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Abstract 

 

The development of DNA-barcoded antibodies to tag cell-surface molecules has enabled the 

use of droplet-based single cell sequencing (dsc-seq) to profile the surface proteomes of cells. 

Compared to flow and mass cytometry, the major limitation of current dsc-seq-based workflows 

is the high cost associated with profiling each cell, thus precluding its use in applications where 

millions of cells are required. Here, we introduce SCITO-seq, a new workflow that combines 

combinatorial indexing and commercially available dsc-seq to enable cost-effective cell surface 

proteomic sequencing of greater than 105 cells per microfluidic reaction. We demonstrate 

SCITO-seq’s feasibility and scalability by profiling mixed species cell lines and mixed human T 

and B lymphocytes. To further demonstrate its applicability, we show comparable cellular 

composition estimates in peripheral blood mononuclear cells obtained with SCITO-seq and 

mass cytometry. SCITO-seq can be extended to include simultaneous profiling of additional 

modalities such as transcripts and accessible chromatin or tracking of experimental 

perturbations such as genome edits or extracellular stimuli. 

Main 

 

The use of DNA to barcode physical compartments and tag intracellular and cell-surface 

molecules has enabled the use of sequencing to efficiently profile the molecular properties of 

thousands of cells simultaneously. While initially applied to measuring the abundances of 

RNA1,2 and identifying regions of accessible DNA3, recent developments in DNA-tagged 

antibodies have created new opportunities to use sequencing to measure the abundances of 

cell surface4,5 and intracellular proteins6. 
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Sequencing DNA-tagged antibodies is particularly useful for profiling cells whose identity and 

function have long been determined by the expression of cell surface proteins (e.g. immune 

cells) and has several advantages over flow and mass cytometry. First, the number of cell 

surface proteins that can be measured by DNA-tagged antibodies is exponential to the number 

of bases in the tag. In theory, all cell surface proteins with available antibodies can be targeted 

and in practice, panels targeting hundreds of proteins are now commercially available4,7. This 

contrasts with cytometry where the number of proteins targeted is limited by the overlap in the 

emission spectrums of fluorophores (flow: 4-48) or the number of unique masses of metal 

isotopes that can be chelated by commercial polymers (CYTOF: ~50)8,9. Second, sequencing-

based proteomics can readily read out all antibody-derived tags (ADTs) with one reaction 

instead of subsequent rounds of signal separation and detection, significantly reducing the time 

and sample input for profiling large panels and obviating the need for fixation. Third, additional 

molecules can be profiled within the same cell enabling multimodal profiling of cell surface 

proteins along with the immune repertoire, transcriptome4, and potentially the epigenome. 

Finally, sequencing is amenable to encoding orthogonal experimental information using 

additional DNA barcodes (either inline or distributed) creating opportunities for large-scale 

multiplexed screens that barcode cells using natural variation10, synthetic sequences11,12, or 

sgRNAs13,14. 

 

Compared to flow and mass cytometry, the major limitation in sequencing-based single-cell 

proteomics4,7 is the high cost associated with profiling each cell, thus precluding its use across 

population cohorts or large-scale screens where millions of cells would need to be profiled. Like 

other single-cell sequencing assays, total cost per cell for proteomic sequencing is divided 

between cost associated with library construction and the cost for sequencing the library. 

Because the number of protein molecules per cell is 2-6 orders of magnitude higher than RNA15 

and the use of targeting antibodies limits the number of features measured per cell, sequencing 
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ADTs will result in more unique molecules than RNA given the same depth of sequencing per 

cell. However, the costs associated with commercially available microfluidics-based single cell 

library construction16 and conjugation of modified DNA sequences to antibodies4 are high. Thus, 

for single-cell proteomic sequencing to be a compelling strategy for high dimensional 

phenotyping of millions of cells, there is a major need to develop a workflow that minimizes 

library and antibody preparation costs. 

 

Here, we introduce single cell combinatorial indexed cytometry by sequencing (SCITO-seq), a 

single cell proteomics workflow that combines split-pool indexing and droplet-based sequencing. 

Our approach is based on the key insight that the large number of droplets produced by 

microfluidic workflows (e.g. ~105 for 10X Genomics16) can be used as a second round of 

physical compartments for single-cell combinatorial indexing (SCI)17–20 resulting in a simple and 

cost-effective two-step procedure for library construction. While two-step SCI workflows have 

been recently described for ATAC-seq21 and RNA-seq22, direct implementation of combinatorial 

indexing for protein sequencing has not been reported. For SCITO-seq, we introduce a strategy 

using universal conjugation followed by pooled hybridization to minimize the cost for generating 

large panels of DNA-tagged antibodies. Tagged antibodies are then used to stain cells in 

individual pools prior to high-concentration loading utilizing commercially available microfluidics. 

After ADT library construction and sequencing, protein expression profiles for cells 

simultaneously encapsulated in a single drop are resolved by the combinatorial index of pool 

and droplet barcodes. Compared to other single cell sequencing workflows, loading cells at high 

concentrations and sequencing ADTs associated with a limited number of cell surface proteins 

reduce the library construction and sequencing costs per cell, respectively. We demonstrate the 

feasibility and scalability of SCITO-seq in mixed species and mixed individual experiments 

profiling 104-105 cells per microfluidic reaction. We further illustrate an application of SCITO-seq 

by profiling up to 105 peripheral blood mononuclear cells using a panel of 28 antibodies in one 
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microfluidic reaction, producing results comparable to mass cytometry (CyTOF) while 

achieving >10-fold increase in throughput compared to standard sequencing workflows. Finally, 

we demonstrate that targeted sequencing of ADTs using SCITO-seq can recover the same cell 

clusters at very low sequencing depths per cell. SCITO-seq can be integrated with existing 

workflows for multimodal profiling of transcripts22 and accessible chromatin21 and can be a 

compelling platform for obtaining rich phenotyping data from high-throughput screens of genetic 

and extracellular perturbations. 

 

As microfluidic cell loading is governed by a Poisson distribution, the major limitation of standard 

droplet-based single cell sequencing (dsc-seq) workflows is ensuring encapsulation of single 

cells to reduce the number of collisions. This results in suboptimal cell recovery, reagent usage, 

and inflated library construction costs. For the 10X Genomics microfluidic platform, Poisson 

loading at concentrations of 2x103-2x104 cells results in a cell recovery rate (CRR) of 50-

60%16,22 and collision rates of 1-10% (Supplementary Fig. 1). However, greater than 97%-82% 

of droplets do not contain a cell, leading to wasted reagents (Supplementary Fig. 2 and 3). 

One approach to decrease the library preparation cost and increase the sample and cell 

throughput of dsc-seq is to “barcode” samples using either natural genetic variants10,23,24 or 

synthetic DNA molecules11,12,25 prior to pooled loading at 5x104-8x104 cells, reducing the 

proportion of droplets without a cell to ~65%-45%. Because simultaneous encapsulation of cells 

within a droplet can be detected by the co-occurrence of different sample barcodes (e.g. genetic 

variant or synthetic DNA tags) with the same droplet barcode (DBC), sample multiplexing 

increases the number of singlets recovered per microfluidic reaction while maintaining a low 

effective collision rate that is tunable by the number of sample barcodes. However, as collision 

events can only be detected but not resolved into usable single-cell data, the maximum number 

of cells loaded to minimize cost is ultimately limited by the overhead cost incurred for 

sequencing collided droplets. 
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Single-cell combinatorial indexing (SCI) is an alternative, scalable approach to control the 

collision rate of single-cell sequencing by labeling subsequent rounds of physical 

compartmentalization with DNA barcodes. While standard SCI approaches require more than 

two rounds of combinatorial indexing to sequence 105-106 cells17–20, recent advances utilizing 

droplet-based microfluidics for combinatorial indexing have enabled simplified two-round 

workflows to achieve the same throughput21,22. For applications where only a set of targeted 

markers are needed, such as high-throughput screens and clinical biomarker profiling, current 

SCI workflows profiling the entire epigenome or transcriptome per cell would likely result in 

prohibitively high sequencing costs. 

 

Here we propose a simple experimental workflow, SCITO-seq, which combinatorically indexes 

single cells using DNA-tagged antibodies4 and microfluidic droplets to enable cost-effective 

profiling of cell-surface proteins scalable to 105-106 cells (Fig. 1a). First, each antibody is 

conjugated with specific amine modified oligonucleotide sequences (antibody handle, 20bp) 

which enables pooled hybridization to minimize the costs associated with generating large 

numbers of DNA-tagged antibodies. Second, equal amounts of antibodies are combined and 

aliquoted before the addition of an oligo pool containing both a compound barcode to delineate 

the antibody and the pool (Ab+PBC), as well as a complementary sequence to the antibody 

handle for hybridization to its respective antibody (Fig. 1b). Third, cells are allocated into pools 

and stained with pool-specific antibodies. Fourth, the stained cells are combined and loaded at 

concentrations tunable to the targeted collision rate followed by processing using a 

commercially available dsc-seq platform to generate a sequencing library. Finally, after 

sequencing only the antibody derived tags (ADTs), the surface protein expression profiles of 

multiple encapsulated cells (multiplets) within a droplet can be resolved into usable single-cell 

protein expression profiles by the combinatorial index of Ab+PBC and DBC. 
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Key to SCITO-seq is the recognition that because of Poisson loading, the fraction of droplets 

with increasing number of cells decreases exponentially. Thus, indexing cells using a small 

number of antibody pools will ensure that the combinatorial index (Ab+PBC and DBC) will 

identify a cell at low collision rates even at high loading concentrations. Theoretically, given P 

pools, C cells loaded, D droplets formed, the collision rate is given as ��Collision	 
 1 �


��� �1 � �

��
��  while the rate of empty droplets is given by ��Empty	 
 
��� (see Methods for 

derivation). Our derivation of the collision rate differs from previously reported estimates derived 

from the classical birthday problem22, which did not account for higher order encapsulation of 

more than two cells within the same droplet. These closed form derivations of the collision and 

empty droplet rates are nearly identical to those obtained based on simulations 

(Supplementary Fig. 4). For example, in a commercially available microfluidic platform where 

105 droplets are formed, a loading concentration of 1.82x105 cells (target recovery of 105 cells) 

results in 84% of droplets containing at least one cell but only 4.4% of droplets containing 

greater than four cells (Supplementary Fig. 2 and 3). To yield 105 resolved cells at a collision 

rate of 5% for this loading concentration, 11 antibody pools would be needed, resulting in an 

antibody preparation and library construction cost of 2¢/cell and savings of 17-fold over the 

standard workflow (Fig. 1c). At 160 pools and 5% collision rate, 106 cells can be profiled in one 

microfluidic reaction with an average of 18.9 cells captured per droplet resulting in a total 

preparation cost of 0.2¢/cell and savings of 174-fold over the standard workflow (Fig. 1c). 

 

To demonstrate the feasibility of SCITO-seq, we first performed a mixed species experiment by 

mixing human (HeLa) and mouse (4T1) cells, splitting into five aliquots, and staining each pool 

with anti-human CD29 (hCD29) and anti-mouse CD29 (mCD29) antibodies labeled with pool-

specific barcodes (Fig. 1d). After washing unbound antibodies and mixing the five stained pools 
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at equal proportions, 105 cells were loaded for ADT library construction using the 10X Genomics 

3’ V3 chemistry and the resulting library sequenced to recover 38,504 post-filtered cell-

containing droplets (CCDs) at a depth of 2,909 reads/CCD. For comparison purposes, we also 

prepared and sequenced a library derived from the transcriptome at a depth of 25,844 

reads/CCD. Merging ADTs for each antibody across pools to mimic standard single-cell 

proteomic profiling4, we detected 40.6% and 35.7% of CCDs with only mouse or human CD29 

ADTs and 21.9% with CD29 ADTs from both species which we labeled as cross-species 

multiplets (Fig. 1e). Estimates from the analyses of transcriptomic data yielded similar results: 

38.1% CCDs with mouse transcripts, 32.7% with human transcripts and 29.1% cross-species 

(Supplementary Fig. 5). Based on the frequencies of mouse and human singlets, an additional 

22.0% of CCDs are estimated to be within-species multiplets and cannot be detected or 

resolved based on the merged ADTs for a total of 44% multiplets. Utilizing the combinatorial 

DBC and Ab+PBCs, the cross-species collision rate was reduced to 5.2% (Fig. 1f) and many 

within-species multiplets were also resolved (Supplementary Fig. 6) without significant pool to 

pool variation (Supplementary Fig. 7). The ability to resolve cross and within-species multiplets 

results in a total of 46,295 cells profiled at an estimated collision rate of 11.0%, a 3.7-fold 

increase over standard workflows (12,500 droplets at 11% collision rate) (Fig. 1f). Similar 

results were observed for a two-pool design and lower loading concentration of 2x104 cells, 

using universal conjugation achieving a 2.2-fold increase in throughput at a collision rate of 4.6% 

(Supplementary Fig. 7, 8, 9 and 10). Our results are also consistent with an alternative two-

pool design where four different Ab+PBC barcodes were directly conjugated onto the antibodies 

suggesting that both within and across pool contamination rates of secondary hybridization 

oligos are low (Supplementary Fig. 11). 
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Figure 1: Design of SCITO-seq and mixed-species proof-of-concept experiment.  

(a)  SCITO-seq workflow. Antibodies are first each conjugated with a unique antibody barcode 

(red, blue and green) and hybridized with an oligo containing the compound antibody and pool 
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barcodes (Ab+Pool BC: [red, blue, green] x [purple, orange, brown]). Cells are split and stained 

with pool-specific antibodies per pool. Stained cells are combined and loaded for droplet-based 

sequencing at high concentrations. Cells are resolved from the resulting data using the 

combinatorial index of Ab+Pool BC and droplet barcodes. (b) A detailed structure of the SCITO-

seq fragment produced. The primary universal oligo is an antibody specific hybridization handle. 

The secondary oligo consists of the reverse complement sequence to the handle followed by a 

TruSeq adaptor (black), the compound Ab+Pool barcode (orange+blue), and the 10x 3’v3 

feature barcode sequence (FBC, gray). The Ab+Pool barcode and the droplet barcode (DBC) 

form a combinatorial index unique to each cell. (c) Cost savings and collision rate analysis. As 

the number of pools increases, total library and DNA-barcoded antibody construction costs drop 

(left) while the number of cells recovered increases (right). Number of cells recovered as a 

function of the number of pools at three commonly accepted collision rates (1%, 5% and 10%) 

(right). (d) Mixed species (HeLa and 4T1) proof-of-concept experiment. HeLa and 4T1 cells are 

mixed and stained in five separate pools at a ratio of 1:1 with SCITO-seq antibodies barcoded 

with pool-specific barcodes. Scatter (left) and density (right) plots of (e) 38,504 unresolved cell-

containing droplets (CCD) and (f) 46,295 resolved cells at a loading concentration of 105 cells. 

Merged ADT counts are generated by summing all counts for each antibody across pools 

simulating standard workflows. Resolved data is obtained after assigning cells based on the 

combination of Ab+Pool and DBC barcodes. 

 

We next sought to further assess the scalability of SCITO-seq and its applicability to resolve 

quantitative differences in cellular composition based on cell surface protein expression. We 

isolated primary CD4+ T cells and B cells from two donors and mixed them at a ratio of 5:1 for 

one donor and 1:3 for the second donor. To account for potential batch effects from SCITO-seq, 

we equally mixed donors prior to splitting and staining each of five pools with pool-barcoded 

CD4 and CD20 antibodies (Fig. 2a). Stained pools were mixed at equal ratios, loaded at 105 
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and 2x105 cells per well on a 10X Chromium system, processed with 3’V3 chemistry, and the 

resulting ADT and RNA libraries sequenced to recover 41,889 and 58,769 post-processing 

CCDs, respectively. 

 

Merging the ADT data across the five pools, CD4 and CD20 antibodies stained the expected 

cell types defined by the transcriptome and identified 25.7% (105 cell loading) and 40% (2x105 

cell loading) cross cell-type multiplets consistent with the transcriptomic data (105: 23.5%; 2x105: 

49.6%, Fig. 2b, Supplementary Fig. 12). We further used demuxlet10 to analyze genetic 

variants captured in the transcriptomic data to estimate 17.7% (105 cell loading) and 30% (2x105 

cell loading) within cell-type multiplets that cannot be resolved by merged ADTs for a total 

multiplet rate of 43.4% and 70%. After resolving both cross and within cell-type multiplets using 

the combinatorial index of Ab+Pool and DBC with minimal batch effects (Supplementary Fig. 

13), we obtained 60,249 and 116,827 resolved cells with the frequency of cross cell-type 

collision events reduced from 25.7% to 8.9% (105 cell loading) and from 40% to 14.3% (2x105 

cell loading), while the frequencies of single positives increased (Fig. 2b and c). Further, the 

observed co-occurrences of SCITO-seq antibodies from different pools were highly correlated 

with the expected co-occurrences (105 cell loading: R = 0.99, P < 2.2x10-16; 2x105 cell loading: R 

= 0.88, P < 1.0x10-13), suggesting that the encapsulation of multiple cells within droplets is not 

biased for specific pools or cell types (Fig. 2d). These results demonstrate the scalability of 

SCITO-seq to profile 60,249 and 116,827 cells in one microfluidic channel at collision rates of 

15.0% and 25.0%, effectively increasing the throughput by 3.3-fold and 4.0-fold over standard 

workflows at the same collision rates.  

 

We next assessed if SCITO-seq can capture the unequal distribution of B and T cells from the 

two donors, especially from droplets that encapsulated multiple cells. For this analysis, we 

focused only on 39,955 (105 cell loading) and 45,240 (2x105 cell loading) droplets predicted to 
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contain cells from one genetic background. Within droplets expressing only one antibody pool 

barcode (pool singlets), analysis of the frequencies of CD4+ and CD20+ cells (T:B100K: 4.9:1 and 

1:2.6; T:B200K: 8.7:1 and 1:1.6) mirrored the expected proportion of T to B cells for each of the 

two donors and was consistent with estimates obtained from the transcriptomic data (Fig. 2e). 

Encouragingly, approximately the same frequency estimates were obtained in droplets 

expressing multiple pool (pool doublets) barcodes (T:B100K: 5.6:1 and 1:2.9; T:B200K: 5.3:1 and 

1:2.5, Fig. 2e). These results highlight the ability of SCITO-seq not only to detect but resolve 

interindividual compositional differences based on cell surface protein information while 

alternative multiplexing methods can detect but not resolve encapsulation of multiple cells within 

a droplet.   

 

Because pool-specific effects appear to be minimal in SCITO-seq (Supplementary Fig. 13), the 

pool-specific antibody barcodes could be used to directly label samples, obviating the need for 

orthogonal sample barcoding. To demonstrate this application, we stained cells from each of 

two donors in separate pools containing pool-specific barcoded antibodies (e.g., pool 1 contains 

CD4-BC1 staining donor 1 cells while pool 2 contains CD4-BC2 staining donor 2 cells). For 

loading concentrations of 2x104 and 5x104 cells, we obtained 17,730 and 34,549 post-

processing CCD, sequenced to a per CCD depth of 964 and 1,540 reads for the ADT and 

20,951 and 14,332 reads for the RNA. We observed the expected proportion of T and B cells 

per donor based on the distribution of the expression of CD4 and CD20 respectively 

(Supplementary Fig. 14 and 15). After resolution, we recovered 18,680 and 41,059 cells at 

collision rates of 7.4% and 18.6% respectively (Supplementary Fig. 16). Estimates of co-

occurrence frequencies of different pool and antibody barcodes were highly correlated (r=0.99, 

p-value < 0.001) with observed values (Supplementary Fig. 17). 
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Figure 2: Demonstration of SCITO-seq in human donor experiment with significant 

increase in throughput of profiling proteins.  

 

(a)  Schematic of human mixing experiment where different ratios of T and B cells (5:1 and 1:3) 

were mixed prior to splitting and indexing with five pools of CD4 and CD20 antibodies. Cell 

types are indicated by color (T: blue, B: red) while shapes indicate donors. Side by side scatter 

plot and density plots of (b) unresolved and (c) resolved cells for loading concentrations of 105 

(first two from the left) and 2x105 (third and fourth from the left) cells. (d) Expected (x-axis) 

versus observed (y-axis) frequencies of co-occurrences between antibody pool barcodes for 

loading concentrations of 105 (left) and 2x105 (right) cells. Expected frequencies were calculated 

based on the frequencies of barcodes in pool singlets. (e) Distribution of the normalized UMI 

counts for each antibody in cells resolved from pool singlets and pool multiplets per donor. 
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Distribution of the antibodies in pool multiplets shows expected prior mixture proportions and 

overlaps with the corresponding distribution in pool singlets.  

 

 

 

To demonstrate SCITO-seq’s applicability for high-dimensional and high-throughput cellular 

phenotyping, we profiled peripheral blood mononuclear cells (PBMCs) from two healthy donors 

using a panel of 28 monoclonal antibodies across 10 pools. After split pool staining, high 

concentration loading at 105 and 2x105 cells per microfluidic channel, and sequencing the 

resulting ADT and RNA libraries, we obtained 34,712 and 48,324 post-filtering CCDs. After 

resolution of the multiplets, we obtained collision rates of 4.4% and 8.5% and 55,420 and 

93,127 resolved cells, increasing throughput by 10-fold over standard workflows. Leiden 

clustering based on either merged ADT counts or RNA across pools (Fig. 3a, Supplementary 

Fig. 18 and 19) resulted in clusters that are poorly differentiated in UMAP space due to the high 

multiplet rates at these loading concentrations. Strikingly, Leiden clustering using resolved ADT 

counts resulted in 17 clusters that are spatially differentiated in UMAP space and can each be 

annotated based on the expression of lineage specific markers (Fig. 3b). We detected seven 

clusters of monocytes, one cluster of conventional dendritic cells, naïve and memory CD4+ and 

CD8+ T cells, natural killer (NK) cells, B cells and gamma delta T cells (gdT). Notably, naive 

(CD45RA) and memory (CD45RO) CD4+ and CD8+ T cells emerge as distinct clusters which are 

often difficult to resolve using only transcriptomic data due to the low transcript expression of 

lineage (e.g. CD4) and state (e.g. CD45RO) determining markers16. 

 

We further assessed the accuracy of SCITO-seq for quantitative immune phenotyping by 

comparing the compositional estimates obtained from pool singlets versus pool multiplets 

focusing only on droplets that contain cells from the same donor (as estimated using demuxlet). 
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UMAP projections for cells resolved from pool singlets vs pool multiplets were qualitatively 

similar (Fig. 3c). The compositional estimates of the 16 immune populations detected from pool 

singlets and pool multiplets (doublet, triplet, quadruplets) from the same donor were highly 

similar as measured by cosine similarity (CS)(average CS over all pairwise comparisons: 0.98 

[donor1], 0.97 [donor2]; Fig. 3d and e), demonstrating that SCITO-seq is capable of resolving 

cell surface expression profiles of cells within multiplets. Furthermore, the cosine similarity 

within donors was higher than between donors (average CS: 0.83) as expected. To further 

evaluate the data produced by SCITO-seq, we performed mass cytometry (CyTOF) using the 

same antibodies conjugated to metal isotopes (Supplementary Fig. 20). Joint clustering of the 

CyTOF and SCITO-seq data produced qualitatively similar UMAP projections with comparable 

clusters (Fig. 3c) and quantitative comparisons of composition estimates per donor revealed 

similar distributions obtained from the two orthogonal assays (SCITO-seq vs CyTOF donor1 

average CS: 0.95, SCITO-seq vs CyTOF donor2 average CS: 0.93) (Fig. 3e and 

Supplementary Fig. 21). 

 

A key advantage of SCITO-seq as a tool for high-throughput phenotyping is the high information 

content obtained by profiling protein abundance at limited depth of sequencing per cell. This 

was demonstrated by down sampling to 25 UMIs/Ab/cell, which corresponds to ~45 

reads/Ab/cell (at 45% library saturation), in the dataset generated from 2x105 loading. At this 

sampling rate, we were able to achieve an Adjusted Rand Index (ARI) of > 0.8 for assigning 

cells to the same clusters in the full dataset (Fig. 3f). A similar trend was observed for the data 

generated from loading 105 cells (Supplementary Fig. 22). For SCITO-seq, as the library 

preparation cost quickly diminish with increasing number of pools, the total cost per cell is 

dominated by sequencing. By shallow sequencing a limited number of targets (e.g. ~2x103 

reads per cell for ~50 targets), SCITO-seq can remain cost effective even when large numbers 

of pools are used (Fig. 3g). The cost-effective, simple and flexible design provide potential for 
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incorporating additional modalities and orthogonal experimental information. This positions 

SCITO-seq as a compelling method for scalable rich phenotyping, especially for high-throughput 

screening and clinical biomarker profiling applications where targeted profiling of large numbers 

of cells across many samples are required. 

    

 

 

 

Figure 3: Large-scale PBMC profiling of healthy controls using antibody counts.  
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(a) UMAP projection of unresolved droplet expression based on antibody counts showing key 

lineage markers when loading 2 x105 cells. (b) Ab+PBCs allow resolution of representative cell 

types in PBMCs utilizing an immunophenotyping panel of 28 cell surface antibodies. 

Representative markers displayed enrichment of ADT counts in specific cell clusters 

corresponding to canonical cell types in PBMCs. (c) UMAP projections of cells classified from 

pool singlets, multiplets and CyTOF. Principle Component Analysis (PCA)-based integration of 

data (Ingest function from Scanpy) was used to determine overlapping cell populations in 

SCITO-seq and CyTOF. (d) Stacked bar charts of cell type proportions among pool singlets and 

various multiplets (DBL: doublets, TRI: triplets, QUAD: quadruplets) and CyTOF within donor 

and across donors (D1 and D2). Each color maps to its respective Leiden cluster.  (e) Heatmap 

of pairwise cosine similarity between estimated cell type proportions for singlets (SNG), 

doublets (DBL), triplets (TRI), quadruplets (QUAD) and CyTOF per donor. (f) Adjusted Rand 

Index of the resulting clusters (y-axis) versus down sampling of number of UMIs (per antibody 

per cell; x-axis). (g) Total cost estimates (purple) including library prep (red), antibody prep (blue) 

and sequencing cost assuming 45 reads/Ab/cell and a panel of 50 antibodies (green). 
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Closed form derivation of collision and empty droplet rates 

Suppose there are P pools of cells. For pool �, cells arrive according to a Poisson point process 

with rate �� � 0 (abbreviated PPP(��)), where the unit of time corresponds to the inter-arrival 

time of droplets. In the most general formulation, we assume that the point processes for 

different pools are independent. Further, we assume the probabilities of a gel/bead and a cell 

encapsulated into a droplet as ��� and ���, respectively. Therefore, by Poisson thinning, the 

arrival of cells follows PPP(�����). 

 

We are interested in the probability of the event (called collision) that a droplet contains two or 

more cells from the same pool. Let �� denote the number of cells from pool � successfully 

loaded into a droplet. Then, ��, �	,���, �� where �� � Poisson (�����), are independent random 

variables, and ��Collision	 can be computed as 1 � ��No Collision	. Here ��No Collision	 
represents a probability that every droplet contains ≤ 1 pool barcode. Therefore, we derive: 

 

��Droplet Collision	 
 1 �  ��No Droplet Collision	 


 1 � ��$�� % 1& ' $�	 % 1& ' … ' $�� % 1&	 


 1 � ��$�� % 1&	��$�	 % 1&	 … ��$�� % 1&	 


 1 � )*
�
����+1 � �����,-
�

���

 

 

where the third equality follows from independence. 
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Next we condition ��Droplet Collision	 on �*Non-empty Droplet-, which is the probability that a 

droplet contains a cell at a given observation, �*Non-empty Droplet- 
 1 � ��Empty Droplet	, 
where: 

 

��Empty Droplet	 
 ��$�� 
 0& ' $�	 
 0& ' … ' $�� 
 0&	 


 ) 
�
����
�

���

 

 

If there are . droplets formed and a total of / cells loaded evenly across the 0 pools (i.e., there 

are 
�

�
 cells per pool), then �� 
 �
�

�

��
�
� 
  �

��
 for all pools � 
 1,2, … , 0 and that ��� becomes a 

nuisance parameter. If we further assume that ���  
  �� 
 1 for all � 
 1,2, … , 0, then 

��Droplet Collision	 and ��Empty Droplet	 simplify as 

 

��Droplet Collision	 
 1 � 
��� 21 � /
0.3

�

 

��Empty Droplet	 
 
��

�. 

 

And finally, to estimated conditioned probability of barcode collisions: 

 

 

��Droplet Collision|Non‐empty Droplet	 
 ��Droplet Collision	
1 � ��Empty Droplet	  



1 � 
��� �1 � /

0.�
�

1 � 
���
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A second collision rate we can calculate is the cell barcoding (droplet barcode + pool barcode) 

collision rate which can be computed as the conditional probability that a particular pool 

� 6 71,2, … , 08 has a collision in a given droplet, given that the droplet contains at least one cell 

from that pool. If we assume that there are . droplets formed and a total of / cells are 

distributed evenly across 0 pools, then we obtain: 

 

��Collision in pool �|Droplet contains at least one cell from pool �	 

1 � 
� �

�� �1 � /
0.�

1 � 
� �
��

, 

for all � 6 71,2, … , 08. 
 

The above conditional probability is related to the proportion of the number of pools with a 

collision in a given droplet, relative to the total number of pools each with at least one cell 

represented in the droplet. More precisely, 

 

<�Number of pools with a collision in a droplet	
<�Number of pools represented at least once in a droplet	 


0 21‐
� �
�� B1 � /

0.C3
0 21‐
� �

��3
  



1 � 
� �

�� �1 � /
0.�

1 � 
� �
��

 

 

 

Simulation of collision and empty droplet rate 

 

For simulating the collision rates and empty droplet rates, we assumed a cell recovery rate of 60% 

and 105 droplets are formed per microfluidic reaction resulting in . 
 6 E 10
. For / cells loaded, 
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cell containing droplets are simulated using a Poisson process where � 
 //.. Assuming each 

simulated droplet G contains H� cells, we then compute the number of pool barcodes not tagging 

a cell in each droplet as: 

 

I/0� 
 0 J1 � 1
0K

��

 

 

the number of pool barcodes tagging exactly one cell as: 

 

I/1� 
 /� J1 � 1
0K

����

 

 

and the number of pool barcodes tagging greater than one cell as: 

 

I/�� 
 0 � I/0� � I/1�  
 

The conditional collision rate is estimated as: 

 

�L�Collision in pool �|Droplet contains at least one cell from pool �	 
 ∑ I/��
�
�

∑ I/�� � ∑ I/1��
�

�
�

 

 

Estimates of antibody conjugation, library construction, and sequencing 

Cost for library conjugation is estimated to be $7.5 per antibody per Ng using the Thunderlink 

conjugation kit. Cost for library preparation is estimated to be $1,482 per well as advertised by 

10X Genomics. Cost for sequencing is estimated as $26,700 per 12B reads as advertised by 

Illumina. 
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Primary antibody oligonucleotide conjugation 

For the species mixing experiment, anti-human CD29 and anti-mouse CD29 antibodies were 

purchased from Biolegend (cat. 303021, 102235) and conjugated per antibody using a 

ThunderLink kit (Expedeon cat. 425-0000) to distinct 20 bp 3’ amine-modified HPLC-purified 

oligonucleotides (IDT) to serve as hybridization handles. Antibodies were conjugated at a ratio 

of 1 antibody to 3 oligonucleotides (oligos). In parallel, oligos similar to current antibody 

sequencing tags were directly conjugated at the same ratio for comparison. Sequences for the 

hybridization oligonucleotides and directly conjugated oligos were designed to be compatible 

with the 10x feature barcoding system by introducing a reverse complementary sequence to the 

bead capture sequence, alongside a pool and antibody specific barcode for demultiplexing. 

Conjugates were quantified using Protein Qubit (Fisher cat. Q33211) for antibody titration and 

flow validation. Also, we orthogonally quantified the antibodies using protein BCA. For the 

human donor mixing experiment, CD4 and CD20 antibodies (Biolegend cat. 300541, 302343) 

were conjugated as described above. 

  

Antibody-specific hybridization design 

After conjugation of primary handle oligos, antibodies were combined and pools of oligos (IDT) 

were used to hybridize the primary handle sequences prior to staining. Of note, only one 

conjugation was done per antibody with the previously mentioned 20 bp oligonucleotide (e.g. all 

CD4 conjugates have the same 20 bp oligonucleotide). To avoid non-specific transfer of 

oligonucleotides between the different antibody clones and the same antibody clone from 

different wells, each clone received a unique 20 bp handle (Antibody handle). To sequence with 

antibody and pool specificity, a 10 bp barcode was added to the secondary oligo. The total 

oligonucleotide sequence consisted of a reverse complementary sequence to the antibody 

specific primary handle sequence (20 bp), TruSeq Read2 (34 bp), pool barcode (10 bp), and 

capture sequence (22 bp) (Fig. 1b). Prior to cell staining, 1 ug of each antibody was pooled and 
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hybridized with 1 ul of respective secondary oligonucleotides at 1 uM at room temperature for 

15 minutes. The hybridized antibody-oligonucleotide conjugates were purified using an Amicon 

50K MWCO column (Millipore cat. UFC505096) according to the manufacturer's instructions to 

remove excess free oligonucleotides. 

 

Determination of non-specific transfer of oligonucleotides between antibodies 

To determine the optimal concentration of hybridizing oligonucleotides for cell staining, we 

performed a mixed cell line experiment to determine the level of background staining of free 

oligonucleotides. A mixture of lymphoblastoid cells and primary monocytes were stained with 

CD14 and CD20 antibodies and hybridized with oligonucleotides with different fluorophores 

(FAM and Cy5 respectively) per antibody for 15 minutes at room temperature. Concentrations of 

hybridizing oligonucleotides with different concentrations (1uM and 100 uM) were tested 

(Supplementary Figure. 23). Antibodies directly conjugated to fluorophores served as a 

positive control antibodies (CD13-BV421, Biolegend cat. 562596) to gate respective populations. 

 

Validation of saturation of hybridization oligonucleotides using flow cytometry 

To determine the saturation of available primary oligo handles, 1 ug of conjugated CD3 antibody 

(Biolegend) was hybridized with 1 ul of 1 uM of a reverse complementary oligo with a Cy5 

modification (IDT modification /5Cy5/). After incubating at room temperature for 15 minutes, 1 ul 

of 1 uM of the same reverse complementary oligo but with a FAM modification (IDT modification 

/56-FAM/) was added to the reaction and additionally incubated for 15 minutes. The cocktail 

was then added to 1x106 PBMCs pre-stained with Trustain FcX (Biolegend cat. 422302) 

(Supplementary Figure. 24).  

 

 

10x Genomics run for SCITO-seq  
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Washed and filtered cells were loaded into 10x Genomics V3 Single-Cell 3’ Feature Barcoding 

technology for Cell Surface Proteins workflow and processed according to the manufacturer’s 

protocol. After index PCR and final elution, all samples were run on the Agilent TapeStation 

High Sensitivity DNA chip (D5000, Agilent Technologies) to confirm the desired product size. A 

Qubit 3.0 dsDNA HS assay (ThermoFisher Scientific) was used to quantify final library for 

sequencing. Libraries were sequenced on a NovaSeq 6000 (Read1 28 cycles, index 8 cycles 

and Read2 98 cycles). 

 

Mixed species experiment 

HeLa and 4T1 cells were ordered from ATCC (ATCC cat. CCL-2, CRL-2539) and cultured in 

complete DMEM (Fisher cat. 10566016,10% FBS (Fisher cat. 10083147) and 1% penicillin-

streptomycin (Fisher cat. 15140122)) in a 37°C incubator with 5% CO2 on 10 cm culture dishes 

(Corning). Prior to staining, cells were trypsinized at 37°C for 5 minutes using 1 ml Trypsin-

EDTA (Fisher cat. 25200056) and were quenched with 10 ml complete DMEM. Cells were 

harvested and centrifuged at 300xg for 5 minutes. Cells were resuspended in staining buffer 

(0.01% Tween-20, 2% BSA in PBS) and counted for concentration and viability using a 

Countess II (Fisher cat. AMQAX1000). HeLa and 4T1 cells were then mixed at equally and 

1x106 cells were aliquoted into two 5 ml FACS tubes (Falcon cat. 352052) and volume 

normalized to 85 ul. Cells were stained with 5 ul of Trustain FcX for 10 minutes on ice. Cell 

mixtures were stained with a pool of human and mouse CD29 antibodies, either with the direct 

or universal design, in a total of 100 ul for 45 minutes on ice. Cells were then washed 3 times 

with 2 ml staining buffer and centrifuged at 300xg for 5 minutes to aspirate supernatant. Cells 

were then resuspended in 200 ul of staining buffer and counted for concentration and viability as 

before. Cells from each stained pooled were mixed and 2x104 or 1x105 cells were loaded into 

the 10x chromium controller using 3’v3 chemistry. 
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Human donor mixing experiment 

PBMCs were collected from anonymized healthy donors and were isolated from apheresis 

residuals by Ficoll gradient. Cells were frozen in 10% DMSO in FBS and stored in a freezing 

container at -80°C for one day before long term storage in liquid nitrogen. Cells from two donors 

were quickly thawed in a 37°C water bath before being slowly diluted with complete RPMI1640 

(Fisher cat.61870-036, supplemented with 10% FBS and 1% pen-strep) before centrifugation at 

300xg for 5 minutes at room temperature. Cells were resuspended in EasySep Buffer 

(STEMCELL cat. 20144) at a concentration of 5x107cells/ml before being subject to CD4 and 

CD20 negative isolation (STEMCELL cat. 17952, 17954). Isolated cells were counted and 

mixed at a ratio of 3 CD4:1 CD20 for donor 1 and a ratio of 1 CD4:3 CD20 for donor 2 for a total 

of 1.2x106 cells per donor. The cells were centrifuged at 300xg for 5 minutes at room 

temperature and resuspended in 85 ul of staining buffer and incubated with 5 ul of Human 

TruStain FcX(Biolegend cat: 422301) for 10 minutes on ice in 5 ml FACS tubes. Cells from each 

donor were either mixed prior or stained with pool specific barcode hybridized antibody oligo 

conjugates for 30 minutes on ice. Staining was quenched with the addition of 2 ml staining 

buffer and washed as previously mentioned. Cells were resuspended in 0.04% BSA in PBS and 

cells from each well were counted, pooled equally, and then passed through a 40 um strainer 

(Scienceware cat. H13680-0040). The final strained pool was counted once more prior to 

loading into a 10x chip B with 2x104 cells, 5x104 cells, 1x105 cells, and 2x105 cells. 

 

Mass cytometry of healthy controls 

PBMCs were isolated, cryopreserved, and thawed from the same donors as previously 

described. Once thawed, the cells were counted and 2x106 cells from each donor were 

aliquoted into cluster tubes (Corning cat. CLS4401-960EA). Cells were live/dead stained with 
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cisplatin (Sigma cat. P4394) at a final concentration of 5 uM for 5 minutes at room temperature. 

The live/dead stain was quenched and washed with autoMACS Running Buffer (Miltenyi Biotec 

cat. 130-091-221). Cells were then stained with 5 uL of TruStain FcX for 10 minutes on ice 

before surface staining. Mass cytometry antibodies were previously titrated using biological 

controls to achieve optimal signal to noise ratios. The antibodies in the panel were combined 

into a master cocktail and incubated with cells from the two donors and stained for 30 minutes 

at 4°C. After washing twice with 1 ml autoMACS Running Buffer, the cells were resuspended 

and fixed in 1.6% PFA (EMS cat. 15710) in MaxPar PBS (Fluidigm cat. 201058) for 10 minutes 

at room temperature with gentle agitation on an orbital shaker. Samples were then washed 

twice in autoMACs Running Buffer, and then three times with 1X MaxPar Barcode Perm Buffer 

(Fluidigm cat. 201057). Each sample was then stained with a unique combination of three 

purified Palladium isotopes obtained from Matthew Spitzer and the UCSF Flow Cytometry Core 

for 20 minutes at room temperature with agitation as previously described26. After three washes 

with autoMACS Running Buffer, samples were combined into one tube and stained with a 

dilution of 500 uM Cell-ID Intercalator (Fluidigm cat. 201057), to a final concentration of 300 nM 

in 1.6% PFA in MaxPar PBS at 4°C until data collection on the CyTOF three days later.  

Immediately before running on the CyTOF machine, the sample tube was washed once with 

each autoMACS Running Buffer, MaxPar PBS, and MilliQ H2O. Once all excess proteins and 

salts were washed out, the sample was diluted in Four Element EQ Calibration Beads (Fluidigm 

cat. 201078) and MilliQ H2O to a concentration of 1e6 cells/mL and run on a CyTOF Helios at 

the UCSF Flow Cytometry Core. 

 

Comparing Mass cytometry (CyTOF) and SCITO-seq 

Data was transferred from the CyTOF computer and normalized and de-barcoded using the 

premessa package (https://github.com/ParkerICI/premessa). Clean files were uploaded to 

Cytobank (https://www.ucsf.cytobank.org/) for gating and manual identification of immune cell 
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subsets. Files containing only singlet events were exported from Cytobank and analyzed with 

CyTOFKit2 package (https://github.com/JinmiaoChenLab/cytofkit2). Through CyTOFkit2, events 

were clustered using Rphenograph with k=150 and visualized via UMAP for proportion 

determination. 

 

Pre-processing and initial filtering 

Both the species mixing experiments and human donor mixing experiments were processed 

using Cell Ranger 3.0 Feature Barcoding Analysis using default parameters. For cDNA and 

ADT alignment, we specified the input library type as ‘Gene Expression’ and ‘Antibody Capture’ 

respectively as recommended. For ADT alignment, specific barcode sequences (Ab+pool) were 

specified as a reference. Reads were aligned to the hg19 and mm10 concatenation reference 

for species mixing experiment. For all human experiments, the reads were aligned to the human 

reference genome (GRCh38/hg20). We first removed RBC and Platelets and removed cells with 

more than 15% of mitochondrial gene related reads. We further removed genes with less than 1 

counts across all cells. 

 

Normalization for species mixing and T/B cell human donor mixing experiment 

For cDNA counts, data was normalized by dividing each UMI counts to the total UMI counts and 

multiplied by 10,000. Then, the data was log1p transformed (numpy.log1p). Finally, the data 

was scaled to have mean = 0 and standard deviation = 1. Clustering was done using the  

Leiden algorithm27 using 10 nearest neighbors and a resolution of 0.2 for mixed species and 

two-donor experiment with two cell types (T and B cells).  

 

To normalize ADT counts in species mixing experiment, the data was log transformed and 

standardized to have mean = 0 and standard deviation = 1. For ADT counts in two human donor 

mixing experiment with two cell types, after log transformation of the raw data, we used a 
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Gaussian Mixture Model in scikit-learn package in python to normalize the data with the 

following parameters (convergence threshold 1e-3 and max iteration to 100, number of 

components 2). The data was normalized by z-score like transformation (log transformed raw 

value - mean of the posterior means of two components / mean of the posterior standard 

deviations). 

 

Implementation of an algorithm for pool demultiplexing and multiplet resolution 

Considering all antibodies in each pool, we normalized each value by dividing mean expression 

value of CD45 counts across all pool (considered as a universal expression marker) for each 

droplet barcode yielding a p*m matrix (p is the number of pool and m is number of droplet 

barcodes). Then, the matrix was CLR normalized and demultiplexed using HTODemux from 

Seurat (v3.0) (http://satijalab.org/seurat/) to classify the droplet barcode to a pool or unassigned 

(we discretized the value of 0 or 1). Using this binary matrix, we iterated over p times (where 

discretized value equals 1) to get final resolved matrix of (n*r) where n is the number of 

antibodies used and r is the resolved number of cells. For each iteration, we selected the 

columns that were positive for the above-mentioned discretized matrix. An additional round of 

HTODemux was used to re-classify the ‘Negative’ cells from initial classification because most 

of the initial classification which deemed the cells negative had a UMAP distributions which 

were contained in the original clusters.  

 

Analysis of PBMC experiment 

Normalization and resolution of multiplets 

To normalize cDNA data for PBMC experiments, we used the same normalization method as 

described above. To generate the UMAP based on ADT counts for the PBMC experiment, we 

performed pool demultiplexing using the algorithm described previously. Then, the resolved 

matrix (n*r) was normalized as in the cDNA processing. Raw values were normalized to total 
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counts of 10,000 per cell and log1p transformed. Then, the values were standardized (mean 0, 

standard deviation 1) per pool. Using these normalized values, PCA was performed to reduce 

dimensionality. Leiden clustering was done with 10 neighbors and 15 PCs from the previous 

step.  A resolution value of 1.0 was used to assign clusters for the whole PBMC experiments. 

Finally, UMAP was utilized to visualize the resolved total cells. 

 

Demultiplexing donor identity 

For demultiplexing the donors, a VCF file containing donor genotype information and the bam 

file output from the Cell Ranger pipeline were used as inputs for demuxlet with default 

parameters. For donors without genotypic information, we used vireo23 to assign droplet 

barcodes to the corresponding donor. 

 

Downsampling experiment with Adjusted Rand Index calculations 

To evaluate the quality of clustering at a given downsample depth, Adjusted Rand Index (ARI) 

was used as the representative metric. Leiden clustering was performed on the full dataset of 

RNA and ADT. Then, resulting cluster labels were taken as ground truth cell type assignments. 

To determine an optimal Leiden resolution for downsampling, clustering was performed 5 times 

at a range of resolutions.  A resolution that produced consistently high ARI was then used to 

generate ground truth labels and perform clustering on downsampled data. Data was 

downsampled to a specified mean UMI/Antibody/cell using scanpy (1.4.5.post3) to downsample 

total reads. Downsampled data was then clustered and labels compared to full dataset 

clustering with ARI. 
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