
DNA methylation classification in diffuse glioma shows little spatial 

heterogeneity after adjusting for tumor purity  
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Abstract  

Intratumoral heterogeneity is a hallmark of diffuse gliomas. We used neuronavigation to acquire 133 image-

guided and spatially-separated stereotactic biopsy samples from 16 adult patients with a diffuse glioma, 

which we characterized using DNA methylation arrays. Samples were obtained from regions with and 

without imaging abnormalities. Methylation profiles were analyzed to devise a three-dimensional 

reconstruction of genetic and epigenetic heterogeneity. Molecular aberrations indicated that tumor was 

found outside imaging abnormalities, underlining the infiltrative nature of this tumor and the limitations of 

current routine imaging modalities. We demonstrate that tumor purity is highly variable between samples 

and largely explains apparent epigenetic spatial heterogeneity. Indeed, we observed that DNA methylation 

subtypes are highly conserved in space after adjusting for tumor purity. Genome-wide heterogeneity 

analysis showed equal or increased heterogeneity among normal tissue when compared to tumor. These 

findings were validated in a separate cohort of 61 multi-sector tumor and 64 normal samples. Our findings 

underscore the infiltrative nature of diffuse gliomas and suggest that heterogeneity in DNA methylation is 

innate to somatic cells and not a characteristic feature of this tumor type. 
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Introduction 

Diffuse gliomas are the most common malignant brain tumors in adults 1. Patients with a diffuse glioma 

have a poor prognosis and eventually succumb to treatment failure 2. The diagnosis, treatment and follow-

up of diffuse gliomas rely heavily on imaging 2, with magnetic resonance imaging (MRI) as the current 

standard. Using T1 weighted contrast enhanced (T1c) MRI, diffuse gliomas can be divided into enhancing 

tumors, predominantly glioblastoma, or non- enhancing tumors, predominantly low grade gliomas (LGG). 

T1c MRI is used for enhancing and T2/Fluid-attenuated inversion recovery (FLAIR) MRI for non-enhancing 

gliomas 3. However, diffuse glioma infiltration extends beyond the abnormalities detected on standard MRI 

4,5. Also, the majority of diffuse gliomas recur directly adjacent to the standard MRI-guided surgical cavity 6. 

Heterogeneity of tumor cells is a salient feature of diffuse gliomas and thought to be a driver of treatment 

failure. Treatment exposure may drive the clonal evolution of heterogeneous tumor cell populations, leading 

to the selection and survival of resistant subpopulations in some gliomas, whereas refractory disease in 

others may be driven by other factors 7. 

Numerous studies have looked at genetic and transcriptomic heterogeneity in diffuse glioma. 

Recent single-cell transcriptome studies have elucidated transcriptional heterogeneity in regulatory 

programs that converge on the cell cycle or distinct cellular states 8,9 while bulk tissue analysis has 

demonstrated extensive heterogeneity in somatic drivers such as EGFR and PGFRA 10,11 as well as in 

general somatic alteration burden 12-14.  

DNA methylation is an epigenetic modification where a methyl-group is added to a cytosine, most 

commonly measured in the CpG dinucleotide context. These modifications are of interest to the neuro-

oncology field as genome-wide patterns in DNA methylation profiles provide a robust method for disease 

classification and a viable supplement to traditional histopathology 15,16. Nevertheless, the extent of 

intratumoral heterogeneity in DNA methylation remains unclear.  

In order to improve our understanding of the (epi-)genetic heterogeneity of diffuse gliomas, we 

present a comprehensive analysis of DNA methylation of a large number of spatially-separated samples 

taken from regions with and without imaging abnormalities. We devised a three-dimensional reconstruction 

of the DNA methylation landscape for each tumor, with particular consideration to the variable ratios of 

tumor and non-neoplastic cells in each sample. Our analysis demonstrates the infiltrative nature of gliomas 

beyond visible tumor boundaries with a rather homogeneous DNA methylation landscape across space. 

 

Results 

We analyzed 133 multi-region image-guided stereotactically obtained samples from 16 newly diagnosed 

and untreated adult patients with a diffuse glioma (Figure 1a, Table 1). Samples were taken from pre-

operatively determined sites showing a variable degree of abnormalities. In non-enhancing gliomas, 16 

samples were taken outside (FLAIR-) and 41 inside FLAIR abnormalities (FLAIR+). In enhancing gliomas, 

12 samples were taken outside both T1c and FLAIR abnormalities (T1c-/FLAIR-), 44 samples outside (T1c-

/ FLAIR+) and 20 inside T1c abnormalities (T1c+/ FLAIR+) (MRI, Figure 1b). Each sample was profiled for 

DNA methylation using the Illumina 850k EPIC bead array. Histological slides were stained for hematoxylin-

and-eosin (H&E) and MIB-1 and digitized (Figure 1c). Each tumor was reconstructed based on the spatial 

configuration of the MRI volumes (Figure 2). To reconstruct molecular profiles in three-dimensional space, 
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we calculated the Euclidian distance for each sample to the nearest point on the overall tumor volumes 

defined by T1c and FLAIR, with negative values indicating points within the tumor volume.  

 

 

Figure 1. Graphical overview of the methods. A. Multiple pre-operatively planned stereotactic biopsies 
were taken from each patient tumor. B. Biopsies were acquired in regions in and outside imaging 
abnormalities. C. Acquired tissue was subject to comprehensive histological and molecular analysis. 

 
Tumor purity is an important determinant of DNA methylation classification and spatial heterogeneity 

Since non-neoplastic cells in a sample influence molecular tumor assessment 17, we sought to quantify 

tumor purity, defined as the ratio of tumor to non-neoplastic cells. We evaluated and compared several 

methods of tumor purity estimation based on histology, MRI, DNA methylation and DNA copy number 

(Figure 2, Supplementary Figure 1a). DNA methylation-based purity estimates, Purity Assessment from 

clonal MEthylation Sites (PAMES)18 provided the strongest correlations with all other features. Samples 

from IDH-mutant tumors showed a higher tumor purity than IDH-wildtype tumor samples (Supplementary 

Figure 1b p=0.03). This was explained by difference in tumor purity between LGG and glioblastoma 

(Supplementary Figure 1c), with lower tumor purity for the latter due to the known admixture of non-
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neoplastic cells,19 rather than IDH mutational status (Supplementary Figure 1d). The effect of grade on 

tumor purity is in line with a comprehensive analysis of TCGA samples20. 

 

Cohort Patient Histology WHO grade IDH status Biopsies 

Exploration VUmc-01 Glioblastoma IV Mutant 8 

Exploration VUmc-02 Glioblastoma IV Wildtype 8 

Exploration VUmc-03 Astrocytoma II Mutant 7 

Exploration VUmc-04 Glioblastoma IV Mutant 11 

Exploration VUmc-05 Oligodendroglioma II Mutant 8 

Exploration VUmc-06 Astrocytoma II Mutant 8 

Exploration VUmc-07 Glioblastoma IV Wildtype 9 

Exploration VUmc-08 Glioblastoma IV Wildtype 10 

Exploration VUmc-09 Astrocytoma II Mutant 6 

Exploration VUmc-10 Astrocytoma II Mutant 7 

Exploration VUmc-11 Glioblastoma IV Wildtype 9 

Exploration VUmc-12 Astrocytoma II Mutant 8 

Exploration VUmc-13 Glioblastoma IV Wildtype 9 

Exploration VUmc-14 Glioblastoma IV Wildtype 7 

Exploration VUmc-15 Astrocytoma II Mutant 6 

Exploration VUmc-17 Glioblastoma IV Wildtype 12 

Validation Toronto-01 Astrocytoma III Wildtype 8 

Validation Toronto-02 Glioblastoma IV Wildtype 5 

Validation Toronto-03 Glioblastoma IV Wildtype 7 

Validation Toronto-04 Glioblastoma IV Wildtype 4 

Validation Toronto-05 Glioblastoma IV Wildtype 8 

Validation UCSF-01 Astrocytoma II Mutant 4 

Validation UCSF-04 Astrocytoma II Mutant 6 

Validation UCSF-17 Oligodendroglioma II Mutant 3 

Validation UCSF-18 Oligoastrocytoma II Mutant 4 

Validation UCSF-49 Oligodendroglioma III Mutant 6 

Validation UCSF-90 Oligodendroglioma II Mutant 6 

Table 1. Overview of patients and biopsies in exploration and validation cohort.  
 

We performed a principal component analysis of the DNA methylation data to elucidate drivers of 

differences in methylation (258 samples, Figure 3a). Included in the analysis were samples from a second 

cohort 16,21,22 consisting of 61 multi-sector tumor samples from 11 gliomas, and a control cohort of 64 non-

neoplastic brain samples. The first principal component (percentage of variance 75%) separated samples 

based on IDH-status, as indicated by the IDH-mutant and IDH-wildtype samples from the validation cohort 

(Figure 3a). The second principal component (percentage of variance 4.2%) was driven by tumor purity, as 

evidenced by the linear increase in tumor purity and the samples from the control cohort (R = -0.69, P 
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<0.01). These findings indicate that tumor purity is the second most important driver accounts for a 

considerable amount of variation in DNA methylation profiles. 

 

 
Figure 2. Overview of 133 samples in 16 patients with initial diffuse glioma. Samples are numbered in 
order of tumor purity for each patient. Imaging-based (distance, FLR/T1G signal) and histology-based 
(cellularity, MIB1, pathologist classification) parameters are indicated for each sample. PAMES= Purity 
Assessment from clonal MEthylation Sites. 
 

To establish the relationship between DNA methylation-based subtype and tumor purity, we used 

L2-regularized logistic regression to assign each sample a tumor subtype, as described in Ceccarrelli et 

al.,15 or non-malignant control subtype (Figure 3b). As expected, samples with a low tumor purity were 

assigned a control subtype whereas high tumor purity samples were assigned a tumor subtype 

(Supplementary Figure 2a). The differences in subtype assignment and its relation to tumor purity were 

clearly captured by the principal component analysis (Supplementary Figure 2b). There were no significant 

differences between the tumor purity of the different tumor subtypes (Supplementary Figure 2c). 

Interestingly, the tumor purity of the non-malignant granulation, inflammatory and reactive subtypes was 

comparable with that of tumor subtypes, which was confirmed by the assessment of all inflammatory and 

reactive subtype samples as tumor by the neuropathologists. Comparison of the subtypes with another 

DNA methylation-based classification showed a large conformity for classification families (6.6% 

discordance, Supplementary Fig 2d) and slightly lower conformity for family subtypes (12.4% discordance, 

Supplementary Fig 2e).16 

To explore the heterogeneity of tumor subtypes within a tumor, we analyzed which tumor subtypes 

were recognized within each patient across the core and validation dataset. The majority of patients (24 of 

27) did not show heterogeneity in tumor subtype (Figure 3c). In the three patients with tumor subtype 

heterogeneity, the one (n=2) or two (n=1) discordant samples were most often the lowest purity tumor 

sample. Both the Classic-like and Mesenchymal-like subtype were found in two patients, although the high 

tumour purity samples were Classic-like in one (6 Classic-like and 1 Mesenchymal-like) and Mesenchymal-
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like (3 Mesenchymal-like and 2 Classic-like) in the other patient. The third patient showed both the Codel (5 

higher tumour purity samples) and G-CIMP-low (1 lower tumour purity samples) subtype. These results 

were confirmed using the classifier from Capper et al. and identify tumor purity as a driving factor of DNA 

methylation-based tumor subtype heterogeneity (Supplementary Figure 3) 16.  

 

 

Figure 3. Exploration of spatial distribution of DNA methylation-based subtypes. A. Principal 
component analysis of all (samples=258) samples. B. Overview of DNA methylation classification  C. 
Overview of DNA methylation subtypes with classification probabilities for exploration and validation cohort. 
D. Bar plot of tumor purity and epigenetic molecular subtype of three patients with spatial heterogeneity. 

 
DNA methylation abnormalities extend beyond standard MRI boundaries  

To understand the spatial distribution of glioma infiltration, we analyzed the correlation of tumor purity and 

subtypes with the distance to radiological tumor boundaries and MRI abnormalities. As expected, the 

distance of samples to the radiological tumor boundaries showed a linear relationship with tumor purity 

(Supplementary Figure 4a). In non-enhancing tumor, samples classified as cortex were found further away 

from the radiological tumor boundaries than the other subtypes (Supplementary Figure 4b). Yet, in 

enhancing tumor this difference was not found, possibly indicating a more diffuse infiltration pattern of 

enhancing tumors. As anticipated, in enhancing tumors the T1c+/FLAIR+ region showed the highest tumor 
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purity, followed by the T1c-/FLAIR+ and T1c-/FLAIR- (Supplementary Figure 4c). In non-enhancing tumors, 

tumor purity was higher in the FLAIR+ than the FLAIR- region. Interestingly, samples taken from regions 

outside standard imaging abnormalities (FLAIR- in non-enhancing and T1c-/FLAIR- and T1c-/FLAIR+ in 

enhancing tumors) showed a tumor subtype in 36% and 17% of enhancing and non-enhancing gliomas, 

respectively (Supplementary Figure 4d). Conversely, samples taken from within the standard imaging 

abnormalities showed a non-malignant subtype in 35% of enhancing tumors, which is most likely due to 

necrosis in these samples. In non-enhancing tumors 15% of samples within the FLAIR+ region showed a 

non-malignant subtype. Samples with tumor subtypes were found up to 24mm outside imaging 

abnormalities. These findings support the diffusely infiltrative nature of these tumors and corroborate the 

notion that standard MRI does not capture the true extent of diffuse glioma infiltration. 

 

 
Figure 4. Spatial heterogeneity of genome-wide methylomes. A. Empirical cumulative density function 
(ECDF) curves reflecting similarity (homogeneity) across all pairwise combinations of samples. 
Comparisons were separated based on whether they involved two samples from the same patient (intra-
patient) or between two patients (interpatient) and based on whether the two samples spanned one or 
multiple sample types. B. Line plot showing the cumulative homogeneity associated with additional 
samples taken from the same tumor. Lines were colored by dataset, tumor and normal samples were 
separated, and tumor samples were further separated into IDHmut and IDHwt. C. Scatter plot of the 
relation between distance and methylation heterogeneity. Distance is the Cartesian distance in mm 
between two samples and methylation heterogeneity as described above. Correlation is calculated with 
Pearson’s R. 
 

Spatial heterogeneity of DNA methylation is an innate feature of all somatic cells 

To precisely quantify DNA methylation heterogeneity, we performed pairwise comparisons of binarized 

methylation values between samples. The vast majority of probes were homogeneously methylated (mean 

0.93, range 0.83 – 1.0) between samples, suggesting that only a small fraction of probes is responsible for 

all intratumor heterogeneity. Similar trends have been observed in comparisons of non-neoplastic samples 

from the same lineage23. Unsurprisingly, any two samples from different unrelated tumors showed less 
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probes with identical methylation (mean 0.93  0.02) compared to any two samples from the same tumor 

(mean 0.96  0.03). However, this difference was subgroup-dependent. For example, any two samples 

from two unrelated IDH-mutant tumors show more similarity on average than any two samples from two 

unrelated IDH-wildtype tumors (Figure 4a), likely related to the propensity of (G-CIMP positive) IDH-mutant 

tumors to uniformly methylate. As expected, a higher degree of heterogeneity can be observed when 

comparing samples classified as non-malignant to samples classified as tumor, based on DNA methylation 

classification, within the same patient. Any two IDH-wildtype tumor samples from the same patient show a 

comparable degree of heterogeneity when compared to two non-malignant samples from the same patient 

(Kolmogorov-Smirnov P = 1.0, pink and green dashed lines). In comparison, any two IDH-mutant tumor 

samples from the same patient demonstrate less heterogeneity compared to any two non-malignant 

samples from the same patient (Kolmogorov-Smirnov P < 0.0001). These findings suggest that intratumoral 

DNA methylation heterogeneity is reflecting the clonal nature and shared common ancestor of tumor cells, 

whereas specimens classified as non-malignant harbor cells from a mixture of lineages.  

To assess the impact of additional samples on tumor heterogeneity we calculated the percentage of 

identical probes pooling any number of samples per patient, separating samples classified as tumor and 

normal (Figure 4b). The majority of heterogeneity was captured by the first two samples per patient. 

Although additional samples further contributed to overall heterogeneity, the change in heterogeneity 

decreased with each additional sample. Next, we investigated the relation between distance and tumor 

heterogeneity. These were most strongly correlated in normal samples and less in tumor samples (Figure 

4c). This implicates that there is less heterogeneity between two distant tumor samples than between two 

similar distant normal samples. These patterns were comparable between normal and tumor samples, 

further supporting the idea that heterogeneity in DNA methylation is largely determined by innate somatic 

cell (rather than tumor cell) characteristics. 

 

Discussion 

This study represents a comprehensive analysis of spatially-separated samples in diffuse glioma. The 

combination of histological, radiological and DNA-methylation data enabled us to explore the spatial 

contexts of tumor purity, epigenetic molecular subtypes and tumor heterogeneity. Our study demonstrates 

that molecular subtypes are stable and homogeneous after considering tumor purity. Moreover, gliomas are 

diffusely infiltrative tumors and our data clearly shows that they indeed extend beyond the tumor 

boundaries found on MRI.  Finally, in our study the extent of heterogeneity in tumor cells was 

predominantly equal to or less than in normal cells. 

 Information on the spatial heterogeneity of epigenetic molecular subtypes in the literature is limited. 

A recent study reported intratumor DNA methylation-based subtype heterogeneity in five of twelve 

glioblastomas in their cohort 24. We were unable to confirm this extent of heterogeneity in our study.  The 

differences may be explained by our approach to account for tumor purity prior to determining intratumoral 

epigenetic subtype classification. 

We observed that samples obtained outside imaging abnormalities on FLAIR in non-enhancing and 

on T1c MRI in enhancing gliomas displayed similar epigenetic molecular subtypes as the core samples. 

The fraction of tumor cells per specimen varied between the different MRI regions. The presence of tumor 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.28.012732doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.28.012732
http://creativecommons.org/licenses/by-nd/4.0/


tissue outside standard MRI abnormalities is well known 4,5. Our results suggest that spatial imaging 

heterogeneity in glioma is driven by tumor purity, rather than epigenetic heterogeneity. This was confirmed 

by the strong correlation between tumor purity and the imaging score. Our observations imply that a viable 

part of the tumor, especially in IDH-wildtype gliomas, is left behind after resection of standard imaging 

abnormalities.  

Tumor heterogeneity has long been viewed as a hallmark of cancer and the idea that various 

tumorigenic clones compete for resources and evolve in response to treatment pressure is widely 

accepted. Nevertheless, it is easy to overestimate the role and importance of epigenetic tumor 

heterogeneity and a more nuanced role for heterogeneity is slowly gaining traction 25. Our analysis showed 

no clear differences in the degree of DNA methylation heterogeneity in tumor tissue compared to non-

neoplastic brain tissue, suggesting that a substantial part of the heterogeneity that is detected is innate to 

somatic cells rather than driven by clonal evolution. In fact, we demonstrated that IDH-mutant diffuse 

glioma samples show less heterogeneity when compared to surrounding non-neoplastic brain tissue. 

Nevertheless, it is important to note that the lack of obvious heterogeneity in DNA methylation does not 

preclude this tumor from demonstrating extensive heterogeneity in gene expression. In conclusion, while 

diffuse gliomas may show substantial intratumoral heterogeneity at the histological, RNA and protein level, 

the methylation profile of the tumor cells is rather homogeneous.  
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Methods 

Sample acquisition and study design 

The exploration cohort consisted of 16 patients with an untreated initial diffuse glioma, treated at the Amsterdam 

UMC, location VU medical center (VUmc), Amsterdam, The Netherlands. Multi-sector sampling was performed, using 

a stereotactic biopsy procedure preceding the craniotomy, to obtain two samples of each biopsy location for, 

respectively, FFPE and Molfix© (patient 1-8) or snap-frozen (patient 9-16) fixation. The protocol of this study has been 

published 26, was approved by the Medical Ethics Committee of the VUmc and registered in the Dutch National Trial 

Register (www.trialregister.nl, unique identifier NTR5354). All procedures were carried out in accordance with the 

Helsinki Declaration 27. Written informed consent was obtained from all patients.  

The validation cohort comprised 11 patients with 61 FFPE samples from multi-sector sampling of an untreated 

diffuse glioma treated at the Toronto Western Hospital, Toronto, Canada or USCF Brain Tumor Center, San 

Francisco, USA. In addition, 64 FFPE samples from 64 patients without a glioma from the German Cancer Network 

served as controls.  
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DNA isolation 

DNA isolation was performed by adding proteinase K and incubation at 56°C using QIAamp DNA Mini Kit (Qiagen). 

DNA was quantified using a Qubit Fluorometer (ThermoFisher). Genomic DNA was bisulfite converted using Qiaamp 

DNA FFPE tissue Kit (Qiagen) 

 

DNA methylation profiling by microarray 

Data was processed using the minfi packages in R (R Foundation for Statistical Computing, Vienna). Data from the 

450k (IlluminaHumanMethylation450k.ilmn12.hg19) and EPIC platforms 

(IlluminaHumanMethylationEPICanno.ilm10b2.hg19) were processed separately. Detection P-values were calculated 

for each probe and sample, and samples with an average detection P-value > 0.01 were removed from follow-up 

analysis. Data was normalized using BMIQ from the wateRmelon package in R. Probes on sex chromosomes and 

known cross-reactive probes were removed, as were probes mapping to known SNPs and probes with a detection P-

value > 0.01. Finally, data from different platforms was merged. 

 

DNA-methylation based classification and simplicity score 

Glioma methylation subtype classification was performed using L2-regularized logistic regression using the R 

package LiblineaR. Classifiers were trained and evaluated on a set of common probes from TCGA glioma samples 

with known methylation subtypes. The classes LGm6-GBM and PA-like were merged into a single class LGm6-PA as 

the separation between these classes was based on phenotype. To improve classification accuracy of samples with 

low tumor purity, DKFZ controls were added to the classifier as separate classes.  

 

Methylation purity estimation and simplicity score 

DNA methylation measurements of tumor purity included the PAMES algorithm and simplicity score 17,18. For the 

PAMES normal central nervous system samples from the German Cancer Research Center (DKFZ) were used as a 

control. PAMES operates in three steps. First, AUCs are calculated for each probe discriminating between tumor and 

normal. Second, a selection of the most informative probes is made. Third, tumor purity is calculated on input samples 

using these probes 

 

DNA copy number aberrations inferred from EPIC microarray 

Using the R/Conumee package, copy number aberrations were inferred from the 450k and EPIC array data. Merged 

data from the control samples was used as baseline control for all analyses. Genomic data was used to calculate 

aneuploidy.  

 

Immunohistochemistry and qualitative assessment 

FFPE samples from the exploration cohort were stained using hematoxylin and eosin (HE) and MIB-1. Two expert 

neuropathologists independently, blinded for imaging results, assessed the presence or absence of tumor in each 

sample. Consensus was obtained in case of disagreement. The patient’s histopathological diagnosis was made based 

on resection material using routine procedures and according to the WHO 2016 criteria.28   

 

Histopathological analysis of whole-slide scans 

Using a Hamamatsu Nanozoomer XR, FFPE slides stained with HE and MIB-1 of each sample were digitalized. The 

40x magnification images were converted to multiple mosaic images using NDPITools software. Cellularity, defined as 

number of cells per mm2, was calculated with Cellprofiler. Proliferation index, defined as percentage of Ki-67 positive 

nuclei of all nuclei, was calculated using local developed software.   
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Radiologic evaluation of sample locations 

Standard imaging sequences from the patients in the exploration cohort included T1-, T2-, T2/FLAIR and T1c MRI. 

For each sample location presence of an abnormal signal for each imaging sequence was independently assessed by 

a neurosurgeon and neurosurgical resident with ample experience in glioma imaging. Consensus was obtained in 

case of disagreement. 

 

Sample-to-tumor surface distance 

Tumors were segmented on FLAIR and T1c MRI, using Brainlab Software, by a neurosurgical resident with ample 

experience in glioma imaging. The segmentations and sample coordinates were exported in 3D T1c MRI space and 

sample to tumor-surface distances were calculated using Matlab.  

 

Statistical analysis 

Median values with interquartile range were used to describe non-normally distribute data. Mann-Whitney-U test was 

used to compare distributions between subgroups. Correlations were calculated with the Spearman or Pearson’s 

correlation and compared using Fisher’s z transformation. Comparison of percentages between subgroups was 

performed using Fisher’s test Normalization and scaling of purity measurement modalities was performed by 

subtracting the mean and dividing by the standard deviation. To compare absolute purity estimates, the normalized 

and scaled purity measurements were rescaled using the PAMES mean and SD. P values less than 0.05 was 

considered statistically significant. R (version 3.5.3) was used for all statistical analyses.   

 

Heterogeneity analysis 

Each probe per patient was classified as methylated (B>=0.3) or unmethylated (B<0.3). A table of all possible pairwise 

combinations of samples was generated. Each pair of samples was evaluated for heterogeneity by counting the 

number of identical (homogeneous) probes, the number of differing (heterogeneous) probes and percentages were 

subsequently calculated. Each pair was annotated according to the metadata for each sample in the comparison. 

 

For each patient and sample type we tabulated all possible combinations of any number samples, iteratively including 

between 1 and the total number of possible samples.  The proportion of heterogeneous and homogeneous probes 

was calculated when considering each sample in a given set. For each patient/sample type and sample number we 

then calculated the mean and standard deviation of the proportion heterogeneous across all sets. 
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