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 15 

Abstract 16 

Fibrosis is a key component in the pathogenic mechanism of many diseases. These 17 

diseases involving fibrosis may share common mechanisms, therapeutic targets and 18 

therefore, common intervention strategies and medicines may be applicable for these 19 

diseases. For this reason, deliberately introducing anti-fibrosis characteristics into 20 

modelling may lead to more success in drug repositioning. In this study, anti-fibrosis 21 

knowledge base was first built by collecting data from multiple resources. Both 22 

structural and biological profiles were derived from the knowledge base and used for 23 
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constructing machine learning models including Structural Profile Prediction Model 24 

(SPPM) and Biological Profile Prediction Model (BPPM). Three external public data 25 

sets were employed for validation purpose and further exploration of potential 26 

repositioning drugs in wider chemical space. The resulting SPPM and BPPM models 27 

achieve area under the receiver operating characteristic curve (AUC) of 0.879 and 28 

0.972 in the training set, and 0.814 and 0.874 in the testing set. Additionally, our 29 

results also demonstrate that substantial amount of multi-targeting natural products 30 

possess notable anti-fibrosis characteristics and might serve as encouraging candidates 31 

in fibrosis treatment and drug repositioning. To leverage our methodology and 32 

findings, we developed repositioning prediction platform, Drug Repositioning based 33 

on Anti-Fibrosis Characteristic (Dr AFC) that is freely accessible via 34 

https://www.biosino.org/drafc. 35 

 36 

Key words: fibrosis; drug repositioning; web server; knowledge base; natural 37 

products  38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2020. ; https://doi.org/10.1101/2020.03.30.015123doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.015123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Introduction 39 

Fibrosis is defined as the process of excessive accumulation of fibrous connective 40 

tissue in most tissues or organs, where normal cells are replaced by the extracellular 41 

matrix (ECM), resulting in disrupted tissue function. In the new era of 21st century, 42 

the morbidity and mortality rates of various fibrotic diseases have increased 43 

progressively, bringing a huge global health burden. In developed countries, 44 

fibroproliferative diseases are responsible for nearly 45% of deaths[1]. One of the 45 

well-known fibrotic diseases, idiopathic pulmonary fibrosis(IPF), has a poor 46 

prognosis with the 5 year survival rate less than 30% and median survival ranging 47 

from 3 to 5 years[2]. The outcomes of IPF patients are even worse than those with 48 

many types of cancers [3]. As data obtained by Clinical Practice Research 49 

Datalink(CPRD) revealed, the prevalence of IPF patients in board case definitions has 50 

doubled from 19.94 per 100,000 patients in 2000 to 38.82 per 100,000 patients in 51 

2012, and a 80% increase in incidence was observed[4]. Another life-threatening 52 

fibrotic disease, cardiac fibrosis, is one of the leading factors causing heart failure (HF) 53 

[5]. A research from 2008-2014 revealed that in 318 patients with systolic dysfunction, 54 

78% had one type of myocardial fibrosis while 25% had at least 2 types [6].  55 

The polypharmacology of most anti-fibrosis drugs could improve therapeutic 56 

efficacy. Recent studies have found that, firstly, fibrosis is the common pathogenic 57 

process in most diseases. For example, there are multiple common cellular processes 58 

between lung cancer and IPF, including inflammation, cell apoptosis and tissue 59 

infiltration [7]. Secondly, fibrosis-related processes have common mechanisms, 60 

targets and drugs [8, 9]. A multi-organ fibrosis research discovered a set of 90 61 

common differentially expressed genes across lung, heart, liver and kidney. In the two 62 

most active gene networks generated by Ingenuity Pathway Analysis(IPA), these 63 

genes play a key role in connective tissue disorders and genetic, skeletal and muscular 64 

disorders[10]. Similarly, another multi-organ fibrosis research also obtained a series 65 

of 11 metzincin-related differentially expressed genes across heart, lung, liver, kidney 66 
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and pancreas including THBS2, TIMP1, COL1A2, COL3A1, HYOU1, MMP2 and 67 

MMP7[11]. Thirdly, fibrosis is a complicated pathological process involving multiple 68 

pathways, thus multi-target drugs are appropriate for fibrosis-related diseases[9]. 69 

Different pathways interact and counter-interact with each other to establish a 70 

“check-and-balance” system, for instance, the core regulators, transforming growth 71 

factor-β(TGF-β) and connective tissue growth factor(CTGF) signaling pathways 72 

could collaborate to elicit pulmonary and renal fibrosis[12, 13]. In summary, these 73 

evidences indicate that anti-fibrosis intervention strategies and medicines may be 74 

applicable for more diseases through targeting their common fibrosis-related 75 

mechanisms. Therefore, compounds that can more specifically target anti-fibrosis 76 

could have greater potential of repositioning and are more applicable for drug 77 

repositioning research.  78 

Drug repositioning, or repurposing refers to the “reuse of old drugs”, recycling 79 

existing drugs for new medical indications. Compared with de novo drug discovery, 80 

drug repositioning has obvious advantages that it could significantly shorten drug 81 

development periods, reduce laboratory cost and minimize potential safety risk. 82 

Nowadays, drug repositioning is one of the most efficient strategies in drug 83 

development[14]. With the advancement of high-throughput sequencing technology 84 

and deep learning, various data-driven computational prediction and analytic models 85 

stand out[15, 16], including Similarity Ensemble Approach (SEA)[17] and 86 

Connectivity Map(cMAP)[18]. SEA clusters ligands into sets and calculates the 87 

similarity scores between ligand sets from ligand topology[17]. cMAP computes the 88 

similarity of “signatures” deduced from compound-induced gene profiles to quantify 89 

the biological functional relationships between compounds. Moreover, the 90 

relationship between compounds and diseases could also be quantified in opposite 91 

manner[18]. However, with so many repositioning methods and algorithms have 92 

emerged[19-21], there still no attempts hitherto in introducing anti-fibrosis 93 

characteristic into drug repositioning strategy. 94 
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For the first time, we built the anti-fibrosis knowledge base from anti-fibrosis related 95 

research. Based on the knowledge base, two repositioning models, Structural Profile 96 

Prediction Model (SPPM) and Biological Profile Prediction Model (BPPM) were 97 

constructed with high prediction accuracy. Centered on these two models, we then 98 

developed a repositioning computing platform, Drug Repositioning based on 99 

Anti-Fibrosis Characteristic (Dr AFC), to accelerate the process of exploring 100 

repositioning drugs and studying its underlying mechanisms. 101 

 102 

Materials and methods 103 

Datasets 104 

Anti-fibrosis knowledge base  105 

Anti-fibrosis related literatures were collected through key word queries “fibrosis 106 

AND target” in PubMed from Jan. 1st, 2000 to Oct. 31st, 2019. The compound-target 107 

interaction information on “fibrosis” were collected in the CTD[22] from Jan. 1st, 108 

2000 to Oct. 31st, 2019. Anti-fibrosis trials were collected in ClinicalTrials.gov[23] 109 

from Jan. 1st, 2000 to Oct. 31st, 2019. Finally, anti-fibrosis treatments, targets and 110 

compound-target interactions were extracted and aggregated into the knowledge base. 111 

 112 

Model construction 113 

Structural and biological profiles of compounds were collected from DrugBank[24] 114 

and cMap, respectively and used for model construction. 2640 approved drugs in 115 

DrugBank and 1223 compounds in the anti-fibrosis knowledge base served as the raw 116 

data for Structural Profile Prediction Model (SPPM) construction. 6100 biological 117 

profiles (gene expression) of 1309 small molecules in cMap served as the raw data for 118 

Biological Profile Prediction Model (BPPM). 119 

 120 

Case studies 121 
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20,263 natural products from TCMID[25], 5968 DrugBank experimental drugs[24] 122 

and 5000 random compounds from ChEMBL[26] were collected as external 123 

validations and case studies of SPPM. And external biological profiles from GEO 124 

database (GSE85871) that contains transcriptomics perturbation profiles of 105 125 

natural products in MCF7 cell line were used for case studies of BPPM. 126 

 127 

Methods 128 

Pre-processing of modeling data 129 

In raw chemical structures (from DrugBank approved drugs and the anti-fibrosis 130 

knowledge base) and biological profiles (from cMap) data, compounds that appeared 131 

in the anti-fibrosis knowledge base were labeled as positive candidates while the rest 132 

were labeled as negative candidates. Then, chemical structures were converted into 133 

chemical fingerprints (166-bits MACCS keys) for processing chemical information in 134 

a fast and convenient way using RDKit[27]. As to biological profiles, Quantile 135 

Transformer was used to transform biological profiles into ranking orders to improve 136 

the performance of model generalization, and also made datasets from different 137 

batches and platforms more comparable. 138 

One-class SVM (nu=0.3) was performed to estimate sample quality, remove 139 

outliers and confirm final positive and negative samples. 70% of final samples were 140 

used as training set for model selection and super-parameter determination while the 141 

remainder as testing set for model validation. 142 

 143 

Anti-fibrosis model construction and validation 144 

Four different machine learning algorithms were selected for modeling on training set, 145 

including logistic regression, decision tree, random forest and gradient boosting. 146 

Among them, method with highest precision and AUC calculated by 5-fold 147 

cross-validation was selected for subsequent analysis. Iterative feature elimination 148 

(IFE) algorithm was performed to select optimal feature set through one-by-one 149 
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feature deletion. Finally, SPPM and BPPM were constructed based on optimal 150 

modeling algorithm and feature set, and further validated by testing set. 151 

 152 

Drug repositioning mechanism analysis 153 

Network-based inference approaches were wildly used in drug repositioning [20, 21]. 154 

Here we infer the potential drug repositioning mechanism through 155 

compound-target-disease network. Firstly, based on SPPM and BPPM, the 156 

repositioning characteristics of compounds were predicted through their structural or 157 

biological profiles, in which compounds with reposition score>0.5 were considered as 158 

anti-fibrosis and had repositioning potential. Next, the anti-fibrosis characteristic and 159 

potential repositioning mechanisms of these candidates were explored on the basis of 160 

compound-target-disease corresponding information in the anti-fibrosis knowledge 161 

base. Similar compounds that may interact with same targets and diseases were 162 

calculated through Tanimoto similarity of chemical structural fingerprints or 163 

Spearman’s rank correlation coefficient of biological profiles. Targets and disease 164 

information of compounds reported in previous researches were refined from the 165 

anti-fibrosis knowledge base to explore anti-fibrosis mechanism of compounds. 166 

Finally, the potential mechanisms among compounds in compound-target-disease 167 

network displayed in drug repositioning analysis were used to help propose feasible 168 

drug repositioning solutions. 169 

 170 

Webserver construction of Dr AFC 171 

Dr AFC was constructed through PostgreSql database and Django framework. This 172 

platform serves as a practical tool for prediction of drug repositioning potential based 173 

on compound structures (SPPM) and biological profiles (BPPM) as well as displaying 174 

compound-target-disease network of drug repositioning mechanisms. Meanwhile, Dr 175 

AFC also integrated toolkits such as quantitative estimate of drug-likeness (QED) 176 
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from Silicos-it[28], and similarity calculation and structure matching borrowed from 177 

RDkit to provide convenient web-based calculations for users. 178 

The overall process is shown in Figure 1. 179 

 180 

Results  181 

SPPM and BPPM show high performances for anti-fibrosis prediction 182 

To construct the anti-fibrosis knowledge base, 7058 fibrosis-related references from 183 

PubMed, 302 from Comparative Toxicogenomics Database(CTD)[22] and 2664 184 

fibrosis-related trials from ClinicalTrials.gov[23] were collected through text mining. 185 

Finally, 1223 anti-fibrosis treatments (containing 902 small molecules), 1067 186 

fibrosis-related targets, 3096 fibrosis-related records from references and 1787 from 187 

trials, 1067 anti-fibrosis compound-target interactions were obtained and integrated 188 

into anti-fibrosis knowledge base (Figure S1). 189 

In modeling session, 2885 compound structures (from DrugBank approved drugs) 190 

[24] and 6100 biological profiles (from cMap) were labeled as positive candidates and 191 

negative candidates based on their anti-fibrosis characteristic in the anti-fibrosis 192 

knowledge base. After sanity check and outlier removal, 1701 compound structures 193 

and 2735 biological profiles were filtered out for model construction (Table S1). 194 

Four different machine learning classifiers were evaluated and compared to choose 195 

the most optimal modeling method (Table S2). Gradient boosting was eventually 196 

selected according to its highest precision and AUC (Structural profile: 197 

Precision=0.737, AUC=0.839, Biological profile: Precision=0.892, AUC=0.912). 198 

In the process of building SPPM and BPPM, we found that even a small number of 199 

features could reach certain stability and reasonably good performance (Figure S2, 200 

Figure 2a). Models based on top 38 features including CHARGE, S and XA(A)A 201 

could reach the maximum cross-validation AUC (0.879) in SPPM while top 47 202 

features including RPL30, MRMRPL5 and KPNB1 could reach the maximum 203 

cross-validation AUC(0. 972) in BPPM. We discovered that 46 of the top 47 features 204 
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in BPPM were connected with fibrosis in CTD inference networks (Figure 2b). 205 

Besides, several genes were associated with fibrosis-related indications like 206 

retroperitoneal fibrosis, keloids, tissue adhesions and cicatrix. 207 

Finally, SPPM and BPPM were build based on the most optimal modeling method 208 

and the selected small feature subset (top 38 features in SPPM and top 47 features in 209 

BPPM). In testing set, the average AUC for SPMM reaches 0.814 (Figure 2c) while 210 

the average AUC for BPMM reaches 0.874 (Figure 2d). 211 

 212 

Case studies 213 

Anti-fibrosis drugs exhibit greater drug repositioning potential 214 

We used SPPM to predict anti-fibrosis drugs from DrugBank experimental drugs and 215 

the comparative analysis was performed between the CTD compound-gene 216 

interactions of the predicted anti-fibrosis and non-anti-fibrosis drugs. The results show 217 

that the anti-fibrosis group accommodates stronger interactions, presumably more 218 

genetic effects thus greater repositioning potential (Figure 3a). 219 

In Drugbank experimental drugs, multiple drugs with great repositioning potential 220 

(Related Genes>500 and Diseases>20, Figure 3b, Table S3) were developed for 221 

fibrotic diseases and other diseases. Quercetin was discovered to ameliorate liver 222 

fibrosis through regulating macrophage infiltration and polarization, and it could 223 

alleviate IPF through fibroblasts apoptosis[29, 30]. Based on our results, we confirm 224 

that quercetin interacts with numerous genes and is strongly linked to multiple 225 

diseases (Repositioning score=0.856, Related Genes=3938, Diseases=150, Table S3). 226 

Another natural compound from turmeric, curcumin (Repositioning score=0.855, 227 

Related Genes=903, Diseases=138, Table S3), could also be used for treating multiple 228 

fibrotic diseases. It could inhibit fibroblast proliferation and myofibroblast 229 

differentiation in IPF[31] while inhibit oxidative stress and exhibit anti-inflammatory 230 

effect in liver fibrosis[32]. Apart from fibrosis, curcumin has been applied for 231 

osteoarthritis and rheumatoid arthritis treatment [33, 34]. Moreover, other drugs, such 232 
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as resveratrol also had great repositioning potential (Repositioning score=0.821, 233 

Figure 3b). 234 

 235 

Natural compounds are the better repositories for drug repositioning 236 

In order to expand the resources of potential repositioning drugs and further explore 237 

the chemical space, we introduced two external molecule sets, natural products from 238 

TCMID[25] and random compounds in ChEMBL[26]. SPPM was used to predict the 239 

repositioning potential of compounds from both external molecule sets. The results 240 

show that there were 35.42%, 77.26% and 37.04% of compounds could be potentially 241 

repositioned in DrugBank experimental drugs, TCMID and ChEMBL, respectively. 242 

The reserves in natural products from TCMID are significantly higher than others, 243 

indicating that natural products are great repositioning repositories and need further 244 

researches (Figure 3c). 245 

BPPM was used to discover specific natural products with repositioning potential 246 

from gene profiles dataset of 105 natural products (GSE85871). The results show that 247 

a total of 66 natural products have anti-fibrosis characteristic and repositioning 248 

potential, including ginsenoside Re(Repositioning score=0.979), 249 

muscone(Repositioning score=0.974) and cinnamic acid(Repositioning score=0.948) 250 

(Table S4). Among them, ginsenoside Re hold the potential to influence HDAC2, 251 

HDAC9 and HMGCR and fulfilled anti-fibrosis roles via “inflammation”, “preventing 252 

collagen deposition” and “targeting myeloperoxidase” with Drug repositioning 253 

mechanism analysis tools in Dr AFC (Figure 3d). Ginsenoside Re is the extract of 254 

panax ginseng which exhibited protective effects in neural and systematic 255 

inflammations through inhibiting the interaction between LPS and TLR4 in 256 

macrophages[35]. It was reported to exert anti-fibrosis effect on cardiac fibrosis 257 

through down-regulating the expression of p-Smad3, collagen I and reducing the 258 

augmentation of collagen fibers[36]. Apart from fibrosis, ginsenoside Re could 259 

alleviate inflammation through inhibiting myeloperoxidase activity[37] and decrease 260 
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fat accumulation through inhibiting HMGCR and cholesterol biosynthesis[38]. 261 

Besides, other ginsenosides, like ginsenoside Rb1, ginsenoside Rc, ginsenoside Rb3, 262 

ginsenoside Rb2, ginsenoside Rd and ginsenoside Rg, also exhibit anti-fibrosis 263 

characteristic and repositioning potential(Table S4). 264 

 265 

Drug Repositioning based on Anti-Fibrosis Characteristic Webserver 266 

Based on SPPM and BPPM, we constructed a computing platform for repositioning 267 

research purpose, named Drug Repositioning based on Anti-Fibrosis Characteristic 268 

(Dr AFC), the main function and workflow of which is shown in Figure 4. On Dr 269 

AFC platform, anti-fibrosis and potential repositioning could be predicted from 270 

compound structures or biological profiles. Drug repositioning mechanism analysis 271 

could infer the relationships among compounds, fibrosis-related targets and diseases 272 

which help understand pathology. Furthermore, drug-likeness estimation, chemical 273 

similarity calculation and structure matching were integrated into Dr AFC to provide 274 

useful information for drug development. 275 

 276 

Drug repositioning analysis function 277 

Dr AFC allows users to upload compound structures or compound-induced biological 278 

profiles for repositioning potential prediction. As shown in Figure 4b, Dr AFC accepts 279 

SMILES strings of compound structures for SPPM prediction, and accepts gene 280 

profiles with row names in Affymetrix U133A probe ID, Entrez ID or gene symbol 281 

format for BPPM prediction. Both methods support .txt、.csv or .xlsx files (Figure 4c). 282 

Webserver would perform corresponding prediction analysis automatically based 283 

on the uploaded files and display the output on the result page in three aspects (Figure 284 

4d): 1) Basic part includes compound ID, compound name, 2D compound 285 

structure(only for SPPM) and SMILES string(only for SPPM). 2) Prediction part 286 

includes repositioning scores of anti-fibrosis characteristic and repositioning potential 287 

prediction. The repositioning scores ranges from 0 to 1 and higher score indicates 288 
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higher potential. If repositioning score≥0.5, the compound would be defined as an 289 

anti-fibrosis and potential repositioning compound. 3) Drug repositioning mechanism 290 

analysis part. This analysis infers the potential anti-fibrosis and repositioning 291 

mechanisms of compound structures or biological profiles users uploaded based on 292 

our anti-fibrosis knowledge base. It could provide users potential mechanisms as 293 

theoretical foundations for drug repositioning studies. 294 

 295 

Other functions 296 

Dr AFC also contains drug-likeness estimation, chemical similarity calculation and 297 

structure matching tools. Users could upload their compounds in SMILES and 298 

perform these additional functions. Drug-likeness estimation could evaluate and score 299 

the compound drug-likeness, which ranges from 0 to 1 with higher score indicating 300 

higher potential for lead compound. Chemical similarity calculation and structure 301 

matching provide convenient ways for users to search compound with similar 302 

structures, same structures or substructures, supporting single compound calculation 303 

and simultaneous calculation for multiple compounds. 304 

 305 

Discussion 306 

Fibrosis is the common mechanism of diseases that attracts global attention. The 307 

anti-fibrosis characteristic of a compound could infer the greater repositioning 308 

potential it would have. However, the anti-fibrosis characteristic has not been 309 

extensively introduced into the realm of drug discovery till now. In this study, we first 310 

bridge the gap by developing a platform that can provide intensive information 311 

conveniently on drug repositioning based on anti-fibrosis characteristic data, Dr AFC 312 

(https://www.biosino.org/drafc). This in silico platform also provides a highly 313 

accurate way to generate data for rational drug design via combining the advanced 314 

machine-learning algorithm. 315 
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Dr AFC was built based on the anti-fibrosis knowledge base, which pioneered the 316 

excavation and organization of fibrosis-related studies throughout recent years. 317 

Structural profile (SPPM) and biological profile (BPPM) that show extraordinary 318 

capabilities in drug repositioning prediction (with AUC 0.814 and 0.874, respectively) 319 

were integrated into Dr AFC. BPPM show slightly higher performance than SPPM 320 

according to the AUC. The possible reason could be that biological profile is more 321 

tolerant and could contain information reflecting an overall effect of compound 322 

functionally in the body. Biological profile show its advantage in multiple 323 

repositioning algorithms previously, such as cMAP[18], L1000CDS2[39] and 324 

MANTRA[40]. Besides, certain therapies without available structure profile like 325 

biotech drugs or cocktail therapies could also be studied in repositioning research 326 

according to their biological profiles. 327 

In BPPM, 47 biological markers exhibited strong prediction abilities. These genes 328 

are directly or indirectly linked to various fibrotic diseases. Interestingly, ribosomal 329 

proteins including RPL30, MRPL15, RPL32, RPS3A, RPLP0, RPL7, RPL23A and 330 

RPL13A are the main part of these biological markers. Ribosomes serve as significant 331 

regulators in immune signaling pathways, tumorigenesis pathways and cardiovascular 332 

and metabolic diseases[41, 42]. For example, the expression of RPL30 is negatively 333 

correlated with carcinogenesis process in medulloblastoma that usually is 334 

accompanied by desmoplasia and could thus serve as a prognosis biomarker[43]. 335 

Besides, the over-activation of RNA polymerase in the biogenesis of ribosomes could 336 

cause the enhancement of protein synthesis and the decrease of translation accuracy, 337 

triggering cancers or exacerbating cancer processes[44]. Furthermore, some biological 338 

markers are associated with the spliceosome formation including RBM8A, 339 

HNRNPA3, SNRPG and DHX15. Spliceosome is the large molecular machine 340 

composed of five snRNA and many proteins, and serves as the catalyzer of pre-RNA 341 

introns which are crucial for protein expression and function. It has been reported to 342 
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be closely associated with multiple diseases, including cystic fibrosis and pulmonary 343 

fibrosis[45, 46].  344 

Based on external molecule sets, natural products are validated to have the 345 

strongest anti-fibrosis characteristics and repositioning potential among chemicals 346 

from different sources. Natural products provide a wealth of valuable natural 347 

resources for modern medicine and are seen as promising and popular candidates for 348 

drug repositioning studies[47]. Their privileged scaffolds, structural complexity, 349 

abundant stereochemistry and 'metabolite-likeness' are main reasons for the 350 

broad-spectrum of biological activities [48, 49]. The multi-targets and synergistic 351 

effects of natural products exhibit great advantages in treating diseases undergoing 352 

sophisticated mechanisms, such as fibrosis[50]. Our studies show that natural 353 

products like ginsenoside have great anti-fibrosis characteristic and repositioning 354 

potential and should be top priority when considering repositioned drug discovery. 355 

Additionally, the natural products in Drugbank experimental drugs such as quercetin, 356 

curcumin and resveratrol, also highlight their strong repositioning capabilities. 357 

Therefore, natural products could serve as promising source and the good choice for 358 

further drug development and repositioning study. 359 

 360 

Conclusion 361 

In summary, based on anti-fibrosis characteristics, we constructed two repositioning 362 

models, SPPM and BPPM, which could predict the anti-fibrosis characteristics and 363 

repositioning potential from compound structures and compound-induced biological 364 

profiles. SPPM and BPPM efficiently utilize the generality of fibrotic diseases, thus 365 

greatly increase the success rate of drug repositioning. This study not only established 366 

a highly efficient strategy of prediction, but also developed a convenient and 367 

user-friendly computing platform, Dr AFC (https://www.biosino.org/drafc), for 368 

studying fibrosis mechanisms and drug repositioning.  369 

 370 
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Key Points 371 

• Fibrosis is the common mechanism of diseases which could be applied in drug 372 

repositioning. 373 

• We developed a convenient and user-friendly computing platform, Dr AFC, for 374 

studying fibrosis mechanisms and drug repositioning. 375 

• Dr AFC shows high performance on both cross validation and external validation, 376 

which demonstrates its potential applications in drug discovery. 377 

• Natural compounds proved to be the better repositories for drug repositioning. 378 
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Figure legends 525 

Figure 1. The schematic of Dr AFC construction 526 

Figure 2 Feature selection and model performances 527 

A. Performances of top 30 features through iterative feature elimination in BPPM; B. 528 

The CTD inference networks of 47 gene features and fibrosis-related diseases; C. 529 

AUC of SPMM in testing set; D. AUC of BPPM in testing set. 530 

Figure 3 Case studies of Dr AFC 531 

A. Comparison of the number of genes interacting with compounds predicted as 532 

anti-fibrosis and non-anti-fibrosis; B. The distribution of related genes, diseases and 533 

repositioning score for Drugbank experimental drugs. Compounds with repositioning 534 

score>0.5 were considered as anti-fibrosis and had repositioning potential; C. The 535 

distribution of repositioning scores in different datasets (****: p-value <10-4 by 536 

two-sided Wilcoxon rank sum test); D. Drug repositioning mechanism analysis of 537 

ginsenoside Re by Dr AFC. 538 

Figure 4. Anti-fibrosis and repositioning computing platform (Dr AFC) 539 

A. Dr AFC integrated two prediction models, SPPM and BPPM; B. SPPM accepts 540 

SMILES strings of chemical structures in text or file; C. BPPM accepts biological 541 

profiles in file; D. Repositioning score, label and functional network of compounds 542 

were displayed in result; E. Drug repositioning mechanism analysis was implemented 543 

to infer the drug potential repositioning mechanism through relationships among 544 

similar compounds, fibrosis-related targets and diseases. 545 

 546 

Supplementary material 547 

Figure S1 Knowledgebase architecture of Dr AFC 548 

Figure S2 Performances of top 30 features through iterative feature elimination 549 

in SPPM 550 

Table S1 The sample size of SPPM and BPPM 551 

Table S2 Performances of four different machine learning classifiers 552 
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Table S3 Drug repositioning prediction in Drugbank Experimental drugs 553 

Table S4 Drug repositioning prediction in natural products(GSE85871) 554 
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