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Abstract 

Background: Hundreds of millions of people get a mosquito-borne disease every year, of which 
nearly one million die. Mosquito-borne diseases are primarily controlled and mitigated through 
the control of mosquito vectors. Accurately quantified mosquito dispersal in a given landscape is 
critical for the design and optimization of the control programs, yet the field experiments that 
measure dispersal of mosquitoes recaptured at certain distances from the release point (mark-
release-recapture MRR studies) are challenging for such small insects and often 
unrepresentative of the insect’s true field behavior. Using Singapore as a study site, we show 
how mosquito dispersal patterns can be characterized from the spatial analyses of genetic 
relatedness among individuals sampled over a short time span without interruption of their 
natural behaviors. 
Methods and Findings: We captured ovipositing females of Aedes aegypti, a major arboviral 
disease vector, across floors of high-rise apartment blocks and genotyped them using 
thousands of genome-wide SNP markers. We developed a methodology that produces a 
dispersal kernel for distance that results from one generation of successful breeding (effective 
dispersal), using the distances separating full siblings, 2nd and 3rd degree relatives (close kin). In 
Singapore, the estimated dispersal distance kernel was exponential (Laplacian), giving the 
mean effective dispersal distance (and dispersal kernel spread σ) of 45.2 m (95%CI: 39.7-51.3 
m), and 10% probability of dispersal >100 m (95%CI: 92-117 m). Our genetic-based estimates 
matched the parametrized dispersal kernels from the previously reported MRR experiments. If 
few close-kin are captured, a conventional genetic isolation-by-distance analysis can be used, 
and we show that it can produce σ estimates congruent with the close-kin method, conditioned 
on the accurate estimation of effective population density. We also show that genetic patch size, 
estimated with the spatial autocorrelation analysis, reflects the spatial extent of the dispersal 
kernel ‘tail’ that influences e.g. predictions of critical radii of release zones and Wolbachia wave 
speed in mosquito replacement programs. 
Conclusions: We demonstrate that spatial genetics (the newly developed close-kin analysis, 
and conventional IBD and spatial autocorrelation analyses) can provide a detailed and robust 
characterization of mosquito dispersal that can guide operational vector control decisions. With 
the decreasing cost of next generation sequencing, acquisition of spatial genetic data will 
become increasingly accessible, and given the complexities and criticisms of conventional MRR 
methods, but the central role of dispersal measures in vector control programs, we recommend 
genetic-based dispersal characterization as the more desirable means of parameterization. 
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Introduction 

Mosquitoes’ ability to carry and transmit human pathogens (malaria and filarial parasites, 
arboviruses) causes hundreds of millions of infections and nearly one million fatalities every 
year [1]. Both prevention and mitigation of many mosquito-borne disease outbreaks are 
primarily reliant on the control of mosquito vectors. Most of these interventions are designed to 
impact mosquito abundance or daily survival by targeting immature and adult stages. In the 
case of the major arbovirus vector Aedes aegypti, an urban-dwelling container-breeding 
mosquito, conventional control approaches include removal and treatment of larval habitats, as 
well as elimination of adults through insecticide application (indoor-residual and space spraying) 
and lethal trapping [2]. New biocontrol strategies undergoing field evaluations include RIDLR and 
Wolbachia-based population replacement and suppression [3–5]. 
 Defining the optimal area for treatment or mosquito release is one of the key 
considerations when implementing a public health intervention or designing a field-trial for a new 
control approach. For example, to contain the spread of dengue virus during an outbreak, focal 
insecticide-based control of Ae. aegypti adults is typically conducted at and around the main 
and secondary residences of dengue cases. The radius of the area to be treated is informed by 
the average dispersal distance of potentially infected female Ae. aegypti [6]. Understanding the 
ability of released sterile male mosquitoes to disperse and mate in an area being targeted by a 
suppression strategy is essential for predicting the required release pattern [7]. Additionally, 
sustained suppression in a target zone is difficult if a surrounding buffer zone is too small to 
prevent immigration by gravid wild-type females from neighboring areas. Similarly, stable 
introduction of a virus-blocking Wolbachia may fail if the release area of Wolbachia-infected Ae. 
aegypti is too small and too vulnerable to immigration by wild-type mosquitoes [8]. For the 
emerging genetic-based control approaches such as gene drive systems [9], well characterized 
mosquito dispersal is crucial for addressing the biosafety concerns around the systems’ 
confineability and reversibility in the field [10,11]. 
 Quantifying mosquito dispersal of both wild type and introduced mosquito strains in any 
given landscape is, therefore, critical for the considerations of the size of the treatment area and 
the surrounding buffer zones. Those considerations complement practical operational 
deliberations of the availability of human and economic resources for implementation and the 
sample sizes required to capture epidemiological endpoints [12,13]. 
 Mosquito dispersal characteristics have been typically studied using conventional mark-
release-recapture (MRR) experiments utilizing powders and paints on trapped or laboratory-
reared adult mosquitoes [14]. Location of the recaptured marked insects relative to their release 
point is typically used to estimate the mean distance travelled (MDT), and the distance within 
which 50% or 90% of mosquitoes are expected to disperse (FR50 and FR90, respectively). 
Fewer MRR studies have incorporated the dispersal kernel theory to estimate the distribution of 
dispersal distances over the whole flight range [7,15,16]. MRR experiments in Ae. aegypti have 
reported the mean dispersal distance to range from tens to hundreds of meters [14], and this 
variation points to a need to characterize dispersal locally so that the optimal control can be 
deployed in a given landscape. However, MRR experiments are operationally demanding, and 
the rearing and marking procedure can alter mosquito fitness and movement behavior in the 
field [17]. Additionally, the release of biting vector-competent females might pose an 
unacceptable risk of increased pathogen transmission in endemic areas. 
 Here we show how information on mosquito dispersal characteristics can be obtained 
from the spatial patterns of genetic distance and relatedness among sampled individuals, 
providing an alternative to the MRR experiments for informing the mosquito control programs. In 
contrast to conventional MRR approaches that require insect trapping or rearing, followed by 
mark, release and recapture, the genetic approach requires only insect capture, utilising the 
information from genetic markers and spatial location of individuals sampled continuously 
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across an area over a limited time span and without manipulation or interruption of their natural 
behaviors. 
 In social insects like bumblebees, queen dispersal distance has been estimated by 
comparing the locations of workers (sampled in summer) and queens (sampled in the following 
spring) that were identified as sisters through sibling reconstruction analysis with genetic 
markers [18]. Inferences about mosquito ovipositing behavior have also been made using the 
genetic reconstruction of sibling groups, where the distance between full siblings sampled from 
different larval sites directly reflects mother’s movement distance during her skip-oviposition 
[19–21]. Here we show that the distance separating not only full siblings (1st degree relatives), 
but also 2nd and 3rd degree relatives (close-kin), can be used to estimate the dispersal distance 
over one generation of successful breeding (i.e. effective dispersal distance) in insects like Ae. 
aegypti. 
 Our newly developed method decomposes the observed separation distances between 
close-kin (sampled as breeding adults) to generate the distribution of potential effective 
dispersal distances and to parametrize the dispersal distance kernel. This dispersal kernel 
provides the density of probability that a dispersal event ends at a given distance away from the 
source, regardless of the direction. Importantly, it refers to the dispersal distance achieved over 
one generation of successful reproduction, such as distance between the birthplace and the 
ovipositing place of a female (i.e. distance between the ovipositing place of a mother and a 
daughter). We demonstrate the robustness of the method to produce dispersal kernel 
parameters consistent among different subsets of data (with one or multiple kinship categories) 
and congruent with the estimates of dispersal characteristics from the previously published 
MRR experiments in Ae. aegypti. 
 When few close kin are captured, the conventional genetic analysis of isolation-by-
distance (IBD) between unrelated individuals can be used to estimate the spread of the 
dispersal kernel from the slope of the IBD relationship and the effective density, and we show 
that its results can be congruent with the new close-kin method. Finally, we show that the 
estimated genetic patch size from the spatial autocorrelation analysis reflects the spatial extent 
of the effective dispersal distance kernel’s ‘tail’ that cannot be ascertained with IBD analysis 
alone. 
 We analyzed the genotyped and geo-referenced Aedes aegypti individuals collected in 
two densely populated areas of Singapore with a homogeneous distribution of high-rise 
apartment blocks. Aedes aegypti is the primary vector of dengue virus in Singapore that, despite 
having a low Aedes house index (2%) and an extensive vector surveillance and control program 
[22], continues to experience regular dengue outbreaks [23,24]. This dataset offered an 
opportunity to characterize Ae. aegypti dispersal in a highly urbanized landscape with a 
prominent vertical dimension, but the spatio-genetic analytical approach (the new close-kin 
method, and the conventional IBD and spatial autocorrelation analyses) can be applied across 
different landscapes and vector species.   

 
Materials and Methods 

Field collections 
Adult Aedes aegypti females were collected using the sticky traps developed by the 
Environmental Health Institute, National Environment Agency of Singapore (EHI, NEA), known 
as the Gravitraps - simple, hay infusion-filled cylindrical traps with a sticky inner surface that 
preferentially catch gravid females in search of suitable ovipositing sites [25]. The Gravitraps 
have been deployed in public housing estates island-wide since 2017 as part of the vector 
surveillance program. For the current study, we chose two public housing estates with high-rise 
blocks: Tampines (30 acre sampling area in patch 1, 10 acres in patch 2) and Yishun (46 acre 
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sampling area) that are 14 km apart (Suppl. Fig. 1), with the Gravitraps positioned for vertical 
sampling in each building: ground level (1st-2nd floor), mid-level (4th-5th floor), and high level (9th 
floor and above). All analysed individuals were collected in weekly intervals between April 1 and 
May 30 2018 and their geo-locations and vertical positions were recorded. 

DNA extraction. sequencing and genotyping of individual mosquitoes 
Total genomic DNA was extracted from individual mosquitoes using Dneasy Blood and Tissue 
DNA extraction kit (Qiagen, Hilden, Germany), quantified with the Qubit High Sensitivity DNA kit 
(Thermo Fisher Scientific, Waltham, MA, USA) and 100 ng was used for downstream 
processing. Reduced-genome representation sequence data were generated for each individual 
using the double-digest RAD sequencing approach by Peterson et al. [26], with the sample 
processing and library preparation protocol as described in Rašić et al. [27]). ddRAD-seq 
libraries were sequenced on the Illumina HiSeq4000 platform. The sequencing data were 
processed (trimmed to 90 bp and filtered for quality) using the bash script/pipeline from Rašić et 
al. [27], and the high-quality reads were aligned to the L5 version of the Ae. aegypti genome 
assembly [28] using Bowtie [29]. Unambiguously mapped reads converted to bam format were 
processed in SAMtools [30] to generate sorted bam files that were used to produce genotype 
likelihood files and VCF using the SAMtools variant calling method as implemented in ANGSD 
[31]. The final dataset included 107 mosquitoes from Tampines and 108 from Yishun, that had 
<30% missing data at 83,255 and 69,051 variable sites (SNPs) for the Tampines and Yishun 
datasets, respectively. 

Inference of familial relationship (kinship estimation).  
Relationships between individuals were determined using the recently-developed approach by 
Waples et al.[32] as implemented in the program NGSRelate [33]. This method shows improved 
accuracy and precision when compared to related approaches, given that (a) it does not require 
population allele frequency estimates - instead, the framework calculates two-dimensional site-
frequency-spectrum for each pair of individuals, and (b) it is applied directly to sequencing data 
(via genotype likelihoods) rather than the called genotypes, which is particularly suitable for 
lower-depth sequencing data acquired in RAD-seq experiments [32]. Between 40K and 48K 
SNPs were used by NGSRelate in each of the pairwise calculations across the entire dataset. 
For the spatial analyses, we considered close kin as pairs with an inferred category of 1st, 2nd or 
3rd degree relatives. Kinship categories were determined based on the combination of three 
statistics (R0, R1 and KING-robust kinship), that allows the distinction between the parent-
offspring and the full-sibling relationship within the category of 1st degree relatives, which is 
difficult to achieve with other available methods [32]. Second degree relatives include half-
siblings, avuncular and grandparent-grandoffspring pairs that cannot be genetically 
distinguished, but in our sampling scheme (collection of gravid females over a short time period) 
the grandparent-grandoffspring category is the least likely. Also, we can assume that half-
siblings are paternal (i.e. half-sisters share a father, not a mother) given that Ae. aegypti 
females rarely mate more than once [34,35]. We assume that 3rd degree relatives are first 
cousins, given that a category like great-grandparent/great-grandoffspring is very unlikely in our 
sampling scheme.[32] 

Genetic and geographic distance among individuals 
We used different individual-based genetic distances among individuals within each area 
(Yishun or Tampines). The PCA-genetic distance was estimated by first performing the Principal 
Component Analysis (PCA) from genotype data in the R package ‘adegenet’ [36] and then 
creating a distance matrix from the Euclidean distance among the maximal number of PC axes. 
PCA genetic distance does not assume any particular microevolutionary processes and it 
exhibits a linear relationship with Euclidean geographic distance, showing the highest model 
selection accuracy in landscape genetic studies, especially when dispersal rates are high 
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across the examined area [37]. We also estimated Rousset’s genetic distance â [38] and 
Loiselle’s kinship coefficient [39] in the program SPAGEDI [40]. 
 Pairwise spatial (geographic) distance between mosquitoes was calculated as the 
shortest straight line (Euclidean) distance in three dimensions, based on the X/Y (long/lat) and Z 
(height) coordinates of their collection point, here called the Euclidean 3D distance, represents a 
linear geographic distance in meters (m). Natural logarithm (ln) of this distance was used in the 
analyses where Rousset’s â or Loiselle’s kinship coefficient was applied (see below), given that 
both of these genetic coefficients exhibit approximate linear relationship with ln-geographic 
distance [40]. 

Estimation of mosquito dispersal characteristics 
Dispersal characteristics of Ae. aegypti were estimated in three ways: (1) by constructing a 
dispersal kernel based on the recorded distances between close kin (CK), (2) using the 
isolation-by-distance (IBD) framework, and (3) spatial autocorrelation analysis. 

Dispersal kernel estimation from close-kin data 
We parametrized the dispersal kernel using the estimates of the effective dispersal distance that 
we define as a distance between the birthplace and the ovipositing place of a female.  
 In our sampling scheme, adult females were caught after landing on a lethal ovipositing 
site (Gravitrap) and we assume that this is a result of their active flight (and not passive, human-
assisted movement). We consider pairs of females caught in different traps that could be 
genetically assigned to one of the following kinship categories: parent-offspring (po), full siblings 
(fs), 2nd degree relatives (2nd) (half siblings, hs; avuncular, av; grandparent-grandoffspring, go), 
3rd degree relatives (3rd) (first cousins, fc) and non-close kin. Every close kin category contains 
information about the number of possible effective dispersal events. For example, a pair of full 
siblings (fs) could have originated from the same breeding site from which each sibling moved 
into a gravitrap (two events), or they could have originated from different breeding sites (three 
events, including mother’s skip oviposition). Therefore, the corresponding number of possible 
dispersal events, for each case, can be calculated as the number of such breeding sites (n) plus 
one (n+1).  Based on this, we constructed the sets with elements that represent the number of 
possible dispersal events for each case as {nmin+1,.., nmax+1}. For the fs category this set is FS = 
{2, 3}. In the case of a parent-offspring (po) pair, the minimum and maximum number of 
breeding sites is nmin = nmax = 1, giving a set PO = {2}. For the kinship category of 2nd degree 
relatives, we have the following subsets: half siblings HS = {2, 3, 4, 5}; avuncular AV = {3, 4}; 
and grandparent-grandoffspring GO = {2, 3}. We constructed the full set for 2nd degree relatives 

as the union of these three subsets (containing unique elements): 2ND = HS ∪ AV ∪ GO = {2, 

3, 4, 5}. In the case of 3rd degree relatives (first cousins fc), the minimum number of contributing 
breeding sites is nmin = 1 (first cousins and their mothers all originate from the same breeding 
site), while the maximum is nmax = 4 (first cousins and their mothers each originate from a 
unique breeding site). Therefore, for the category of 3rd degree relatives we can construct a set 
as 3RD = FC = {2, 3, 4, 5}. 
 We then created a set of possible effective dispersal distances for each detected close 
kin pair based on their distance and assigned kinship category. This set of distances contains 
the same number of elements as the corresponding set of possible effective dispersal events 
(described above) and its values are obtained by dividing the detected spatial distance between 
a pair (d) with the corresponding set element. For example, if a collected pair AB, separated by 
distance dAB, falls into the category of 3rd degree relatives, then a set of possible effective 
dispersal distances for this pair would be d3rd,AB = {dAB/2, dAB/3, dAB/4, dAB/5}. For a full-sibling 
pair BC separated by spatial distance dBC, the set of possible effective dispersal distances will 
be dfs,BC={dBC/2, dBC/3}. 
 By combining the values from all pairwise sets of possible effective dispersal distances 
into one dataset, we characterized the resulting distribution of possible effective dispersal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.30.017301doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.017301
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

distances. This dataset was used to generate a probability density function (pdf) of effective 
dispersal distance (i.e. effective dispersal distance kernel) by fitting different functions 
(exponential, Weibull, log-normal) using the R package ‘fitdistrplus’ [41] that incorporates 
maximum likelihood estimation and parametric bootstrapping to generate median as well as 2.5 
and 97.5 percentiles of each distribution parameter. To determine the ‘best fitting’ of the tested 
distributions, we assessed the Q-Q plots and computed goodness-of-fit statistics with an 
approximate Kolmogorov-Smirnov test, Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [41]. 
 To estimate a pdf for randomly spaced individuals across the sampled area, we 
simulated 100 datasets where pairs had a randomly assigned kinship category and a random 
distance based on the available trap locations. The number of simulated pairs in each kinship 
category matched the number of observed pairs in the empirical dataset. We then applied the 
analytical procedure described above on all simulated datasets, and compared the simulated 
(random) and empirical distributions in the R package ‘sm’ [42] using the permutation test of 
equality of two distribution densities. 

Isolation-by-distance analysis and estimation of the dispersal kernel spread 
When the probability of dispersal declines with distance, a positive correlation between genetic 
and geographic distances between individuals is expected, and this relationship is known as 
isolation-by-distance (IBD) [43]. IBD analysis can be used even when few or no close kin are 
captured. In fact, highly-related individuals should to be removed from the IBD analysis in order 
for it to reflect the long-term population processes [44], and we created a subsample for each 
area by removing individuals identified as close-kin, leaving 63 and 85 individuals in the 
Tampines and Yishun subsample, respectively. The significance of IBD was tested separately in 
Tampines and Yishun using Mantel’s correlation test with 1000 permutations, as implemented in 
the R package ‘ecodist’ [45]. 
 IBD is best illustrated by the regression of pairwise genetic distances onto geographic 
distances among individuals [46]. The slope of this linear regression and the effective density 
can be used to estimate the standard deviation of the dispersal kernel (σ), that is also known as 
the dispersal kernel spread. The dispersal kernel spread can be calculated as: σ = √(1/4𝛑Db), 
where b is the slope of the linear regression and D is the effective density of reproducing 
individuals. 
 The slope of the linear relationship was estimated using the lm() function in R (R Core 
Team) for three different sets of genetic and geographic matrices. The first set included a matrix 
of PCA-based genetic distances against the matrix of linear geographic distances. A matrix of 
Rousset’s â or Loiselle’s kinship coefficient was tested against the matrix of ln-transformed 
geographic distances, given that both genetic estimators are expected to vary approximately 
linearly with the natural logarithm of the distance [38]. 
 The effective density D is defined as Ne/study area, where Ne is the effective population 
size. We estimated Ne using two genetic methods based on a single sample. The first method is 
Ne estimation by Waples and Waples [47], based on the ‘parentage analysis without parents’ 
(method 1, PWoP) that uses the frequency of full-siblings and half-sibs in a population sample 
to reconstruct the number of parents that contributed to such a sample. The median and the 
95% confidence interval were calculated using 100 resamples with a random replacement of 
one individual. The second method represents Ne estimation by Waples and England [48] that is 
based on the linkage disequilibrium data (method 2, LDNe), with the 95% confidence interval 
calculated using the jackknifing procedure over loci implemented in the program Ne estimator 
v.2.1 [49]. Finally, effective density was estimated using the entomological survey data from the 
Gravitrap sentinel trap system across the study areas (method 3, Gravitrap). The numbers of 
adult females caught from January 2018 through May 2018 were used to estimate the average 
number of breeding females per square meter and this number was multiplied by 2 to give the 
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effective number of breeding individuals per unit area, as we assume 1:1 sex ratio in an Ae. 
aegypti population [50]. For Tampines, we considered patch 1 (larger sampling area) as a more 
representative population sample for the calculations of local Ne and density than the smaller 
patch 2 (Suppl. Fig.1A). 

Spatial autocorrelation analysis 
Under spatially limited dispersal and breeding, the population is expected to develop a patchy 
distribution of genotypes, with positive spatial autocorrelation declining with distance [51,52]. 
The point at which the correlogram curve crosses the x-axis provides an estimate of the genetic 
patch size [53]. To compute the correlogram curve for each sampling site, we used PCA genetic 
distance among all genotyped mosquitoes in a site, and the spatial grouping within distance 
classes that were incrementally increased by 50 m. The analysis was done in GenAlEx v.6.501 
[54]. The autocorrelation coefficient under the null hypothesis of no spatial structure was 
generated by the permutation procedure that shuffles all individuals among the geographic 
locations within a site 1000 times and generates 95% CI with the 25th and 975th ranked 
permutated values. 95% CI for the observed autocorrelation coefficient for each distance class 
was obtained from 1000 random draws of individuals with replacement [55]. 

Results 

Spatial distribution of close-kin pairs 
In the total dataset that included 107 individuals from Tampines and 108 from Yishun, we 
detected 76 close-kin (CK) pairs: 19 full-sibling pairs, 18 pairs of 2nd degree relatives, and 39 
pairs of 3rd degree relatives (Supplementary Table 1). We did not detect any parent-offspring 
(po) pairs, and 26.3% (20/76) of CK pairs were found within a building (Figure 1A) – on the 
same floor or 4-5 floors apart (19/20 pairs). Nearly half (47%) of all detected full-sibling pairs 
were caught within a building, in comparison to 27.8% of all 2nd degree relatives and 15.4% of 
all 3rd degree relatives (Figure 1B). 
 The mean pairwise distance for CK was 124.3 m (full-sibling = 107.3 m, 2nd degree = 
135 m, 3rd degree = 127.4 m), with 90% of CK found up to 264 m apart, and the largest distance 
of 531 m (for one full-sibling pair), which points to a long-tailed dispersal kernel (with rare long-
range dispersal events). 

Dispersal kernel parametrization from close-kin data 
The ‘goodness of the fit’ criteria (AIC, BIC, the Kolmogorov-Smirnov statistic, Table 1) and the 
Q-Q plot (Suppl. Fig. 2) indicated that the distribution of possible effective dispersal distances is 
well described by the Weibull and negative exponential (Laplacian) distribution. Given that the 
estimated Weibull shape parameter (k) was close to 1 (median 1.11, 95% CI: 1.01-1.22), the 
Weibull distribution can be reduced to an exponential distribution with the estimated rate 
parameter λ = 0.022 (95% CI: 0.020-0.025) (Table 1). This rate parameter for the combined 
dataset (all CK) was highly congruent with the estimates from separate CK categories: full-
sibslings λ = 0.019 (95% CI: 0.014-0.027), 2nd degree relatives λ= 0.021 (95%CI: 0.016-0.027), 
3rd degree relatives λ= 0.024 (95%CI: 0.020-0.028) (Figure 2). Both the mean and standard 
deviation (σ) of the exponentially distributed effective dispersal distance are 1/λ = 45.2 m 
(95%CI: 39.7-51.3 m), and the inferred dispersal kernel gives the 95% probability of effective 
dispersal distance up to 136 m (95%CI: 120-152 m). 
 Estimated probability density function (pdf) for the random distribution of pairwise close-
kin distances in this landscape had significantly different parameters (Weibull shape k = 1.351, 
95% CI: 1.338-1.364; Weibull scale λ = 111.630, 95%CI: 110.502-112.696) from the empirically 
observed data (permutation test for equality of densities p < 0.001), indicating that the simulated 
(random) dataset reflects the spatial distribution of traps rather than intentional effective 
dispersal (Figure 2). 
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Dispersal kernel spread from the IBD analysis 
The three genetic distance measures (PCA, Rousset â, Loiselle’s kinship) gave highly 
congruent results in the IBD analysis (Suppl. Table 1), and we focus on the results with the PCA 
genetic distance in the main text. 
 Significant IBD was detected in both Tampines (Mantel r = 0.124, 95%CI: 0.052-0.198; 
R2 = 0.015, p = 3.91*10-8) and Yishun (Mantel r = 0.158, 95%CI: 0.112-0.208; R2 = 0.024, p = 
2.18*10-21) (Figure 3). The estimated IBD slope b was 0.0037 (95% CI: 0.0024-0.0050) for the 
Tampines data, and 0.0065 (95% CI: 0.0051-0.0079) for the Yishun dataset (Table 2). 
The estimated mean effective population density D varied from 0.0014 to 0.0074 for Tampines, 
and from 0.0014 to 0.0063 for Yishun, depending on the method for effective population size 
estimation (methods 1 and 2), or the entomological survey data (method 3) (Table 2). 
 Taking into account the uncertainty of both parameter estimates (95% CI for b and D), 
the estimated effective dispersal kernel spread (σ) for Tampines was 54.1 m (40.8-67.7 m, 
method 1 PWoP), 122.3 m (54.7-206.2 m, method 2 LDNe), 66.8 m (48.8-105.6 m, method 3 
gravitrap). For Yishun, the estimated σ was 44 m (37.6-49.7 m, method 1), 94 m (73-120.6 m, 
method 2), 74.4 m (57.9-104.9 m, method 3) (Table 2, Figure 4). It is worth noting a good 
overlap between the effective density estimates from the genetic data and the entomological 
data from the gravitraps (method 3) that preferentially target the ovipositing females (Figure 4). 
 Applying the exponential dispersal kernel (found to fit the close-kin data), where σ 
represents both standard deviation and the mean, the estimates of σ from the IBD analysis are 
equivalent to the mean effective dispersal distance and can be used to parametrize the pdf with 
1/σ = λ, assuming isotropic dispersal in two dimensions (Broquet and Petit 2009). Our results 
indicate that the dispersal kernel parameter (σ) estimated from the close-kin data and indirectly 
through the IBD analysis can yield similar results (Table 2, Figure 4). 

Spatial autocorrelation analysis - genetic patch size 
Significantly positive spatial autocorrelation at distances up to 200 m, with the highest 
correlation coefficient within the first 50 m, was detected in both Tampines and Yishun (Figure 
5). This indicates that individuals found up to 200 m from each other are more genetically similar 
than if randomly sampled across 750 m, with the highest genetic similarity (relatedness) within 
50 m from each other. Significantly negative autocorrelation was detected at 300 m in Yishun 
and 500 m in Tampines, putting the x-intercept between 200 m and 300 m in Yishun and 
between 200 m and 500 m in Tampines. The x-intercept for a squared sampling area closely 
approximates the length of one side of a ‘genetic patch’ [53], delineating a ‘genetic patch’ area 
of at least 200 x 200 m in this landscape. The spatial extent of the genetic patch also reflects 
the spatial extent of the effective dispersal distance kernel ‘tail’; e.g. 99th percentile of the pdf 
(derived from the close-kin data) was at 206 m (95%CI: 184-234 m). 

Discussion 

Here we show how the analyses of spatial genetic patterns can be used to characterize the 
effective dispersal of a mosquito like Ae. aegypti, and we discuss the utility of this approach in 
an operational context. 
 Our newly developed method allows for the parametrization of the effective dispersal 
distance kernel, as it decomposes the observed distances between close-kin to generate the 
distribution of potential effective dispersal distances (achieved over one generation of 
successful reproduction). It gives probabilities of dispersal distances in any direction, that 
Nathan et al. (2012) [56] refer to as ‘dispersal distance kernel’ (kD(r)), and it should not be 
confused with the ‘dispersal location kernel’ (kL(r)) that gives probabilities for the end locations 
of dispersers relative to the source locations [56]. Location kernel can be derived from the 
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distance kernel and vice versa, given their relation: kD(r) = 2𝛑rkL(r) in a two-dimensional habitat 
[56], and kD(r) = 4𝛑r2kL(r) in a three-dimensional habitat. 
 The exponential (Laplacian) kernel inferred from the close-kin data in Yishun and 
Tampines gives 50% probability of an effective dispersal occurring within 32 m, which indicates 
that, in this landscape we can expect half of the successful breeders to stay within the high-rise 
building where they emerged or move to the adjacent building. The mean effective dispersal 
distance (and dispersal kernel spread σ) was estimated at 45.2 m (95%CI: 39.7-51.3 m), with a 
10% probability of a dispersal distance greater than 100 m (95%CI: 92-117 m). Our genetic-
based estimates match the parametrized dispersal kernel from mark-release-recapture (MRR) 
experiments performed in Brazil and Malaysia with Ae. aegypti males from a genetically 
engineered line OX513A [7]. Namely, their dispersal kernel gave estimates of a high level of 
dispersal to up 33 m, a mean distance travelled of 52.8 m (95% CI: 49.9-56.8 m) in Brazil and 
58 m (95%CI: 52.1-71 m) in Malaysia, with 10% of dispersers moving >105.7 m (95%CI: 86.5-
141.1 m) [7]. Moreover, globally collated MRR experimental data for Ae. aegypti [14] produced 
an exponential kernel with σ = 54.1 m [10]. Such high congruence with our genetic-based 
inferences indicates the robustness of spatial-genetic patterns in reflecting the dispersal 
characteristics of this mosquito, and it demonstrates the utility of our genetic-based method as a 
viable alternative to conventional, operationally-demanding MRR experiments. 
 Using the IBD approach, we obtained a wider range of dispersal spread values (σ) when 
compared to our close-kin approach, depending on which method was used to estimate the 
effective population size (Ne) and density. Specifically, the highest congruence between the IBD 
and the close-kin analyses was obtained using the Ne estimates from the PWoP method 
(method 1, Table 2), that gave σ of 54.1 m (95% CI: 40.8-67.7 m) for Tampines and 44 m (95% 
CI: 37.6-49.7 m) for Yishun. The second best match was obtained using the entomological 
effective density estimate (the number of gravitrap-caught mosquitoes/m2, method 3), that gave 
σ of 66.8 m (95% CI: 48.8-105.6 m) for Tampines and 74.4 m (95% CI:57.9-104.9 m) for 
Yishun. The linkage disequilibrium-based Ne estimate (method 2) produced the widest range of 
σ values (Tampines 54.7-206.2 m, Yishun 73-120.6 m) (Figure 4). Two conclusions can be 
drawn from these results. First, the IBD measure of the dispersal kernel spread represents a 
long-term average but it can match the short-term measure from the close-kin analysis. Given 
that close-kin method requires more intensive sampling in order to capture enough close-kin 
pairs for the reliable kernel parametrization, an opportunity to use the IBD approach instead is 
appealing, particularly under budgetary limitations for genome-wide genotyping. However, IBD-
based estimation of σ requires accurate estimation of effective population size, which it is not 
easily achievable [57] and the uncertainty about this parameter has more impact than the 
uncertainty in the IBD slope [58]. Moreover, the IBD method assumes long-term stability of 
mosquito dispersal patterns and abundance and is therefore a meaningful alternative to the 
close-kin method in populations that do not experience strong seasonal fluctuations, landscape 
alterations, intensive control campaigns etc. Second, our analyses suggest that the gravitrap 
data reflects the breeding rather than the census population size, and could be used as an 
entomological proxy for the effective population size, complementing the genetic based 
estimation of this population parameter. 
 In Tampines and Yishun, that are largely homogeneous landscapes with multi-storey 
apartment buildings, 47% of all detected full-siblings were found on the same floor or 4-5 floors 
apart, and the inferred dispersal kernel gives the expectation of high level of effective dispersal 
within a building or between adjacent buildings. This is in agreement with a previous study in 
Singapore where Ae. aegypti females marked with rubidium via blood meal were released from 
middle floors and moved readily towards the top or bottom of multi-storey buildings in search of 
oviposition sites [59]. In Trinidad, significantly more eggs were collected in ovitraps 13–24 m 
above ground level than at any other elevation [60], again suggesting that vertical movement is 
common. 
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 Given that the high-rise apartment blocks can provide an abundance of hosts, 
oviposition and resting sites for Ae. aegypti, their tendency to remain close to the birthplace is 
not unexpected. The tail of the dispersal kernel, however, provides insight into rarer long-range 
dispersal events that are consequential for the control strategies that rely on the releases of 
modified mosquitoes for population suppression or replacement. For example, the speed of the 
Wolbachia infection spread is expected to be slower in Ae. aegypti populations with longer-tail 
dispersal kernels, but this dispersal pattern also allows the initiation of the Wolbachia spread 
with smaller local releases [61]. Based on our parametrized dispersal kernel and theoretical 
approximation [61], the spread of Wolbachia (with a fitness cost equivalent to wMel strain) in a 
landscape like Tampines and Yishun could be initiated with the releases of Ae. aegypti in a 
circular area with a radius of at least 100-130 m (2.51σ). Diameter of this area (200-260 m) also 
corresponds to the length of one side of a ‘genetic patch’ estimated with the spatial 
autocorrelation analysis (~200-300 m) that reflects the extent of the effective dispersal kernel’s 
‘tail’ (e.g. 99th percentile = 206 m, 95%CI: 184-234 m). 
 The above mentioned theoretical approximation of the conditions for Wolbachia initiation 
and spread [61] assumes isotropic dispersal in a 2-dimensional habitat. Optimal release 
strategy for the Sterile Insect Technique programs [62], different suppression and replacement 
strategies [63,64], the effect of larval habitat fragmentation on population crash [65], and 
confinement and reversibility conditions for threshold-dependent gene drive systems [10] have 
all been simulated in the spatially explicit models of mosquito populations that applied the 
exponential dispersal kernel in a 2-dimensional landscape. The approximation of the 
parametrized dispersal kernel for high-rise landscapes could be achieved by considering the 
releases of mosquitoes from multiple floors rather than from the ground level only. Clearly, 
further theoretical and simulation modelling development that incorporates mosquito dispersal 
characteristics in a 3-dimensional, heterogeneous habitat is needed to robustly predict the 
requirements and outcomes of different mosquito control strategies in landscapes with a 
prominent vertical dimension. 

Conclusion 

Accurate characterization of dispersal patterns in the field is critical for the optimization of 
surveillance and control of disease vectors like Ae. aegypti. Knowledge of the dispersal kernel 
parameters enables operational teams to design and implement optimal coverage of monitoring 
or release points in a given landscape, facilitating the efficient utilization of resources and 
maximizing the impacts of interventions. We show that spatial genetic analyses can provide 
robust estimates of mosquito dispersal patterns, with our newly developed method for the 
construction of the effective dispersal distance kernel through close-kin analysis enabling the 
most comprehensive estimate of relevant parameters. The indirect inference from the isolation-
by-distance framework, that requires less intensive sampling than close-kin analysis, can 
provide estimates of dispersal kernel spread; however, this approach is sensitive to the 
inaccurate estimates of effective population size and is uninformative about the probabilities of 
long-range dispersal that can have important implications for control programs. IBD analysis can 
be complemented with spatial autocorrelation analysis to ascertain the spatial extent of the 
effective dispersal kernel ‘tail’ through estimation of the genetic patch size. With the decreasing 
cost of next generation sequencing, acquisition of spatial genetic data will become increasingly 
accessible, and given the complexities and criticisms of conventional MRR methods, but the 
central role of dispersal measures in essential vector control programs, we recommend genetic-
based dispersal characterization as the more desirable means of parameterization. 
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Figures and Tables. 

 

 

 
Figure 1. Spatial distribution of close-kin (CK) pairs. A. Histogram of the number of CK pairs 
detected in Tampines and Yishun, with their pairwise separation distances binned into the 10 m 
categories. The first three bins include pairwise distances within a building (where CK are found 
on the same floor, or 4-5 floors apart, or at the top and bottom of a building). B.  Percentage of 
the total number of pairs in each kinship category (full-sibling, 2nd and 3rd degree relatives) found 
within the same building or in different buildings. 
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Figure 2. Effective dispersal distance kernel estimated from the close-kin data. The 

inferred pdfs are highly congruent among separate datasets (full-sibling, 2nd and 3rd degree 

relatives) and the combined dataset (all CK), and are significantly different from the simulated 

dataset (random) that reflects random sampling from the available traps.  
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Figure 3. Isolation-by-distance analysis on datasets from Tampines (upper) and Yishun 

(lower). Mantel test and linear regression were applied to the matrices of PCA genetic distance 

and linear geographic distance between pairs of individuals, with close kin removed from both 

datasets. The red line shows regression with 95% CI (dashed line). 
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Figure 4. The dispersal kernel spread (σ) estimated from the close-kin data and IBD 

analysis. Sigma (σ) and its 95% CI are plotted for the combined close-kin data (CK method) 

and PCA-based IBD analysis for Tampines and Yishun (with effective density estimates from 

methods 1-3). 
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Figure 5. Spatial genetic autocorrelation in Tampines and Yishun. The ending point of a 
distance class is on the x-axis, and spatial autocorrelation coefficient (r) of genotypes in 
Tampines (107 individuals) and Yishun (108 individuals) is on the y-axis. Two dashed lines 
along the x-axis are the permutated 95% CI of autocorrelations under the null hypothesis of a 
random distribution of genotypes in space. Vertical lines are the bootstrapped 95% CIs with 
mean genetic autocorrelation. 
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Table 1. Goodness-of-fit statistic and criteria, and parameter estimates from the 
distribution fitting analysis for the close-kin data. The Kolmogorov-Smirnov statistic 
measures the distance between the fitted parametric distribution and the empirical distribution, 
and AIC and BIC assess the model fit while penalizing the number of estimated parameters. A 
lower value of the statistic or either criterion indicates a better fit. Median and 95% CI for the 
parameters were generated with 1000 bootstraps. 

 

 

 

 

  

Goodness-of-fit test exponential 

(Laplacian) 

Weibull log-normal 

  Kolmogorov-Smirnov   0.084 0.057 0.125 

AIC 2387.913 2386.055 2429.829 

BIC 2391.427 2393.082 2436.856 

Parameter λ shape meanlog 

median (95% CI) 0.022 (0.020-0.025) 1.108 (1.011-1.222) 3.322 (3.170-3.462) 

   scale sdlog 

  - 46.939 (41.770-52.445) 1.162 (1.055-1.252) 
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Table 2. IBD-based estimates of the dispersal kernel spread (σ). The mean (95% CI) for 
IBD slope (b), effective population size (Ne), effective density (D) estimated using the methods 
1-3, and the dispersal kernel spread (σ) for Aedes aegypti data from Tampines and Yishun.   
 

 

 

 

 

 

 

 

 

 

 

Tampines 

b 

 

Ne D σ 

 

method 1 

(PWoP) 863 (863-1112) 0.0074 (0.0074-0.0095) 54.1 m (40.8-67.7 m) 

0.0037 (0.0024-

0.0050) 

method 2 

(LDNe) 167 (93-619) 0.0014 (0.0007-0.0053) 122.9 m (54.7-206.2 m) 

 

method 3 

(Gravitrap) - 0.0048 (0.0030-0.0066) 66.8 m (48.8-105.6 m) 

Yishun 

b 

 

Ne D σ 

 

method 1 

(PWoP) 1185 (1176-1346) 0.0063 (0.0063-0.0072) 44 m (37.6-49.7 m) 

0.0065 (0.0052-

0.0079) 

method 2 

(LDNe) 258 (200-357) 0.0014 (0.0011-0.0019) 94.4 m (73-120.6 m) 

 

method 3 

(Gravitrap) - 0.0022 (0.0015-0.0030) 74.4 m (57.9-104.9 m) 
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Supplemental Figures and Tables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1. Spatial network of close kin in Tampines (A) and Yishun (B). Cyan lines connect full siblings, 

blue-green lines connect 2nd degree relatives, and purple lines connect 3rd degree relatives. Gravitraps are represented with green 

dots - one group per building, with shades varying from lighter to darker depending on the altitude (light green - ground floor, dark 

green - top floor). 
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Supplemental Figure 2. Distribution fitting (dispersal kernel parametrization) analysis in the R package fitdistrplus [1].      

(A) Q-Q plot for the empirical and theoretical distribution quantiles This goodness-of-the-fit assessment shows a good fit of the 

empirical to the expected data for Weibull (green) and exponential (red) distributions, but not to the lognormal distribution (blue). (B) 

Skewness-kurtosis plot. A nonparametric bootstrap procedure (constructed by random sampling with replacement from the empirical 

data set) was performed to take into account the uncertainty of the estimated values of kurtosis and skewness from data. 

 

Reference: 

1. Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software. 2015. 

doi:10.18637/jss.v064.i04 

 

 

  

A B 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.03.30.017301doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.017301
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Supplemental Table 1. IBD-based estimates of the dispersal kernel spread (σ) in Aedes aegypti from Singapore. The mean 

(95% CI) for estimates of: effective population size (Ne) and effective density (D) calculated using 3 methods (genetic – PWoP, 

LDNe; entomological – Gravitrap), and IBD slope (b) and genetic neighborhood size (Nb) calculated from the analysis with different 

genetic distance measures (PCA, Rousset â, Loiselle’s kinship), for data from Tampines and Yishun. *Note the negative relationship 

between Loiselle’s kinship coefficient and ln-geographic distance (i.e. kinship decreases as the ln-geo distance increases). 

TAMPINES 
      

 
Ne D genetic distance b Nb σ 

method 1 (PWoP) 863 (863-1112) 
0.0074  

(0.0074-0.0095) PCA 
0.0037  

(0.0023-0.0050) 270 (198-424) 54.1 (40.8-60.7) 

method 2 (LDNe) 167 (93-619) 
0.0014  

(0.0008-0.0053) 
   

122.9 (54.7-206.2) 

method 3 (Gravitrap) - 
0.0048  

(0.0030-0.0066)       66.8 (48.8-105.6) 

   
Rousset â 0.0049 204 47.0 (41.4-47.0) 

      
106.8 (55.5-106.8) 

   
      58.1 (49.5-73.3) 

   
Loiselle’s kinship -0.0039* 257 52.7 (46.4-52.7) 

      
119.8 (62.2-160.5) 

   
      65.1 (55.6-82.2) 

YISHUN 
      

 
Ne D genetic distance b Nb σ 

method 1 (PWoP) 1185 (1176-1346) 
0.0063  

(0.0063-0.0072) PCA 
0.0065  

(0.0051-0.0079) 154 (127-195) 44.1(37.6-49.7) 

method 2 (LDNe) 258 (200-357) 
0.0014  

(0.0011-0.0019) 
   

94.4 (80.3-107.2) 

method 3 (Gravitrap) - 
0.0022  

(0.0014-0.0030)       74.4 (63.7-93.3) 

   
Rousset â 0.0052 192 49.2 (46.2-49.4) 

      
105.5 (89.7-119.9) 

   
      83.1 (71.2-104.3) 

   
Loiselle’s kinship -0.0058* 173 46.7 (43.8-46.9) 

      
100.1 (85.1-113.7) 

   
      78.9 (67.5-98.9) 
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