

1 **TITLE: Maintained representations of the ipsilateral and contralateral limbs during
2 bimanual control in primary motor cortex.**

3

4 **Authors and affiliations**

5 Kevin P. Cross^{1*}, Ethan A. Heming¹, Douglas J. Cook^{1,2}, Stephen H. Scott^{1,3,4}.

6 ¹Centre for Neuroscience Studies, ² Department of Surgery, ³Department of Biomedical and
7 Molecular Sciences and ⁴Department of Medicine, Queen's University, Kingston, ON, K7L 3N6,
8 Canada.

9

10 *Corresponding author: 13kc18@queensu.ca

11 Number of Pages: 40

12 Number of Figures: 9

13 Number of words for Abstract/Introduction/Discussion: 223/516/1486

14

15

16

17

18

19

20

21

22 **Acknowledgements**

23 We thank Kim Moore, Simone Appaqaq, Justin Peterson, and Helen Bretzke for their laboratory
24 and technical assistance and members of the LIMB lab for constructive criticisms. This work
25 was supported by grants from the Canadian Institute of Health Research. KPC was supported by
26 an OGS scholarship. EAH was supported by an NSERC scholarship. SHS was supported by a
27 GSK chair in Neuroscience.

28

29 **Competing Interests**

30 SHS is co-founder and CSO of Kinarm which commercializes the robotic technology used in the
31 present study.

32

33 **Abstract (223/250 words)**

34 Primary motor cortex (M1) almost exclusively controls the contralateral side of the body.

35 However, M1 activity is also modulated during ipsilateral body movements. Previous work has

36 shown that M1 activity related to the ipsilateral arm is independent of the M1 activity related to

37 the contralateral arm. How do these patterns of activity interact when both arms move

38 simultaneously? We explored this problem by training two monkeys (male, *Macaca mulatta*) in a

39 postural perturbation task while recording from M1. Loads were applied to one arm at a time

40 (unimanual) or both arms simultaneously (bimanual). We found 83% of neurons were

41 responsive to both the unimanual and bimanual loads. We also observed a small reduction in

42 activity magnitude during the bimanual loads for both limbs (25%). Across the unimanual and

43 bimanual loads, neurons largely maintained their preferred load directions. However, there was a

44 larger change in the preferred loads for the ipsilateral limb (~25%) than the contralateral limb

45 (~9%). Lastly, we identified the contralateral and ipsilateral subspaces during the unimanual

46 loads and found they captured a significant amount of the variance during the bimanual loads.

47 However, the subspace captured more of the bimanual variance related to the contralateral limb

48 (97%) than the ipsilateral limb (66%). Our results highlight that even during bimanual motor

49 actions, M1 largely retains its representations of the contralateral and ipsilateral limbs.

50

51

52

53

54

55

56

57 **Significance Statement (95/120words)**

58 Previous work has shown that primary motor cortex (M1) reflects information related to
59 the contralateral limb, its downstream target, but also reflects information related to the
60 ipsilateral limb. Can M1 still reflect both sources of information when performing simultaneous
61 movements of the limbs? Here we use a postural perturbation task to show that M1 activity
62 maintains a similar representation for the contralateral limb during bimanual motor actions,
63 while there is only a modest change in the representation of the ipsilateral limb. Our results
64 indicate that two orthogonal representations can be maintained and expressed simultaneously in
65 M1.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 **Introduction (516/650 words)**

82 Motor cortex is primarily involved with controlling the contralateral side of the body.
83 Output projections from motor cortex principally target muscles for the contralateral limb
84 (Cheney and Fetz, 1980; Dum and Strick, 1996; Brosamle and Schwab, 1997; Lacroix et al.,
85 2004; Rosenzweig et al., 2009; Kuypers, 2011; Soteropoulos et al., 2011) and micro-stimulation
86 in motor cortex elicits mainly contralateral limb movements (Montgomery et al., 2013).
87 However, activity in motor cortex is modulated by movements with either the ipsilateral or
88 contralateral limbs (Donchin et al., 1998; Kermadi et al., 1998; Cramer et al., 1999; Ganguly et
89 al., 2009; Diedrichsen et al., 2013; Berlot et al., 2019). Neural recordings indicate ~50% of
90 neurons that are active for contralateral limb movements are also active for ipsilateral limb
91 movements (Steinberg et al., 2002; Cisek et al., 2003; Heming et al., 2019). Ipsilateral-related
92 activity also exhibits broad tuning to reach direction (Steinberg et al., 2002; Cisek et al., 2003)
93 and applied loads (Heming et al., 2019).

94 A largely unexplored question is how motor cortex represents the limbs during bimanual
95 movements. Many neurophysiological investigations of bimanual movements have focused on
96 premotor areas, such as dorsal premotor and supplementary motor cortex (Tanji et al., 1987,
97 1988; Donchin et al., 1998; Kermadi et al., 2000; Willett et al., 2020). During unimanual
98 reaches, these areas exhibits similar tuning for the contralateral and ipsilateral limbs (Steinberg et
99 al., 2002; Cisek et al., 2003) with overlapping subspaces (~50%) for the contralateral- and
100 ipsilateral-related activity (Willett et al., 2020). During bimanual motor actions, the
101 contralateral-related activity is largely unchanged, whereas the ipsilateral activity is reduced by
102 ~50% (Rokni et al., 2003; Willett et al., 2020). It has been hypothesized that the suppression of
103 the ipsilateral representation and its decoupling from the contralateral representation reduces its

104 interference on the descending contralateral motor commands during bimanual control (Rokni et
105 al., 2003; Willett et al., 2020).

106 However, it is unclear if a similar change and suppression of the ipsilateral-related
107 activity would occur in primary motor cortex (M1). During unimanual movements, M1 has
108 decoupled representations for the contralateral and ipsilateral limbs as neurons are tuned
109 independently for each arm (Cisek et al., 2003; Heming et al., 2019) and contralateral- and
110 ipsilateral-related activities occupy orthogonal subspaces (Ames and Churchland, 2019; Downey
111 et al., 2019; Heming et al., 2019). Thus, M1 could maintain its representations of each limb
112 across unimanual and bimanual movements as the representations are already decoupled.

113 We explored this hypothesis by training monkeys in a postural perturbation task.
114 Monkeys performed this tasking using only one arm at a time (unimanual) and using both arms
115 simultaneously (bimanual). We found almost all neurons active during unimanual loads were
116 also active for bimanual loads, and vice versa. There was a small reduction in the magnitude of
117 activity related to both arms during the bimanual loads. We also found neurons largely
118 maintained their preferred load direction across the unimanual and bimanual loads, with a
119 stronger relationship for the contralateral-related activity than the ipsilateral-related activity.
120 Lastly, the contralateral and ipsilateral subspaces identified during the unimanual loads captured
121 a significant amount of variance for the bimanual loads.

122

123

124

125

126 **Methods**

127 *Animals and apparatus.* Two male non-human primates (*Macaca mulatta*, weight ~15kg) were
128 trained to place their arms into an exoskeleton robot (Kinarm, Kingston, Canada (Scott, 1999))
129 and perform a postural perturbation task similar to our previous work (Herter et al., 2009;
130 Pruszynski et al., 2014; Heming et al., 2019). At the start of each trial, a target appeared (0.8cm
131 diameter, red for right, blue for left, luminance matched) that was placed in front of the shoulder
132 with a starting joint position of 30° at the shoulder and 90° at the elbow. The monkey held their
133 hand inside the target for 500-1000ms, after which a load was applied by the exoskeleton that
134 displaced the hand from the target. The monkey had 1000ms to return their hand to the target
135 and hold within the target for 1000-1500ms to receive water reward. On a given trial, the
136 monkey performed this task with only one hand (Figure 1A,B unimanual contexts contra-only,
137 ipsi-only Figure 1A,B) or both hands at the same time (Figure 1C,D bimanual contexts mirror,
138 opposite). The appearance of one or two targets at the start of the trial cued the monkey about
139 whether one hand or both hands were required. Within a block, all unimanual and bimanual
140 trials were randomly interleaved, and monkeys completed a minimum of 10 blocks.

141 Loads consisted of flexion and extension torques applied to the shoulder and/or elbow
142 joints. Eight combinations were used, including four single-joint torques (elbow extension (EE),
143 elbow flexion (EF), shoulder extension (SE), and shoulder flexion (SF)) and four multi-joint
144 torques (SF/EF, SF/EE, SE/EF, SE/EE). For Monkey P, single-joint torques consisted of
145 $\pm 0.20\text{Nm}$ torques (+=flexion load, -=extension load), whereas multi-joint torques consisted of
146 $\pm 0.14\text{Nm}$ torques applied to both joints. Monkey M completed this task with two different
147 torque magnitudes, a large and a small load set. The large/small load set included single-joint

148 torques of $\pm 0.30/0.20$ Nm and multi-joint torques that consisted of $\pm 0.24/0.14$ Nm torques applied
149 to both joints.

150 For the bimanual loads, it was not feasible to test all possible torque combinations
151 between the two arms (Figure 1E). Instead, we focused on load combinations that were mirror
152 symmetric across both arms (orange squares, e.g. contralateral SF/EE, ipsilateral SF/EE) and
153 load combinations that were equal magnitude but opposite direction (green squares, e.g.
154 contralateral SF/EE, ipsilateral SE/EF).

155 *Neural and kinematic recordings.* Monkeys had Utah Arrays (96-channel, Blackrock
156 Microsystems, Salt Lake City, UT) implanted into the arm region of M1. Neural signals were
157 digitized by a 128-Channel Neural Signal Processor (Blackrock Microsystems, Salt Lake City,
158 UT) at 30kHz. An offline spike sorter (Plexon) was used to manually isolate units and we only
159 used well-isolated single units.

160 For Monkey P, neural signals were recorded in three sessions spaced approximately 4
161 months apart. For Monkey M, when performing the task with the small loads, neural signals
162 were recorded from two sessions spaced 3 months apart. When performing the task with the
163 large loads, Monkey M was unable to complete all 10 blocks in one recording day. Instead,
164 Monkey M completed the 10 blocks over the course of 2 or 3 consecutive days, yielding one
165 session. We only included single units we could isolate consistently across the recording days
166 and had qualitatively similar spike waveforms and inter-spike interval histograms. Two sessions
167 were collected that were spaced 4 months apart.

168 Neurons across all recorded sessions for a given monkey were treated as independent and
169 pooled. Previously, we have estimated that <5% of neurons would have overlapped between

170 sessions that are spaced out by 3 months (Heming et al., 2019). Furthermore, Fraser and
171 Schwartz, (2012) found only a few neurons could be tracked for >3 months on an array.

172 Joint angles, velocities, and accelerations were also recorded by the Neural Signal
173 Processor at 1kHz.

174 Data and statistical analysis

175 *Kinematic analysis.* Kinematic signals were low-pass filtered at 10Hz using a 3rd-order
176 Butterworth filter. We quantified the integrated and maximal hand speed over the first 300ms
177 after the perturbation (perturbation epoch), as well as the exact hand speed at the 300ms time
178 point. Statistical significance was assessed using a one-way ANOVA with load context as a
179 factor (levels: contra-only, ipsi-only, mirror, opposite). Post hoc Tukey-Kramer tests were used
180 to assess significance between levels.

181 *Spike train and time epochs.* The instantaneous activity of a neuron was estimated by
182 convolving the spike time stamps with a kernel approximating a post-synaptic potential (1ms rise
183 and 20ms fall, Thompson et al., 1996). Activity in the perturbation epoch was calculated by
184 aligning to the load onset and averaging across trials for the first 300ms. Steady-state activity
185 was calculated by aligning to the load offset at the end of the trial and averaging across trials for
186 the 1000ms that preceded the load offset.

187 *Dynamic range.* During the perturbation epoch, we calculated the mean activity during the epoch
188 for each load combination, creating eight separate values for each context. The difference
189 between the largest and smallest mean activity within a context was defined as the dynamic
190 range. An identical procedure was used to calculate the dynamic range in the steady-state epoch.

191 A paired t-test was used to compare the activities across neurons between the bimanual loads and
192 the appropriate additive models.

193 *Linear model fits.* The mean activities for each neuron were regressed onto the applied torques
194 to estimate tuning and magnitude. For each neuron, separate 8x1 arrays were constructed that
195 contained the contra-only (fr_{Contra}) and ipsi-only (fr_{Ipsi}) activities. The mean activity of each
196 array was subtracted and fit with the following equations

$$fr_{Contra} = \alpha \tau_{CS} + \beta \tau_{CE}$$

$$fr_{Ipsi} = \gamma \tau_{IS} + \delta \tau_{IE}$$

197 Where τ_{CS}, τ_{CE} are 8x1 arrays containing the torques applied to the contralateral shoulder and
198 elbow joints, respectively, and τ_{IS}, τ_{IE} are 8x1 arrays containing the torques applied to the
199 ipsilateral shoulder and elbow joints, respectively. The $\alpha, \beta, \gamma, \delta$ are scalar fit parameters. For
200 the contralateral torques, the activity magnitude of a neuron was calculated by $\sqrt{\alpha^2 + \beta^2}$, and its
201 preferred direction was calculated as $\tan^{-1} \frac{\beta}{\alpha}$. Similar formulas were used for the ipsilateral
202 torques using the γ and δ fit parameters.

203 For the bimanual data, regressing the mirror and opposite activity on to the applied loads
204 separately resulted in the contralateral loads being collinear with the ipsilateral loads. We
205 mitigated this problem by concatenating the activity for the mirror (fr_{Mirror}) and opposite
206 ($fr_{Opposite}$) contexts into a 16x1 array ($fr_{Bimanual}$). The mean activity of the array was
207 subtracted and fit with the following equation

$$fr_{Bimanual} = \begin{pmatrix} fr_{Mirror} \\ fr_{Opposite} \end{pmatrix} = \alpha \begin{pmatrix} \tau_{CS}^M \\ \tau_{CE}^O \end{pmatrix} + \beta \begin{pmatrix} \tau_{CE}^M \\ \tau_{CS}^O \end{pmatrix} + \gamma \begin{pmatrix} \tau_{IS}^M \\ \tau_{IE}^O \end{pmatrix} + \delta \begin{pmatrix} \tau_{IE}^M \\ \tau_{IS}^O \end{pmatrix}$$

208 Where $\tau_{CS}^M, \tau_{CE}^M, \tau_{IS}^M, \tau_{IE}^M$ are the shoulder and elbow torques applied to the contralateral
209 and ipsilateral limbs for the mirror loads, and $\tau_{CS}^O, \tau_{CE}^O, \tau_{IS}^O, \tau_{IE}^O$ are the shoulder and elbow
210 torques applied to the contralateral and ipsilateral limbs for the opposite loads. Note, in our
211 experiment $\tau_{CS}^M = \tau_{CS}^O$ and $\tau_{CE}^M = \tau_{CE}^O$, whereas $\tau_{IS}^M = -\tau_{IS}^O$ and $\tau_{IE}^M = -\tau_{IE}^O$.

212 However, by using both the mirror and opposite activities the estimated fit parameters
213 were less affected by sampling error than the equivalent unimanual fit parameters. This was a
214 problem for comparing activity magnitudes between contexts as higher sampling error will
215 overestimate activity magnitude (Willett et al., 2020). Consider an example where we estimate α
216 with some sampling error η such that $\hat{\alpha} = \alpha + \eta$. For simplicity, we assume β and $\hat{\beta}$ are zero,
217 though this is not necessary. Calculating the magnitude results in $\sqrt{\hat{\alpha}^2} = \sqrt{(\alpha + \eta)^2} =$
218 $\sqrt{\alpha^2 + 2\alpha\eta + \eta^2}$. Since $\eta^2 > 0$ this introduces a positive bias in our estimate of the magnitude.
219 Note, the term $2\alpha\eta$ can be negative, thus reducing the impact of η^2 . However, in simulations and
220 our data, we still found a positive bias in the activity magnitudes.

221 We minimized this bias by randomly sampling half of the trials from the mirror and
222 opposite contexts. We then trial-averaged across these samples and completed our analysis
223 described above. We repeated this 1000x and calculated the average magnitude and preferred
224 load direction for each neuron.

225 *Change of Tuning.* A neuron's change in tuning was defined by the difference between its
226 preferred directions for the unimanual and bimanual contexts. We constructed a distribution
227 reflecting the change of tuning across the population of neurons. We quantified how unimodal
228 this distribution was using the Rayleigh unimodal coefficient (R coefficient, Batschelet, 1981).
229 We compared our results with a null distribution that randomly shuffled the neurons' preferred

230 directions and calculated the resulting change in angle (“Shuffle”). The R coefficient was then
231 calculated, and the procedure was repeated 1000 times. We also generated a distribution that
232 compared the tuning change expected from independent samples within a load context (“Within-
233 Context”). We evenly split the contra-only trials into two separate groups. We then calculated
234 the change in tuning between these groups by using the same procedure as above. Probability
235 values were calculated by finding the number of R coefficients from the shuffle and within-
236 context distributions that were greater than and less than the empirical R coefficient,
237 respectively. We repeated this 1000 times. A similar calculation was done using the ipsi-only
238 trials.

239 *Nonlinear modeling and AIC.* We also fit the bimanual activity with models that included
240 nonlinear interaction terms between the contralateral and ipsilateral torques

$$\begin{pmatrix} fr_{\text{Mirror}} \\ fr_{\text{Opposite}} \end{pmatrix} = \begin{pmatrix} \alpha\tau_{CS}^M + \beta\tau_{CE}^M + \gamma\tau_{IS}^M + \delta\tau_{IE}^M + \varepsilon\tau_{CS}^M\tau_{IS}^M + \theta\tau_{CS}^M\tau_{IE}^M + \mu\tau_{CE}^M\tau_{IS}^M + \rho\tau_{CE}^M\tau_{IE}^M \\ \alpha\tau_{CS}^O + \beta\tau_{CE}^O + \gamma\tau_{IS}^O + \delta\tau_{IE}^O + \varepsilon\tau_{CS}^O\tau_{IS}^O + \theta\tau_{CS}^O\tau_{IE}^O + \mu\tau_{CE}^O\tau_{IS}^O + \rho\tau_{CE}^O\tau_{IE}^O \end{pmatrix}$$

241 Where $\varepsilon, \theta, \mu, \rho$ are scalar fit parameters. We used Akaike’s Information Criteria (AIC) to
242 compare the linear and nonlinear models, which balances model complexity with performance
243 (Burnham and Anderson, 2004). Given the small number of samples (16) relative to the number
244 of parameters in each model (linear 4, interaction 8) we applied a small sample correction to the
245 AIC.

246 *Joint optimization.* We identified the contralateral and ipsilateral subspaces using a joint
247 optimization method that we have used previously (Elsayed et al., 2016; Heming et al., 2019).
248 Briefly, this optimizer seeks a set of projections for the contralateral and ipsilateral activities that
249 maximized the amount of variance captured while constrained to keep the projections orthogonal

250 with respect to each other (Elsayed et al., 2016). We calculated the alignment index to quantify
251 how well these axes aligned with the bimanual data.

$$AI = \frac{Tr(J^T Cov_{Mirror} J)}{Tr(PC_{Mirror}^T Cov_{Mirror} PC_{Mirror})} \quad (1)$$

252 Where Cov_{Mirror} is the mirror covariance matrix, PC_{Mirror} is the top-ten principle components
253 for the mirror activity. J is the top five contralateral and ipsilateral projections concatenated
254 yielding ten projections. The alignment index can range from 0, indicating no overlap, to 1,
255 indicating complete overlap. Simply, this metric reflects the ratio between the total amount of
256 variance captured by J with the amount of variance captured by the top-ten mirror principle
257 components (i.e. the most variance any 10 linear projections could capture). A similar method
258 was used to calculate the alignment index for the opposite activity and additive models. A null
259 distribution was generated by randomly sampling subspaces that are biased by the data
260 covariance matrix, as previously described (Elsayed et al., 2016). Probability values were
261 calculated by finding the number of alignment indices from the null distribution that were
262 greater than the empirical alignment index.

263

264

265

266

267

268

269 **Results**

270 **Kinematic Results**

271 We trained monkeys to perform a postural perturbation task where loads were applied to
272 either limb only (unimanual context), or both limbs, simultaneously (bimanual context).
273 Monkey P was able to easily complete this task with an average success rate of 89%. Monkey M
274 struggled with this task when the load magnitudes were 0.3Nm (“large loads”) with an average
275 success rate of 51%. In particular, Monkey M struggled with the multi-joint bimanual loads, a
276 problem also observed in a similar task with humans (Omrani et al., 2013). As a result, we also
277 had Monkey M complete the same task using load magnitudes of 0.2Nm (“small loads”) in a
278 separate set of recording sessions. With the small loads, Monkey M had an average success rate
279 of 87%.

280 Figure 2A shows Monkey P’s left (ipsilateral) hand paths for all load combinations and
281 contexts. For the first 300ms after the load onset (colored circles), the hand trajectories were
282 similar regardless of whether the ipsilateral loads were applied without (ipsi-only) or with
283 (mirror and opposite) an accompanying contralateral load. In contrast, when only contralateral
284 loads (contra-only) were applied, there was little movement observed in the left hand. Similarly,
285 Figure 2B shows the right (contralateral) hand for all load combinations and contexts.
286 Contralateral loads evoked similar hand trajectories when accompanied without and with an
287 ipsilateral load, whereas little motion was observed when only ipsilateral loads were applied.
288 Examining the hand speed (Figure 2C and 2D) revealed similar observations.

289 We calculated the integrated hand speed over the first 300ms for all load contexts (Figure
290 2E for Monkey P and Figure 2G for Monkey M large loads). For the left hand, a one-way

291 ANOVA with load context as a factor revealed a significant main effect for both monkeys
292 (Monkey P: $F(3,28)=35$ $p<0.001$; Monkey M: $F(3,28)=42$ $p<0.001$). Post hoc analysis
293 confirmed that contra-only loads evoked smaller hand motion in both monkeys (left columns
294 Figure 2E,G). Similar results were found when we examined the maximum hand speed within
295 the first 300ms (center column), as well as the hand speed at 300ms (right column).

296 For the right hand, a one-way ANOVA revealed a significant main effect for the
297 integrated hand speed for both monkeys (Monkey P: $F(3,28)=35$ $p<0.001$; Monkey M:
298 $F(3,21)=24$ $p<0.001$). Post hoc analysis confirmed that ipsi-only loads evoked smaller hand
299 motion in both monkeys (Figure 2F,H). Similar results were found when we examined the
300 maximum hand speed within the first 300ms (center column), as well as the hand speed at 300ms
301 (right column). Similar results were also found when we examined Monkey M's kinematics for
302 the smaller loads (data not shown).

303 Neural Recordings

304 We recorded 92 neurons from Monkey P. From Monkey M, we recorded 66 neurons
305 with the large loads and 78 neurons during the small loads. For Monkey M, we pooled all
306 neurons (144) recorded for the large and small loads as our findings were similar when we
307 analyzed each group separately.

308 Figure 3A shows the activity of an example neuron when ipsi-only and contra-only loads
309 were applied (top panels). For simplicity, we only present the neuron's activity for two of the
310 multi-joint loads (SF/EE light colours, SE/EF dark colours). For both contexts, this neuron
311 displayed clear selectivity for the loads, with greater activity during ipsi-only loads for SE/EF
312 (left panel), and greater activity during contra-only loads for SF/EE (right panel). However, for

313 the mirror context this neuron exhibited little selectivity for the loads (middle left panel). For
314 comparison, we calculated the expected mirror activity if it simply reflected the addition of the
315 ipsi-only and contra-only activities (additive mirror model, bottom left panel). The additive
316 mirror model also showed little selectivity for the loads. For the opposite context, this neuron
317 exhibited clear selectivity for the loads (middle right) and was qualitatively similar to the
318 equivalent additive model (bottom right panel). Figure 3B and C show the activities for two
319 additional example neurons.

320 We investigated if a separate population of neurons were active during the unimanual and
321 bimanual contexts. For the ipsi-only and contra-only contexts, we regressed the activity onto the
322 ipsilateral and contralateral loads, respectively. For the bimanual contexts, we concatenated the
323 mirror and opposite contexts and regressed the concatenated activity onto the ipsilateral and
324 contralateral loads. This concatenation was vital as regressing the mirror and opposite contexts
325 separately would result in the ipsilateral loads being collinear to the contralateral loads.
326 Consistent with our previous report (Heming et al., 2019), more neurons had significant fits for
327 the contra-only context than ipsi-only context during the perturbation epoch (Figure 4A,C). We
328 also found a strong overlap between neurons with significant fits for the bimanual and unimanual
329 contexts. For Monkey P/M, 91/74% of neurons had significant fits for the bimanual contexts and
330 at least one of the unimanual contexts (shaded regions). Seven/twelve percent of neurons had
331 significant fits for the unimanual loads only, whereas 2/5% had a significant fit for the bimanual
332 loads only. A similar overlap was observed when we examined the steady-state activity (Figure
333 4B,D).

334 Next, we investigated if activity during the bimanual context exhibited any suppression
335 relative to the unimanual context. In the perturbation epoch, we estimated each neuron's

336 dynamic ranges for the mirror and opposite load contexts and compared it with the dynamic
337 ranges from the equivalent additive models. For Monkey P/M, we found the additive mirror
338 model overestimated the activity of 78/83% of neurons (Figure 5A,E), while the additive
339 opposite model overestimated 61/83% of neurons (Figure 5B,F). Across the population, the
340 additive mirror model significantly overestimated the mirror context by 21/49% (Figure 5C,G;
341 paired t-test Monkey P: $t(91)=7.4$, $p<0.001$, Monkey M: $t(143)=11.3$, $p<0.001$), whereas the
342 additive opposite model overestimated the opposite context by 7/35% (Monkey P: $t(91)=2.0$,
343 $p=0.047$, Monkey M: $t(143)=10.3$ $p<0.001$). We found a similar overestimation by the additive
344 model when we examined the steady-state epoch (Figure 5D,H; mirror: Monkey P: $t(91)=9.0$,
345 $p<0.001$, Monkey M: $t(143)=8.4$, $p<0.001$; opposite: Monkey P: $t(91)=5.7$, $p<0.001$, Monkey M:
346 $t(143)=9.8$, $p<0.001$).

347 We explored if the reduction in dynamic range was due to a specific suppression of the
348 ipsilateral-related activity. From the tuning fits, we could separate the activities related to each
349 limb during the bimanual context and calculate the activity magnitudes (see Methods). Figure 6
350 compares the magnitudes between the unimanual and bimanual contexts for the contralateral-
351 and ipsilateral-related activity. We included only neurons with significant fits for both unimanual
352 and bimanual contexts. In the perturbation epoch, we found the ipsilateral-related activity was
353 smaller during the bimanual context than the unimanual context for 80/65% of neurons in
354 Monkey P/M (Figure 6A, E). Across the population, the ipsilateral-related activity during the
355 bimanual context was 70/82% smaller than the unimanual context for Monkey P/M (Monkey P:
356 paired t-test $t(40)=4.9$, $p<0.001$; Monkey M: $t(68)=4.1$, $p<0.001$). For the contralateral-related
357 activity of Monkey P, we found the magnitudes of the unimanual and bimanual contexts were
358 similar with almost equal number of neurons residing above and below the unity line (Figure

359 6B). For Monkey M, the contralateral-related activities were smaller during the bimanual
360 context than the unimanual context for 91% of neurons (Figure 6F). Across the population, the
361 contralateral-related activity during the bimanual context was 79% smaller than the unimanual
362 context ($t(68)=8.1$, $p<0.001$). Examining the steady-state activity yielded similar findings (Figure
363 6C,D,G,H). For both monkeys, we found the activity magnitudes were significantly reduced
364 during the bimanual context for the ipsilateral-related (Monkey P: mean reduction 78%,
365 $t(38)=3.8$, $p<0.001$; Monkey M: 83% $t(65)=3.2$, $p=0.002$) and contralateral-related activities
366 (Monkey P: 69%, $t(38)=5.1$, $p<0.001$; Monkey M: 80%, $t(65)=7.0$, $p<0.001$). These data
367 suggest the ipsilateral- and contralateral-related activities exhibited roughly similar levels of
368 suppression.

369 Next, we investigated if the representations changed between unimanual and bimanual
370 contexts. From the tuning fits, we could estimate each neuron's preferred direction for each limb
371 during the unimanual and bimanual contexts. Figure 7 displays the change in tuning between the
372 unimanual and bimanual contexts. In the perturbation epoch, we found the distribution for the
373 ipsilateral-related activity was centered near the 0° axis indicating that most neurons had similar
374 tuning between the unimanual and bimanual contexts (Figure 7A,E left panel). We quantified
375 how unimodal the distribution was by calculating the Rayleigh (R) coefficient (Figure 7B,F).
376 For comparison, we generated a null distribution where we calculated the change in tuning after
377 shuffling the neurons' preferred load directions ("shuffle" solid black line, Figure 7B,F). We
378 also generated a distribution that compared the tuning changes expected from two independent
379 samples from the same context ("within context" dashed line). For the ipsilateral-related
380 activity, the change in tuning across contexts was significantly more unimodal (red line, Monkey
381 P/M, Rayleigh coefficient, $R = 0.64/0.70$) than sampling from a shuffled distribution (both

382 monkeys $p < 0.001$). However, the change in tuning was significantly less unimodal than the
383 within-context distribution ($p < 0.001$), though the difference was small (within context median R
384 = 0.89/0.86). We found similar results when we examined the steady state (Figure 7C,D,G,H).

385 For the contralateral-related activity, we also found the distribution was centered near the
386 0° axis (Figure 7A and E, right panel) and found it was significantly more unimodal (Figure 7B
387 and F right panel blue line, Monkey P/M, R = 0.87/0.85) than sampling from a shuffled
388 distribution ($p < 0.001$). However, the change in tuning was significantly less unimodal than the
389 within-context distribution ($p < 0.001$), though the difference was also small (within context
390 median R = 0.96/0.93). We found similar results when we examined the steady state (Figure
391 7C,D,G,H).

392 Population Analysis

393 Previously, several groups have shown that ipsilateral- and contralateral-related activities
394 in primary motor cortex could be isolated into orthogonal subspaces during unimanual
395 movements (Ames and Churchland, 2019; Heming et al., 2019). This suggests that motor cortex
396 could in theory maintain the same subspaces for the ipsilateral- and contralateral-related
397 activities during the equivalent bimanual movement. We identified the subspaces for the
398 ipsilateral- and contralateral-related activity using the unimanual contexts (Elsayed et al., 2016;
399 Heming et al., 2019). Figure 8A and D, show the variance accounted for (VAF) by the ten
400 dimensions that span the ipsilateral subspace for Monkeys P and M, respectively. For Monkey
401 P/M, this subspace captured 75/60% of the ipsi-only variance and 5/8% of the contra-only
402 variance. This subspace also captured 22/21% of the variance for the mirror context and 31/28%

403 of the variance for the additive mirror model. Similarly, the subspace captured 16/21% of the
404 variance for the opposite context and 34/30% of the variance for the additive opposite model.

405 Figure 8B and E show the VAF by the ten dimensions that span the contralateral
406 subspace for Monkeys P and M, respectively. For Monkey P/M, this subspace captured 80/69%
407 of the contra-only variance (blue dots) and 5/9% of the ipsi-only variance (red dots). This
408 subspace also captured 53/29% of the variance for the mirror context and 52/42% of the
409 variance for the additive mirror model. Similarly, the subspace captured 60/45% of the variance
410 for the opposite context and 49/48% of the variance for the additive opposite model.

411 We quantified how well the ipsilateral and contralateral subspaces aligned with the
412 subspace that the mirror and opposite activity resided in by calculating the alignment index. The
413 alignment index can range from 0, indicating the subspaces were orthogonal with respect to each
414 other, to 1 indicating complete alignment between the subspaces. A drawback of the alignment
415 index is that including more dimensions in the ipsilateral and contralateral subspaces increases
416 the likelihood that any random subspace will be less orthogonal. We conservatively estimated
417 the alignment index by choosing the top five ipsilateral and contralateral dimensions as most of
418 the neural activity resided in these dimensions. For comparison, we also generated a null
419 distribution that compared how much randomly sampled subspaces were aligned. For both
420 monkeys, the alignment indices for the bimanual contexts (Monkey P/M mirror=0.8/0.6;
421 opposite=0.8/0.76) were lower than the additive model (Monkey P/M mirror=0.9/0.84;
422 opposite=0.92/0.9), however they were significantly greater than the random distribution
423 ($p < 0.001$ for both monkeys, Figure 8C and F). These results suggest that during the bimanual
424 context, a substantial amount of neural activity was maintained in the subspaces identified during
425 the unimanual task.

426 Linear vs Nonlinear

427 Several studies have suggested that representations for the contralateral and ipsilateral
428 limbs are nonlinearly combined during bimanual control (Yokoi et al., 2011; Diedrichsen et al.,
429 2013). We investigated whether nonlinear effects were present in our data by comparing a
430 model with linear terms for the contralateral and ipsilateral loads (linear model) with a model
431 that included linear and nonlinear interaction terms for the contralateral and ipsilateral loads
432 (nonlinear model). Figures 9A and E compares the VAF by the linear (abscissa) and nonlinear
433 models (ordinate) during the perturbation epoch for Monkeys P and M, respectively. We found
434 the linear model captured 89/74% of the variance for Monkey P/M, whereas the nonlinear model
435 captured 93/89% of variance. Also, we found all neurons resided above the unity line consistent
436 with the fact that the nonlinear model had twice as many free parameters. We assessed model
437 performance using Akaike's Information Criteria (AIC), which balances how well a model fits
438 with the number of free parameters. Models with lower AIC are preferred to models with larger
439 AIC. Figures 9B and F show the differences between the AIC for the linear and nonlinear
440 models as a cumulative sum for Monkeys P and M, respectively. The cumulative sums reside to
441 the left of the zero line indicating that 97% and 81% of neurons had lower AIC for the linear
442 model than the nonlinear model for Monkeys M and A, respectively. Examining the steady state,
443 we also found the nonlinear model accounted for 6/9% more variance than the linear model for
444 Monkey P/M (Figure 9C,G). However, all neurons had lower AICs for the linear model (Figure
445 9D,H).

446

447

448

449 **Discussion (1486 words)**

450 We found a substantial overlap between neurons that were responsive to loads applied to
451 either arm (unimanual) and to loads applied to both arms simultaneously (bimanual) in a postural
452 perturbation task. Neurons maintained similar preferred load directions across unimanual and
453 bimanual tasks, but there was a small reduction in activity for the latter. Lastly, we found that the
454 subspace identified for the unimanual loads captured a significant amount of the variance for the
455 bimanual loads. These data highlight how M1 largely maintains its representations of the
456 ipsilateral and contralateral limbs during bimanual control.

457 Several studies have demonstrated that M1's representation of the contralateral limb
458 remains stable across time for a given behaviour (Scott and Kalaska, 1997; Chestek et al., 2007;
459 Stevenson et al., 2011). M1 also maintains this representation when adapting to a novel
460 environment (Cherian et al., 2013; Yakovenko and Drew, 2015; Perich and Miller, 2017; Perich
461 et al., 2018; Vyas et al., 2018) and when performing various forms of reaching (Gribble and
462 Scott, 2002; Gallego et al., 2018; Lara et al., 2018). In contrast, large changes in the neural
463 representation have been observed across behavioural tasks (Cheney and Fetz, 1980; Muir and
464 Lemon, 1983; Drew et al., 1996). For example, M1 activity during reaching and locomotion
465 reflect distinct subspaces (Miri et al., 2017). Furthermore, load representations can change
466 dramatically across postural control and reaching, although neurons still maintain similar tuning
467 for external loads across these tasks (Kurtzer et al., 2005; Heming et al., 2016). Thus, neural
468 representations in M1 remain relatively constant for a given behaviour but can show substantial
469 changes across behaviours.

470 Here, we found the contralateral representation remains stable across unimanual and
471 bimanual contexts. We found a reduction of activity that may reflect a corresponding reduction

472 in the motor output. We cannot rule this out as we did not record muscle activity, but hand
473 kinematics were similar between unimanual and bimanual loads for the first 300ms after the load
474 was applied. Furthermore, we observed a similar reduction during the steady-state epoch when
475 motor output should be comparable between the unimanual and bimanual loads. Importantly, the
476 preferred load directions remained quite constant, and the subspace identified during the
477 unimanual task captured as much of the variance during the bimanual task as expected from the
478 additive model. Thus, there was a small reduction in activity, but the basic pattern of activity
479 across behavioural contexts remained stable. Similar results were generally found for the
480 ipsilateral representation, although the ipsilateral subspace captured only 66% of the activity
481 during the bimanual loads as compared to the additive model. Thus, while a substantive
482 proportion of the representation was maintained it was less than that observed for the
483 contralateral limb. The ability to simultaneously represent both limbs while performing bimanual
484 motor actions may reflect that the subspaces associated with each limb were orthogonal.

485 In contrast, premotor cortical regions show a greater change in neural representations
486 between unimanual and bimanual motor actions (Tanji et al., 1987, 1988; Rokni et al., 2003;
487 Willett et al., 2020). During bimanual movements, Willett and colleagues, (2019) found
488 relatively small reductions in the contralateral representation in the premotor cortex of humans,
489 but larger reductions for the ipsilateral representation on the order of 50%. Interestingly, they
490 found that the ipsilateral and contralateral representations were in subspaces that overlapped
491 more than M1's representations. Cisek et al., (2003) also found that the preferred direction of
492 neurons during reaching are correlated for the two limbs. This lack of orthogonality in premotor
493 regions may result in a reduction of the ipsilateral representation in order to reduce interference
494 during bimanual motor actions (Rokni et al., 2003; Willett et al., 2020).

495 Although speculative, these differences in the organization of ipsilateral and contralateral
496 representations may reflect the types of information that are represented in these cortical areas.
497 Studies have highlighted that premotor cortical activity is more related to extrinsic features of
498 motor actions, whereas M1 activity is more related to intrinsic features related to the motor
499 periphery (Evarts, 1968; Humphrey, 1972; Cheney and Fetz, 1980; Fromm, 1983; Werner et al.,
500 1991; Scott and Kalaska, 1997; Scott et al., 1997; Shen and Alexander, 1997a, 1997b). It may be
501 that goal-related features of a task are more broadly reflected across the entire premotor network.
502 In natural situations, this broad expression of the behavioural goal may prove valuable in order to
503 permit rapid alternate motor strategies to attain the goal, such as using the other limb to reach
504 and grasp an object of interest. In contrast, when there are independent goals for different motor
505 effectors the premotor representation of the goal associated with the appropriate effector is
506 maintained while the other goal representations are suppressed. In contrast, M1 activity is more
507 related to the details of motor execution which is more effector specific and M1 is also closer to
508 downstream motor targets. Thus, M1 exhibits independent representations of the two limbs, but
509 this allows both representations to be maintained during bimanual motor actions.

510 Previous studies by Vaadia and colleagues had explored bimanual coordination in M1
511 (Steinberg et al., 2002; Rokni et al., 2003). However, their population of neurons exhibited
512 functional properties more similar to premotor cortex. They found neurons had similar tuning
513 for the contralateral and ipsilateral limbs during unimanual reaches (Steinberg et al., 2002). They
514 also found a substantial change in a neuron's preferred direction and an ~50% reduction in
515 magnitude for the ipsilateral-related activity between unimanual and bimanual reaches (Rokni et
516 al., 2003). This may reflect some fluidity in ipsilateral representations across animals or
517 behavioural tasks, postural versus reaching. It is also possible that their M1 recordings were from

518 the transition zone between premotor cortex and M1 which exhibits properties reflecting a
519 mixture of the two areas (Cisek et al., 2003).

520 We used floating micro-electrode arrays to record from M1 that was positioned on the
521 surface of the precentral gyrus. As a result, we did not sample from the most caudal portion of
522 M1 which lies in the bank of the central sulcus. Studies have suggested a rostral-caudal gradient
523 across motor cortex for several attributes. The caudal motor cortex exhibits greater number of
524 cortico-motor neurons (Rathelot and Strick, 2009; Witham et al., 2016), greater independence of
525 tuning between the upper limbs (Cisek et al., 2003), decreased preparatory activity (Crammond
526 and Kalaska, 2000) and greater steady-state activity during postural control (Crammond and
527 Kalaska, 1996) than rostral motor cortex (i.e. premotor cortex). If a gradient does exist, then
528 caudal M1 likely also maintains orthogonal subspaces for the ipsilateral and contralateral limbs
529 but may show even less reduction in activity during bimanual motor tasks than rostral M1.

530 The parietal reach region (PRR) also displays neural representations related to motor
531 actions of both limbs (Kermadi et al., 2000; Chang et al., 2008; Mooshagian et al., 2018). PRR
532 is primarily involved with controlling the contralateral limb (Chang et al., 2008; Yttri et al.,
533 2013), however neurons in PRR respond prior to movements of the contralateral and ipsilateral
534 limbs as well as upcoming saccades (Chang et al., 2008; Chang and Snyder, 2012). However,
535 this ipsilateral activity is predominantly related to a sensory response to the visual target,
536 whereas responses for the contralateral limb are related to both the sensory event and motor
537 planning (Mooshagian et al., 2018).

538 It is not clear whether representing both limbs by one hemisphere and the change to these
539 representations during bimanual motor actions influences actual motor function. Given the

540 behavioural goal was identical for a given limb during unimanual and bimanual tasks, one might
541 expect that any change in the neural representations might impact control. As stated above, we
542 did not observe substantive changes in the kinematics of movement in this relatively simple
543 postural perturbation task. However, the motor system appears to prefer mirror symmetric
544 movements of the limb even when instructed to perform anti-symmetric movements (Kelso,
545 1984). Furthermore, learning a force field while performing a unimanual reach only partially
546 transfers to the equivalent bimanual reach (Nozaki et al., 2006; Nozaki and Scott, 2009; Howard
547 et al., 2010). These observations may reflect interactions between the ipsilateral and
548 contralateral representations in motor cortex during bimanual motor tasks.

549 The presence of bimanual representations in motor cortex may support bimanual
550 coordination in tasks when the two limbs work together to perform a common goal. Currently,
551 most neurophysiological investigations of bimanual control, including our own, have utilized
552 tasks where the goals of each limb are independent, thus requiring minimal interlimb
553 coordination (Donchin et al., 1998; Steinberg et al., 2002; Rokni et al., 2003; Willett et al.,
554 2020). Future studies should investigate behaviours that require interlimb coordination to attain a
555 common goal (Diedrichsen et al., 2004; Dimitriou et al., 2012; Córdova Bulens et al., 2017). In
556 these contexts, sensory feedback from one limb can elicit goal-directed motor actions in the
557 opposite limb in ~70ms (Diedrichsen, 2007; Mutha and Sainburg, 2009; Omrani et al., 2013). It
558 is likely that these interlimb feedback responses involve interactions between overlapping
559 subspaces in motor cortex.

560

561

562 **References**

563 Ames KC, Churchland MM (2019) Motor cortex signals for each arm are mixed across hemispheres and
564 neurons yet partitioned within the population response. *eLife* 8:e46159.

565 Batschelet E (1981) Circular Statistics in Biology. New York: Academic Press.

566 Berlot E, Prichard G, O'Reilly J, Ejaz N, Diedrichsen J (2019) Ipsilateral finger representations in the
567 sensorimotor cortex are driven by active movement processes, not passive sensory input. *J
568 Neurophysiol* 121:418–426.

569 Brosamle C, Schwab ME (1997) Cells of origin, course, and termination patterns of the ventral,
570 uncrossed component of the mature rat corticospinal tract. *J Comp Neurol* 386:293–303.

571 Burnham KP, Anderson DR (2004) Model selection and multimodel inference: A practical information-
572 theoretic approach, 2nd ed. New York, NY: Springer-Verlag.

573 Chang SWC, Dickinson AR, Snyder LH (2008) Limb-Specific Representation for Reaching in the Posterior
574 Parietal Cortex. *J Neurosci* 28:6128–6140.

575 Chang SWC, Snyder LH (2012) The representations of reach endpoints in posterior parietal cortex
576 depend on which hand does the reaching. *J Neurophysiol* 107:2352–2365.

577 Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to
578 active force. *J Neurophysiol* 44:773–791.

579 Cherian A, Fernandes HL, Miller LE (2013) Primary motor cortical discharge during force field adaptation
580 reflects muscle-like dynamics. *J Neurophysiol* 110:768–783.

581 Chestek CA, Batista AP, Santhanam G, Yu BM, Afshar A, Cunningham JP, Gilja V, Ryu SI, Churchland MM,
582 Shenoy KV (2007) Single-Neuron Stability during Repeated Reaching in Macaque Premotor
583 Cortex. *J Neurosci* 27:10742–10750.

584 Cisek P, Crammond DJ, Kalaska JF (2003) Neural Activity in Primary Motor and Dorsal Premotor Cortex In
585 Reaching Tasks With the Contralateral Versus Ipsilateral Arm. *J Neurophysiol* 89:922–942.

586 Córdova Bulens D, Crevecoeur F, Thonnard J-L, Lefèvre P (2017) Optimal use of limb mechanics
587 distributes control during bimanual tasks. *J Neurophysiol*:jn.00371.2017.

588 Cramer SC, Finklestein SP, Schaechter JD, Bush G, Rosen BR (1999) Activation of Distinct Motor Cortex
589 Regions During Ipsilateral and Contralateral Finger Movements. *J Neurophysiol* 81:383–387.

590 Crammond DJ, Kalaska JF (1996) Differential relation of discharge in primary motor cortex and premotor
591 cortex to movements versus actively maintained postures during a reaching task. *Exp Brain Res*
592 108 Available at: <http://link.springer.com/10.1007/BF00242903> [Accessed March 1, 2019].

593 Crammond DJ, Kalaska JF (2000) Prior Information in Motor and Premotor Cortex: Activity During the
594 Delay Period and Effect on Pre-Movement Activity. *J Neurophysiol* 84:986–1005.

595 Diedrichsen J (2007) Optimal Task-Dependent Changes of Bimanual Feedback Control and Adaptation.
596 *Curr Biol* 17:1675–1679.

597 Diedrichsen J, Nambisan R, Kennerley SW, Ivry RB (2004) Independent on-line control of the two hands
598 during bimanual reaching. *Eur J Neurosci* 19:1643–1652.

599 Diedrichsen J, Wiestler T, Krakauer JW (2013) Two Distinct Ipsilateral Cortical Representations for
600 Individuated Finger Movements. *Cereb Cortex* 23:1362–1377.

601 Dimitriou M, Franklin DW, Wolpert DM (2012) Task-dependent coordination of rapid bimanual motor
602 responses. *J Neurophysiol* 107:890–901.

603 Donchin O, Gribova A, Steinberg O, Bergman H, Vaadia E (1998) Primary motor cortex is involved in
604 bimanual coordination. *Nature* 395:274–278.

605 Downey JE, Quick KM, Schwed N, Weiss JM, Wittenberg GF, Boninger ML, Collinger JL (2019) Primary
606 motor cortex has independent representations for ipsilateral and contralateral arm movements
607 but correlated representations for grasping. *medRxiv* Available at:
608 <http://medrxiv.org/lookup/doi/10.1101/19008128> [Accessed October 28, 2019].

609 Drew T, Jiang W, Kably B, Lavoie S (1996) Role of the motor cortex in the control of visually triggered gait
610 modifications. *Can J Physiol Pharmacol* 74:426–442.

611 Dum RP, Strick PL (1996) Spinal Cord Terminations of the Medial Wall Motor Areas in Macaque
612 Monkeys. *J Neurosci* 16:6513–6525.

613 Elsayed GF, Lara AH, Kaufman MT, Churchland MM, Cunningham JP (2016) Reorganization between
614 preparatory and movement population responses in motor cortex. *Nat Commun* 7 Available at:
615 <http://www.nature.com/articles/ncomms13239> [Accessed November 26, 2018].

616 Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. *J
617 Neurophysiol* 31:14–27.

618 Fraser GW, Schwartz AB (2012) Recording from the same neurons chronically in motor cortex. *J
619 Neurophysiol* 107:1970–1978.

620 Fromm C (1983) Changes of steady state activity in motor cortex consistent with the length-tension
621 relation of muscle. *Pflugers Arch* 398:318–323.

622 Gallego JA, Perich MG, Naufel SN, Ethier C, Solla SA, Miller LE (2018) Cortical population activity within a
623 preserved neural manifold underlies multiple motor behaviors. *Nat Commun* 9 Available at:
624 <http://www.nature.com/articles/s41467-018-06560-z> [Accessed November 16, 2018].

625 Ganguly K, Secundo L, Ranade G, Orsborn A, Chang EF, Dimitrov DF, Wallis JD, Barbaro NM, Knight RT,
626 Carmena JM (2009) Cortical Representation of Ipsilateral Arm Movements in Monkey and Man. *J
627 Neurosci* 29:12948–12956.

628 Gribble PL, Scott SH (2002) Overlap of internal models in motor cortex for mechanical loads during
629 reaching. *Nature* 417:938–941.

630 Heming EA, Cross KP, Takei T, Cook DJ, Scott SH (2019) Independent representations of ipsilateral and
631 contralateral limbs in primary motor cortex. *eLife* 8:e48190.

632 Heming EA, Lillicrap TP, Omrani M, Herter TM, Pruszynski JA, Scott SH (2016) Primary motor cortex
633 neurons classified in a postural task predict muscle activation patterns in a reaching task. *J
634 Neurophysiol* 115:2021–2032.

635 Herter TM, Korbel T, Scott SH (2009) Comparison of Neural Responses in Primary Motor Cortex to
636 Transient and Continuous Loads During Posture. *J Neurophysiol* 101:150–163.

637 Howard IS, Ingram JN, Wolpert DM (2010) Context-Dependent Partitioning of Motor Learning in
638 Bimanual Movements. *J Neurophysiol* 104:2082–2091.

639 Humphrey DR (1972) Relating motor cortex spike trains to measures of motor performance. *Brain Res*
640 40:7–18.

641 Kelso JAS (1984) Phase transitions and critical behaviour in human bimanual coordination. *Am J Physiol*
642 246:R1000–R1004.

643 Kermadi I, Calciati T, Rouiller EM (1998) Neuronal activity in the primate supplementary motor area and
644 the primary motor cortex in relation to spatio-temporal bimanual coordination. *Somatosens
645 Mot Res* 15:287–308.

646 Kermadi I, Liu Y, Rouiller EM (2000) Do bimanual motor actions involve the dorsal premotor (PMd),
647 cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and
648 supplementary motor cortical areas. *Somatosens Mot Res* 17:255–271.

649 Kurtzer I, Herter TM, Scott SH (2005) Random change in cortical load representation suggests distinct
650 control of posture and movement. *Nat Neurosci* 8:498–504.

651 Kuypers HGJM (2011) Anatomy of the Descending Pathways. In: *Comprehensive Physiology*, pp 597–
652 666. American Cancer Society. Available at:
653 <https://onlinelibrary.wiley.com/doi/abs/10.1002/cphy.cp010213> [Accessed November 20,
654 2019].

655 Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, Tuszynski MH (2004) Bilateral corticospinal
656 projections arise from each motor cortex in the macaque monkey: A quantitative study. *J Comp
657 Neurol* 473:147–161.

658 Lara AH, Elsayed GF, Zimnik AJ, Cunningham JP, Churchland MM (2018) Conservation of preparatory
659 neural events in monkey motor cortex regardless of how movement is initiated. *eLife* 7:e31826.

660 Miri A, Warriner CL, Seely JS, Elsayed GF, Cunningham JP, Churchland MM, Jessell TM (2017)
661 Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex. *Neuron*
662 95:683–696.e11.

663 Montgomery LR, Herbert WJ, Buford JA (2013) Recruitment of ipsilateral and contralateral upper limb
664 muscles following stimulation of the cortical motor areas in the monkey. *Exp Brain Res* 230:153–
665 164.

666 Mooshagian E, Wang C, Holmes CD, Snyder LH (2018) Single Units in the Posterior Parietal Cortex
667 Encode Patterns of Bimanual Coordination. *Cereb Cortex N Y NY* 28:1549–1567.

668 Muir RB, Lemon RN (1983) Corticospinal neurons with a special role in precision grip. *Brain Res* 261:312–
669 316.

670 Mutha PK, Sainburg RL (2009) Shared Bimanual Tasks Elicit Bimanual Reflexes During Movement. *J*
671 *Neurophysiol* 102:3142–3155.

672 Nozaki D, Kurtzer I, Scott SH (2006) Limited transfer of learning between unimanual and bimanual skills
673 within the same limb. *Nat Neurosci* 9:1364–1366.

674 Nozaki D, Scott SH (2009) Multi-compartment model can explain partial transfer of learning within the
675 same limb between unimanual and bimanual reaching. *Exp Brain Res* 194:451–463.

676 Omrani M, Diedrichsen J, Scott SH (2013) Rapid feedback corrections during a bimanual postural task. *J*
677 *Neurophysiol* 109:147–161.

678 Perich MG, Gallego JA, Miller L (2018) A Neural Population Mechanism For Rapid Learning. *Neuron*
679 100:964–976.

680 Perich MG, Miller LE (2017) Altered tuning in primary motor cortex does not account for behavioral
681 adaptation during force field learning. *Exp Brain Res* 235:2689–2704.

682 Pruszynski JA, Omrani M, Scott SH (2014) Goal-Dependent Modulation of Fast Feedback Responses in
683 Primary Motor Cortex. *J Neurosci* 34:4608–4617.

684 Rathelot J-A, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal cells.
685 *Proc Natl Acad Sci* 106:918–923.

686 Rokni U, Steinberg O, Vaadia E, Sompolinsky H (2003) Cortical Representation of Bimanual Movements. *J*
687 *Neurosci* 23:11577–11586.

688 Rosenzweig ES, Brock JH, Culbertson MD, Lu P, Moseanko R, Edgerton VR, Havton LA, Tuszynski MH
689 (2009) Extensive spinal decussation and bilateral termination of cervical corticospinal
690 projections in rhesus monkeys. *J Comp Neurol* 513:151–163.

691 Scott SH (1999) Apparatus for measuring and perturbing shoulder and elbow joint positions and torques
692 during reaching. *J Neurosci Methods* 89:119–127.

693 Scott SH, Kalaska JF (1997) Reaching Movements With Similar Hand Paths But Different Arm
694 Orientations. I. Activity of Individual Cells in Motor Cortex. *J Neurophysiol* 77:826–852.

695 Scott SH, Sergio LE, Kalaska JF (1997) Reaching Movements With Similar Hand Paths but Different Arm
696 Orientations. II. Activity of Individual Cells in Dorsal Premotor Cortex and Parietal Area 5. *J*
697 *Neurophysiol* 78:2413–2426.

698 Shen L, Alexander GE (1997a) Preferential Representation of Instructed Target Location Versus Limb
699 Trajectory in Dorsal Premotor Area. *J Neurophysiol* 77:1195–1212.

700 Shen L, Alexander GE (1997b) Neural Correlates of a Spatial Sensory-To-Motor Transformation in
701 Primary Motor Cortex. *J Neurophysiol* 77:1171–1194.

702 Soteropoulos DS, Edgley SA, Baker SN (2011) Lack of Evidence for Direct Corticospinal Contributions to
703 Control of the Ipsilateral Forelimb in Monkey. *J Neurosci* 31:11208–11219.

704 Steinberg O, Donchin O, Gribova A, De Oliveira SC, Bergman H, Vaadia E (2002) Neuronal populations in
705 primary motor cortex encode bimanual arm movements: Population vectors in bimanual
706 movements. *Eur J Neurosci* 15:1371–1380.

707 Stevenson IH, Cherian A, London BM, Sachs NA, Lindberg E, Reimer J, Slutsky MW, Hatsopoulos NG,
708 Miller LE, Kording KP (2011) Statistical assessment of the stability of neural movement
709 representations. *J Neurophysiol* 106:764–774.

710 Tanji J, Okano K, Sato KC (1987) Relation of neurons in the nonprimary motor cortex to bilateral hand
711 movement. *Nature* 327:618–620.

712 Tanji J, Okano K, Sato KC (1988) Neuronal activity in cortical motor areas related to ipsilateral,
713 contralateral, and bilateral digit movements of the monkey. *J Neurophysiol* 60:325–343.

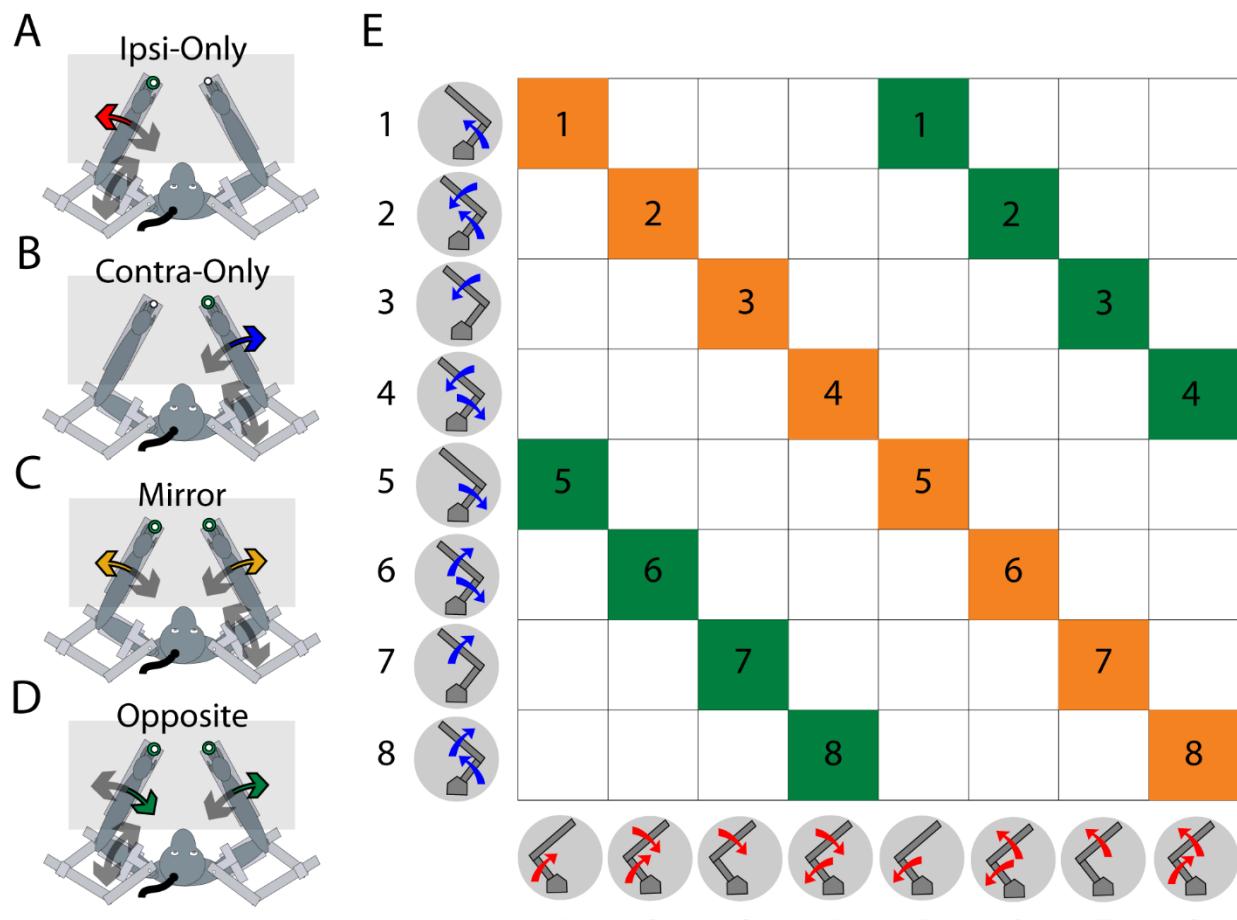
714 Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified
715 in the activity of macaque frontal eye field neurons during visual search. *J Neurophysiol*
716 76:4040–4055.

717 Vyas S, Even-Chen N, Stavisky SD, Ryu SI, Nuyujukian P, Shenoy KV (2018) Neural Population Dynamics
718 Underlying Motor Learning Transfer. *Neuron* 97:1177–1186.e3.

719 Werner W, Bauswein E, Fromm C (1991) Static firing rates of premotor and primary motor cortical
720 neurons associated with torque and joint position. *Exp Brain Res* 86:293–302.

721 Willett FR, Deo DR, Avansino DT, Rezaii P, Hochberg LR, Henderson JM, Shenoy KV (2020) Hand Knob
722 Area of Premotor Cortex Represents the Whole Body in a Compositional Way. *Cell* 0 Available
723 at: [https://www.cell.com/cell/abstract/S0092-8674\(20\)30220-8](https://www.cell.com/cell/abstract/S0092-8674(20)30220-8) [Accessed March 26, 2020].

724 Witham CL, Fisher KM, Edgley SA, Baker SN (2016) Corticospinal Inputs to Primate Motoneurons
725 Innervating the Forelimb from Two Divisions of Primary Motor Cortex and Area 3a. *J Neurosci*
726 36:2605–2616.

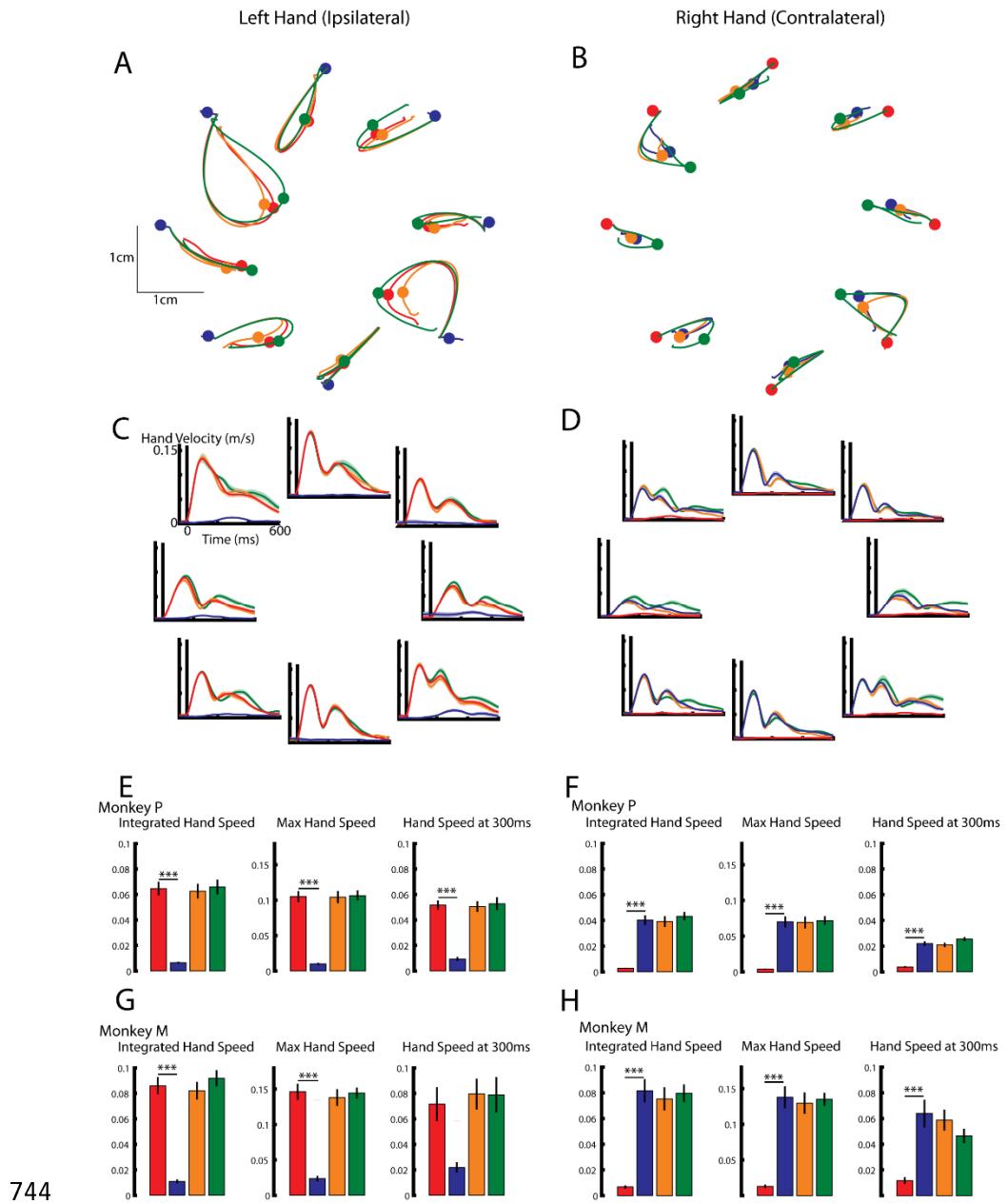

727 Yakovenko S, Drew T (2015) Similar Motor Cortical Control Mechanisms for Precise Limb Control during
728 Reaching and Locomotion. *J Neurosci* 35:14476–14490.

729 Yokoi A, Hirashima M, Nozaki D (2011) Gain Field Encoding of the Kinematics of Both Arms in the
730 Internal Model Enables Flexible Bimanual Action. *J Neurosci* 31:17058–17068.

731 Yttri EA, Wang C, Liu Y, Snyder LH (2013) The parietal reach region is limb specific and not involved in
732 eye-hand coordination. *J Neurophysiol* 111:520–532.

733

734 Figures



735

736 Figure 1: Experimental set-up. Monkeys were trained in a postural perturbation task using their
737 left and right limbs. We included trials where loads were applied to only one limb at a time (A-
738 B) or to both limbs simultaneously (C-D). E) A table showing all possible load combinations.
739 We selected only combinations where the contralateral and ipsilateral loads were equal (yellow
740 squares, mirror) or where the loads were equal in magnitude but opposite in sign (green squares,
741 opposite).

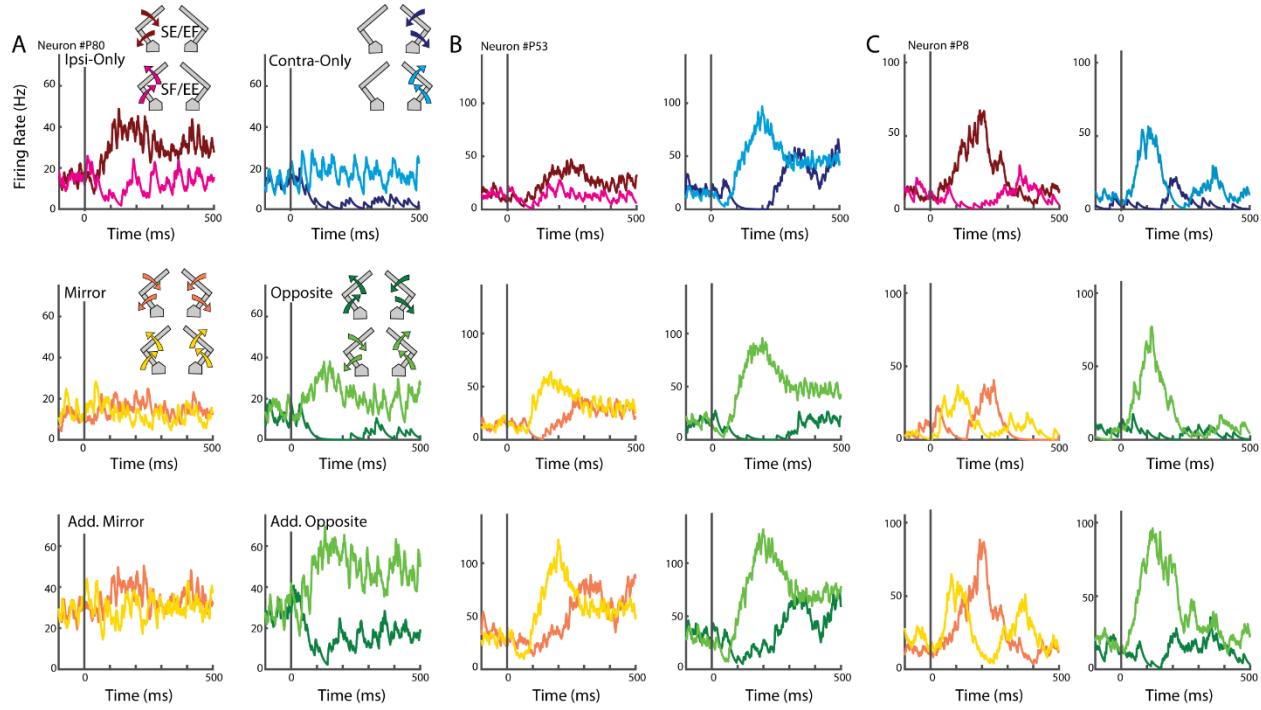
742

743

745 Figure 2

746 A-B, Hand paths for the left and right hand of Monkey P. Blue traces for perturbations to the
 747 contralateral limb only, red for perturbations to the ipsilateral limb only, orange and green are
 748 contralateral and ipsilateral perturbations that are mirror and opposite, respectively. Circles
 749 indicate the 300ms mark on the hand trajectory. C-D) Left and right hand speeds for each

750 perturbation type from Monkey P. E) For the left hand of Monkey P, the mean across load
751 combinations for the integrated hand speed, maximum hand speed, and hand speed at 300ms. A
752 one-way ANOVA with context as a factor revealed a significant main effect for the integrated
753 hand speed ($F(3,28)=35$ $p<0.001$), maximum hand speed ($F(3,28)=48$ $p<0.001$) and the hand
754 speed at 300ms ($F(3,28)=30$ $p<0.001$). F) Same as E) for the right hand of Monkey P. A
755 significant main effect was found for the integrated hand speed ($F(3,28)=35$ $p<0.001$), maximum
756 hand speed ($F(3,28)=26$ $p<0.001$) and the hand speed at 300ms ($F(3,28)=41$ $p<0.001$). G) Same
757 as E) except for Monkey M. A significant main effect was found for the integrated hand speed
758 ($F(3,28)=42$ $p<0.001$), maximum hand speed ($F(3,28)=41$ $p<0.001$) and the hand speed at 300ms
759 ($F(3,28)=6$ $p<0.001$). H) Same as F) except for Monkey M. A significant main effect was found
760 for the integrated hand speed ($F(3,28)=24$ $p<0.001$), maximum hand speed ($F(3,28)=27$ $p<0.001$)
761 and the hand speed at 300ms ($F(3,28)=10$ $p<0.001$). E-H) Post hoc Tukey-Kramer tests were
762 used to compare either the unimanual ipsilateral loads (E,G) with the other three contexts or the
763 unimanual contralateral loads with the other three contexts (F,H). *** $p<0.001$. All p values
764 were Bonferroni corrected with a factor of three.


765

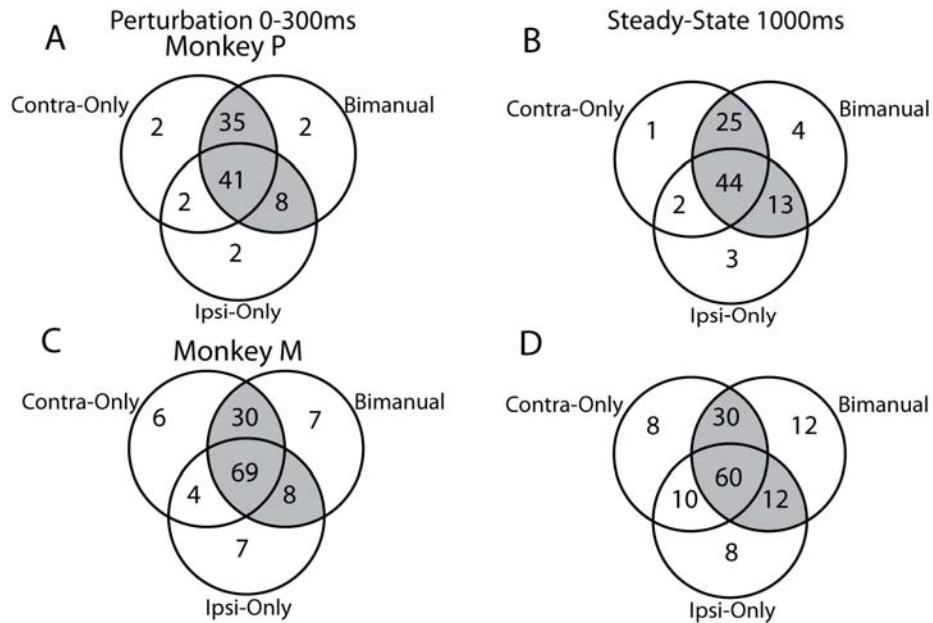
766

767

768

769

770


771 Figure 3: Activities of three example neurons. A) The activities of an example neuron for each
772 load context. Top row: the neuron's activity for loads applied to the ipsilateral (left ipsi-only)
773 and contralateral (right contra-only) limbs only. For simplicity, only the loads for SE/EF (dark
774 colours) and SF/EE (light colours) are shown. Middle row: the neuron's activity for the mirror
775 (left) and opposite (right) loads. Bottom row: the expected activities of the neuron if the mirror
776 and opposite activities reflected a linear sum of the contra-only and ipsi-only activities. B-C)
777 Activities from two additional example neurons.

778

779

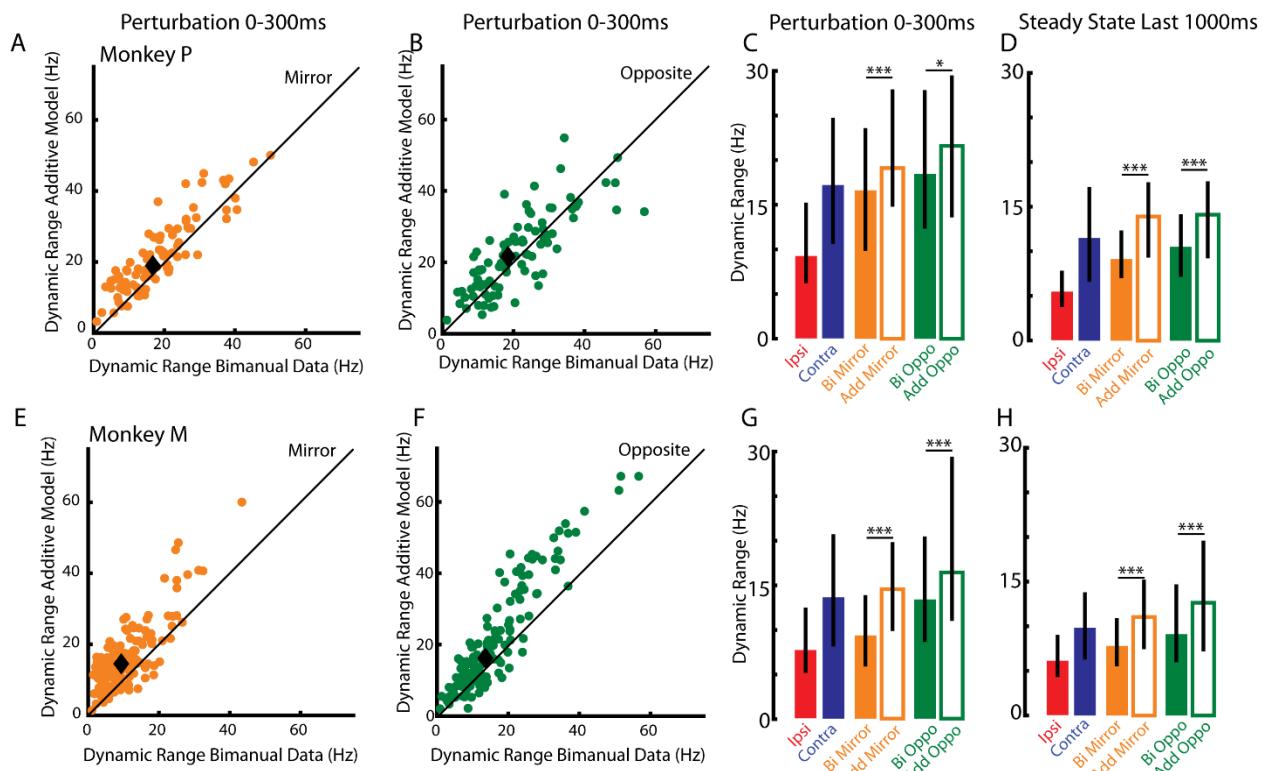
780

781

783 Figure 4: Neuron classification for each load context\ A) For Monkey P, a Venn diagram
784 showing the overlap between neurons with significant fits for the contra-only, ipsi-only and
785 bimodal contexts. Shaded region reflects the neurons with significant fits for at least one of the
786 unimanual (contra-only, ipsi-only) and the bimodal contexts. B) Same as A) for the steady-state
787 epoch. C-D) Same as A-B) for Monkey M.

788

789


790

791

792

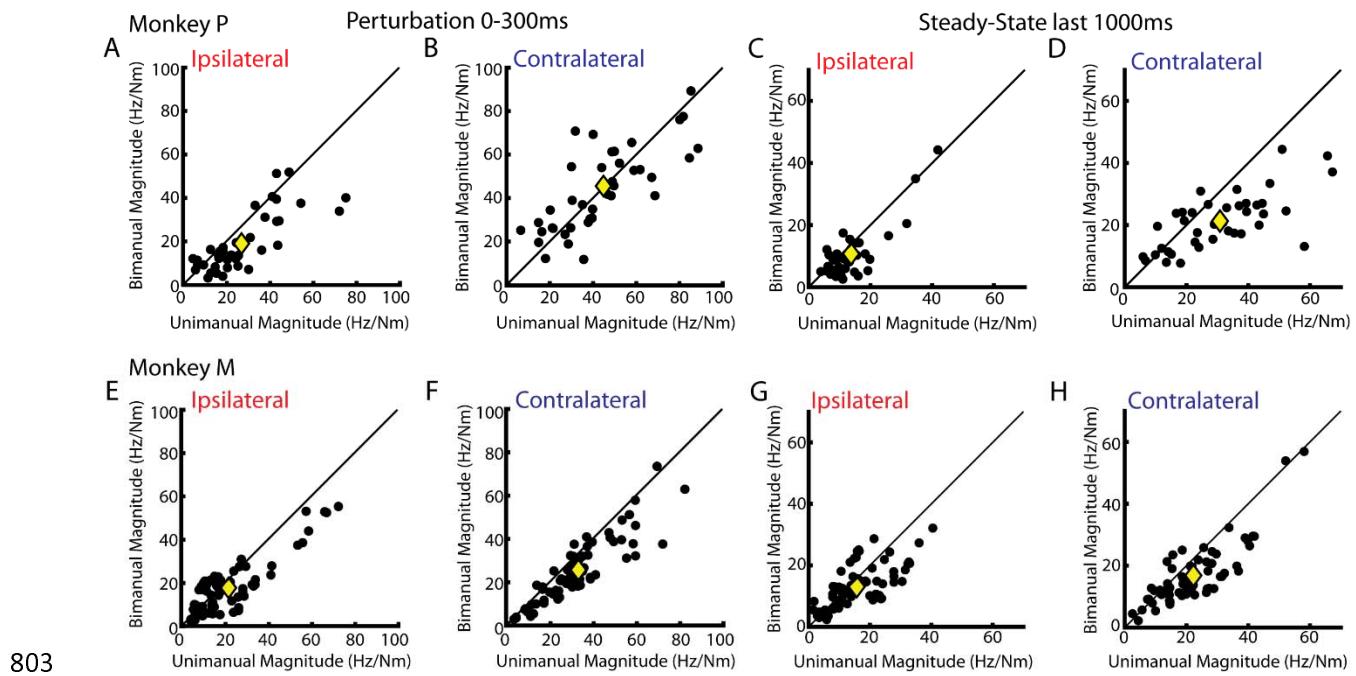
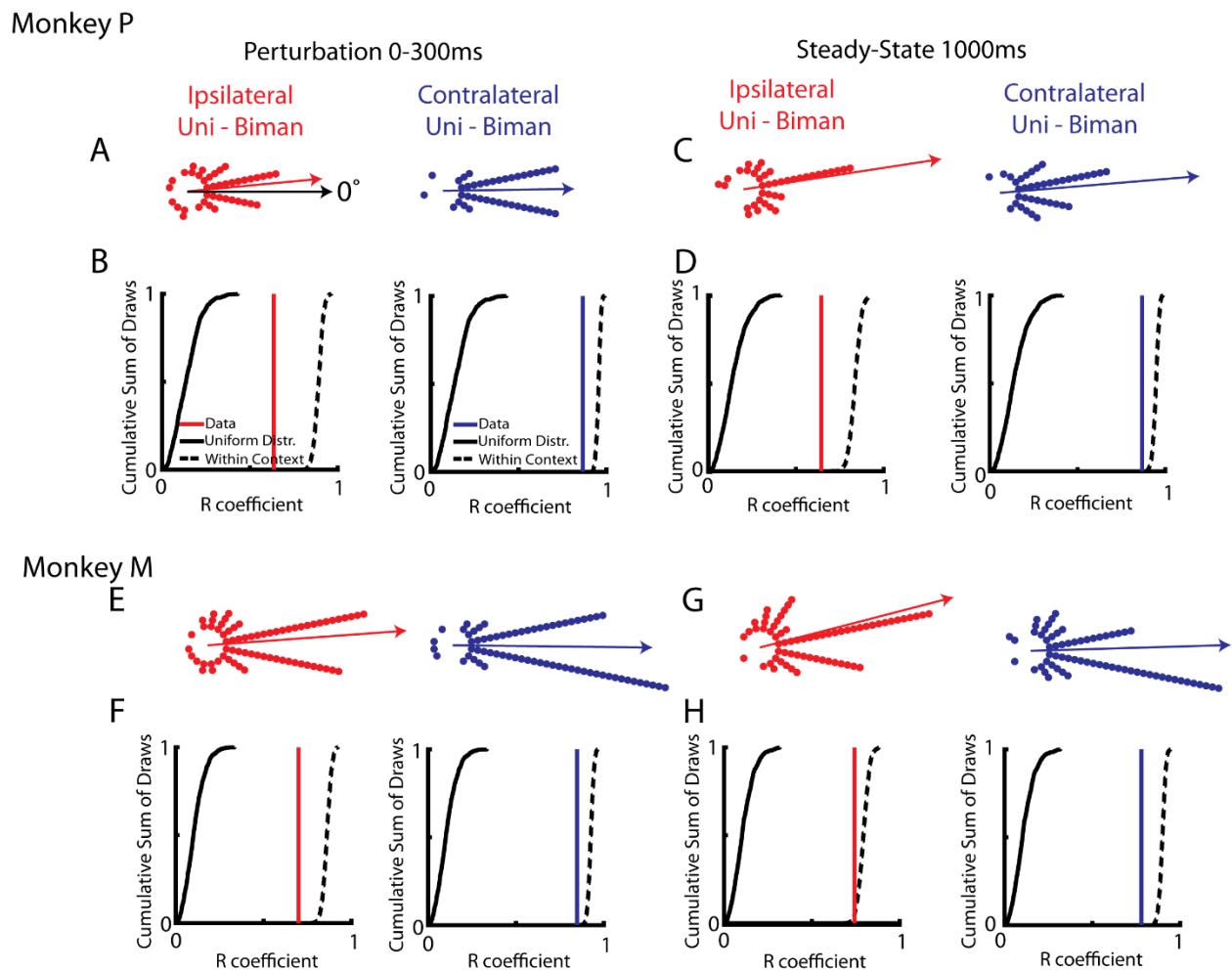
793

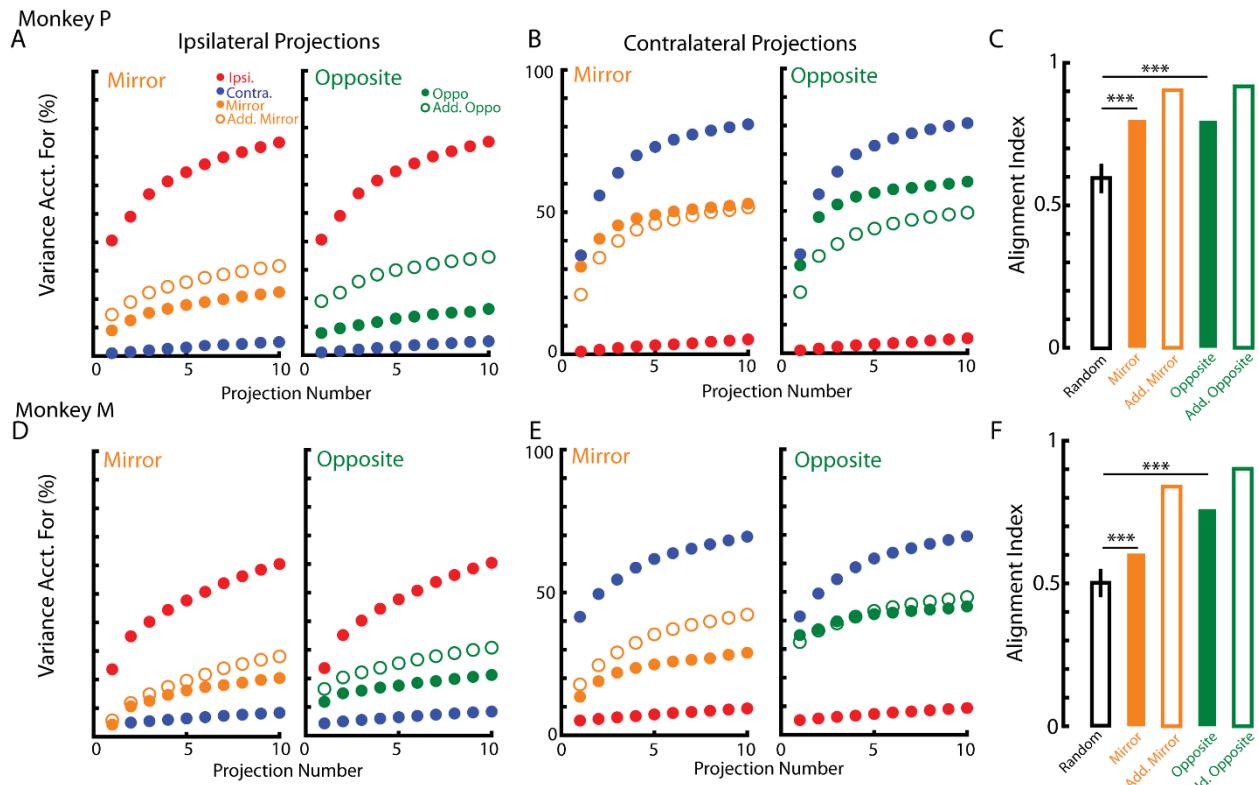
794

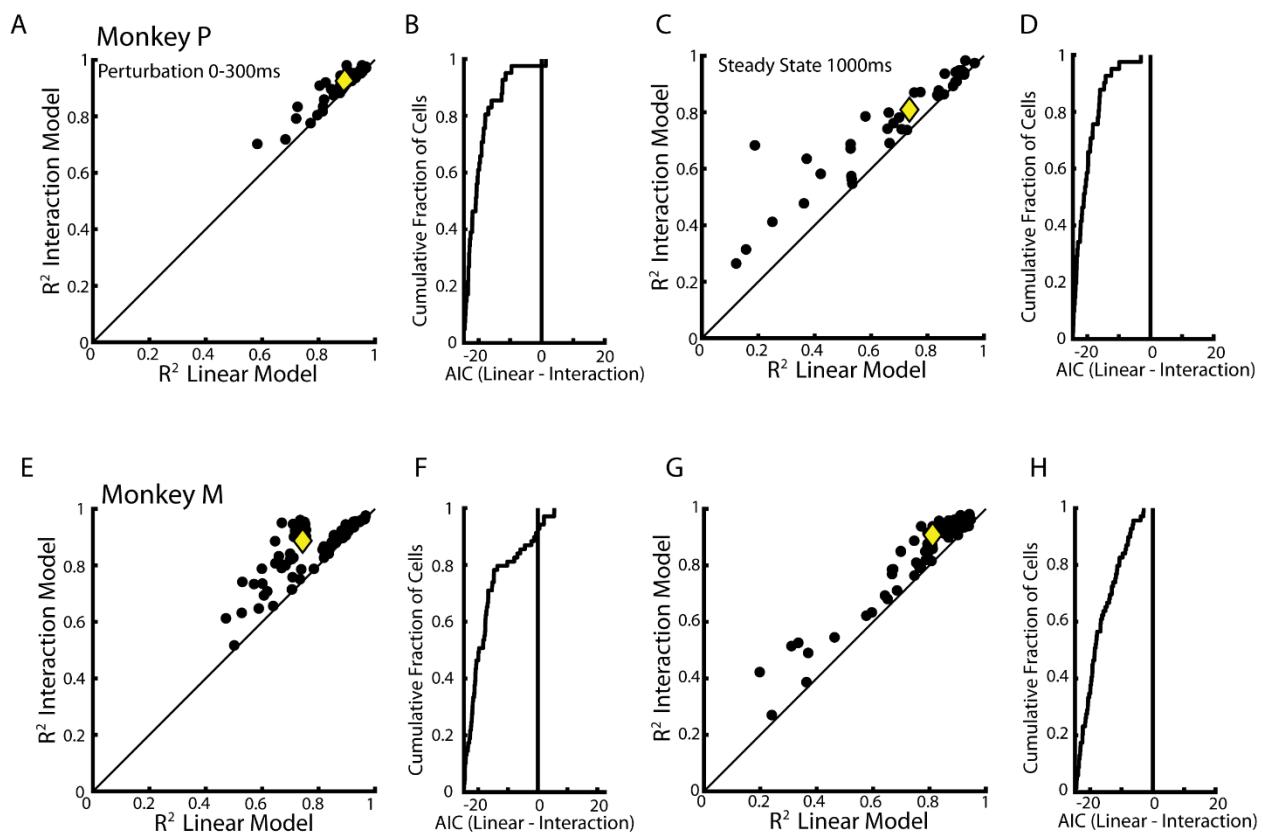
795

796 Figure 5: Dynamic range across neurons for the mirror and opposite contexts. A) For Monkey P,
797 comparison between each neuron's observed dynamic range (abscissa) with its dynamic range
798 predicted by the additive model (ordinate) for the mirror perturbations. Black diamond reflects
799 the median. B) Same as A) for the opposite context. C) The median dynamic range in the
800 perturbation epoch across all recorded neurons (error bars are 25th and 75th percentiles). D) Same
801 as C) for the steady-state epoch. E-H) Same as A-D) for Monkey M. * p<0.05, *** p<0.001.

802


Figure 6: Magnitude changes between the unimanual and bimanual contexts. A) For Monkey P, comparison of the ipsilateral-related magnitudes between the unimanual (abscissa) and bimanual contexts (ordinate) during the perturbation epoch. Yellow diamond indicates the median. B) Same as A) for the contralateral-related magnitudes. C-D) Same as A-B) for the steady-state epoch. E-H) Same as A-D) for Monkey M.


810 Figure 7: Change of tuning between unimanual and bimanual contexts. A) Polar histograms
 811 showing the change in tuning between the unimanual and bimanual contexts for the ipsilateral
 812 (left) and contralateral loads (right) during the perturbation epoch. Neurons with no change
 813 would lie along the 0° axis. B) Black solid line, cumulative sum of Rayleigh (R) coefficients
 814 generated by shuffling neurons and calculating their difference. Black dashed line, cumulative
 815 sum of R coefficients generated by comparing the change in tuning within a context. Blue and
 816 red lines mark the R coefficients of the data. C-D) Same as A-B) for the steady-state epoch. E-H)
 817 Same as A-D) for Monkey M.

818

819

821 Figure 8: Subspace analysis. A) Left: the variance accounted for by the ipsilateral subspace for
 822 the contra-only (blue), ipsi-only (red), mirror (yellow solid), and additive mirror model (yellow
 823 open). Right: same as left except the opposite (green solid) and additive opposite model (green
 824 open). Note, the contra-only and ipsi-only activities are the same in the left and right panel. Data
 825 are plotted as a cumulative sum over the subspace dimensions. B) Same as A) for the
 826 contralateral subspace. C) Alignment indices were calculated between the concatenated
 827 ipsilateral and contralateral subspaces and the activities for the mirror, opposite and additive
 828 models. Random reflects randomly sampling from the data covariance matrix. D-F) Same as A-
 829 C) for Monkey M. *** p<0.001.

830

831 Figure 9: Comparison of the linear and nonlinear models. A) Comparison of model fits between
832 the linear and nonlinear models for each neuron. Yellow diamond reflects the median. B)
833 Difference between the AICs calculated for the linear and nonlinear models. Differences that are
834 less than zero indicate the linear model should be selected, whereas differences greater than zero
835 indicate the nonlinear model should be selected. C-D) Same as A-B) for the steady-state epoch.
836 E-H) Same as A-D) for Monkey M.