

1 **Dr AFC: Drug Repositioning Through Anti-Fibrosis**

2 **Characteristic**

3 Dingfeng Wu[†], Wenxing Gao[†], Xiaoyi Li[†], Chuan Tian, Na Jiao, Sa Fang, Jing Xiao,
4 Zhifeng Xu, Lixin Zhu, Guoqing Zhang and Ruixin Zhu

5 Corresponding authors: **Ruixin Zhu** (rxzhu@tongji.edu.cn), Putuo people's Hospital,
6 Department of Bioinformatics, Tongji University, 1239 Siping Road, Shanghai 200092, P.R.
7 China. Tel: 86-21-6598-1041; **Guoqing Zhang** (gqzhang@picb.ac.cn), Bio-Med Big Data Center,
8 Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational
9 Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai
10 200031, P.R.China. Tel: 86-21-5492-0465; **Lixin Zhu** (zhulx6@mail.sysu.edu.cn), Guangdong
11 Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic
12 Floor Diseases, Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen
13 University, Guangzhou 510655, P.R. China. Tel: 86-199-46256235

14 [†] These authors contributed equally to this work.

15

16 **Abstract**

17 Fibrosis is a key component in the pathogenic mechanism of many diseases. These
18 diseases involving fibrosis may share common mechanisms, therapeutic targets and
19 therefore, common intervention strategies and medicines may be applicable for these
20 diseases. For this reason, deliberately introducing anti-fibrosis characteristics into
21 modelling may lead to more success in drug repositioning. In this study, anti-fibrosis
22 knowledge base was first built by collecting data from multiple resources. Both
23 structural and biological profiles were derived from the knowledge base and used for

Dingfeng Wu is a post-doc fellow at Tongji University, Shanghai, China. His current research
interests include machine learning and drug repositioning.

Wenxing Gao, Xiaoyi Li, Sa Fang and Jing Xiao are Master Degree students at Tongji
University, Shanghai, China. They are working on bioinformatics and multi-omics analysis.

Chuan Tian is a scientist at Relay Therapeutics, Cambridge, United States. His current research
interests include machine learning and drug repositioning.

Na Jiao is a post-doc fellow at Sun Yat-sen University, Guangzhou, China. Her current research
interests include drug repositioning and gut microbiome.

Zhifeng Xu is a junior student at Tongji University, Shanghai, China. He is working on
bioinformatics.

Lixin Zhu is an associate professor at Sun Yat-sen University, Guangzhou, China. His current
research interests include drug repositioning and gut microbiome.

Guoqing Zhang is a professor at Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai, China. His current research interests include machine learning and natural
language processing.

Ruixin Zhu is a professor at Tongji University, Shanghai, China. His current research interests
include drug repositioning, microbiome and bioinformatics.

24 constructing machine learning models including Structural Profile Prediction Model
25 (SPPM) and Biological Profile Prediction Model (BPPM). Three external public data
26 sets were employed for validation purpose and further exploration of potential
27 repositioning drugs in wider chemical space. The resulting SPPM and BPPM models
28 achieve area under the receiver operating characteristic curve (AUC) of 0.879 and
29 0.972 in the training set, and 0.814 and 0.874 in the testing set. Additionally, our
30 results also demonstrate that substantial amount of multi-targeting natural products
31 possess notable anti-fibrosis characteristics and might serve as encouraging candidates
32 in fibrosis treatment and drug repositioning. To leverage our methodology and
33 findings, we developed repositioning prediction platform, Drug Repositioning based
34 on Anti-Fibrosis Characteristic (Dr AFC) that is freely accessible via
35 <https://www.biosino.org/drafc>.

36

37 **Key words:** fibrosis; drug repositioning; web server; knowledge base; natural
38 products

39 **Introduction**

40 Fibrosis is defined as the process of excessive accumulation of fibrous connective
41 tissue in most tissues or organs, where normal cells are replaced by the extracellular
42 matrix (ECM), resulting in disrupted tissue function. In the new era of 21st century,
43 the morbidity and mortality rates of various fibrotic diseases have increased
44 progressively, bringing a huge global health burden. In developed countries,
45 fibroproliferative diseases are responsible for nearly 45% of deaths[1]. One of the
46 well-known fibrotic diseases, idiopathic pulmonary fibrosis(IPF), has a poor
47 prognosis with the 5 year survival rate less than 30% and median survival ranging
48 from 3 to 5 years[2]. The outcomes of IPF patients are even worse than those with
49 many types of cancers [3]. As data obtained by Clinical Practice Research
50 Datalink(CPRD) revealed, the prevalence of IPF patients in board case definitions has
51 doubled from 19.94 per 100,000 patients in 2000 to 38.82 per 100,000 patients in
52 2012, and a 80% increase in incidence was observed[4]. Another life-threatening
53 fibrotic disease, cardiac fibrosis, is one of the leading factors causing heart failure (HF)
54 [5]. A research from 2008-2014 revealed that in 318 patients with systolic dysfunction,
55 78% had one type of myocardial fibrosis while 25% had at least 2 types [6].

56 The polypharmacology of most anti-fibrosis drugs could improve therapeutic
57 efficacy. Recent studies have found that, firstly, fibrosis is the common pathogenic
58 process in most diseases. For example, there are multiple common cellular processes
59 between lung cancer and IPF, including inflammation, cell apoptosis and tissue
60 infiltration [7]. Secondly, fibrosis-related processes have common mechanisms,
61 targets and drugs [8, 9]. A multi-organ fibrosis research discovered a set of 90
62 common differentially expressed genes across lung, heart, liver and kidney. In the two
63 most active gene networks generated by Ingenuity Pathway Analysis(IPA), these
64 genes play a key role in connective tissue disorders and genetic, skeletal and muscular
65 disorders[10]. Similarly, another multi-organ fibrosis research also obtained a series
66 of 11 metzincin-related differentially expressed genes across heart, lung, liver, kidney

67 and pancreas including *THBS2*, *TIMP1*, *COLIA2*, *COL3A1*, *HYOU1*, *MMP2* and
68 *MMP7*[11]. Thirdly, fibrosis is a complicated pathological process involving multiple
69 pathways, thus multi-target drugs are appropriate for fibrosis-related diseases[9].
70 Different pathways interact and counter-interact with each other to establish a
71 “check-and-balance” system, for instance, the core regulators, transforming growth
72 factor- β (TGF- β) and connective tissue growth factor(CTGF) signaling pathways
73 could collaborate to elicit pulmonary and renal fibrosis[12, 13]. In summary, these
74 evidences indicate that anti-fibrosis intervention strategies and medicines may be
75 applicable for more diseases through targeting their common fibrosis-related
76 mechanisms. Therefore, compounds that can more specifically target anti-fibrosis
77 could have greater potential of repositioning and are more applicable for drug
78 repositioning research.

79 Drug repositioning, or repurposing refers to the “reuse of old drugs”, recycling
80 existing drugs for new medical indications. Compared with *de novo* drug discovery,
81 drug repositioning has obvious advantages that it could significantly shorten drug
82 development periods, reduce laboratory cost and minimize potential safety risk.
83 Nowadays, drug repositioning is one of the most efficient strategies in drug
84 development[14]. With the advancement of high-throughput sequencing technology
85 and deep learning, various data-driven computational prediction and analytic models
86 stand out[15, 16], including Similarity Ensemble Approach (SEA)[17] and
87 Connectivity Map(cMAP)[18]. SEA clusters ligands into sets and calculates the
88 similarity scores between ligand sets from ligand topology[17]. cMAP computes the
89 similarity of “signatures” deduced from compound-induced gene profiles to quantify
90 the biological functional relationships between compounds. Moreover, the
91 relationship between compounds and diseases could also be quantified in opposite
92 manner[18]. However, with so many repositioning methods and algorithms have
93 emerged[19-21], there still no attempts hitherto in introducing anti-fibrosis
94 characteristic into drug repositioning strategy.

95 For the first time, we built the anti-fibrosis knowledge base from anti-fibrosis related
96 research. Based on the knowledge base, two repositioning models, Structural Profile
97 Prediction Model (SPPM) and Biological Profile Prediction Model (BPPM) were
98 constructed with high prediction accuracy. Centered on these two models, we then
99 developed a repositioning computing platform, Drug Repositioning based on
100 Anti-Fibrosis Characteristic (Dr AFC), to accelerate the process of exploring
101 repositioning drugs and studying its underlying mechanisms.

102

103 **Materials and methods**

104 **Datasets**

105 *Anti-fibrosis knowledge base*

106 Anti-fibrosis related literatures were collected through key word queries “fibrosis
107 AND target” in PubMed from Jan. 1st, 2000 to Oct. 31st, 2019. The compound-target
108 interaction information on “fibrosis” were collected in the CTD[22] from Jan. 1st,
109 2000 to Oct. 31st, 2019. Anti-fibrosis trials were collected in ClinicalTrials.gov[23]
110 from Jan. 1st, 2000 to Oct. 31st, 2019. Finally, anti-fibrosis treatments, targets and
111 compound-target interactions were extracted and aggregated into the knowledge base.

112

113 *Model construction*

114 Structural and biological profiles of compounds were collected from DrugBank[24]
115 and cMap, respectively and used for model construction. 2640 approved drugs in
116 DrugBank and 1223 compounds in the anti-fibrosis knowledge base served as the raw
117 data for Structural Profile Prediction Model (SPPM) construction. 6100 biological
118 profiles (gene expression) of 1309 small molecules in cMap served as the raw data for
119 Biological Profile Prediction Model (BPPM).

120

121 *Case studies*

122 20,263 natural products from TCMID[25], 5968 DrugBank experimental drugs[24]
123 and 5000 random compounds from ChEMBL[26] were collected as external
124 validations and case studies of SPPM. And external biological profiles from GEO
125 database (GSE85871) that contains transcriptomics perturbation profiles of 105
126 natural products in MCF7 cell line were used for case studies of BPPM.

127

128 **Methods**

129 *Pre-processing of modeling data*

130 In raw chemical structures (from DrugBank approved drugs and the anti-fibrosis
131 knowledge base) and biological profiles (from cMap) data, compounds that appeared
132 in the anti-fibrosis knowledge base were labeled as positive candidates while the rest
133 were labeled as negative candidates. Then, chemical structures were converted into
134 chemical fingerprints (166-bits MACCS keys) for processing chemical information in
135 a fast and convenient way using RDKit[27]. As to biological profiles, Quantile
136 Transformer was used to transform biological profiles into ranking orders to improve
137 the performance of model generalization, and also made datasets from different
138 batches and platforms more comparable.

139 One-class SVM (nu=0.3) was performed to estimate sample quality, remove
140 outliers and confirm final positive and negative samples. 70% of final samples were
141 used as training set for model selection and super-parameter determination while the
142 remainder as testing set for model validation.

143

144 *Anti-fibrosis model construction and validation*

145 Four different machine learning algorithms were selected for modeling on training set,
146 including logistic regression, decision tree, random forest and gradient boosting.
147 Among them, method with highest precision and AUC calculated by 5-fold
148 cross-validation was selected for subsequent analysis. Iterative feature elimination
149 (IFE) algorithm was performed to select optimal feature set through one-by-one

150 feature deletion. Finally, SPPM and BPPM were constructed based on optimal
151 modeling algorithm and feature set, and further validated by testing set.

152

153 *Drug repositioning mechanism analysis*

154 Network-based inference approaches were wildly used in drug repositioning [20, 21].

155 Here we infer the potential drug repositioning mechanism through
156 compound-target-disease network. Firstly, based on SPPM and BPPM, the
157 repositioning characteristics of compounds were predicted through their structural or
158 biological profiles, in which compounds with reposition score>0.5 were considered as
159 anti-fibrosis and had repositioning potential. Next, the anti-fibrosis characteristic and
160 potential repositioning mechanisms of these candidates were explored on the basis of
161 compound-target-disease corresponding information in the anti-fibrosis knowledge
162 base. Similar compounds that may interact with same targets and diseases were
163 calculated through Tanimoto similarity of chemical structural fingerprints or
164 Spearman's rank correlation coefficient of biological profiles. Targets and disease
165 information of compounds reported in previous researches were refined from the
166 anti-fibrosis knowledge base to explore anti-fibrosis mechanism of compounds.
167 Finally, the potential mechanisms among compounds in compound-target-disease
168 network displayed in drug repositioning analysis were used to help propose feasible
169 drug repositioning solutions.

170

171 *Webserver construction of Dr AFC*

172 Dr AFC was constructed through PostgreSql database and Django framework. This
173 platform serves as a practical tool for prediction of drug repositioning potential based
174 on compound structures (SPPM) and biological profiles (BPPM) as well as displaying
175 compound-target-disease network of drug repositioning mechanisms. Meanwhile, Dr
176 AFC also integrated toolkits such as quantitative estimate of drug-likeness (QED)

177 from Silicos-it[28], and similarity calculation and structure matching borrowed from
178 RDkit to provide convenient web-based calculations for users.

179 The overall process is shown in Figure 1.

180

181 **Results**

182 **SPPM and BPPM show high performances for anti-fibrosis prediction**

183 To construct the anti-fibrosis knowledge base, 7058 fibrosis-related references from
184 PubMed, 302 from Comparative Toxicogenomics Database(CTD)[22] and 2664
185 fibrosis-related trials from ClinicalTrials.gov[23] were collected through text mining.
186 Finally, 1223 anti-fibrosis treatments (containing 902 small molecules), 1067
187 fibrosis-related targets, 3096 fibrosis-related records from references and 1787 from
188 trials, 1067 anti-fibrosis compound-target interactions were obtained and integrated
189 into anti-fibrosis knowledge base (Figure S1).

190 In modeling session, 2885 compound structures (from DrugBank approved drugs)
191 [24] and 6100 biological profiles (from cMap) were labeled as positive candidates and
192 negative candidates based on their anti-fibrosis characteristic in the anti-fibrosis
193 knowledge base. After sanity check and outlier removal, 1701 compound structures
194 and 2735 biological profiles were filtered out for model construction (Table S1).

195 Four different machine learning classifiers were evaluated and compared to choose
196 the most optimal modeling method (Table S2). Gradient boosting was eventually
197 selected according to its highest precision and AUC (Structural profile:
198 Precision=0.737, AUC=0.839, Biological profile: Precision=0.892, AUC=0.912).

199 In the process of building SPPM and BPPM, we found that even a small number of
200 features could reach certain stability and reasonably good performance (Figure S2,
201 **Figure 2a**). Models based on top 38 features including CHARGE, S and XA(A)A
202 could reach the maximum cross-validation AUC (0.879) in SPPM while top 47
203 features including RPL30, MRRPL5 and KPNB1 could reach the maximum
204 cross-validation AUC(0. 972) in BPPM. We discovered that 46 of the top 47 features

205 in BPPM were connected with fibrosis in CTD inference networks (Figure 2b).
206 Besides, several genes were associated with fibrosis-related indications like
207 retroperitoneal fibrosis, keloids, tissue adhesions and cicatrix.

208 Finally, SPPM and BPPM were build based on the most optimal modeling method
209 and the selected small feature subset (top 38 features in SPPM and top 47 features in
210 BPPM). In testing set, the average AUC for SPMM reaches 0.814 (Figure 2c) while
211 the average AUC for BPMM reaches 0.874 (Figure 2d).

212

213 **Case studies**

214 *Anti-fibrosis drugs exhibit greater drug repositioning potential*

215 We used SPPM to predict anti-fibrosis drugs from DrugBank experimental drugs and
216 the comparative analysis was performed between the CTD compound-gene
217 interactions of the predicted anti-fibrosis and non-anti-fibrosis drugs. The results show
218 that the anti-fibrosis group accommodates stronger interactions, presumably more
219 genetic effects thus greater repositioning potential (**Figure 3a**).

220 In Drugbank experimental drugs, multiple drugs with great repositioning potential
221 (Related Genes>500 and Diseases>20, Figure 3b, Table S3) were developed for
222 fibrotic diseases and other diseases. Quercetin was discovered to ameliorate liver
223 fibrosis through regulating macrophage infiltration and polarization, and it could
224 alleviate IPF through fibroblasts apoptosis[29, 30]. Based on our results, we confirm
225 that quercetin interacts with numerous genes and is strongly linked to multiple
226 diseases (Repositioning score=0.856, Related Genes=3938, Diseases=150, Table S3).
227 Another natural compound from turmeric, curcumin (Repositioning score=0.855,
228 Related Genes=903, Diseases=138, Table S3), could also be used for treating multiple
229 fibrotic diseases. It could inhibit fibroblast proliferation and myofibroblast
230 differentiation in IPF[31] while inhibit oxidative stress and exhibit anti-inflammatory
231 effect in liver fibrosis[32]. Apart from fibrosis, curcumin has been applied for
232 osteoarthritis and rheumatoid arthritis treatment [33, 34]. Moreover, other drugs, such

233 as resveratrol also had great repositioning potential (Repositioning score=0.821,
234 Figure 3b).

235

236 *Natural compounds are the better repositories for drug repositioning*

237 In order to expand the resources of potential repositioning drugs and further explore
238 the chemical space, we introduced two external molecule sets, natural products from
239 TCMID[25] and random compounds in ChEMBL[26]. SPPM was used to predict the
240 repositioning potential of compounds from both external molecule sets. The results
241 show that there were 35.42%, 77.26% and 37.04% of compounds could be potentially
242 repositioned in DrugBank experimental drugs, TCMID and ChEMBL, respectively.
243 The reserves in natural products from TCMID are significantly higher than others,
244 indicating that natural products are great repositioning repositories and need further
245 researches (Figure 3c).

246 BPPM was used to discover specific natural products with repositioning potential
247 from gene profiles dataset of 105 natural products (GSE85871). The results show that
248 a total of 66 natural products have anti-fibrosis characteristic and repositioning
249 potential, including ginsenoside Re(Repositioning score=0.979),
250 muscone(Repositioning score=0.974) and cinnamic acid(Repositioning score=0.948)
251 (Table S4). Among them, ginsenoside Re hold the potential to influence HDAC2,
252 HDAC9 and HMGCR and fulfilled anti-fibrosis roles via “inflammation”, “preventing
253 collagen deposition” and “targeting myeloperoxidase” with Drug repositioning
254 mechanism analysis tools in Dr AFC (Figure 3d). Ginsenoside Re is the extract of
255 panax ginseng which exhibited protective effects in neural and systematic
256 inflammations through inhibiting the interaction between LPS and TLR4 in
257 macrophages[35]. It was reported to exert anti-fibrosis effect on cardiac fibrosis
258 through down-regulating the expression of p-Smad3, collagen I and reducing the
259 augmentation of collagen fibers[36]. Apart from fibrosis, ginsenoside Re could
260 alleviate inflammation through inhibiting myeloperoxidase activity[37] and decrease

261 fat accumulation through inhibiting HMGCR and cholesterol biosynthesis[38].
262 Besides, other ginsenosides, like ginsenoside Rb1, ginsenoside Rc, ginsenoside Rb3,
263 ginsenoside Rb2, ginsenoside Rd and ginsenoside Rg, also exhibit anti-fibrosis
264 characteristic and repositioning potential(Table S4).

265

266 **Drug Repositioning based on Anti-Fibrosis Characteristic Webserver**

267 Based on SPPM and BPPM, we constructed a computing platform for repositioning
268 research purpose, named Drug Repositioning based on Anti-Fibrosis Characteristic
269 (Dr AFC), the main function and workflow of which is shown in **Figure 4**. On Dr
270 AFC platform, anti-fibrosis and potential repositioning could be predicted from
271 compound structures or biological profiles. Drug repositioning mechanism analysis
272 could infer the relationships among compounds, fibrosis-related targets and diseases
273 which help understand pathology. Furthermore, drug-likeness estimation, chemical
274 similarity calculation and structure matching were integrated into Dr AFC to provide
275 useful information for drug development.

276

277 *Drug repositioning analysis function*

278 Dr AFC allows users to upload compound structures or compound-induced biological
279 profiles for repositioning potential prediction. As shown in Figure 4b, Dr AFC accepts
280 SMILES strings of compound structures for SPPM prediction, and accepts gene
281 profiles with row names in Affymetrix U133A probe ID, Entrez ID or gene symbol
282 format for BPPM prediction. Both methods support .txt, .csv or .xlsx files (Figure 4c).

283 Webserver would perform corresponding prediction analysis automatically based
284 on the uploaded files and display the output on the result page in three aspects (Figure
285 4d): 1) Basic part includes compound ID, compound name, 2D compound
286 structure(only for SPPM) and SMILES string(only for SPPM). 2) Prediction part
287 includes repositioning scores of anti-fibrosis characteristic and repositioning potential
288 prediction. The repositioning scores ranges from 0 to 1 and higher score indicates

289 higher potential. If repositioning score ≥ 0.5 , the compound would be defined as an
290 anti-fibrosis and potential repositioning compound. 3) Drug repositioning mechanism
291 analysis part. This analysis infers the potential anti-fibrosis and repositioning
292 mechanisms of compound structures or biological profiles users uploaded based on
293 our anti-fibrosis knowledge base. It could provide users potential mechanisms as
294 theoretical foundations for drug repositioning studies.

295

296 *Other functions*

297 Dr *AFC* also contains drug-likeness estimation, chemical similarity calculation and
298 structure matching tools. Users could upload their compounds in SMILES and
299 perform these additional functions. Drug-likeness estimation could evaluate and score
300 the compound drug-likeness, which ranges from 0 to 1 with higher score indicating
301 higher potential for lead compound. Chemical similarity calculation and structure
302 matching provide convenient ways for users to search compound with similar
303 structures, same structures or substructures, supporting single compound calculation
304 and simultaneous calculation for multiple compounds.

305

306 **Discussion**

307 Fibrosis is the common mechanism of diseases that attracts global attention. The
308 anti-fibrosis characteristic of a compound could infer the greater repositioning
309 potential it would have. However, the anti-fibrosis characteristic has not been
310 extensively introduced into the realm of drug discovery till now. In this study, we first
311 bridge the gap by developing a platform that can provide intensive information
312 conveniently on drug repositioning based on anti-fibrosis characteristic data, Dr *AFC*
313 (<https://www.biosino.org/drafc>). This *in silico* platform also provides a highly
314 accurate way to generate data for rational drug design via combining the advanced
315 machine-learning algorithm.

316 Dr *AFC* was built based on the anti-fibrosis knowledge base, which pioneered the
317 excavation and organization of fibrosis-related studies throughout recent years.
318 Structural profile (SPPM) and biological profile (BPPM) that show extraordinary
319 capabilities in drug repositioning prediction (with AUC 0.814 and 0.874, respectively)
320 were integrated into Dr *AFC*. BPPM show slightly higher performance than SPPM
321 according to the AUC. The possible reason could be that biological profile is more
322 tolerant and could contain information reflecting an overall effect of compound
323 functionally in the body. Biological profile show its advantage in multiple
324 repositioning algorithms previously, such as cMAP[18], L1000CDS²[39] and
325 MANTRA[40]. Besides, certain therapies without available structure profile like
326 biotech drugs or cocktail therapies could also be studied in repositioning research
327 according to their biological profiles.

328 In BPPM, 47 biological markers exhibited strong prediction abilities. These genes
329 are directly or indirectly linked to various fibrotic diseases. Interestingly, ribosomal
330 proteins including RPL30, MRPL15, RPL32, RPS3A, RPLP0, RPL7, RPL23A and
331 RPL13A are the main part of these biological markers. Ribosomes serve as significant
332 regulators in immune signaling pathways, tumorigenesis pathways and cardiovascular
333 and metabolic diseases[41, 42]. For example, the expression of RPL30 is negatively
334 correlated with carcinogenesis process in medulloblastoma that usually is
335 accompanied by desmoplasia and could thus serve as a prognosis biomarker[43].
336 Besides, the over-activation of RNA polymerase in the biogenesis of ribosomes could
337 cause the enhancement of protein synthesis and the decrease of translation accuracy,
338 triggering cancers or exacerbating cancer processes[44]. Furthermore, some biological
339 markers are associated with the spliceosome formation including RBM8A,
340 HNRNPA3, SNRPG and DHX15. Spliceosome is the large molecular machine
341 composed of five snRNA and many proteins, and serves as the catalyst of pre-RNA
342 introns which are crucial for protein expression and function. It has been reported to

343 be closely associated with multiple diseases, including cystic fibrosis and pulmonary
344 fibrosis[45, 46].

345 Based on external molecule sets, natural products are validated to have the
346 strongest anti-fibrosis characteristics and repositioning potential among chemicals
347 from different sources. Natural products provide a wealth of valuable natural
348 resources for modern medicine and are seen as promising and popular candidates for
349 drug repositioning studies[47]. Their privileged scaffolds, structural complexity,
350 abundant stereochemistry and 'metabolite-likeness' are main reasons for the
351 broad-spectrum of biological activities [48, 49]. The multi-targets and synergistic
352 effects of natural products exhibit great advantages in treating diseases undergoing
353 sophisticated mechanisms, such as fibrosis[50]. Our studies show that natural
354 products like ginsenoside have great anti-fibrosis characteristic and repositioning
355 potential and should be top priority when considering repositioned drug discovery.
356 Additionally, the natural products in Drugbank experimental drugs such as quercetin,
357 curcumin and resveratrol, also highlight their strong repositioning capabilities.
358 Therefore, natural products could serve as promising source and the good choice for
359 further drug development and repositioning study.

360

361 **Conclusion**

362 In summary, based on anti-fibrosis characteristics, we constructed two repositioning
363 models, SPPM and BPPM, which could predict the anti-fibrosis characteristics and
364 repositioning potential from compound structures and compound-induced biological
365 profiles. SPPM and BPPM efficiently utilize the generality of fibrotic diseases, thus
366 greatly increase the success rate of drug repositioning. This study not only established
367 a highly efficient strategy of prediction, but also developed a convenient and
368 user-friendly computing platform, Dr AFC (<https://www.biosino.org/draf>), for
369 studying fibrosis mechanisms and drug repositioning.

370

371 **Key Points**

372 • Fibrosis is the common mechanism of diseases which could be applied in drug
373 repositioning.

374 • We developed a convenient and user-friendly computing platform, Dr *AFC*, for
375 studying fibrosis mechanisms and drug repositioning.

376 • Dr *AFC* shows high performance on both cross validation and external validation,
377 which demonstrates its potential applications in drug discovery.

378 • Natural compounds proved to be the better repositories for drug repositioning.

379

380 **Funding**

381 This work was supported by National Key R&D Program of China
382 [2017YFC0907505, 2016YFC0901904, 2017YFC0908404 to G.Z.]; National Natural
383 Science Foundation of China [81774152 to R.Z., 81770571 to L.Z.]; National
384 Postdoctoral Program for Innovative Talents of China [BX20190393 to N.J.]; China
385 Postdoctoral Science Foundation [2019M651568 to D.W., 2019M663252 to N.J.];
386 Natural Science Foundation of Shanghai [16ZR1449800 to R.Z.); Science and
387 Technology Service Network Initiative of Chinese Academy of Sciences
388 [Y919C11011 to G.Z.]; and Funds from the University at Buffalo Community of
389 Excellence in Genome, Environment and Microbiome (GEM) [to L.Z.].

390

391 **Conflict of interests**

392 All the authors have no conflict of interest.

393

394 **References**

- 395 1. Wynn TA, Cellular and molecular mechanisms of fibrosis. *J Pathol*
396 2008;**214**:199-210.
- 397 2. Vancheri C and du Bois RM, A progression-free end-point for idiopathic
398 pulmonary fibrosis trials: lessons from cancer. *Eur Respir J* 2013;**41**:262-9.
- 399 3. Homma S, Bando M, Azuma A, et al., Japanese guideline for the treatment of
400 idiopathic pulmonary fibrosis. *Respir Investig* 2018;**56**:268-291.

401 4. Strongman H, Kausar I, and Maher TM, Incidence, Prevalence, and Survival
402 of Patients with Idiopathic Pulmonary Fibrosis in the UK. *Adv Ther*
403 2018;**35**:724-736.

404 5. Horn MA and Trafford AW, Aging and the cardiac collagen matrix: Novel
405 mediators of fibrotic remodelling. *J Mol Cell Cardiol* 2016;**93**:175-85.

406 6. Almehmadi F, Joncas SX, Nevis I, et al., Prevalence of myocardial fibrosis
407 patterns in patients with systolic dysfunction: prognostic significance for the
408 prediction of sudden cardiac arrest or appropriate implantable cardiac
409 defibrillator therapy. *Circ Cardiovasc Imaging* 2014;**7**:593-600.

410 7. Ballester B, Milara J, and Cortijo J, Idiopathic Pulmonary Fibrosis and Lung
411 Cancer: Mechanisms and Molecular Targets. *Int J Mol Sci* 2019;**20**.

412 8. Li X, Zhu L, Wang B, et al., Drugs and Targets in Fibrosis. *Front Pharmacol*
413 2017;**8**:855.

414 9. Liu J, Sun D, Liu J, et al., FibroAtlas: A Database for the Exploration of
415 Fibrotic Diseases and Their Genes. 2019;**2019**.

416 10. Wenzke KE, Cantemir-Stone C, Zhang J, et al., Identifying common genes
417 and networks in multi-organ fibrosis. *AMIA Jt Summits Transl Sci Proc*
418 2012;**2012**:106-15.

419 11. Rodder S, Scherer A, Korner M, et al., A subset of metzincins and related
420 genes constitutes a marker of human solid organ fibrosis. *Virchows Arch*
421 2011;**458**:487-96.

422 12. Meng XM, Nikolic-Paterson DJ, and Lan HY, TGF-beta: the master regulator
423 of fibrosis. *Nat Rev Nephrol* 2016;**12**:325-38.

424 13. Wang Q, Usinger W, Nichols B, et al., Cooperative interaction of CTGF and
425 TGF-beta in animal models of fibrotic disease. *Fibrogenesis Tissue Repair*
426 2011;**4**:4.

427 14. Xue H, Li J, Xie H, et al., Review of drug repositioning approaches and
428 resources. 2018;**14**:1232.

429 15. Qiu TY, Qiu JX, Feng J, et al., The recent progress in proteochemometric
430 modelling: focusing on target descriptors, cross-term descriptors and
431 application scope. *Briefings in Bioinformatics* 2017;**18**:125-136.

432 16. Liu L, Tsompana M, Wang Y, et al., Connection Map for Compounds (CMC):
433 A Server for Combinatorial Drug Toxicity and Efficacy Analysis. *Journal of*
434 *Chemical Information and Modeling* 2016;**56**:1615-1621.

435 17. Keiser MJ, Roth BL, Armbruster BN, et al., Relating protein pharmacology by
436 ligand chemistry. *Nat Biotechnol* 2007;**25**:197-206.

437 18. Lamb J, Crawford ED, Peck D, et al., The Connectivity Map: using
438 gene-expression signatures to connect small molecules, genes, and disease.
439 *Science* 2006;**313**:1929-35.

440 19. Sam E and Athri P, Web-based drug repurposing tools: a survey. *Brief*
441 *Bioinform* 2019;**20**:299-316.

442 20. Wu Z, Cheng F, Li J, et al., SDTNBI: an integrated network and
443 chemoinformatics tool for systematic prediction of drug-target interactions and
444 drug repositioning. *Brief Bioinform* 2017;**18**:333-347.

445 21. Peng Y, Wang M, Xu Y, et al., Drug repositioning by prediction of drug's
446 anatomical therapeutic chemical code via network-based inference
447 approaches. *Brief Bioinform* 2020;**00**:1-15.

448 22. Davis AP, Grondin CJ, Johnson RJ, et al., The Comparative Toxicogenomics
449 Database: update 2019. *Nucleic Acids Res* 2019;**47**:D948-D954.

450 23. Zarin DA, Fain KM, Dobbins HD, et al., 10-Year Update on Study Results
451 Submitted to ClinicalTrials.gov. *N Engl J Med* 2019;**381**:1966-1974.

452 24. Wishart DS, Feunang YD, Guo AC, et al., DrugBank 5.0: a major update to
453 the DrugBank database for 2018. *Nucleic Acids Res* 2018;**46**:D1074-D1082.

454 25. Huang L, Xie D, Yu Y, et al., TCMID 2.0: a comprehensive resource for
455 TCM. 2018;**46**:D1117-D1120.

456 26. Mendez D, Gaulton A, Bento AP, et al., ChEMBL: towards direct deposition
457 of bioassay data. *Nucleic Acids Res* 2019;**47**:D930-D940.

458 27. Landrum G, RDKit: Open-source cheminformatics. 2006.

459 28. Silicos-it. Available online: <http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/> (accessed on 15
460 August 2019).

462 29. Li X, Jin Q, Yao Q, et al., The Flavonoid Quercetin Ameliorates Liver
463 Inflammation and Fibrosis by Regulating Hepatic Macrophages Activation
464 and Polarization in Mice. *Front Pharmacol* 2018;**9**:72.

465 30. Hohmann MS, Habiel DM, Coelho AL, et al., Quercetin Enhances
466 Ligand-induced Apoptosis in Senescent Idiopathic Pulmonary Fibrosis
467 Fibroblasts and Reduces Lung Fibrosis In Vivo. *Am J Respir Cell Mol Biol*
468 2019;**60**:28-40.

469 31. Smith MR, Gangireddy SR, Narala VR, et al., Curcumin inhibits
470 fibrosis-related effects in IPF fibroblasts and in mice following
471 bleomycin-induced lung injury. *Am J Physiol Lung Cell Mol Physiol*
472 2010;**298**:L616-25.

473 32. Bruck R, Ashkenazi M, Weiss S, et al., Prevention of liver cirrhosis in rats by
474 curcumin. *Liver Int* 2007;**27**:373-83.

475 33. Henrotin Y, Priem F, and Mobasher A, Curcumin: a new paradigm and
476 therapeutic opportunity for the treatment of osteoarthritis: curcumin for
477 osteoarthritis management. *Springerplus* 2013;**2**:56.

478 34. Chandran B and Goel A, A randomized, pilot study to assess the efficacy and
479 safety of curcumin in patients with active rheumatoid arthritis. *Phytother Res*
480 2012;**26**:1719-25.

481 35. Kim JH, Yi YS, Kim MY, et al., Role of ginsenosides, the main active
482 components of Panax ginseng, in inflammatory responses and diseases. *J
483 Ginseng Res* 2017;**41**:435-443.

484 36. Wang QW, Yu XF, Xu HL, et al., Ginsenoside Re Improves
485 Isoproterenol-Induced Myocardial Fibrosis and Heart Failure in Rats. *Evid
486 Based Complement Alternat Med* 2019;2019:3714508.

487 37. Lee IA, Hyam SR, Jang SE, et al., Ginsenoside Re ameliorates inflammation
488 by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. *J
489 Agric Food Chem* 2012;60:9595-602.

490 38. Lee S, Lee MS, Kim CT, et al., Ginsenoside Rg3 reduces lipid accumulation
491 with AMP-Activated Protein Kinase (AMPK) activation in HepG2 cells. *Int J
492 Mol Sci* 2012;13:5729-39.

493 39. Duan Q, Reid SP, Clark NR, et al., L1000CDS(2): LINCS L1000
494 characteristic direction signatures search engine. *NPJ Syst Biol Appl* 2016;2.

495 40. Carrella D, Napolitano F, Rispoli R, et al., Mantra 2.0: an online collaborative
496 resource for drug mode of action and repurposing by network analysis.
497 *Bioinformatics* 2014;30:1787-8.

498 41. Zhou X, Liao WJ, Liao JM, et al., Ribosomal proteins: functions beyond the
499 ribosome. *J Mol Cell Biol* 2015;7:92-104.

500 42. Wang W, Nag S, Zhang X, et al., Ribosomal proteins and human diseases:
501 pathogenesis, molecular mechanisms, and therapeutic implications. *Med Res
502 Rev* 2015;35:225-85.

503 43. De Bortoli M, Castellino RC, Lu XY, et al., Medulloblastoma outcome is
504 adversely associated with overexpression of EEF1D, RPL30, and RPS20 on
505 the long arm of chromosome 8. *BMC Cancer* 2006;6:223.

506 44. Pelletier J, Thomas G, and Volarevic S, Ribosome biogenesis in cancer: new
507 players and therapeutic avenues. *Nat Rev Cancer* 2018;18:51-63.

508 45. Box JA, Bunch JT, Tang W, et al., Spliceosomal cleavage generates the 3' end
509 of telomerase RNA. *Nature* 2008;456:910-4.

510 46. Liu X, Jiang Q, Mansfield SG, et al., Partial correction of endogenous
511 DeltaF508 CFTR in human cystic fibrosis airway epithelia by
512 spliceosome-mediated RNA trans-splicing. *Nat Biotechnol* 2002;20:47-52.

513 47. Shen B, A New Golden Age of Natural Products Drug Discovery. *Cell*
514 2015;163:1297-300.

515 48. Harvey AL, Edrada-Ebel R, and Quinn RJ, The re-emergence of natural
516 products for drug discovery in the genomics era. *Nat Rev Drug Discov*
517 2015;14:111-29.

518 49. Zhao C, Ye Z, Ma ZX, et al., A general strategy for diversifying complex
519 natural products to polycyclic scaffolds with medium-sized rings. *Nat
520 Commun* 2019;10:4015.

521 50. Yan H, Huang Z, Bai Q, et al., Natural product andrographolide alleviated
522 APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway.
523 *Toxicology* 2018;396-397:1-12.

524

525 **Figure legends**

526 **Figure 1. The schematic of Dr AFC construction**

527 **Figure 2 Feature selection and model performances**

528 **A.** Performances of top 30 features through iterative feature elimination in BPPM; **B.**
529 The CTD inference networks of 47 gene features and fibrosis-related diseases; **C.**
530 AUC of SPMM in testing set; **D.** AUC of BPPM in testing set.

531 **Figure 3 Case studies of Dr AFC**

532 **A.** Comparison of the number of genes interacting with compounds predicted as
533 anti-fibrosis and non-anti-fibrosis; **B.** The distribution of related genes, diseases and
534 repositioning score for Drugbank experimental drugs. Compounds with repositioning
535 score>0.5 were considered as anti-fibrosis and had repositioning potential; **C.** The
536 distribution of repositioning scores in different datasets (****: p-value $<10^{-4}$ by
537 two-sided Wilcoxon rank sum test); **D.** Drug repositioning mechanism analysis of
538 ginsenoside Re by Dr AFC.

539 **Figure 4. Anti-fibrosis and repositioning computing platform (Dr AFC)**

540 **A.** Dr AFC integrated two prediction models, SPPM and BPPM; **B.** SPPM accepts
541 SMILES strings of chemical structures in text or file; **C.** BPPM accepts biological
542 profiles in file; **D.** Repositioning score, label and functional network of compounds
543 were displayed in result; **E.** Drug repositioning mechanism analysis was implemented
544 to infer the drug potential repositioning mechanism through relationships among
545 similar compounds, fibrosis-related targets and diseases.

546

547 **Supplementary material**

548 **Figure S1 Knowledgebase architecture of Dr AFC**

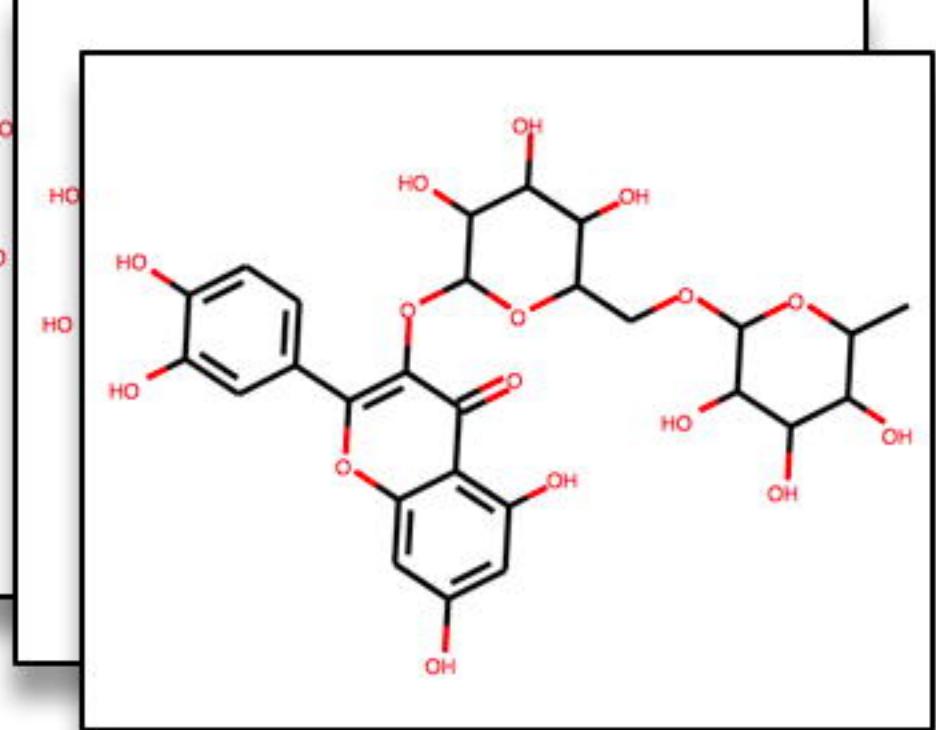
549 **Figure S2 Performances of top 30 features through iterative feature elimination
550 in SPPM**

551 **Table S1 The sample size of SPPM and BPPM**

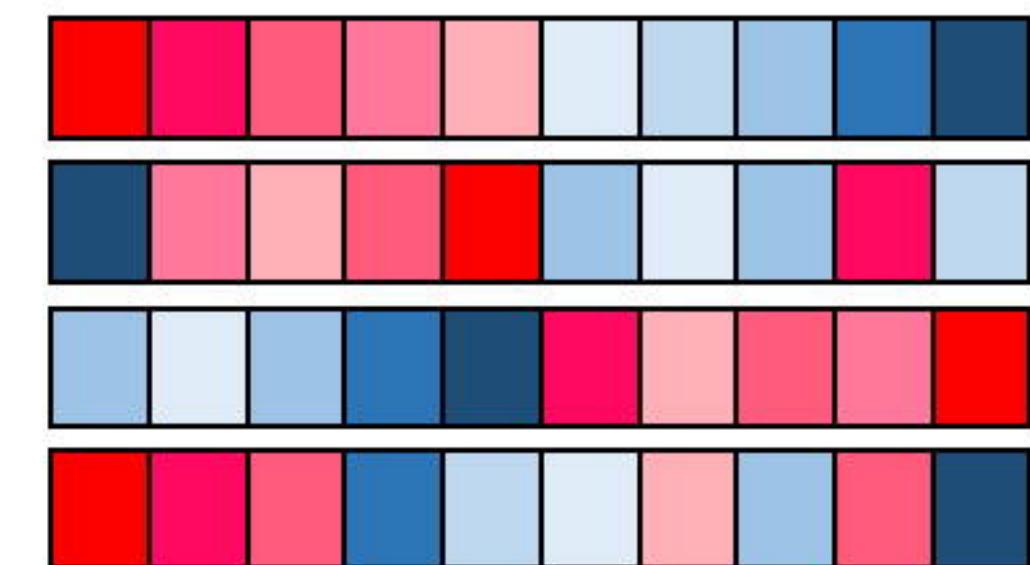
552 **Table S2 Performances of four different machine learning classifiers**

553 **Table S3 Drug repositioning prediction in Drugbank Experimental drugs**

554 **Table S4 Drug repositioning prediction in natural products(GSE85871)**



Structural Profile



Biological Profile

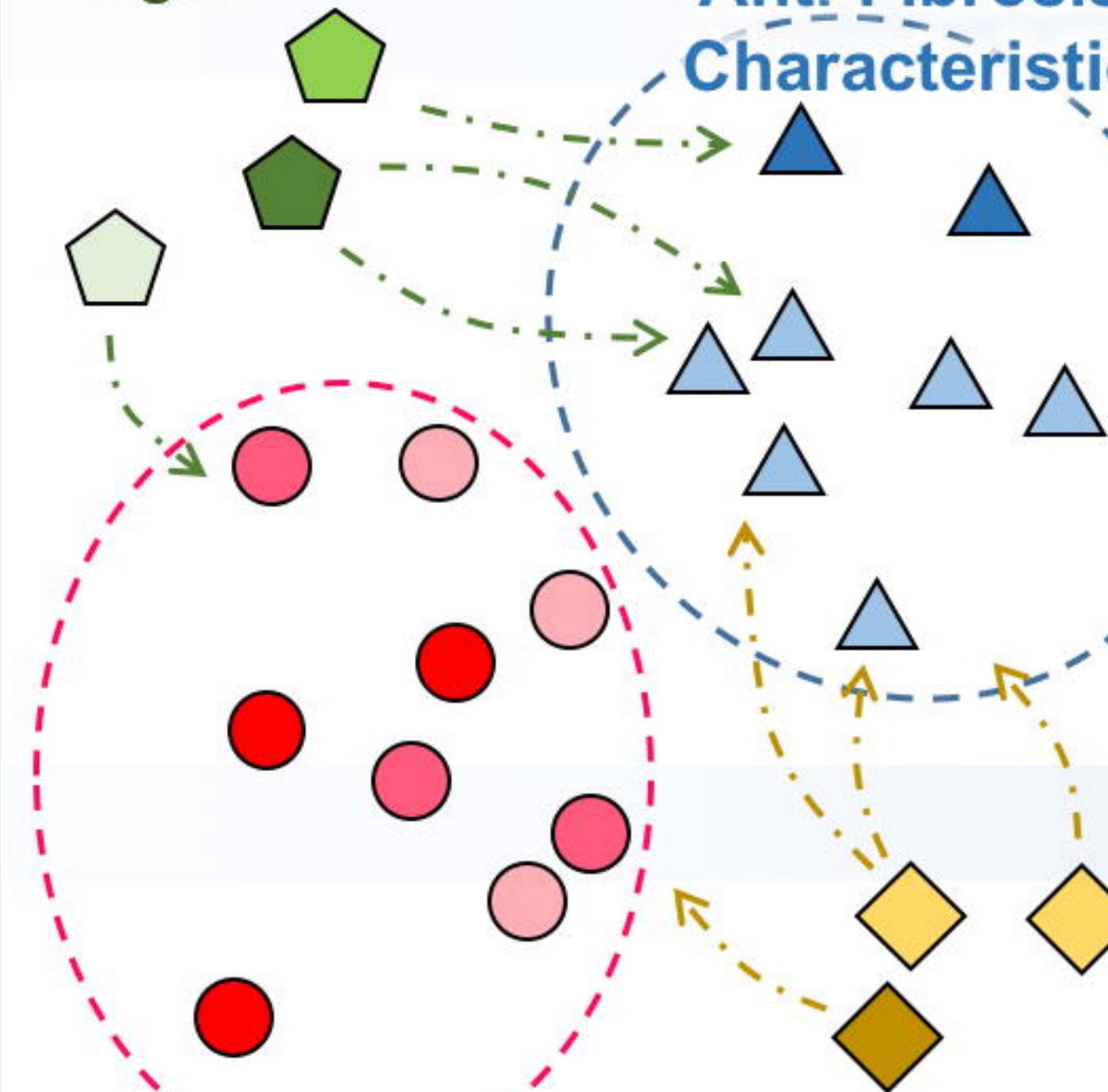
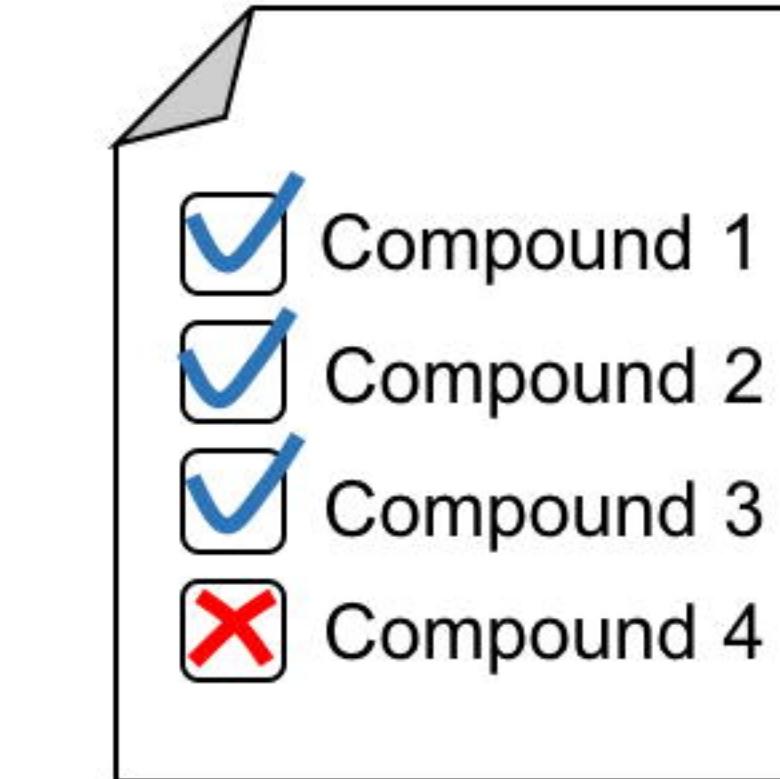
Dr AFC

SPPM & BPI

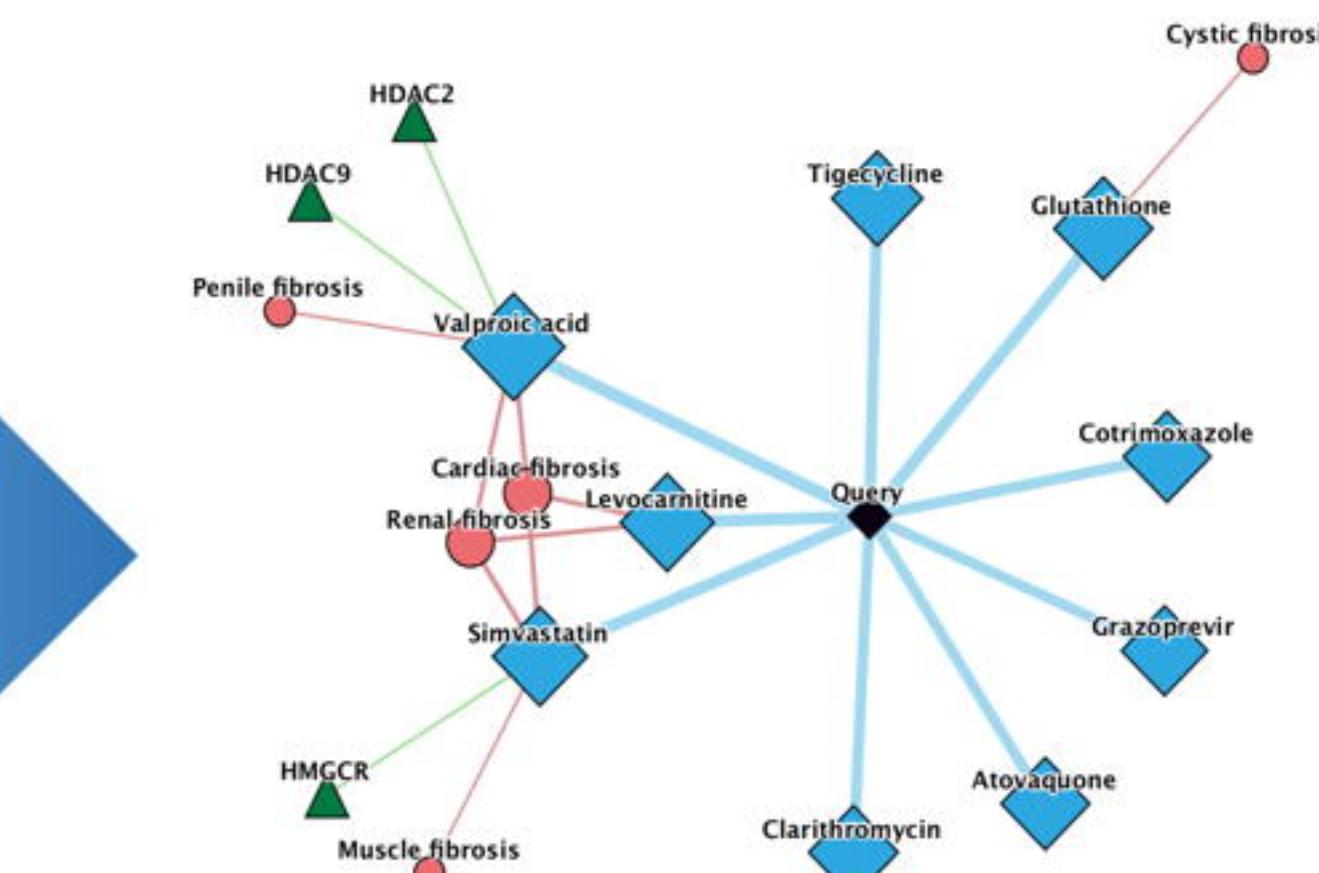
Targets

Anti-Fibre Character

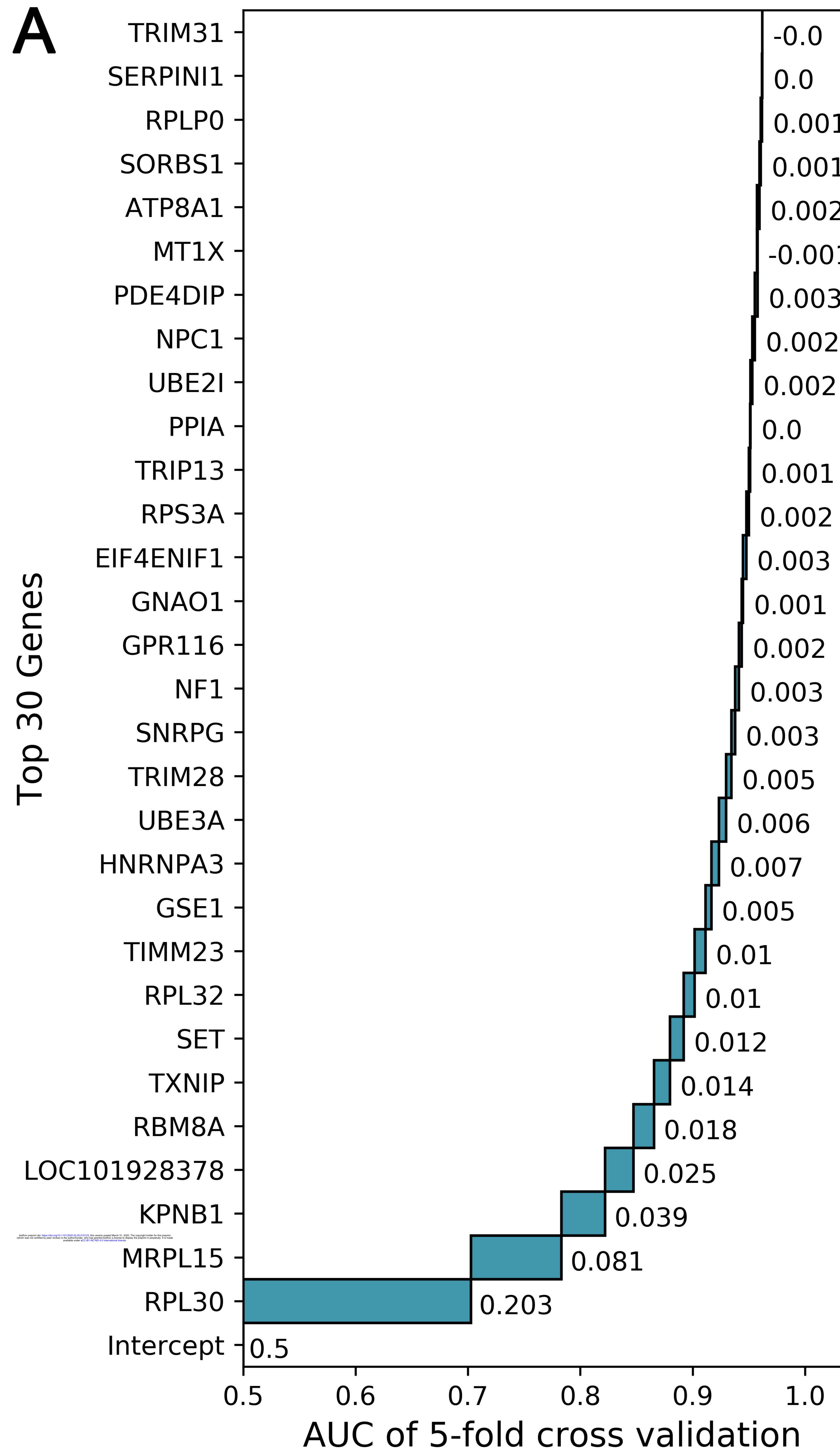
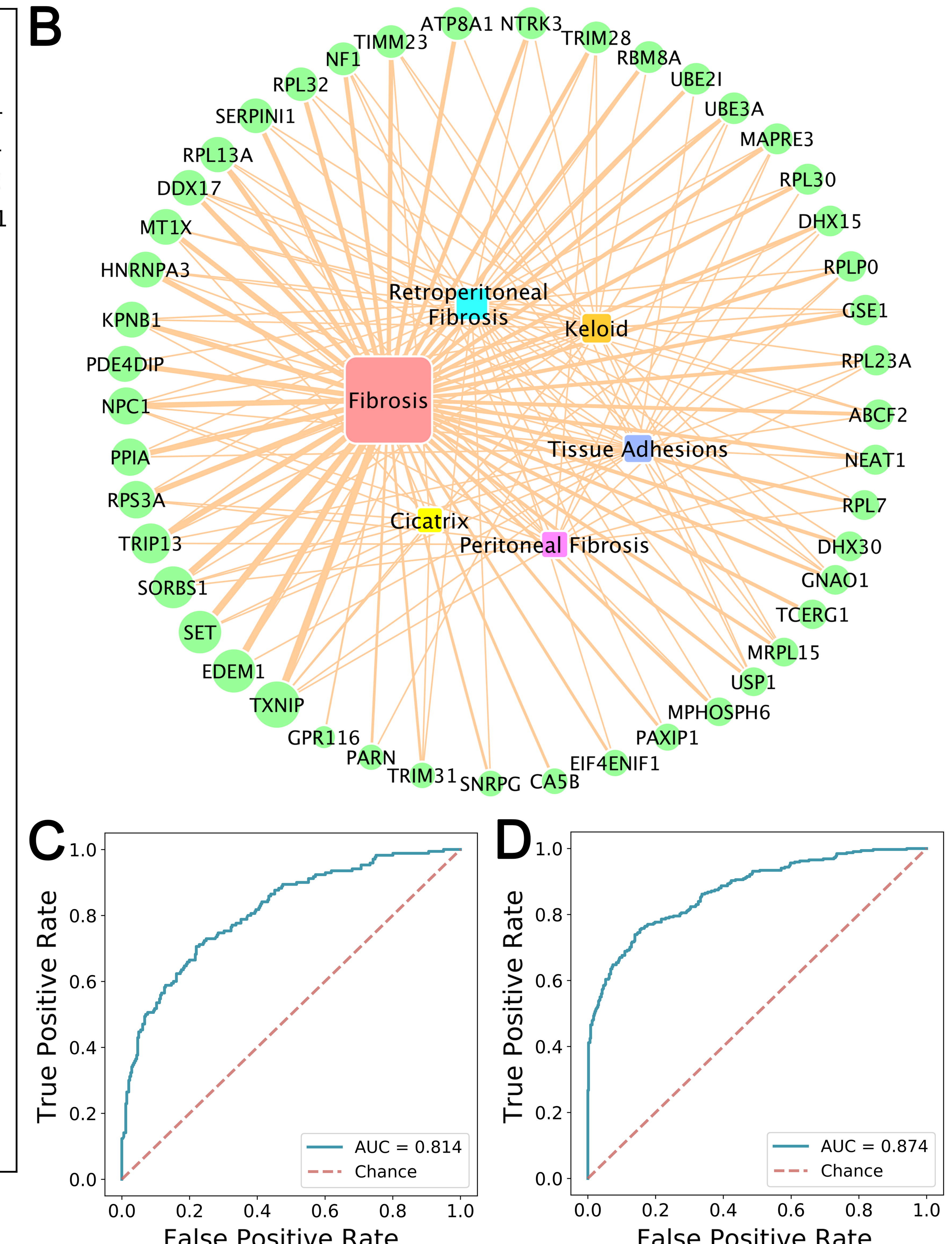
Disease



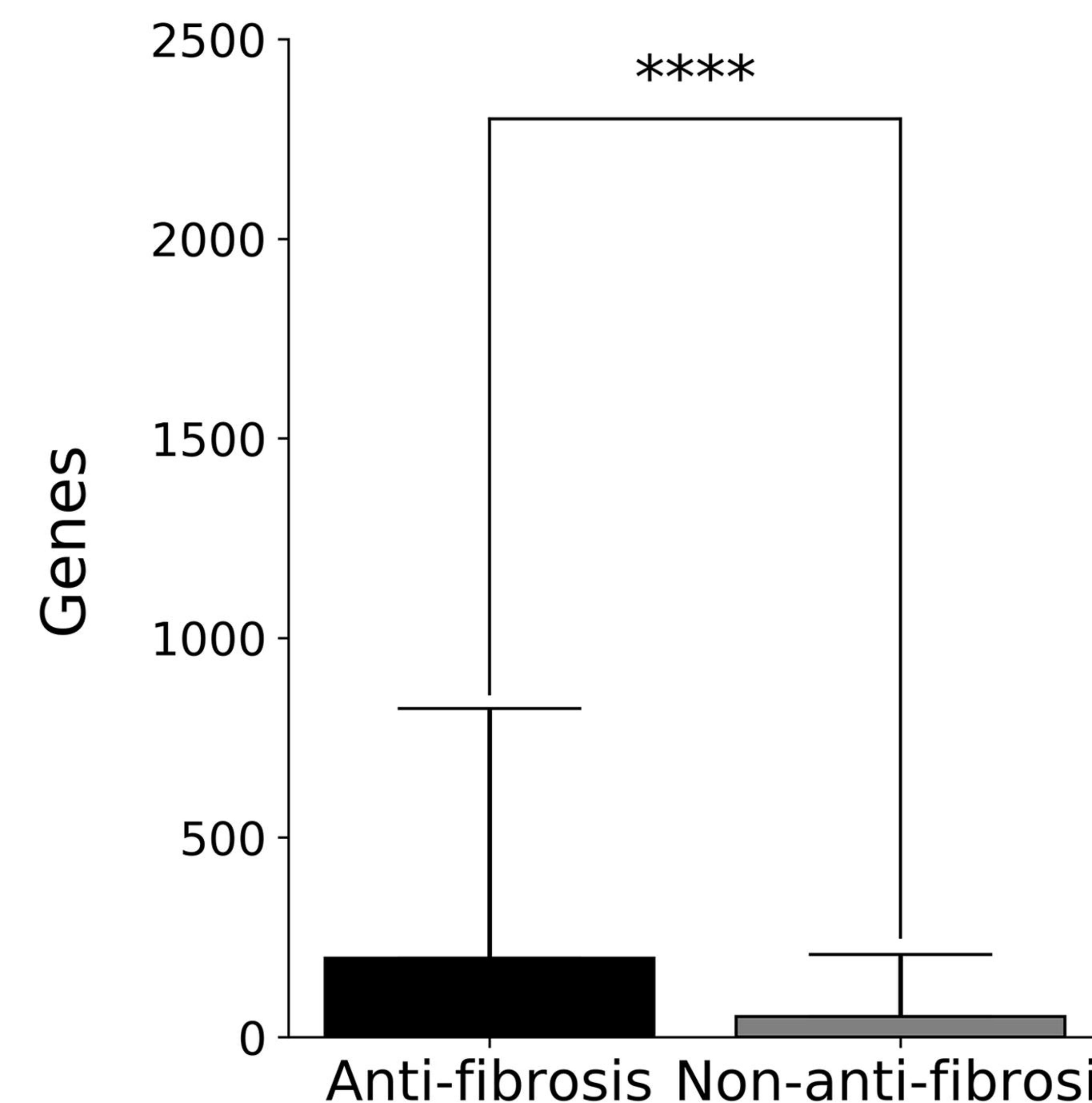
Anti-Fibrosis prediction



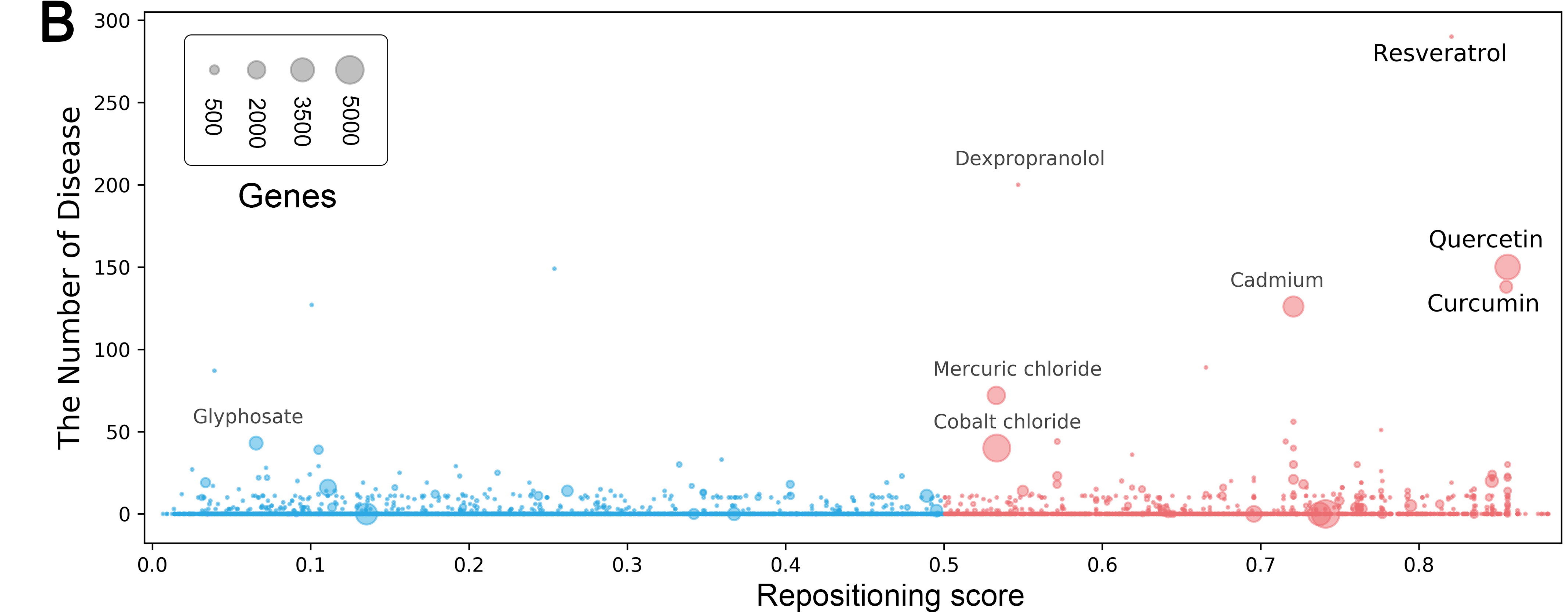
Drug repositioning mechanism



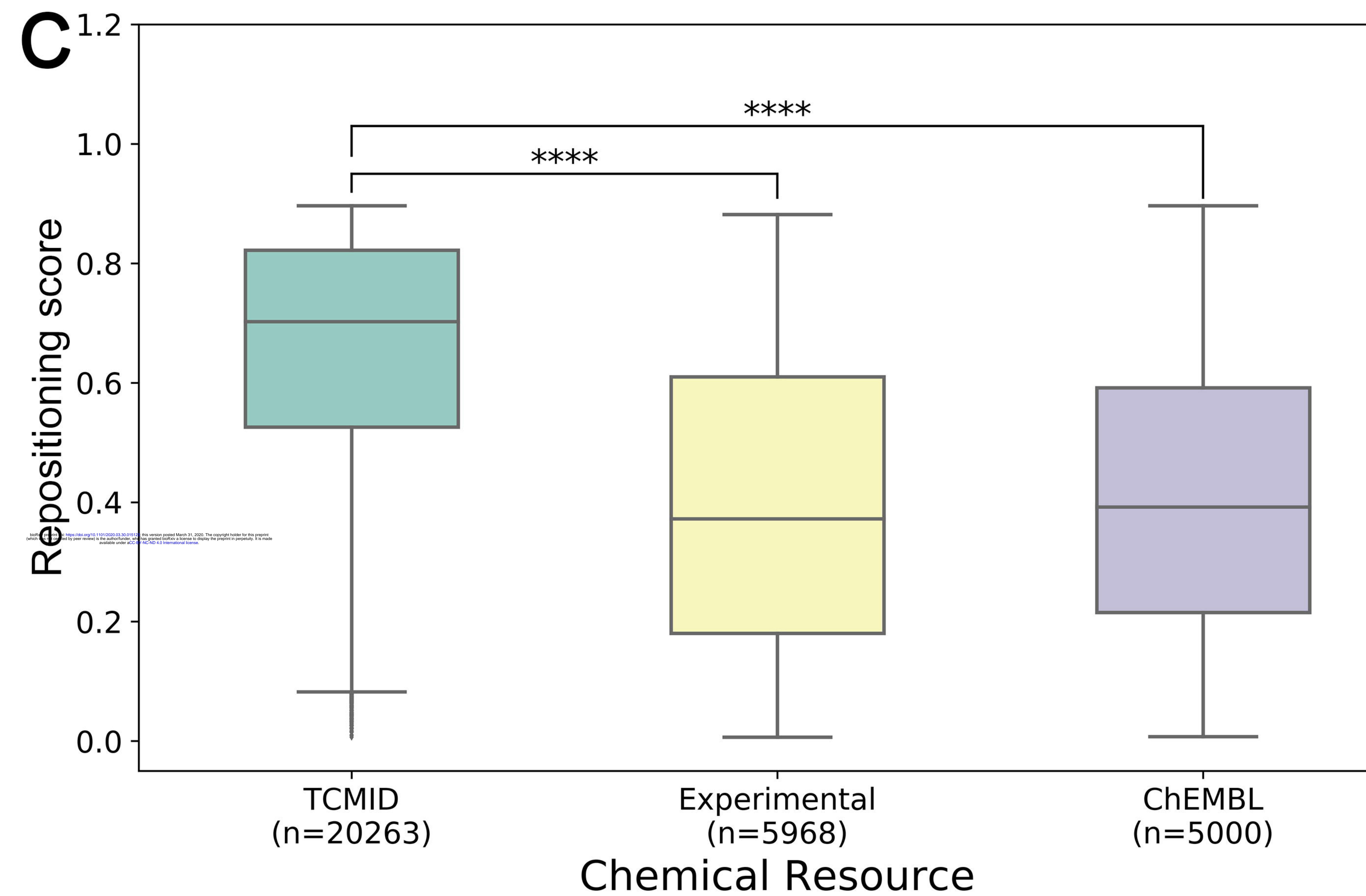
A Experimental Drugs



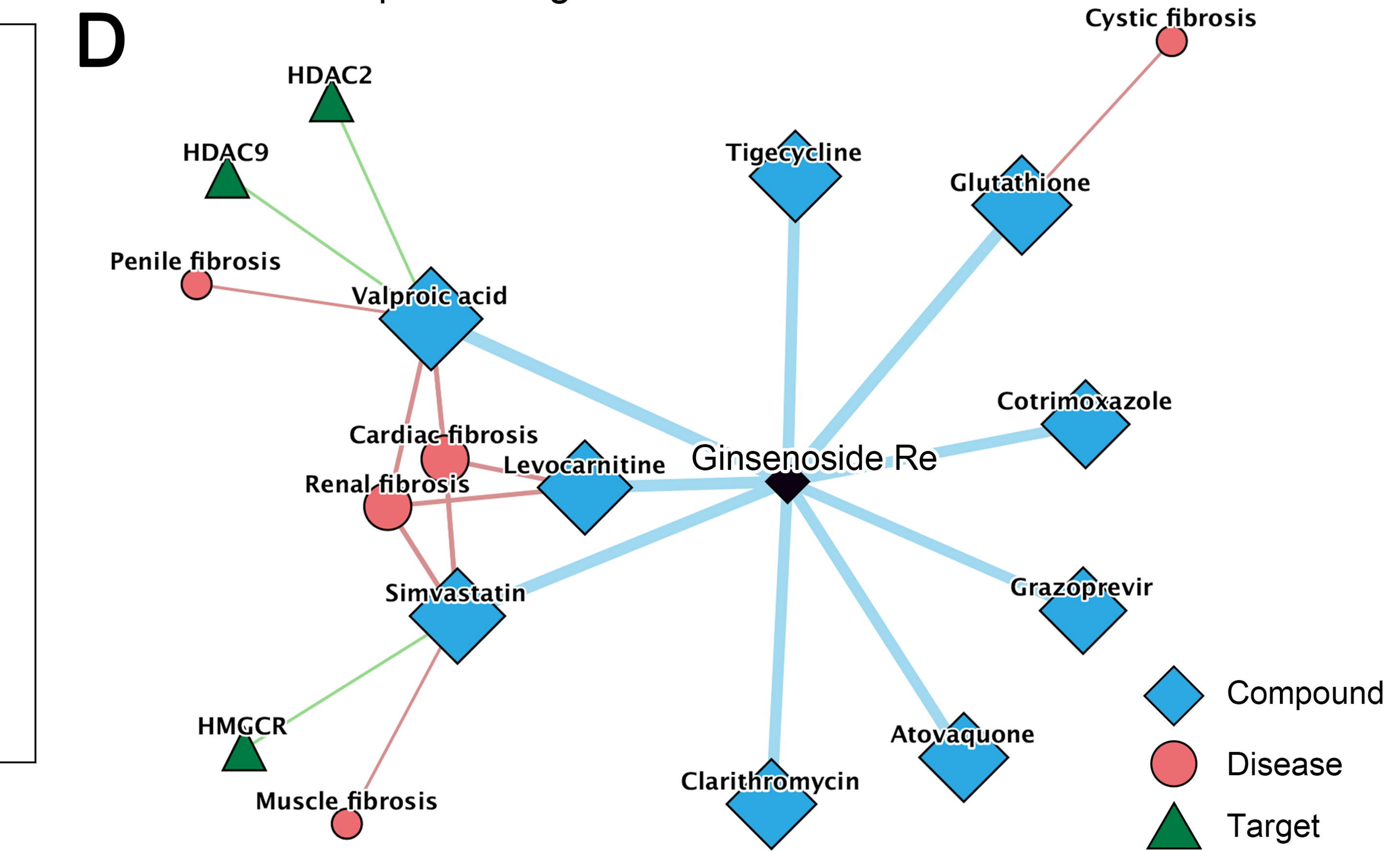
B



C



D



A

Dr AFC: Drug Repositioning based on Anti-Fibrosis Characteristic

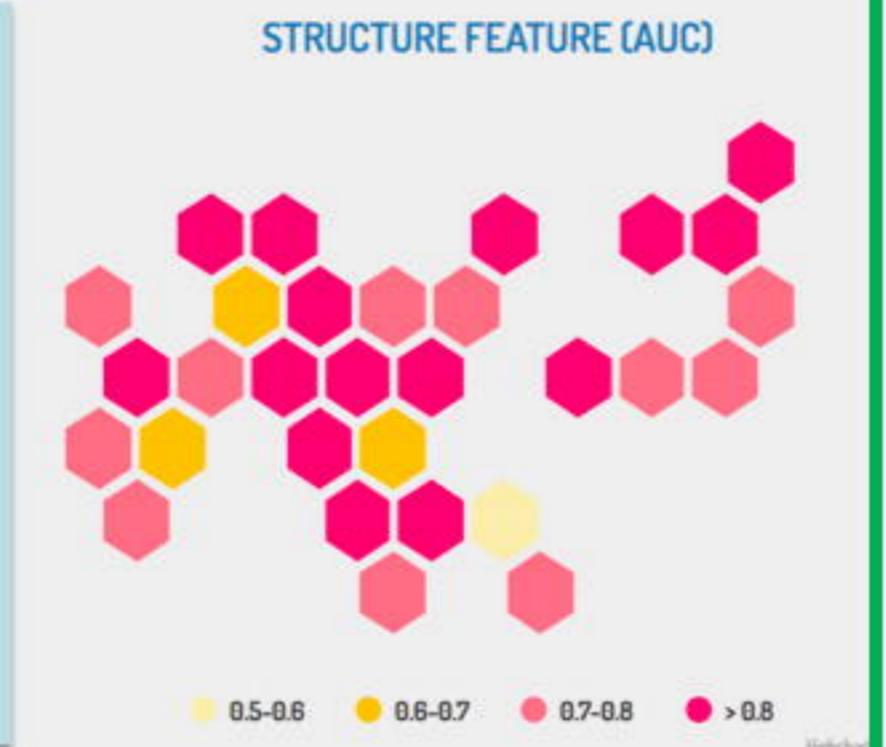
[Structural Profile Prediction Model ▶](#)
[Biological Profile Prediction Model ▶](#)

Structural Profile Prediction Model

Upload

A. Paste a List

BGP-15 C1CCN(CC1)CC(CON=C(C2=CN=CC=C2)N)O



B. Choose From a File

浏览... 未选择文件。

Please ensure the List Format is Compound Name + SMILES separated by TAB, and File Format is like example.

Submit

Example

B

Biological Profile Prediction Model

Upload

A. Choose From a File

浏览... 未选择文件。

B. Select Signatures

Affymetrix U133A

Please ensure the upload File follows the Rank Order of the example.

Submit

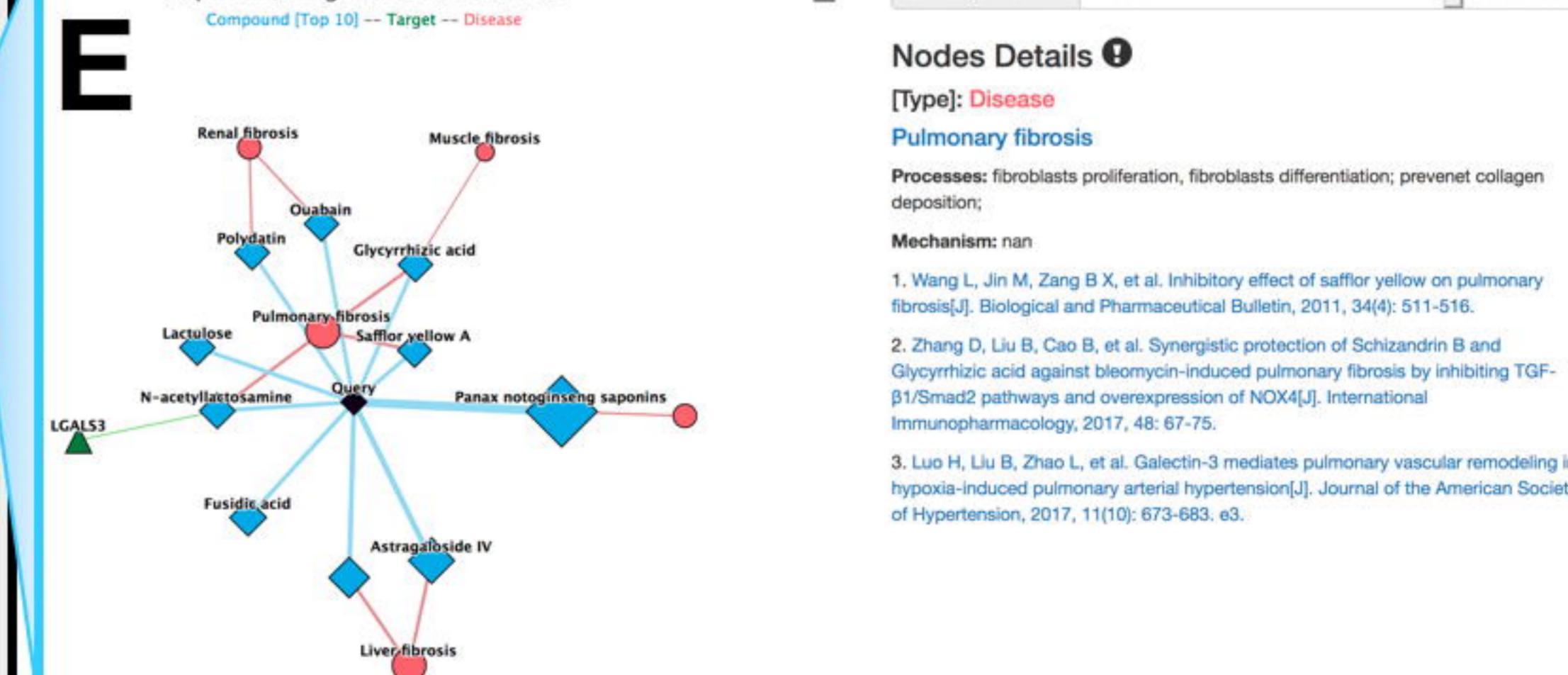
Example

GENE EXPRESSION RANK PROFILE

C

Repositioning based on Structure

NUMBER	NAME	STRUCTURE	SMILES	SCORE	ANTI-FIBROSIS	MECHANISM
3	ginsenoside r h1		CC(=CCCC(C)C1CCC2(C1C(CC3C2(CC(C4C3(CCC(C4(C)C)O)C)OC5C(C(C(C(O5)CO)O)O)O)C)O)C)O	0.738	YES	✓
4	(+)-sativen		CC(C)C1CCC2(C3C1C(C2=C)CC3)C	0.433	NO	✗
5	10-aconifine		CCN1CC2(C(CC(C34C2C(C(C31)C5(C6C4(CC(C6OC(-O)C7=CC=CC=C7)(C(C50)OC)O)O)OC(=O)C)OC)OC)OC)OC	0.182	NO	✗



D

E