in the transgenic lines (Fig. 7D) indicates that this

metabolite cannot be further metabolized in chloroplasts and thus that metabolite flux between chloroplasts and mitochondria is blocked. This outcome could explain the lower amounts of intermediate metabolites in the citric acid cycle (TCA) of mitochondria (the energy machinery) (Fig. 7A) among which a few are common substrates of the OMT1 transporter (Fig. 7A and 7C). All of these intermediates are pivotal for effective function of plant metabolic pathways. For instance, malate, a primary substrate of OMT1, participates as an intermediate in many vital mechanisms in the cytosol and vacuole (redox homeostasis, pH levels and carbon storage) (Fernie and Martinoia, 2009). Loss of function mutations in *OMT1* in the C₃ plants *Arabidopsis* (Kinoshita *et al.*, 2011) and tobacco (Schneidereit *et al.*, 2006), caused an increase in levels of 2-OG and malate and a decrease in levels of aspartate, the opposite trend to that seen in *ZmOMT1* overexpressing rice plants. Surprisingly, any disruption to OMT1 activity (either an increase or decrease) leads to lower photosynthetic rates than wild-type, suggesting that OMT1 transporter activity must be precisely regulated to maintain optimal photosynthetic performance. The reduced photosynthetic rates in *ZmOMT1* transgenic rice plants reveal possible relationships between photosynthesis, photorespiration, and cellular redox status. Differences in photosynthesis were significant in the plants measured in the Philippines and in older plants grown in Düsseldorf, Germany (Fig. 4A and 6B). This decrease in photosynthesis is only partially explained by increases in R_d (Table 2). Interestingly, this decrease in photosynthesis could be rescued by minimizing photorespiration under some measurement and growth conditions, but not others. Specifically, the photosynthetic rates of *ZmOMT1* transgenic lines were not rescued by elevated CO₂ or reduced O₂ when measured under growth conditions in the Philippines (Fig. 4B and 4C), but were rescued in the plants grown in Düsseldorf, Germany when measured under elevated CO₂ (Fig. 6). One major difference in these measurements was the light intensity used (2000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for the A-C_i curves vs 500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for the metabolite assays), meaning that phenotypic rescue may only occur under sub-saturating light intensities. As photorespiratory rates increase, the increased demand for ATP relative to NAD(P)H pushes the redox status of the NADP⁺/NADPH pools to be more reduced unless processes either decrease plastidic NADPH (malate valve) or increase ATP production (cyclic electron flux around photosystem I, CEF). The oxidation of NADPH, which could be increased with increased export of malate, must be finely balanced with metabolic demand so as not

to directly compete with NADPH pools needed to supply the Calvin-Benson cycle or photorespiration. Under sub-saturating light, there are numerous lines of evidence suggesting that the malate valve regulates this balance, particularly under photorespiratory conditions (Kramer and Evans, 2011; Walker *et al.*, 2014; Shameer *et al.*, 2019). Specially, this event leads to the reduced provision of carbon skeletons for nitrogen assimilation and to a significant reduction of the leaf C/N ratio (Fig. 8B) together with the reduction of FAA in the older OMT1 transgenic lines under 400 ppm CO₂ concentration (Fig. 8A). Principally, both carbohydrate and amino acid biosynthesis are relying on each other (Nunes-Nesi *et al.*, 2010). Correspondingly, in all three OMT1 transgenic lines, both sucrose and starch contents were decreased significantly compared to wild-type rice (Fig. 8C). It is known that a part of the photo-assimilated carbon during the day will be partitioned and stored as starch to be used later during the night as a source of energy supply for sink tissues as well as fatty acid and amino acid biogenesis (Stitt and Zeeman, 2012). On the other hand, sucrose biosynthesis is occurring during the day (from the triose-phosphate pathway) and the night (from various enzymatic reactions involved in starch degradation) (Kunz *et al.*, 2014). Therefore, starch and sucrose metabolisms tightly depend on each other and both are orchestrated by the amount of the fixed carbon during photosynthesis. Taken together, apparently too high or too low amounts of OMT1 protein affect the coordination of the C and N assimilation pathways.

Concluding model

Our results present evidences on the crucial roles of OMT1 transporter in rice plants. We suggest a hypothetical model (Fig. 10) in which aspartate accumulates in chloroplast of single OMT1 transgenic lines in comparison with wild-type rice (Fig. 7D). We propose that the accumulated aspartate impairs the flux between the inside and outside of the chloroplast causing the growth and photosynthetic deficiency phenotypes in single OMT1 transgenic lines. Our assumption is supported by the finding that providing an exit pathway for aspartate by introducing an additional plastidial transporter (ZmDiT2) suppresses the phenotype of OMT1 overexpression (Fig. 10). These double over-expressor OMT1/DiT2 lines grew similar as the wild-type and plant height along with numbers of tiller were recovered (Table 3). Our results indicate that coordinated expression of OMT1 and DiT2 is needed for engineering C₄-rice plants.

Fig. 10: Schematic of the single OMT1 and double OMT1/DiT2 transgenic C₃-rice plants. Both OMT1 and DiT2 were originated from C₄-maize plant.

Acknowledgements

This work was funded by the Bill and Melinda Gates Foundation C4-Rice project. Metabolite analyses were supported by the CEPLAS Plant Metabolism and Metabolomics laboratory, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2048/1 – project ID 390686111. We acknowledge the excellent technical assistance by E. Klemp, K. Weber, and M. Graf for GC-MS measurements. We would like to thank Prof. Jane Langdale (University of Oxford) for her C4-Rice team leadership and valuable comments on the manuscript draft. We wish to thank IRRI C4-Rice center for their help with plant transformation, husbandry and physiological measurements. We also wish to thank Sarah Covshoff for providing the constructs of OMT1 and DiT2.

References

Bai Z, Wang J, Wang M, Gao M, Sun J (2018) Accuracy assessment of multi-source gridded population distribution datasets in China. *Sustainability* 10, 5:1363

Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. *Plant Cell Environ.* 24:253-259

Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. *Plant Cell Environ.* 26:1419-1430

Breuers FKH, Bräutigam A, Geimer S, Welzel UY, Stefano G, Renna L, Brandizzi F, Weber APM (2012) Dynamic remodeling of the plastid envelope membranes-a tool for chloroplast envelope in vivo localizations. *Front. Plant Sci.* 3:1-10

Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, the C4 Grasses Consortium (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. *Science* 328:587-591

FAO (2017) The future of food and agriculture-Trends and challenges. Rome. 180 pp. (www.fao.org/3/a-i6583e.pdf)

Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta* 149: 78-90

Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? *Phytochem.* 70:828-832

Fiehn O (2007) Validated high quality automated metabolome analysis of *Arabidopsis thaliana* leaf disks. In Nikolau BJ, Wurtele ES, eds. *Concepts in plant metabolomics*. New York, USA: Springer 1-18

Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signaling. *J. Exp. Bot.* 58:2339-2358

Furbank RT, Scofield GN, Hirose T, Wang X-D, Patrick JW, Offler CE (2001) Cellular localisation and function of a sucrose transporter OsSUT1 developing rice grains. *Aust. J. Plant Physiol.* 28:1187-1196

Ghannoum O, Evans JR, Von Caemmerer S, (2011) Nitrogen and water use efficiency of C₄ plants. In Raghavendra AS, Sage RF, eds. C₄ photosynthesis and related CO₂ concentrating mechanisms. Dordrecht, The Netherlands: Springer 129-146

Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus *Oryza*). *Plant Physiol.* 162:1632-1651

Guillemaut P, Maréchal-Drouard L (1992) Isolation of plant DNA: a fast, inexpensive, and reliable method. *Plant Mol. Biol. Rep.* 10:60-65

Gracen VE, Hilliard JH, Brown RH, West SH (1972a) Peripheral reticulum in chloroplasts of plants differing in CO₂ fixation pathways and photorespiration. *Planta* 107:189-204

Gracen VE, Hilliard JH, West SH (1972b) Presence of peripheral reticulum in chloroplasts of Calvin cycle cells. *J. Ultrastruct. Res.* 38:262-264

Haferkamp I, Linka N (2012) Functional expression and characterization of membrane transport proteins. *Plant Biol.* 14:675-690

Hibberd JM, Sheehy JE, Langdale JA (2008) Using C₄ photosynthesis to increase the yield of rice-rationale and feasibility. *Curr. Opin. Plant Biol.* 11:228-231

Hilliard J, West S (1971) The association of chloroplast peripheral reticulum with low photorespiration rates in a photorespiring plant species. *Planta* 99:352-356

Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. *Biochem. Biophys. Res. Commun.* 345:646-651

Khoshravesh R, Lundsgaard-Nielsen V, Sultmanis S, Sage TL (2017) Light microscopy, transmission electron microscopy, and immunohistochemistry protocols for studying photorespiration. In A. R. Fernie, H. Bauwe, and A. P. M. Weber, eds. *Photorespiration: Methods and Protocols*. New York, USA: Springer 1653:243-270

Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, Kawasaki M, Sugiyama T, Miyake H, Weber APM, Taniguchi M (2011) The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism. *Plant J.* 65:15-26

Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. *Plant Physiol.* 155:70-78

Kromdijk J, Long SP (2016) One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO₂ and temperature could be one important route to alleviation. *Proc. R. Soc. B.* 283:20152578

Kunz HH, Zamani-Nour S, Häusler RE, Ludewig K, Schroeder JI, Malinova I, Fettke J, Flügge UI, Gierth M (2014) Loss of cytosolic phosphoglucose isomerase (cPGI) affects carbohydrate metabolism in leaves and is essential for fertility of *Arabidopsis thaliana*. *Plant Physiol.* 166:753-765

Laetsch WM (1968) Chloroplast specialization in dicotylidons possessing the C₄-dicarboxylic acid pathway of photosynthetic CO₂ fixation. *Am. J. Bot.* 55:875-883

Laetsch WM (1969) Relationship between chloroplast structure and photosynthetic carbon fixation pathways. *Sci. Prog. Oxf.* 57:323-351

Laetsch WM (1974) The C₄ Syndrome: A structural analysis. *Annu. Rev. Plant Physiol.* 25:27-52

Lin H-C, Karki S, Coe RA, Bagha S, Khoshravesh R, Balahadia CP, Sagun JV, Tapia R, Israel WK, Montecillo F, de Luna A, Danila FR, Lazaro A, Realubit CM, Acoba MG, Sage TL, von Caemmerer S, Furbank RT, Cousins AB, Hibberd JM, Quick WP, Covshoff S (2016) Targeted Knockdown of GDCH in Rice Leads to a Photorespiratory-Deficient Phenotype Useful as a Building Block for C₄ Rice. *Plant Cell Physiol.* 57:919-932.

Mackill DJ, Khush GS (2018) IR64: a high-quality and high-yielding mega variety. *Rice* 11:18

Makino A, Osmond B (1991) Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. *Plant Physiol.* 96:355-362

Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. *Ann. N.Y. Acad. Sci.* 1324:7-14

Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and Signaling Aspects Underpinning the Regulation of Plant Carbon Nitrogen Interactions. *Mol. Plant* 3:973-996

Osborn HL, Alonso-Cantabrina H, Sharwood RE, Covshoff S, Evans JR, Furbank RT, von Caemmerer S (2017) Effects of reduced carbonic anhydrase activity on CO₂ assimilation rates in *Setaria viridis*: a transgenic analysis. *J. Exp. Bot.* 68:299-310

Palmieri F, Indiveri C, Bisaccia F, Iacobazzi Vito (1995) Mitochondrial metabolite carrier proteins: purification, reconstitution, and transport studies. *Methods Enzymol.* 260:349-369

Pottosin I, Shabala S (2016) Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. *Mol. Plant.* 9:356-370

Roell MS, Kuhnert F, Zamani-Nour S, Weber APM (2017) In vitro analysis of metabolite transport proteins. In Fernie A, Bauwe H, Weber A, eds. *Photorespiration: Methods and Protocols*. New York, USA: Springer 1653:83-96

Rosado-Alberio J, Weier TE, Stocking CR (1968) Continuity of the chloroplast membrane systems in *Zea mays* L. *Plant Physiol.* 43:1325-1331

Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. *Biochim. Biophys. Acta* 1847:889-899

Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO₂ and efforts to engineer C₄ photosynthesis into rice. *Plant Cell Physiol.* 50:756-772

Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the Evolution of C₄ Photosynthesis. *Annu. Rev. Plant Biol.* 63:19-47

Schneidereit J, Häusler R, Fiene G, Kaiser WM, Weber APM (2006) Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. *Plant J.* 45:206-224

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* 9:671-675

Selinski J, Scheibe R (2019) Malate valves: old shuttles with new perspectives. *Plant Biol.* 21:21-30

Shameer S, Ratcliffe RG, Sweetlove LJ (2019) Leaf Energy Balance Requires Mitochondrial Respiration and Export of Chloroplast NADPH in the Light. *Plant Physiol.* 180:1947-1961

Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. *Bioinformatics* 19:1439-1440

Smith AM, Agiza AH (1951) The Determination of amino-acids colorimetrically the ninhydrin reaction. *The Analyst* 76:623-627

Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. *Nat. Protoc.* 1:1342-1345

Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. *Curr. Opin. Plant Biol.* 15:282-292

Szczepanik J, Sowinski P (2014) The occurrence of chloroplast periipheral reticulum in grasses: a matter of phylogeny or a matter of function? *Acta Physiol. Plant.* 36:1133-1142

Taniguchi M, Taniguchi Y, Kawasaki M, Takeda S, Kato T, Sato S, Tabata S, Miyake H, Sugiyama T (2002) Identifying and characterizing plastidic 2-Oxoglutarate/Malate and dicarboxylate transporters in *Arabidopsis thaliana*. *Plant Cell Physiol.* 43:706-717

Taniguchi M, Miyake H (2012) Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. *Curr. Opin. Plant Biol.* 15:252-260

Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonia assimilation in rice and barley. *J Exp. Bot.* 52:591-604

Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. *Plant Cell* 20:1736-1737

Van Wijk KJ, Kessler F (2017) Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. *Annu. Rev. Plant Biol.* 68:253-289

Walker BJ, Strand DD, Kramer DM, Cousins AB (2014) The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation. *Plant Physiol.* 165:453-462

Wang P, Vlad D, Langdale JA (2016) Finding the genes to build C₄ rice. *Curr. Opin. Plant Biol.* 31:44-50

Weber APM, Menzlaff E, Arbinger B, Guttensohn M, Eckerskorn C, Flügge UI (1995) The 2-oxoglutarate/malate translocator of chloroplast envelope membranes:

molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. *Biochem.* 34:2621-2627

Yin X, Anand A, Quick WP, Bandyopadhyay A (2019) Editing a stomatal developmental gene in rice with CRISPR/Cpf1. In: Qi Y, eds. *Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology*, New York, USA: Humana Press 1917:257-268

Yoshida S, Forno DA, Cock JH Gomez KA (1972) Routine procedure for growing rice plants in culture solution. In Yoshida S, Forno DA, Cock JH, eds. *Laboratory manual for physiological studies of rice*. Los Baños, Philippines: International Rice Research Institute 61-66