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16  Abstract

17  Fibrosis is a key component in the pathogenic mechanism of many diseases. These
18 diseases involving fibrosis may share common mechanisms, therapeutic targets and
19 therefore, common intervention strategies and medicines may be applicable for these
20 diseases. For this reason, deliberately introducing anti-fibrosis characteristics into
21  modelling may lead to more success in drug repositioning. In this study, anti-fibrosis
22  knowledge base was first built by collecting data from multiple resources. Both

23 structural and biological profiles were derived from the knowledge base and used for

Dingfeng Wu is a post-doc fellow at Tongji University, Shanghai, China. His current research
interests include machine learning and drug repositioning.

Wenxing Gao, Xiaoyi Li, Sa Fang and Jing Xiao are Master Degree students at Tongji
Universtiy, Shanghai, China. They are working on bioinformatics and multi-omics analysis.
Chuan Tian isa scientist at Relay Therapeutics, Cambridge, United States. His current research
interests include machine learning and drug repositioning.

Na Jiao is apost-doc fellow at Sun Y at-sen University, Guangzhou, China. Her current research
interests include drug repositioning and gut microbiome.

Zhifeng Xu isajunior student at Tongji Universtiy, Shanghai, China. He are working on
bioinformatics.

Lixin Zhu isan associate professor at Sun Y at-sen University, Guangzhou, China. His current
research interests include drug repositioning and gut microbiome.

Guoqging Zhang isa professor at Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai, China. His current research interests include machine learning and natural
language processing.

Ruixin Zhu is aprofessor at Tongji University, Shanghai, China. His current research interests
include drug repositioning, microbiome and bioinformatics.


https://doi.org/10.1101/2020.03.30.015123
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.015123; this version posted March 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

24 constructing machine learning models including Structural Profile Prediction Model
25 (SPPM) and Biological Profile Prediction Model (BPPM). Three external public data
26 sets were employed for validation purpose and further exploration of potential
27  repositioning drugs in wider chemical space. The resulting SPPM and BPPM models
28 achieve area under the receiver operating characteristic curve (AUC) of 0.879 and
29 0.972 in the training set, and 0.814 and 0.874 in the testing set. Additionally, our
30 results also demonstrate that substantial amount of multi-targeting natural products
31  possess notable anti-fibrosis characteristics and might serve as encouraging candidates
32 in fibrosis treatment and drug repositioning. To leverage our methodology and
33 findings, we developed repositioning prediction platform, Drug Repositioning based
34 on Anti-Fibrosis Characteristic (Dr AFC) that is freely accessible via

35  https://www.biosino.org/drafc.

36
37 Key words: fibrosis; drug repositioning; web server; knowledge base; natural

38 products
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39 Introduction

40 Fibrosis is defined as the process of excessive accumulation of fibrous connective
41  tissue in most tissues or organs, where normal cells are replaced by the extracellular
42  matrix (ECM), resulting in disrupted tissue function. In the new era of 21st century,
43 the morbidity and mortality rates of various fibrotic diseases have increased
44 progressively, bringing a huge globa health burden. In developed countries,
45  fibroproliferative diseases are responsible for nearly 45% of deaths[1]. One of the
46  well-known fibrotic diseases, idiopathic pulmonary fibrosis(IPF), has a poor
47  prognosis with the 5 year survival rate less than 30% and median survival ranging
48 from 3 to 5 years[2]. The outcomes of IPF patients are even worse than those with
49 many types of cancers [3]. As data obtained by Clinica Practice Research
50 Datalink(CPRD) revealed, the prevalence of |PF patients in board case definitions has
51 doubled from 19.94 per 100,000 patients in 2000 to 38.82 per 100,000 patients in
52 2012, and a 80% increase in incidence was observed[4]. Another life-threatening
53 fibrotic disease, cardiac fibrosis, is one of the leading factors causing heart failure (HF)
54 [5]. A research from 2008-2014 reveded that in 318 patients with systolic dysfunction,
55  78% had one type of myocardial fibrosis while 25% had at least 2 types [6].

56 The polypharmacology of most anti-fibrosis drugs could improve therapeutic
57 efficacy. Recent studies have found that, firstly, fibrosis is the common pathogenic
58  processin most diseases. For example, there are multiple common cellular processes
59 between lung cancer and IPF, including inflammation, cell apoptosis and tissue
60 infiltration [7]. Secondly, fibrosis-related processes have common mechanisms,
61 targets and drugs [8, 9]. A multi-organ fibrosis research discovered a set of 90
62 common differentially expressed genes across lung, heart, liver and kidney. In the two
63 most active gene networks generated by Ingenuity Pathway Analysis(IPA), these
64  genesplay akey role in connective tissue disorders and genetic, skeletal and muscular
65 disorders[10]. Similarly, another multi-organ fibrosis research also obtained a series

66 of 11 metzincin-related differentially expressed genes across heart, lung, liver, kidney
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67 and pancreas including THBS?, TIMP1, COL1A2, COL3Al1, HYOU1, MMP2 and
68 MMP7[11]. Thirdly, fibrosisis a complicated pathological process involving multiple
69 pathways, thus multi-target drugs are appropriate for fibrosis-related diseases[9].
70 Different pathways interact and counter-interact with each other to establish a
71  “check-and-balance” system, for instance, the core regulators, transforming growth
72  factor-B(TGF-B) and connective tissue growth factor(CTGF) signaling pathways
73 could collaborate to elicit pulmonary and renal fibrosis[12, 13]. In summary, these
74  evidences indicate that anti-fibrosis intervention strategies and medicines may be
75 applicable for more diseases through targeting their common fibrosis-related
76  mechanisms. Therefore, compounds that can more specifically target anti-fibrosis
77 could have greater potential of repositioning and are more applicable for drug
78  repositioning research.

79 Drug repositioning, or repurposing refers to the “reuse of old drugs’, recycling
80 existing drugs for new medical indications. Compared with de novo drug discovery,
81 drug repositioning has obvious advantages that it could significantly shorten drug
82 development periods, reduce laboratory cost and minimize potential safety risk.
83 Nowadays, drug repositioning is one of the most efficient strategies in drug
84  development[14]. With the advancement of high-throughput sequencing technology
85 and deep learning, various data-driven computational prediction and analytic models
86 stand out[15, 16], including Similarity Ensemble Approach (SEA)[17] and
87  Connectivity Map(cMAP)[18]. SEA clusters ligands into sets and calculates the
88  similarity scores between ligand sets from ligand topology[17]. cMAP computes the
89 similarity of “signatures” deduced from compound-induced gene profiles to quantify
90 the biologica functional relationships between compounds. Moreover, the
91 relationship between compounds and diseases could also be quantified in opposite
92  manner[18]. However, with so many repositioning methods and algorithms have
93 emerged[19-21], there still no attempts hitherto in introducing anti-fibrosis

94  characteristic into drug repositioning strategy.
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95  For the first time, we built the anti-fibrosis knowledge base from anti-fibrosis related
96 research. Based on the knowledge base, two repositioning models, Structural Profile
97  Prediction Model (SPPM) and Biological Profile Prediction Model (BPPM) were
98 constructed with high prediction accuracy. Centered on these two models, we then
99 developed a repositioning computing platform, Drug Repositioning based on
100 Anti-Fbrosis Characteristic (Dr AFC), to accelerate the process of exploring
101  repositioning drugs and studying its underlying mechanisms.
102
103 Materialsand methods
104 Datasets
105  Anti-fibrosis knowledge base
106  Anti-fibrosis related literatures were collected through key word queries “fibrosis
107  AND target” in PubMed from Jan. 1st, 2000 to Oct. 31st, 2019. The compound-target
108 interaction information on “fibrosis’ were collected in the CTD[22] from Jan. 1st,
109 2000 to Oct. 31st, 2019. Anti-fibrosis trials were collected in Clinical Trials.gov[23]
110  from Jan. 1st, 2000 to Oct. 31st, 2019. Findly, anti-fibrosis treatments, targets and
111  compound-target interactions were extracted and aggregated into the knowledge base.
112
113  Modd construction
114  Structura and biological profiles of compounds were collected from DrugBank[24]
115 and cMap, respectively and used for model construction. 2640 approved drugs in
116  DrugBank and 1223 compounds in the anti-fibrosis knowledge base served as the raw
117  data for Structural Profile Prediction Model (SPPM) construction. 6100 biological
118  profiles (gene expression) of 1309 small moleculesin cMap served as the raw data for
119 Biologica Profile Prediction Model (BPPM).
120

121 Casestudies
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122 20,263 natural products from TCMID[25], 5968 DrugBank experimental drugs{24]
123 and 5000 random compounds from ChEMBL[26] were collected as externa
124  vadlidations and case studies of SPPM. And external biologica profiles from GEO
125 database (GSE85871) that contains transcriptomics perturbation profiles of 105
126  natural productsin MCF7 cell line were used for case studies of BPPM.

127

128 Methods

129  Pre-processing of modeling data

130 In raw chemical structures (from DrugBank approved drugs and the anti-fibrosis
131  knowledge base) and biological profiles (from cMap) data, compounds that appeared
132  in the anti-fibrosis knowledge base were labeled as positive candidates while the rest
133  were labeled as negative candidates. Then, chemical structures were converted into
134  chemical fingerprints (166-bits MACCS keys) for processing chemical information in
135 a fast and convenient way using RDKit[27]. As to biological profiles, Quantile
136  Transformer was used to transform biological profiles into ranking orders to improve
137 the performance of model generalization, and also made datasets from different
138  batches and platforms more comparable.

139 One-class SVM (nu=0.3) was performed to estimate sample quality, remove
140  outliers and confirm final positive and negative samples. 70% of final samples were
141  used as training set for model selection and super-parameter determination while the
142  remainder as testing set for model validation.

143

144  Anti-fibrosis model construction and validation

145  Four different machine learning algorithms were selected for modeling on training set,
146 including logistic regression, decision tree, random forest and gradient boosting.
147  Among them, method with highest precision and AUC calculated by 5-fold
148 cross-validation was selected for subsequent analysis. Iterative feature elimination

149 (IFE) algorithm was performed to select optimal feature set through one-by-one
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150 feature deletion. Finally, SPPM and BPPM were constructed based on optimal
151  modeling algorithm and feature set, and further validated by testing set.

152

153  Drug repositioning mechanism analysis

154  Network-based inference approaches were wildly used in drug repositioning [20, 21].
155 Here we infer the potentid drug repositioning mechanism through
156 compound-target-disease network. Firstly, based on SPPM and BPPM, the
157  repositioning characteristics of compounds were predicted through their structural or
158 biological profiles, in which compounds with reposition score>0.5 were considered as
159 anti-fibrosis and had repositioning potential. Next, the anti-fibrosis characteristic and
160 potentia repositioning mechanisms of these candidates were explored on the basis of
161  compound-target-disease corresponding information in the anti-fibrosis knowledge
162 base. Similar compounds that may interact with same targets and diseases were
163 caculated through Tanimoto similarity of chemical structural fingerprints or
164 Spearman’'s rank correlation coefficient of biological profiles. Targets and disease
165 information of compounds reported in previous researches were refined from the
166  anti-fibrosis knowledge base to explore anti-fibrosis mechanism of compounds.
167 Finaly, the potential mechanisms among compounds in compound-target-disease
168 network displayed in drug repositioning analysis were used to help propose feasible
169  drug repositioning solutions.

170

171 Webserver construction of Dr AFC

172  Dr AFC was constructed through PostgreSgl database and Django framework. This
173  platform serves as a practical tool for prediction of drug repositioning potential based
174 on compound structures (SPPM) and biological profiles (BPPM) as well as displaying
175  compound-target-disease network of drug repositioning mechanisms. Meanwhile, Dr

176  AFC aso integrated toolkits such as quantitative estimate of drug-likeness (QED)
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177  from Silicos-it[28], and similarity calculation and structure matching borrowed from
178 RDkit to provide convenient web-based calculations for users.

179 Theoverall processisshown in Figure 1.

180

181 Results

182 SPPM and BPPM show high performancesfor anti-fibrosis prediction

183 To construct the anti-fibrosis knowledge base, 7058 fibrosis-related references from
184 PubMed, 302 from Comparative Toxicogenomics Database(CTD)[22] and 2664
185 fibrosis-related trials from Clinical Trials.gov[ 23] were collected through text mining.
186 Finally, 1223 anti-fibrosis treatments (containing 902 small molecules), 1067
187 fibrosis-related targets, 3096 fibrosis-related records from references and 1787 from
188 trials, 1067 anti-fibrosis compound-target interactions were obtained and integrated
189 into anti-fibrosis knowledge base (Figure S1).

190 In modeling session, 2885 compound structures (from DrugBank approved drugs)
191 [24] and 6100 biological profiles (from cMap) were labeled as positive candidates and
192 negative candidates based on their anti-fibrosis characteristic in the anti-fibrosis
193  knowledge base. After sanity check and outlier removal, 1701 compound structures
194  and 2735 biological profiles were filtered out for model construction (Table S1).

195 Four different machine learning classifiers were evaluated and compared to choose
196 the most optimal modeling method (Table S2). Gradient boosting was eventually
197 selected according to its highest precision and AUC (Structura profile:
198  Precison=0.737, AUC=0.839, Biological profile: Precision=0.892, AUC=0.912).

199 In the process of building SPPM and BPPM, we found that even a small number of
200 features could reach certain stability and reasonably good performance (Figure S2,
201 Figure 2a). Models based on top 38 features including CHARGE, S and XA(A)A
202 could reach the maximum cross-validation AUC (0.879) in SPPM while top 47
203 features including RPL30, MRMRPL5 and KPNB1 could reach the maximum
204  cross-validation AUC(0. 972) in BPPM. We discovered that 46 of the top 47 features
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205 in BPPM were connected with fibrosis in CTD inference networks (Figure 2b).
206 Besides, several genes were associated with fibrosis-related indications like
207  retroperitoneal fibrosis, keloids, tissue adhesions and cicatrix.

208 Finally, SPPM and BPPM were build based on the most optima modeling method
209 and the selected small feature subset (top 38 features in SPPM and top 47 features in
210 BPPM). In testing set, the average AUC for SPMM reaches 0.814 (Figure 2c) while
211  theaverage AUC for BPMM reaches 0.874 (Figure 2d).

212

213  Casestudies

214 Anti-fibrosis drugs exhibit greater drug repositioning potential

215 We used SPPM to predict anti-fibrosis drugs from DrugBank experimental drugs and
216 the comparative analysis was performed between the CTD compound-gene
217  interactions of the predicted anti-fibrosis and non-anti-fibrosis drugs. The results show
218 that the anti-fibrosis group accommodates stronger interactions, presumably more
219  genetic effects thus greater repositioning potential (Figure 3a).

220 In Drugbank experimental drugs, multiple drugs with great repositioning potential
221 (Related Genes>500 and Diseases>20, Figure 3b, Table S3) were developed for
222  fibrotic diseases and other diseases. Quercetin was discovered to ameliorate liver
223 fibrosis through regulating macrophage infiltration and polarization, and it could
224 dleviate |PF through fibroblasts apoptosis[29, 30]. Based on our results, we confirm
225 that quercetin interacts with numerous genes and is strongly linked to multiple
226  diseases (Repositioning score=0.856, Related Genes=3938, Diseases=150, Table S3).
227  Another natural compound from turmeric, curcumin (Repositioning score=0.855,
228 Related Genes=903, Diseases=138, Table S3), could also be used for treating multiple
229 fibrotic diseases. It could inhibit fibroblast proliferation and myofibroblast
230 differentiation in IPF[31] while inhibit oxidative stress and exhibit anti-inflammatory
231  effect in liver fibrosig32]. Apart from fibrosis, curcumin has been applied for

232 osteoarthritis and rheumatoid arthritis treatment [33, 34]. Moreover, other drugs, such
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233  as resveratrol aso had great repositioning potential (Repositioning score=0.821,
234  Figure 3Db).

235

236  Natural compounds are the better repositories for drug repositioning

237 In order to expand the resources of potential repositioning drugs and further explore
238 the chemical space, we introduced two external molecule sets, natural products from
239 TCMID[25] and random compounds in ChEMBL[26]. SPPM was used to predict the
240  repositioning potential of compounds from both external molecule sets. The results
241  show that there were 35.42%, 77.26% and 37.04% of compounds could be potentially
242  repositioned in DrugBank experimental drugs, TCMID and ChEMBL, respectively.
243  The reserves in natura products from TCMID are significantly higher than others,
244 indicating that natural products are great repositioning repositories and need further
245  researches (Figure 3c).

246 BPPM was used to discover specific natural products with repositioning potential
247  from gene profiles dataset of 105 natural products (GSE85871). The results show that
248 a total of 66 natural products have anti-fibrosis characteristic and repositioning
249  potential, including ginsenoside Re(Repositioning score=0.979),
250  muscone(Repasitioning score=0.974) and cinnamic acid(Repositioning score=0.948)
251 (Table $4). Among them, ginsenoside Re hold the potential to influence HDAC2,
252 HDAC9 and HMGCR and fulfilled anti-fibrosis roles via “inflammation”, “preventing
253 collagen deposition” and “targeting myeloperoxidase” with Drug repositioning
254  mechanism analysis tools in Dr AFC (Figure 3d). Ginsenoside Re is the extract of
255 panax ginseng which exhibited protective effects in neura and systematic
256 inflammations through inhibiting the interaction between LPS and TLR4 in
257  macrophages[35]. It was reported to exert anti-fibrosis effect on cardiac fibrosis
258 through down-regulating the expression of p-Smad3, collagen | and reducing the
259 augmentation of collagen fiberg[36]. Apart from fibrosis, ginsenoside Re could

260 alleviate inflammation through inhibiting myeloperoxidase activity[37] and decrease


https://doi.org/10.1101/2020.03.30.015123
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.015123; this version posted March 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

261 fat accumulation through inhibiting HMGCR and cholesterol biosynthesig[38].
262  Besides, other ginsenosides, like ginsenoside Rb1, ginsenoside Rc, ginsenoside Rb3,
263 ginsenoside Rb2, ginsenoside Rd and ginsenoside Rg, also exhibit anti-fibrosis
264  characteristic and repositioning potential (Table $4).

265

266  Drug Repositioning based on Anti-Fibrosis Characteristic Webserver

267 Based on SPPM and BPPM, we constructed a computing platform for repositioning
268 research purpose, named Drug Repositioning based on Anti-Fibrosis Characteristic
269 (Dr AFC), the main function and workflow of which is shown in Figure 4. On Dr
270  AFC platform, anti-fibrosis and potential repositioning could be predicted from
271  compound structures or biological profiles. Drug repositioning mechanism analysis
272  could infer the relationships among compounds, fibrosis-related targets and diseases
273  which help understand pathology. Furthermore, drug-likeness estimation, chemical
274  similarity calculation and structure matching were integrated into Dr AFC to provide
275  useful information for drug development.

276

277  Drug repositioning analysis function

278  Dr AFC allows users to upload compound structures or compound-induced biological
279  profiles for repositioning potential prediction. As shown in Figure 4b, Dr AFC accepts
280 SMILES strings of compound structures for SPPM prediction, and accepts gene

281  profiles with row names in Affymetrix U133A probe ID, Entrez ID or gene symbol
282  format for BPPM prediction. Both methods support .txt. .csv or .xlsx files (Figure 4c).

283 Webserver would perform corresponding prediction analysis automatically based
284  on the uploaded files and display the output on the result page in three aspects (Figure
285 4d): 1) Basic part includes compound ID, compound name, 2D compound
286  structure(only for SPPM) and SMILES string(only for SPPM). 2) Prediction part
287  includes repositioning scores of anti-fibrosis characteristic and repositioning potential

288  prediction. The repositioning scores ranges from 0 to 1 and higher score indicates
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289  higher potential. If repositioning score>0.5, the compound would be defined as an
290 anti-fibrosis and potential repositioning compound. 3) Drug repositioning mechanism
291 analysis part. This analysis infers the potential anti-fibrosis and repositioning
292  mechanisms of compound structures or biological profiles users uploaded based on
293 our anti-fibrosis knowledge base. It could provide users potential mechanisms as
294  theoretical foundations for drug repositioning studies.

295

296  Other functions

297 Dr AFC dso contains drug-likeness estimation, chemical similarity calculation and
298  structure matching tools. Users could upload their compounds in SMILES and
299  perform these additional functions. Drug-likeness estimation could evaluate and score
300 the compound drug-likeness, which ranges from 0 to 1 with higher score indicating
301 higher potential for lead compound. Chemical similarity calculation and structure
302 matching provide convenient ways for users to search compound with similar
303  structures, same structures or substructures, supporting single compound calculation
304  and simultaneous calculation for multiple compounds.

305

306 Discussion

307 Fibrosis is the common mechanism of diseases that attracts global attention. The
308 anti-fibrosis characteristic of a compound could infer the greater repositioning
309 potential it would have. However, the anti-fibrosis characteristic has not been
310 extensively introduced into the realm of drug discovery till now. In this study, we first
311 bridge the gap by developing a platform that can provide intensive information
312  conveniently on drug repositioning based on anti-fibrosis characteristic data, Dr AFC

313  (https://www.biosino.org/drafc). This in silico platform aso provides a highly

314  accurate way to generate data for rational drug design via combining the advanced

315  machinelearning algorithm.
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316 Dr AFC was built based on the anti-fibrosis knowledge base, which pioneered the
317 excavation and organization of fibrosis-related studies throughout recent years.
318  Structura profile (SPPM) and biological profile (BPPM) that show extraordinary
319 capabilitiesin drug repositioning prediction (with AUC 0.814 and 0.874, respectively)
320 were integrated into Dr AFC. BPPM show slightly higher performance than SPPM
321 according to the AUC. The possible reason could be that biological profile is more
322 tolerant and could contain information reflecting an overall effect of compound
323 functionally in the body. Biological profile show its advantage in multiple
324  repositioning agorithms previously, such as cMAP[18], L1000CDSY39] and
325 MANTRA[40]. Besides, certain therapies without available structure profile like
326  biotech drugs or cocktail therapies could also be studied in repositioning research
327  according to their biological profiles.

328 In BPPM, 47 biological markers exhibited strong prediction abilities. These genes
329 are directly or indirectly linked to various fibrotic diseases. Interestingly, ribosomal
330 proteins including RPL30, MRPL15, RPL32, RPS3A, RPLPO, RPL7, RPL23A and
331 RPL13A arethe main part of these biological markers. Ribosomes serve as significant
332  regulatorsin immune signaling pathways, tumorigenesis pathways and cardiovascular
333 and metabolic diseases[41, 42]. For example, the expression of RPL30 is negatively
334 correlated with carcinogenesis process in medulloblastoma that usualy is
335 accompanied by desmoplasia and could thus serve as a prognosis biomarker[43].
336 Besides, the over-activation of RNA polymerase in the biogenesis of ribosomes could
337  cause the enhancement of protein synthesis and the decrease of translation accuracy,
338  triggering cancers or exacerbating cancer processes[44]. Furthermore, some biological
339 makers are associated with the spliceosome formation including RBM8A,
340 HNRNPA3, SNRPG and DHX15. Spliceosome is the large molecular machine
341  composed of five snRNA and many proteins, and serves as the catalyzer of pre-RNA

342  introns which are crucial for protein expression and function. It has been reported to
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343  be closely associated with multiple diseases, including cystic fibrosis and pulmonary
344  fibrosig[45, 46].

345 Based on externa molecule sets, natural products are validated to have the
346  strongest anti-fibrosis characteristics and repositioning potential among chemicals
347 from different sources. Natural products provide a wedth of valuable natural
348  resources for modern medicine and are seen as promising and popular candidates for
349 drug repositioning studies[47]. Their privileged scaffolds, structural complexity,
350 abundant stereochemistry and ‘metabolite-likeness are main reasons for the
351 broad-spectrum of biological activities [48, 49]. The multi-targets and synergistic
352 effects of natural products exhibit great advantages in treating diseases undergoing
353  sophisticated mechanisms, such as fibrosis[50]. Our studies show that natural
354  products like ginsenoside have great anti-fibrosis characteristic and repositioning
355 potential and should be top priority when considering repositioned drug discovery.
356  Additionally, the natural products in Drugbank experimental drugs such as quercetin,
357 curcumin and resveratrol, also highlight their strong repositioning capabilities.
358 Therefore, natural products could serve as promising source and the good choice for
359 further drug development and repasitioning study.

360

361 Conclusion

362 In summary, based on anti-fibrosis characteristics, we constructed two repositioning
363 models, SPPM and BPPM, which could predict the anti-fibrosis characteristics and
364  repositioning potential from compound structures and compound-induced biological
365 profiles. SPPM and BPPM efficiently utilize the generality of fibrotic diseases, thus
366  greatly increase the success rate of drug repositioning. This study not only established
367 a highly efficient strategy of prediction, but also developed a convenient and

368 user-friendly computing platform, Dr AFC (https.//www.biosino.org/drafc), for

369  studying fibrosis mechanisms and drug repositioning.

370
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371  Key Points
372

Fibrosis is the common mechanism of diseases which could be applied in drug
373 repositioning.

374 e We developed a convenient and user-friendly computing platform, Dr AFC, for
375 studying fibrosis mechanisms and drug repositioning.

376 e  Dr AFC shows high performance on both cross validation and external validation,
377 which demonstrates its potential applicationsin drug discovery.

378 e Natural compounds proved to be the better repositories for drug repositioning.
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525 Figurelegends

526  Figure 1. The schematic of Dr AFC construction

527  Figure 2 Feature selection and model performances

528 A. Performances of top 30 features through iterative feature elimination in BPPM; B.
529 The CTD inference networks of 47 gene features and fibrosis-related diseases; C.
530 AUC of SPMM in testing set; D. AUC of BPPM in testing set.

531 Figure 3 Casestudies of Dr AFC

532 A. Comparison of the number of genes interacting with compounds predicted as
533  anti-fibrosis and non-anti-fibrosis; B. The distribution of related genes, diseases and
534  repositioning score for Drugbank experimental drugs. Compounds with repositioning
535 score>0.5 were considered as anti-fibrosis and had repositioning potential; C. The
536  distribution of repositioning scores in different datasets (****: p-value <10* by
537 two-sided Wilcoxon rank sum test); D. Drug repositioning mechanism analysis of
538 ginsenoside Re by Dr AFC.

539 Figure4. Anti-fibrosis and repositioning computing platform (Dr AFC)

540 A. Dr AFC integrated two prediction models, SPPM and BPPM; B. SPPM accepts
541  SMILES strings of chemical structures in text or file; C. BPPM accepts biological
542  profiles in file; D. Repositioning score, label and functional network of compounds
543  weredisplayed in result; E. Drug repositioning mechanism analysis was implemented
544  to infer the drug potentia repositioning mechanism through relationships among
545  similar compounds, fibrosis-related targets and diseases.

546

547  Supplementary material

548  Figure S1 Knowledgebase architecture of Dr AFC

549  Figure S2 Performances of top 30 features through iterative feature eimination
550 in SPPM

551 Table S1 The sample size of SPPM and BPPM

552  Table S2 Performances of four different machinelear ning classifiers
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553 Table S3 Drug repositioning prediction in Drugbank Experimental drugs
554  Table $4 Drug repositioning prediction in natural products(GSE85871)
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