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Abstract

The availability of genomes for many species has advanced our understanding of the non-protein-coding

fraction  of  the  genome.  Comparative  genomics  has  proven  to  be  an  invaluable  approach  for  the

systematic, genome-wide identification of conserved non-protein-coding elements (CNEs). However, for

many  non-mammalian  model  species,  including  chicken,  our  capability  to  interpret  the  functional

importance of variants overlapping CNEs has been limited by current genomic annotations, which rely on

a single information type (e.g. conservation). We here studied CNEs in chicken using a combination of

population genomics and comparative genomics.  To investigate the functional  importance of  variants

found in CNEs we develop a ch(icken) Combined Annotation-Dependent Depletion (chCADD), a variant

effect prediction tool first introduced for humans and later on for mouse and pig. We show that 73 Mb of

the chicken genome has been conserved across more than 280 million years of vertebrate evolution. The

vast majority of the conserved elements are in non-protein-coding regions, which display SNP densities

and allele frequency distributions characteristic of genomic regions constrained by purifying selection. By

annotating SNPs with the chCADD score we are able to pinpoint specific subregions of the CNEs to be of

higher functional importance, as supported by SNPs found in these subregions are associated with known

disease genes in humans, mice, and rats. Taken together, our findings indicate that CNEs harbor variants

of  functional  significance  that  should  be  object  of  further  investigation  along  with  protein-coding

mutations. We therefore anticipate chCADD to be of great use to the scientific community and breeding

companies in future functional studies in chicken.
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Introduction

The rapidly increasing availability of genomes has considerably advanced our understanding of the non-

protein-coding fraction  of  the genome.  With  the sequencing of  the human genome  (1) and the first

ENCODE project  (2,3) it  was soon realized that  protein-coding genes constitute  a small  fraction  of  a

species functional genome and that the remaining non-protein-coding DNA is not simply ´junk´ DNA as

initially thought. Nevertheless, the functional importance of these non-protein-coding regions remained

for long time unknown, as determining (molecular) function was far more difficult than for protein-coding

genes (4). A better understanding of the functional importance of these non-protein-coding regions comes

from comparative genomics, which has allowed the systematic, genome-wide identification of conserved

non-protein-coding elements (CNEs) (5,6). 

Comparative genomics relies on the genome comparison of a group of species related by a narrow or wide

time-scale  (i.e.  phylogenetic  scope).  Regions  in  the  genome  that  share  some  minimum  sequence

similarity across two or more species are an indication of a selection constraint. Moreover, conservation

often implies a biological  function  (7). Based on this principle,  CNEs can be identified in any species

included in the alignment, as reported in recent studies in the collared flycatcher (8), fruit flies (9), and

plants  (6). However, the phylogenetic scope  (10) and species included in the alignment  (11) can have

important implications for the identification of CNEs. For instance, by including the spotted gar genome in

their alignment, (11) recently identified numerous CNEs previously undetectable in direct human-teleost

comparisons, supporting the importance of a bridging species in the alignment.

CNEs have been the subject  of  intense recent interest.  The identification of  CNEs has had important

implications in enhancing genome annotation (12), investigating signatures of adaptive evolution (13–15),

and identifying putative trait  loci  (16).  CNEs and sequence conservation  have also proven crucial  in

studying the genetic basis of phenotypic diversity. In fact, non-protein-coding SNPs have been linked to

traits and diseases in genome-wide association studies (17,18).

Although the methodological advantages of a comparative genomic approach are well recognized, the

functional interpretation of CNEs is incomplete if based on conservation alone, as conservation provides

information on restrictions, but not on functionality. A possible solution is combining conservation with

other  complementary  types  of  data  that  characterize  the  biological  role  of  genetic  sequences  at  a

genome-wide scale (7). Such data include, for instance, RNA sequencing (RNA-seq) for the identification of

transcriptionally active regions(19) and chromatin immunoprecipitation followed by sequencing (ChIP-seq)

for regulatory-factor-binding regions (RFBRs)  (20). In human genetics,  integrative annotations such as

Combined Annotation-Dependent Depletion (CADD)  (21) have been developed. The main advantage of

such frameworks is  the combination,  into a unique score,  of  diverse genomic features derived from,
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among  others,  gene  model  annotations,  evolutionary  constraints,  epigenetic  measurements,  and

functional predictions (21,22).

Compared to humans, for many non-mammalian model species, including chicken (Gallus gallus),  the

situation is quite different. First, comparative genomic studies that made use of the very first genome

assemblies  (23–25) may  have  provided  an  incomplete  and  biased  picture  of  avian  CNEs  and  avian

genome evolution, as recently pointed out by (26). Second, the lack of species-specific methods that can

identify and score functional non-protein-coding mutations throughout the genome has restricted most of

the research interest to protein-coding genes.  In fact,  in the context of  protein-coding genes generic

predictors such as SIFT (27), PolyPhen2 (28), and Provean (29) can be used. 

We  here  addressed  these  limitations  using  a  combination  of  comparative  genomic  and  population

genomic approaches to accurately predict CNEs in the chicken genome. Furthermore, we used machine

learning to develop a ch(icken) Combined Annotation-Dependent Depletion (chCADD), in the tradition of

previous CADD models for non-human species, including mouse (mCADD) (30) and pig (pCADD) (31). As

we show, chCADD has the potential  of  providing new insights into the functional role of  non-protein-

coding regions of the chicken genome at a single base pair resolution. 

Even though deciphering the function of the non-protein-coding portion of a species genome has been a

challenging task, we expect our study to provide a new framework for decoding the still largely unknown

function of CNEs and their relative variants in chicken, an ideal non-mammalian model and anchor species

in evolutionary studies

Results

Conserved non-protein-coding elements cover a large fraction of the chicken genome

To define CNEs, we first identified conserved elements (CEs) using the UCSC PhastCons most conserved

track approach (32). PhastCons predicted in the 23 sauropsids multiple sequence alignment (MSA) 1.14

million CEs encompassing ~8% of the chicken genome for a total of 73 Mb. In line with the density of

genes and regulatory features characteristic of  the chicken genome  (33), we found that most of  the

predicted CEs are on micro-chromosomes (GGA11-GGA33), followed by intermediate (GGA6-GGA10) and

macro-chromosomes (GGA1-GGA5) (Figure S1). Even though the length of predicted CEs ranged from 4

bp to a maximum of ~ 2,000 bp, the vast majority was short (< 100 bp) (Figure S2). Therefore, we do

not expect any length bias in our final set of CEs. 

We annotated CEs by genomic features, considering only genes for which the transcript had a proper

annotated start and stop codon, as defined by the Ensembl´s annotation files (n = 14,828 genes). Overall,

we found that 23% of the predicted CEs were associated with exonic sequences (i.e. CDS, 5’ UTR, 3’ UTR,

promoter, and RNA genes) spanning 17.14 Mb of the chicken genome (Table 1). The majority of the exon-
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associated CEs overlapped known coding regions (85% of total exon-associated CEs), followed by 3’ UTRs

(8% of total), and promoter regions (4% of total). Although we observed conservation in exon sequences,

most CEs overlapped non-protein-coding sequences, including lncRNA (15% of total non-exon associated

CEs), intronic (36% of total), and intergenic regions (49% of total). We further examined the biological

processes and molecular functions of known genes overlapped by CEs in coding regions, 5’ UTRs, 3’ UTRs,

and  introns.  These  genes  are  associated  with  basic  functions,  including  cell  differentiation  and

development, anatomical structure development, morphogenesis, and growth (Table 2). Most of these

GO categories  have also  been previously  associated with  mammalian  and vertebrate ultraconserved

elements (UCEs) (33,34).

In total we identified 259,688 CEs in protein-coding regions, leaving 850,920 CNEs spanning over 51 Mb of

the  chicken  genome  (Table  1),  with  a  genome-wide  distribution  of  92.10  CNEs/100-kb.  We  further

observed  noticeable  differences  in  the  length  distribution  of  CEs  associated  with  different  types  of

annotations. Among the conserved exon-associated CEs, those found in CDSs are, on average, the longest

(~68 bp), followed by 3’  UTRs (61 bp),  RNA genes (52 bp), promoters (47 bp), and 5’  UTRs (38 bp)

(Figure  S3).  On  the  contrary,  CEs  found  in  non-protein-coding  regions  show  a  homogenous  length

distribution, ranging from 56 bp in introns to 63 bp in lncRNAs (Figure S4).

CNEs populate regions not occupied by genes

We further investigated the genomic location of  CNEs as this  might provide important clues to their

functional role. We found that the distribution of CNEs in windows of 100 kb is significantly negatively

correlated (r = -0.20;  p-value: <2.2x10-16) with the distribution of exons (Figure 1). We subsequently

analyzed chicken polymorphism data to address the mutational  or  evolutionary forces shaping CNEs,

following previous studies in humans  (35) and  Drosophila  (9,36). We used polymorphism densities  to

investigate whether these forces could still be acting on the chicken genome or they could have acted in

other species and may no longer be relevant for chicken. SNP density, which reflects events within the

chicken lineage,  was  calculated in  the genomes of  169 chickens  from different  traditional  breeds  of

divergent demographic and selection history. Specifically, we compared the SNP density found in CNEs

with that in non-protein-coding elements that were identified not to be conserved (non-CNEs; i.e. not

conserved intronic, lncRNA and intergenic regions), following (9,35,36). Overall, we found that CNEs are

less enriched in SNPs (SNP density = 0.0092) than non-CNEs (SNP density = 0.02). 

CNEs are selectively constrained in chicken

To test whether low local mutation rates in CNEs or purifying selection is responsible for the observed low

SNP density, we looked at the derived allele frequency (DAF) distribution in CNEs and non-CNEs. This is
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because  mutation  rate  differences  are  not  expected  to  affect  the  allele  frequency  spectra.  On  the

contrary, selective constraint is responsible for the shift in allele frequency distribution of constrained

alleles  towards  lower  values.  Allele  frequencies  for  derived  (new)  alleles  were  compiled  using  the

sequence of the inferred ancestor between chicken and turkey. The ancestral allele was determined for a

total of ~9 million SNPs that passed several filtering criteria (see Methods). We observed an excess of rare

(≤ 10%) derived alleles of SNPs within CNEs in all chicken populations (Table 3). Overall, 57% of SNPs

within CNEs had a DAF ≤ 10%, compared to only ~48% in non-CNEs (the same pattern was observed for

each SNP functional class; see also Table 3). Non-CNEs displayed on the contrary a higher proportion of

common SNPs (DAF>10%) (~52% versus 43% within CNEs) independent of their functional class (Table

3).  Therefore,  the low proportion  of  derived alleles  in  CNEs indicates  that  evolutionary  pressure has

suppressed CNE-derived allele frequencies.

chCADD scores for the investigation of CNE and SNP evaluation

To investigate CNEs further, we developed a model that can evaluate individual SNPs or entire sequences

based on a per-base score, with respect to its putative deleteriousness. This model is based on the CADD

approach,  hence  it  is  labeled  ch(icken)  CADD.  chCADD is  a  linear  logistic  model  that  is  trained  to

differentiate between two classes of variants, one being relatively more enriched in potentially deleterious

variants than the other. To obtain these two classes, one class is generated from derived variants, alleles

that have accumulated since the last ancestor with turkey and became fixed or almost fixed (>90% AF) in

our chicken populations. These are depleted in deleterious variants and can be assumed to be benign or

at  least  neutral  in  their  nature.  The set  of  putative deleterious  variants  contains  simulated  de novo

variants that are not depleted of deleterious variants. The feature weights obtained during training are

shown in Supplementary file 2. Performance on a held out test set to determine an optimal penalization

term are shown in Figure S5. 

chCADD scores potentially causal variants higher 

We evaluated the performance and applicability of chCADD on two different sets of variants before we

annotated non-coding SNPs.

First, we assigned a chCADD score to all SNPs found in the genomes of the 169 chickens previously used

in the SNP density and DAF analysis and compared these to functional predictions as annotated by the

Ensembl VEP (Figure S6). To this end, we categorized VEP predictions into 14 categories (Table S1). The

purpose of this was to test whether chCADD correctly scores SNPs with respect to their potential to cause

a deleterious or phenotype-changing effect, as indicated (mostly for protein-coding mutations) by the VEP

functional predictions. We observed that mutations with a relatively large deleterious potential, such as
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stop-gained mutations and splice-site altering mutations, were scored higher than regular missense and

synonymous mutations (Figure S6). SNPs in potentially regulatory active regions were also evaluated to

be potentially more deleterious than synonymous SNPs (Figure S6).  We performed a similar analysis

considering only protein-coding and regulatory mutations found in the Online Mendelian Inheritance in

Animals (OMIA) database (Table 4).  We annotated only SNPs whose genomic positions were uniquely

mapped to the chicken GRCg6a reference genome and the reference/alternative allele matched that in

the genome assembly. Of the 15 annotated SNPs associated with a change of phenotype, 5 were reported

to cause a deleterious phenotype change in the affected individual, and an average chCADD score of

27.1. These 5 variants (3 stop-gained, 2 missense) have a chCADD score above 20 and are putatively

responsible  for  dwarfism,  scaleless,  analphalipoproteinaemia,  muscular  dystrophy,  and  wingless

phenotypes (Table 4). All these phenotypes display a strong severity and may lead to an early death in

uncontrolled environments.

chCADD detects evolutionary constraints within CNEs

As we showed, chCADD can score functionally important protein-coding variants. We therefore decided to

take a step further by annotating SNPs found in CNEs with chCADD to predict their deleteriousness and

function (Table 3). We assume that highly scored SNPs can help us to identify truly functionally active

regions among CNEs. We observed that rare non-protein-coding variants located within CNEs (DAF ≤ 10%)

have an overall higher chCADD score compared to rare variants found in non-CNEs (Table 3). This result

supports  our  previous  conclusion  based on the derived allele  frequency spectrum that  evolutionarily

conserved non-protein-coding variants are likely functional. As expected, this trend was most pronounced

in lncRNAs, followed by introns and intergenic regions.

We  further  used  the  chCADD  score  to  identify  specific  subregions  of  potentially  higher  functional

importance within each CNE, assuming that the high scoring SNPs would indicate that.  We applied a

change point analysis to search for a center region that has high chCADD scores as opposed to the two

outer regions (see Methods). We ranked CNEs based on positive chCADD score differences between the

center region and the outer regions and filtered for significant difference (p-value of ≤ 0.05, t-test).

The top 3 ranked CNEs that overlap with lncRNAs, intronic and intergenic regions, respectively, are shown

in Figure 3A.1, B.1 and C.1. 

Analogous to this subregion analysis based on chCADD score, we performed a subregion analysis based

on the 23 sauropsids PhastCons scores. A.2-C.2 show the identified regions for the PhastCons score for

the same CNEs as Figure 3A.1, 4C.1, respectively. These figures indicate that chCADD generates more

discriminative subregions than PhastCons.  Particularly  interesting are the chCADD scores for  the top

intergenic regions (C.1). The chCADD score increased from ~5 to ~15 at the subregion change point. This
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is equal to an increase of predicted deleteriousness by one magnitude, from the top 33% highest scored

sites in the entire genome to the top 3%.

To further  investigate the subregion partitioning of  the CNEs,  we computed the SNP density  in  each

region, for both the chCADD induced regions (Figure 4, blue bars) as well as the 23 sauropsids PhastCons

induced regions (Figure 4, orange bars). In both bases, the SNP densities of the center region are lower

than those of the outer regions. Moreover, all CNE subregions display a lower density than regions up- and

downstream the CNE, supporting the functional importance of  the CNEs in general.  Interestingly,  the

center regions, as identified by the chCADD score, have in general a ~0.07% lower SNP density than the

center regions detected using the PhastCons scores. Therefore, our findings suggest that chCADD is more

effective in pinpointing potentially regions of interest.

Conserved non-protein-coding subregions are detected on the basis of a limited number of 

genomic annotations

As part of the investigation into subregions we identified two change points, splitting each CE into three

subregions, starting from 5’ to 3’, 1st-, 2nd- and 3rd subregion (Figure 5). Next we were interested how

genomic annotations that were used in the creation of chCADD, differ between the three subregions. The

model  coefficients  with  the  largest  weights  (Table  S2)  point  to  the  importance  of  the  PhastCons

conservation  scores  calculated  on  the  4  sauropsids  alignment.  Other  important  model  features  are

secondary structure predictions and combinations with the intronic identifier from VEP. Over all CNEs, we

compared the chCADD model features, especially the conservation scores that are based on different

phylogenies, excluding the chicken reference sequence in their computation. For all genomic annotations,

we computed absolute Cohen’s D values  (standardized mean difference) (64,65). We observed that the

conservation scores based on the largest 77 vertebrate alignments cannot properly distinguish between

the 1st-,2nd- and 3rd subregions. Conservation scores based on smaller phylogenies (4 sauropsids and 37

amniote/mammalia) are more discriminative between these  (Table 5; see columns 1st-2nd, 2nd-3rd).

Considering the three PhastCons scores, based on differently large phylogenies, the average absolute

Cohen’s D between the 1st-  and 2nd-  and the 2nd-  to  the 3rd-  subregions differ less between different

genomic  features  (intergenic,  lncRNA and introns)  than between  genomic annotations  (Table 5;  see

columns 1st-2nd, 2nd-3rd). The average absolute Cohen’s D between the three subregions of a CNE ranges

from 0.259 to 0.276.  In  comparison,  the average absolute Cohen’s  D between the same subregions,

taking the three conservation scores individually, range from 0.137 to 0.338. The effect sizes between the

different  multiple  sequence  alignment  PhastCons  score  (i.e.  4  sauropsids,  37  amniote/mammalia,  77

vertebrates) differ by more than 2-fold.
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Intronic CNE, differentially scored between the 1st , 2nd and 3rd subregions overlap functionally

important genes

Intronic CNEs were associated with genes for which we obtained phenotype annotations of their orthologs

in human, mouse, and rat. We investigated the top 10 CNEs that are located in introns, with the largest p-

value differences between the 1st and 3rd to the 2nd section. 6 CNEs were associated with homologous

genes that have annotated phenotypes in other species. Among the phenotypes found for human genes

are mental retardation and non-syndromic male infertility. For mouse, these included neuronal issues and

abnormal shape of heart and limbs (Table S3). The link to highly severe phenotypes in other species

highlights the potential importance of regulatory features for orthologous genes in chicken.

Discussion

The prediction of CNEs depend on the phylogenetic scope 

Non-protein-coding elements are typically identified by sequence-level similarity across species, which is

a generally applicable criterion of conservation and biological function  (10). However, when predicting

CEs,  and subsequently CNEs,  the evolutionary distance among species included in the alignment (or

phylogenetic scope) is an important parameter that can considerably affect the prediction and resolution

of CEs. If the evolutionary distance among species is too narrow, the specificity of constraint is reduced,

but if it is too broad, the number of CEs rapidly declines and lineage-specific conservation is lost (10,37).

One of the first studies to address the impact of the phylogenetic scope on CEs prediction was that of

(12). In their study on the 29 mammalian multiple sequence alignment the authors identified 3.6 million

conserved elements spanning 4.2% of the genome at a resolution of 12 bp (12). When comparing these

results to a 5-vertebrate alignment, Lindblad-Toh and colleagues observed that only 45% of the 5-taxa CEs

were covered by the 29-taxa alignment. This partial overlap indicates that most of the CEs derived from

the 29-taxa  alignment  were mammalian-specific  (12).  The  issue resulting  from a  broad  phylogenetic

scope on CNEs has also recently been reported by (38) where authors identified CNEs between chicken

and four mammalian species, including human, mouse, dog, and cattle  (38). By applying a minimum

length of 100 bp, Babarinde and Saitou (2016) identified 21,584 CNEs in chicken, a small number as

expected from the divergence time between human and chicken ~310 million years ago (33). Therefore,

CNEs detected among distant species are better predictions of ultraconserved CNEs than CNEs between

closely related species (i.e. human-mouse)  (39), as they were already present in the ancient common

ancestor of the considered species.

In  this  study  we  chose  the  23  sauropsids  multiple  sequence  alignment  for  two  reasons.  First,  the

phylogenetic distance between crocodilian and bird species (240 million years ago) (40) is large enough

to detect likely functional CNEs. Second, the alignment is reference free allowing the identification of
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lineage-specific CEs. Reference-free alignments should always be preferred over reference-based ones

(41). In fact, genomic regions shared within a certain clade, which would be missed in a reference-based

alignment (e.g. MULTIZ), can also be detected. As a result, reference free alignments better enable the

study of genome evolution along all phylogenetic branches equally. 

Avian genomes have similar genomic characteristics

According to our study, 8% of the chicken genome is covered by CEs for a total of 1.14 million CEs. These

results are comparable to those on the collared flycatcher genome (Ficedula albicollis) (8). By means of

the same alignment, (8) identified 1.28 million CEs covering 7% of the flycatcher genome. Compared to

the flycatcher, the slightly lower number of CEs we report in chicken could be  explained by its smaller

genome size,  as  small  genomes  require  fewer  regulatory  sequences  involved  in  the  organization  of

chromatin structure (8). For instance, the chicken genome is nearly 4 times smaller (i.e. GRCg6a: 1.13 Gb)

than that of human (i.e. GRCh38.p13: 4.53 Gb), but of nearly equal size to that of the collared flycatcher

(i.e. FicAlb1.5: 1.11 Gb). The similarity in genome size between chicken and flycatcher reflects the little

cross-species variation characteristic of birds (42).

The limited number of CEs often identified in birds relative to mammals has repeatedly been linked to

gene loss (23,25,43). However, the role of gene loss in avian evolution, genome size, and prediction of

CEs has recently been questioned. According to (26), gene loss was incorrectly hypothesized from the

absence of genes clustering in GC-rich regions in the earlier chicken genome assemblies  (26). In fact,

these regions are often difficult to sequence and assemble. This issue is particularly prominent in the GC-

rich  micro-chromosomes,  which,  as  we  show,  contribute  disproportionately  to  the  total  density  of

functional  sequence  (Figure  S1).  We  therefore  recommend  future  comparative  genomics  studies  in

chicken to make use of the most recent and complete genome assembly to avoid any erroneous link of

CEs to gene loss in chicken

Conserved non-protein-coding elements are maintained by purifying selection

A fundamental question in the study of CNEs is the role of purifying selection. Purifying selection can be

discriminated  from a low  mutation  rate  by  comparing  the  derived  allele  frequency  (DAF)  spectra  in

constrained regions (i.e. CNEs) with that of neutral regions (i.e. non-CNEs)  (9,35). This is because new

mutations are unlikely to increase in frequency in constrained regions. Although CNEs are identified using

an  interspecific  comparative  genomic  approach,  the  evolution  and  dynamics  of  these  regions  are

generally analyzed at an intraspecific scale by looking at polymorphism data  (9,44). In this study, we

showed that the evolutionary constraint acting on the 23 sauropsids is correlated with constraint within

the chicken populations, as assessed from chicken polymorphism data. Consistent with studies in humans
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(12,35), plants (6), and Drosophila (9,36), the derived allele frequency spectra of our chicken populations

is shifted towards an excess of rare variants in CNEs. These results indicate that the conservation of CNEs

in the chicken genome is mainly driven by selective constraints, and not by local variation in mutation

rate. The role of purifying selection was also confirmed by the reduced SNP density in CNEs compared to

non-CNEs  and  by  the  reduced  SNP density  in  specific  conserved  non-protein-coding  subregions.  The

concordance in SNP density is a clear indication of reduced levels of population diversity and functional

roles of CNEs as confirmed by the association of subregions within CNEs to highly severe phenotypes in

humans,  mouse,  and  rat.  However,  future  population  diversity  comparisons  in  terms  of  nucleotide

diversity  (π)  (45) or  Watterson's  estimator  (θw)  (46) between outbred  and inbred  populations  would

further elucidate our understanding of purifying selection in CNEs. 

Integrating comparative and functional genomics into a single score

We developed a ch(icken) Combined Annotation-Dependent Depletion (chCADD) approach that provides

scores  for  all  SNPs  throughout  the  chicken  genome.  These  scores  are  indicative  of  putative  SNP

deleteriousness and can be used to prioritize variants.

The annotation of  chCADD relies  on the combination of  a diverse set  of  genomic features,  including

evolutionary constraints and functional data  (21,22). Multiple sequence alignments of distantly related

species are better suited to differentiate conserved sites that can reliably be used to identify functionally

important regions. However, these regions are often large enough to question the functional role of the

entire region. Our findings show that  chCADD outperforms any conservation-based method alone (e.g.

PhastCons) in the identification of functionally important subregions within CNEs. Therefore, methods,

such as chCADD, are required to fine-tune in one step CNEs to identify subregions directly linked to - in

some cases deleterious – phenotypes. 

According to the authors of the original human CADD (21), SNPs with a score above 20 (i.e. the SNP is

among the top 1% highest scored potential SNPs in the genome) could be considered deleterious. This

means that the higher the score, the higher the chance the variant has a functional effect or may even be

deleterious. When annotating protein-coding and regulatory mutations found in OMIA, we observed that

SNPs with a chCADD score of 15 can already be considered functional. Therefore, our findings indicate

that by setting an arbitrary threshold of 20 may underestimate the fraction of the genome that is actually

functional.  This  is  particularly pronounced when the variants  in question are located outside protein-

coding regions. Therefore we recommend future chCADD users to evaluate the variants identified in their

populations to see if they are particularly highly scored compared to other variants in the same genomic

region. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.012005doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.012005
http://creativecommons.org/licenses/by-nc-nd/4.0/


Future uses of chCADD 

The high scoring of  non-protein-coding variants  in subregions of  CNEs has important implications for

future functional and genome-wide association studies (GWAS) in chicken. A very large fraction of trait- or

disease-associated loci  identified in GWAS are intronic or intergenic. This is expected considering the

preponderance of  non-protein-coding SNPs  on genotyping arrays  (5) or  along the genome.  However,

because of a lack of understanding of the function of non-protein-coding mutations, most of the causal

mutations reported in the OMIA database are coding. Moreover, in the presence of non-protein-coding

mutations,  many  studies  stop  at  the  general  locus  or  -  understandably  -  assume  that  the  closest

neighboring  gene  is  affected.  However,  these  assumptions  on  genomic  distance  are  simplistic.  Our

findings  in  chicken demonstrate that  chCADD can accurately pinpoint  non-protein  and protein-coding

variants  associated  with  important  phenotypes  in  chicken.  Therefore  we expect  future  genome-wide

association studies combined with chCADD to identify novel causal  mutations or substantially narrow

down the list of potential causal variants in large quantitative trait loci (QTLs). We also expect chCADD to

accelerate the discovery and understanding of the biology and genetic basis of phenotypes.

Conclusions

Deciphering the function of the non-coding portion of a species genome has been a challenging task.

However, the availability of genomes from a great variety of species, along with the development of new

computational approaches at the interface of machine learning and bioinformatics, has made this task

possible in model and non-model organisms. Our findings indicate an accurate assessment of selective

pressure at individual sites becomes an achievable goal. We have also shown that chCADD is a reliable

score for the analysis of non-protein-coding SNPs, which should be targeted along with protein-coding

mutations in future genome-wide association studies. We therefore anticipate chCADD to be of great use

to the scientific community and breeding companies in future functional studies in chicken.

Materials and methods

Chicken genomic data

We  used  a  dataset  by  Bortoluzzi  and  colleagues  available  at  the  European  Nucleotide  Archive

(http://www.ebi.ac.uk/ena/)  under  accession  number  PRJEB34245  (47) and  PRJEB36674  (18).  The  169

chicken samples included in the dataset were sequenced at the French Institute of Agricultural Research

(INRA),  France,  on  an  Illumina  HiSeq  3000.  Reads  were  processed  following  standard  bioinformatics

pipelines.  Reads  were  aligned  to  the  chicken  GRCg6a  reference  genome  (GenBank  Accession:
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GCA_000002315.5)  with  the  Burrows-Wheeler  alignment  (BWA-mem)  algorithm  v0.7.17  (48).  After

removal of duplicate reads with the markdup option in sambamba v0.6.3 (49), we performed population-

based variant calling in Freebayes  (50), retaining only sites with a mapping and base quality >20. We

reduced the false discovery rate by additional filtering using BCFtools v1.4.1 (48).

Multiple whole-genome sequence alignment

Conserved  elements  (CE)  were  identified  using  the  23  sauropsids  multiple  whole-genome sequence

alignment (MSA) generated using Progressive Cactus (https://github.com/glennhickey/progressiveCactus)

(51) by (40). The MSA downloaded in the hierarchical alignment format (HAL) was converted into multiple

alignment  format  (MAF)  using  the  HAL  tools  command  hal2maf  (52) with  the  following  parameters:

-refGenome galGal4  (GenBank Accession:  GCA_000002315.2)  to  extract  alignments  referenced to the

chicken  genome  assembly,  -noAncestors  to  exclude  any  ancestral  sequence  reconstruction,

-onlyOrthologs to include only sequences orthologous to chicken, and -noDupes to ignore paralogy edges.

During reformatting, only blocks of sequences where chicken aligned to at least two other species were

considered for a total chicken genome alignability of 90.88%. Genomic coordinates were converted to the

GRCg6a genome assembly using the pyliftover library in python v3.6.3.

Prediction of evolutionarily conserved elements

Conserved elements were predicted from the whole-genome alignment using PhastCons (53). We chose

PhastCons because this approach does not use a fixed-size window approach, but can take advantage of

the fact that most functional regions involve several consecutive sites (54). We first generated a neutral

evolutionary  model  from  the  114,709  four-fold  degenerate  (4D)  sites  previously  extracted  from  the

alignment by (40). The topology of the phylogeny was also identical to that derived by (40). PhastCons

was run using the set of parameters used by the UCSC genome browser to produce the ‘most conserved’

tracks (top 5% of the conserved genome): expected length = 45, target coverage = 0.3, and rho = 0.31

(32). Conserved elements were subsequently excluded if falling or overlapping assembly gaps and/or if

their size was < 4 bp. 

Annotation of conserved elements by genomic feature

We use the Ensembl (release 95) chicken genome annotation files to extract sequence coordinates of

CDS, exons, 5’ and 3’ UTRs, pseudogenes, and lncRNAs. Sequence information was extracted from 14,828

genes (out of the 15,636 genes found in the Ensembl annotation), as transcripts of these genes had a

properly annotated start and stop codon. For protein-coding genes with an annotated 5’ UTR of at least 15

bp,  the  promoter  was  defined  as  the  2-kb  region  upstream of  the  transcription  start  site  (TSS)  (8).
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Sequence  coordinates  of  miRNAs,  rRNAs,  snoRNAs,  snRNAs,  ncRNAs,  tRNAs,  and  scRNAs  were  also

extracted from the annotation file. For the identification of intergenic regions we considered all annotated

protein-coding genes and defined intergenic regions as DNA regions located between genes that did not

overlap any protein-coding genes in either of the DNA strands. The intersection between CEs and the

various  annotated  genomic  features  was  found  following  the  approach  of  (12) of  assigning  a  CE

overlapping two or more genomic features to a single one in a hierarchical format: CDS, 5’ UTR, 3’ UTR,

promoter, RNA genes, lncRNA, intronic, and intergenic region. Conserved non-protein-coding elements

(CNEs) were defined as CEs without any overlap with exon-associated features (CDS, 5’ UTR, 3’ UTR,

promoter, and RNA genes) and include lncRNAs, introns, and intergenic regions.

Gene ontology analysis

Genes in conserved regions overlapping CDS, 5’ UTR, 3’ UTR, and introns were separately used to perform

a Gene Ontology analysis in g:Profiler (55) using Gallus gallus as organism. We only considered annotated

genes that passed Bonferroni correction for multiple testing with a threshold < 0.05. 

Genome-wide distribution and density of conserved non-protein-coding regions

CNE density  and the density  of  exon-associated features  were calculated in  non-overlapping 100 kb

windows along the genome. Windows that included assembly gaps between scaffolds were discarded,

resulting in a total of 9,196 windows. Correlation between density of exons and CNEs was calculated in R

v3.2.0 using the Pearson’s correlation test. 

Annotation of variants by functional class

Polymorphic, bi-allelic SNPs belonging to all functional classes predicted by the Variant Effect Predictor

(VEP)  (56) were considered.  However,  to  improve the reliability  of  the set  of  annotated variants,  we

applied additional filtering steps. SNPs were discarded if they overlapped repetitive elements or if their

call  rate was <70%. The rationale for excluding variants  found in repetitive elements was to reduce

erroneous functional prediction as a result of mapping issues, as regions enriched for repetitive elements

are usually difficult to assemble. Intronic and intergenic SNPs were further discarded if they overlapped

spliced intronic ESTs (35). Protein-coding variants were also discarded if they were found outside coding

sequences, whose genomic coordinates were obtained from the Ensembl chicken GTF file (release 95). 

Ancestral allele and derived allele frequency

The sequence of the inferred ancestor between chicken and turkey (Meleagris gallopavo; Turkey_2.01)

(57) reconstructed from the Ensembl EPO 4 sauropsids alignment (release 95) was used to determine the
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ancestral and derived state of an allele, along with its derived allele frequency. We considered only SNPs

for which either the reference or alternative allele matched the ancestral allele. Ancestral alleles that did

not match either chicken allele were discarded. We generated derived allele frequency (DAF) distributions

for sets of SNPs based on functional class and whether they were within or outside of CNEs. A derived

allele frequency cutoff of 10% was used to distinguish rare from common SNPs. 

Chicken Combined Annotation Dependent Depletion (chCADD)

The chicken CADD scores are the -10 log relative ranks of all possible alternative alleles of all autosomes

and Z chromosome of the chicken GRCg6a reference genome, according to the following formula: 

chCADDi=−10 log10( ni

N )
where  N represents the number of all  possible alternative alleles (3,073,805,640) on the investigated

chromosomes and  n is the rank of the  ith SNP. The ranks are based on the model posteriors of a ridge

penalized logistic regression model trained to classify simulated and derived SNPs.

Chicken derived SNPs were defined as those sites where the chicken reference genome differs from the

chicken-turkey ancestral genome inferred from the Ensembl EPO 4 sauropsids alignment. Sites for which

the ancestral allele occurs at a minor allele frequency greater than 5% were excluded. In addition, derived

SNPs that are observed with frequency above 90% in our population of 169 individuals were included. In

total we identified 17,237,778 SNPs.

The dataset of simulated variants was simulated based on derived nucleotide substitution rates between

the inferred ancestor of chicken, turkey, zebra finch (Taeniopygia guttata; taeGut3.2.4)  (58) and green

anole  lizard  (Anolis  carolinensis;  AnoCar2.0)  (59).  These  derived  nucleotide  substitution  rates  were

obtained for windows of 100 kb and used to simulate de novo variants which have a larger probability to

have a deleterious effect than the set of derived variants. All SNPs which have a known ancestral site are

retained in the dataset. In total 17,233,727 SNPs were simulated in this way. 17,233,722 SNPs of each

dataset were joined and randomly assigned to train and test sets of sizes 15,667,020 and 1,566,702,

respectively.

The datasets were annotated with various genomic annotations: among others, PhyloP and PhastCons

(Table  S4)  conservation  scores  based  on  three  differently  deep  phylogenies  (i.e.  4  sauropsids,  37

amniote/mammalia,  77  vertebrate,  all  excluding  the  chicken  genome),  secondary  DNA  structure

predictions  (Table  S4),  Ensembl  Consequence  predictions,  amino  acid  substitution  scores  such  as

Grantham (Table S4) and amino acid substitution deleterious scores such as SIFT (Table S4). 

Annotations for which values were missing were imputed, categorical values were one hot-encoded (60).

In the one hot-encoding process, an annotation is a series of  binary annotations, each indicating the
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presence of a specific category for a given variant. For scores that are by definition not available for

certain parts of the genome, such as SIFT which is found only for missense mutations, columns indicating

their availability were introduced. 

Combinations of annotations were created of Ensembl Variant Effect Predictor consequences and other

annotations, such as distance to transcription start site and conservation scores. The total number of all

features used in training was 874. An extensive list of all annotations, combinations of annotations and

their learned model weights is shown in Supplementary File 2. Finally, each feature column is scaled by its

standard deviation.  The logistic regression is trained via the Python Graphlab module.  We selected a

penalization term of 1, based on results on the test set (Figure S5). 

Investigation of likely causal SNPs from the OMIA database

We downloaded the likely causal variants of phenotype changes from the Online Mendelian Inheritance in

Animals (OMIA)  (61) database (last accessed 25.11.2019). SNPs whose location was reported for older

genome assemblies such as Galgal4 and Galgal5 were mapped to the chicken GRCg6a reference genome

via CrossMap (62). We only consider bi-allelic SNPs whose genomic position was successfully mapped to

GRCg6a and whose substitution  remained the same.  In  total,  15 SNPs  were left  and annotated with

chCADD.

Change point analysis

To identify sub-regions of  particular  importance within each CE,  we annotated all  with the maximum

chCADD score  found  at  each  site  or  the  23-sauropsids  PhastCons  scores  that  were used  to  identify

conserved elements in the first place. Our basic assumption was that highly important subregions within a

CE are preceded and succeeded by less important sites which would result in a relatively higher score

region surrounded by two lower scored regions. Each CE was treated similarly to time series data by

conducting an offline change point analysis, once based on maximum chCADD scores and once based on

23-sauropsids PhastCons scores. To this end, we used the Python ruptures module  (63) and applied a

binary segmentation algorithm with radial basis function (RBF). It first identifies a single change point, if

one is detected, the the algorithm investigates each sub-sequence independently to identify the next

change point We were looking particularly for 2 change points, which would divide the CE into three

subregions, numbered from 1 to 3, starting at the 5’ end of the sequence. We added 5 bp upstream and

downstream of each CE to allow that the borders of the 2nd region coincide with the borders of the CE

(Figure 5). After computing the change points, we conducted t-tests between the scores of the 1 st and 2nd,

as well as 3rd and 2nd subregions, to identify CEs that have a significantly different score in the 2nd section

than in the other two. We applied a  p-value cutoff of 0.05. We sorted CNEs with respect to the largest
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difference between the mean chCADD score of the inner and the two outer subregions and selected those

with a higher scored 2nd section than either of the other two outer ones. 

SNP density distribution within conserved non-protein-coding regions

SNP density was calculated as the number of SNPs identified in the 169 chicken individuals divided by the

number  of  bases  found in the sequence.  SNP density  was  computed for  conserved coding (CC) and

conserved non-protein-coding (CNE) regions, as well as for the subregions identified in the change point

analysis of CNEs overlapping lncRNAs, introns, and intergenic regions. We repeated this analysis once for

the  change points  identified  using chCADD scores  and once  for  the  23-sauropsids  PhastCons  based

change points. 

Homologous phenotypes 

We obtained phenotypes from the Ensembl database (release 95) for genes associated with the lncRNA

and  intronic  CNEs.  Beside  chicken,  these  phenotypes  encompass  the  observed  phenotypes  for

orthologous genes associated with disease studies in humans (Homo sapiens) and gene-knockout studies

in mouse (Mus musculus) and rat (Rattus norvegicus).

Data access

Raw sequences the 169 individuals used in this study are available at the European Nucleotide Archive

under accession number PRJEB34245 and PRJEB36674. chCADD scores partitioned per chromosomes can

be downloaded from the Open Science Framework project page(https://osf.io/d6wxp/). 
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List of figures

Figure 1. Correlation between exons and conserved non-protein-coding elements (CNEs) along

the chicken genome. CNEs and exons count per 100 kb windows are shown with the Pearson correlation

coefficient r and corresponding p-value in the top left corner.
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Figure 2. Derived allele frequency (DAF) distribution of SNPs in CNEs and non-CNEs.

Figure  3. Change point analysis of the top 3 CNEs for each genomic feature, respectively

(lncRNA, intronic, intergenic). CNEs are sorted based on the largest difference between the 2nd section

and 1st or 3rd section for each of the three CNE classes respectively (lncRNA, intronic, intergenic). Change

points  were once computed based on maximum chADD score per site  (A.1,B.1,C.1)  and once on 23

sauropsids PhastCons scores (A.2,B.2,C.2). The dots in each plot display the scores for the 5 bp up- and

downstream regions. The transition from blue to red background indicates the identified change points.

A.1) lncRNA - maximum chCADD A.2) lncRNA - PhastCons scores. B.1) intronic - maximum chCADD. B.2)

intronic - PhastCons. C.1) intergenic - maximum chCADD. C2) intergenic - PhastCons.
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Figure  4.  SNP  densities  computed  for  each  section  of  the  three  different  CNEs  (lncRNA,

Intronic, Intergenic). The orange bars represent the SNP densities for that section based on change

points derived from 23 sauropsids alignment PhastCons scores, the blue bars represent the SNP densities

based on change points identified via chCADD.
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Figure  5. Approach used to identify subregions within CNEs via change point analysis. The

scores used to annotate the CE region are displayed on the y-axis. The position in the investigated CE

region is shown on the x-axis. In total there are five sections, 5 bp up and downstream, 1st, 2nd and 3rd

subregions. The transitions from blue to red background indicate the position of the two identified change

points.  The  up  and  downstream scores  are  shown as  dots  while  the  scores  in  the  CE region  are  a

continuous blue line.

List of tables

Table  1. Statistics of  predicted conserved elements (CEs) based by gene annotations. The

fraction of CEs per sites class is presented, for protein-coding gene annotations, in percentages of the

exonic CEs (17,148,879 bp). For non-protein-coding gene annotations, the fraction is relative to the non-

exonic CEs (51,224,645 bp).  Abbreviations: CC, conserved coding;  CNE, conserved non-protein-coding

elements

Genomic 

feature

No.

overlapping

CEs

Total overlap

(bp)

Genome

coverage (%)

Fraction of site class

conserved (%)

CDS 213,787 14,683,183 1.38 85.62
5’ UTRs 5,457 207,320 0.02 1.21

3’ UTRs 23,721 1,460,144 0.15 8.51

Promoters 16,022 761,504 0.08 4.44
RNA genes 701 36,728 0.00 0.21

LncRNAs 121,840 7,696,557 0.80 15.03

Introns 328,579 18,520,675 1.93 36.16

Intergenic 400,501 25,007,413 2.60 48.82

Total CC 259,688 17,148,879 1.78 100.00

Total CNE 850,920 51,224,645 5.33 100.00
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Table 2. GO term enrichment analysis of exonic-associated CE and intronic CEs

Term ID Term

description

Target

size

3 UTR Intron

Term

size

Query size Overlap

size

p-value Term

size

Quer

y size

Overla

p size

p-value

GO:0048856 Anatomical

structure

development

12,514 3,293 4,736 1,475 1.24e-17 3,293 6,971 2,128 1.09 e-29

GO:0010646 Regulation of

cell

communication

12,514 2,038 4,736 917 3.67 e-09 2,038 6,971 1,329 1.33 e-17

GO:0010604 Positive

regulation of

macromolecule

metabolic

process

12,514 2,118 4,736 952 1.49 e-09 2,118 6,971 1,331 2.21 e-09

GO:0023051 Regulating of

signaling

12,514 2,056 4,736 926 2 e-09 2,056 6,971 1,339 1.88 e-17

GO:0048583 Regulation of

response to

stimulus

12,514 2,332 4,736 1,032 1.44 e-08 2,332 6,971 1,477 9.79 e-13

GO:0048468 Cell

development

12,514 1,364 4,736 625 1.27 e-06 1,364 6,971 927 1.12 e-18

GO:0031325 Positive

regulation of

cellular

metabolic

process

12,514 2,091 4,736 936 9.01 e-09 2,091 6,971 1,304 1.09 e-07

Term ID Term

description

Target

size

CDS 5 UTR

Term

size

Query size Overlap

size

p-value Term

size

Quer

y size

Overla

p size

p-value

GO:0048856 Anatomical

structure

development

12,514 3,293 9,703 2,713 2.06 e-11 3,293 1,896 654 5.13 e-14

GO:0010646 Regulation of

cell

communication

12,514 2,038 9,703 1,686 2.64 e-06 2,038 1,896 381 9.33 e-03

GO:0010604 Positive

regulation of

macromolecule

metabolic

process

12,514 2,118 9,703 1,749 3.53 e-06 2,118 1,896 403 5.06 e-04

GO:0023051 Regulating of

signaling

12,514 2,056 9,703 1,699 4.46 e-06 2,056 1,896 384 9.24 e-03

GO:0048583 Regulation of

response to

stimulus

12,514 2,332 9,703 1918 5.55 e-06 2,332 1,896 424 4.39 e-02

GO:0048468 Cell

development

12,514 1,364 9,703 1,142 1.78 e-05 1,364 1,896 282 3.38 e-05
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GO:0031325 Positive

regulation of

cellular

metabolic

process

12,514 2,091 9,703 1,723 1.91 e-05 2,091 1,896 388 1.60e-02

Table  3.  Derived  allele  frequency  distribution  for  SNPs  in  CNEs  and  non-CNEs  by  SNP

functional class.

Genomic

feature

DAF Within CNEs Outside CNEs chCADD 

within CNEs

chCADD 

outside CNEs
Number of SNPs

(%)

Number of SNPs

(%)

Average (± sd) Average (± sd)

All ≤0.10 137,871 (57%) 482,685 (48.4%) 9.78 (4.18) 3.21 (3.18)
> 0.10 103,726 (43%) 513,935 (51.5%) 8.81 (4.25) 2.74 (2.83)

LncRNA ≤0.10 24,364 (57.4%) 26,429 (47.6%) 10.02 (4.00) 3.49 (3.33)
> 0.10 18,081 (42.5%) 29,014 (52.4%) 9.10 (4.13) 3.03 (2.99)

Intron ≤0.10 43,790 (56.8%) 159,203 (47.4%) 9.81 (4.46) 3.00 (3.11)
> 0.10 33,171 (43.2%) 176,650 (52.6%) 8.71 (4.53) 2.46 (2.74)

Intergenic ≤0.10 69,717 (57%) 297,053 (44.6%) 9.68 (4.05) 3.31 (3.20)
> 0.10 52,474 (43%) 308,271 (55,4%) 8.78 (4.11) 2.87 (2.86)

Table 4. OMIA chicken SNPs with chCADD annotations, locations are reported for Gal6.

OMIA

ID(s)

Variant

Phenotype
Gene

Type of

Variant

Deleterio

us?
g. or m. chCADD

OMIA

001622-

9031

Resistance to

avian sarcoma and

leukosis viruses,

subgroup C

BTN1A1 stop-gain no 28:g.903289G>T 17.83409

OMIA

000889-

9031

Scaleless FGF20 stop-gain yes 4:g.63270401A>T 33.02083

OMIA

001534-

9031

Resistance to

myxovirus
MX1 missense no

1:g.110260061G>

A
14.26893

OMIA

000915-

9031

Feather colour,

silver
SLC45A2 missense no Z:g.10336596G>T 21.72641

OMIA

000915-

Feather colour,

silver

SLC45A2 missense no Z:g.10340909T>C 15.69336
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9031

OMIA

000679-

9031

Muscular

dystrophy
WWP1 missense yes

2:g.123014353G>

A
26.29866

OMIA

000303-

9031

Dwarfism,

autosomal

C1H12ORF

23
stop-gain yes 1:g.53638233C>T 35.29646

OMIA

001302-

9031

Resistance to

avian sarcoma and

leukosis viruses,

subgroup B

TNFRSF10B stop-gain no 22:g.1418711C>T 17.63145

OMIA

000810-

9031

Polydactyly LMBR1 regulatory yes 2:g.8553470G>T 17.41378

OMIA

000913-

9031

Silky/Silkie

feathering
PDSS2 regulatory unknown 3:g.67850419C>G 3.8812

OMIA

001547-

9031

Wingless-2 RAF1 stop-gain yes 12:g.5374854G>A 23.44641

OMIA

000374-

9031

Feather colour,

extended black
MC1R missense no

11:g.18840857T>

C
18.05882

OMIA

000374-

9031

Feather colour,

extended black
MC1R missense no

11:g.18840919G>

A
18.88983

OMIA

000374-

9031

Feather colour,

buttercup
MC1R missense no

11:g.18841289A>

C
17.41773

OMIA

000374-

9031

Feather colour,

extended black
MC1R

regulatory;

5 'UTR
no

11:g.18840609C>

T
6.74322
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Table 5. Differences between genomic annotations utilized for the chCADD model, between CNE

subregions defined by chCADD located in intronic, lncRNA and intergenic regions, measured in absolute 

Cohen’s D.

INTRONIC UP-1st 1st-2nd 2nd-3rd 3rd-Down
4PhastCons 0.594 0.307 0.361 0.609
37PhastCons 0.446 0.328 0.369 0.448
77PhastCons 1.25 0.096 0.195 1.32
4PhyloP 0.43 0.09 0.126 0.428
37PhyloP 0.351 0.187 0.214 0.35
77PhyloP 0.776 0.186 0.237 0.778
GerpS 0.272 0.182 0.196 0.257
GerpN 0.212 0.112 0.11 0.214
dnaMGW 0.103 0.009 0.007 0.104
dnaProT 0.08 0.013 0.012 0.08
dnaHelT 0.082 0.002 0.002 0.083
GC 0.121 0.045 0.047 0.12
CpG 0.034 0.034 0.034 0.034
OChrom-Peaknb 0.058 0.001 0.091 0.015
OChrom-logFC 0.062 0.087 0.138 0.017
OChrom-pval 0.006 0.013 0.070 0.055
lncRNA UP-1st 1st-2nd 2nd-3rd 3rd-Down
4PhastCons 0.608 0.289 0.338 0.623
37PhastCons 0.469 0.31 0.342 0.482
77PhastCons 1.29 0.086 0.184 1.37
4PhyloP 0.428 0.083 0.117 0.43
37PhyloP 0.343 0.161 0.18 0.348
77PhyloP 0.788 0.17 0.22 0.792
GerpS 0.267 0.17 0.181 0.259
GerpN 0.212 0.086 0.098 0.201
dnaMGW 0.097 0.006 0.008 0.095
dnaProT 0.096 0.009 0.009 0.093
dnaHelT 0.089 0.003 0.0 0.086
GC 0.114 0.037 0.041 0.109
CpG 0.024 0.033 0.029 0.028
OChrom-Peaknb 0.059 -0.02 0.064 0.023
OChrom-logFC 0.102 0.093 0.137 0.055
OChrom-pval 0.012 0.096 0.103 0.005
INTERGENIC UP-1st 1st-2nd 2nd-3rd 3rd-Down
4PhastCons 0.61 0.281 0.341 0.619
37PhastCons 0.474 0.319 0.359 0.481
77PhastCons 1.29 0.084 0.179 1.37
4PhyloP 0.431 0.084 0.119 0.432
37PhyloP 0.351 0.162 0.185 0.351
77PhyloP 0.79 0.167 0.215 0.795
GerpS 0.29 0.169 0.183 0.274
GerpN 0.209 0.091 0.088 0.215
dnaMGW 0.096 0.008 0.008 0.096
dnaProT 0.097 0.014 0.012 0.096
dnaHelT 0.086 0.003 0.002 0.084
GC 0.136 0.062 0.062 0.136
CpG 0.039 0.037 0.036 0.041
OChrom-Peaknb 0.017 0.004 0.02 0.005
OChrom-logFC 0.089 0.005 0.012 0.077
OChrom-pval 0.00 0.005 0.052 0.023
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