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ABSTRACT

Background

Numerous large genome-wide association studies (GWASs) have been performed to understand the
genetic factors of numerous traits, including type 2 diabetes. Many identified risk loci are located in
non-coding and intergenic regions, which complicates the understanding how genes and their
downstream pathways are influenced. An integrative data approach is required to understand the

mechanism and consequences of identified risk loci.

Results

Here, we developed the R-package CONQUER. Data for SNPs of interest (build GRCh38/hg38) were
acquired from static- and dynamic repositories, such as, GTExPortal, Epigenomics Project, 4D genome
database and genome browsers such as ENSEMBL. CONQUER modularizes SNPs based on the
underlying co-expression data and associates them with biological pathways in specific tissues.
CONQUER was used to analyze 403 previously identified type 2 diabetes risk loci. In all tissues, the
majority of SNPs (mean = 13.50, SD = 11.70) were linked to metabolism. A tissue-shared effect was
found for four type 2 diabetes-associated SNPs (rs601945, rs1061810, rs13737, rs4932265) that were
associated with differential expression of HLA-DQA2, HSD17B12, MAN2C1 and AP3S2 respectively.
Seven SNPs were identified that influenced the expression of seven ribosomal proteins in multiple
tissues. Finally, one SNP (rs601945) was found to influence multiple HLA genes in all twelve tissues

investigated.

Conclusion

We present an universal R-package that aggregates and visualizes data in order to better understand
functional consequences of GWAS loci. Using CONQUER, we showed that type 2 diabetes risk loci have
many tissue-shared effects on multiple pathways including metabolism, the ribosome and HLA

pathway.
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BACKGROUND

In the past decades, numerous genome-wide association studies (GWAS) have been performed to
understand the genetic contribution of traits. While GWASs have provided valuable insight into
putative mechanistic pathways, the way the identified risk loci exert their effect on traits remain
largely unclear. For type 2 diabetes (T2D), several large meta-GWASs have been performed to
understand the genetic drivers of T2D [1-3]. In general, GWAS associated loci are not limited to coding
regions but are frequently found in intergenic regions [4]. As such, inferring how risk loci influence
genes and their downstream pathways remains often unclear, especially for loci in non-coding regions.
To increase the understanding of those variants, an integrative approach is required where the effects
of variants are investigated at a multitude of molecular levels.

In recent years, the number of rich open source biological data sets and repositories has
tremendously increased, including GTExPortal [5], Epigenomics Project [6], 4D genome database[7]
and genome browsers such as ENSEMBL [8]. Extracting, combining and analyzing relevant biological
information from these public datasets is complicated and time-consuming. Platforms that integrate
such data exist [9, 10], but are often online, miss intuitive user experience or contain outdated data
or genome builds. To provide researchers with a easy to use interface with the latest data to
comprehend the effects of variants, we developed an R-package named CONQUER (‘COmprehend
fuNctional conseQUencEs R’). Given a single SNP or multiple SNPs, CONQUER allows the user to
efficiently extract relevant biological information from various repositories/databases and represents
the information through insightful and interactive visualizations. Additionally, CONQUER links SNPs
with biological pathways trough enrichment of the associated genes. Here, we use CONQUER to
investigate the 403 risk loci associated with T2D in more detail. With CONQUER we identified T2D risk

loci that influence the expression of genes in diabetes-relevant tissues.

RESULTS

CONQUER: an universal R-package for GWAS loci

CONQUER is a universal tool that retrieves and visualizes a multitude of public data associated with
any SNP of interest. The package can be used both for single and multiple SNPs. In both cases,
CONQUER collects data about a SNP from various public databases and stores the data locally per SNP
in a file. Data is collected on multiple levels, including expression-, methylation, metabolomics- and
protein QTLs, chromosomal interactions, histone modifications and GWAS catalogue (see methods).
All tissues included in GTEx can be investigated with CONQUER. When multiple SNPs are investigated,
CONQUER will find shared pathways across the SNPs investigated (see methods). Results are

integrated in an interactive offline web interface for the analysis of multiple SNPs


https://doi.org/10.1101/2020.03.27.011627
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.27.011627; this version posted March 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

(https://github.com/rodericksliecker/CONQUER). Altogether, CONQUER has two separate views 1)

where in-depth analyses of single SNPs can performed and 2) where multiple SNPs and their
aggregated consequences can be investigated and linked to biological pathways. Here, CONQUER was

used to analyze 403 T2D-associated SNPs.

Type 2 diabetes-associated eQTLs are tissue-shared

From the most recent meta-GWAS, 403 T2D-associated SNPs were obtained [1]. Out of those, 17 SNPs
were associated with in total 23 unique pQTLs (22 trans, 1 cis). Of those, nine were associated with
the immune system (REACTOME, P=0.01), including IL17RC, ICAM1, SAA1, ULBP1, C3, DSG1, CFl,
IL1I8RAP, MBL2. Two trans pQTLs were involved in cholesterol metabolism, LPA and ANGPTL3. Of note,
the LPA protein was the single cis signal and associated with rs474513 (P=8.27-10"%"). Although this
variant is an eQTL in 17 tissues for SLC22A2, it was an eQTLs for LPA in the liver (P=1.29-10). SLC22A2
encodes the organic cation transporter 2 gene (OCT2) which is involved in the uptake of the glucose-
lowering drug metformin in the kidneys [11] and LPA encodes the lipoprotein A protein which is
thought to be atherogenic [12].

Next, SNPs were investigated in gene expression data of tissues relevant in the etiology of
diabetes (subcutaneous and visceral fat, sigmoid- and transverse colon, liver, skeletal muscle,
pancreas, pituitary, terminal ileum of the small intestine, stomach, thyroid and whole blood) from
healthy individuals. Of the included tissues, sample sizes range from N = 187 (terminal ileum) to N =
803 (skeletal muscle). Characteristics are shown in Table 1. The percentage males was relatively equal
across tissues (63.1% - 72.1%, Table 1) with the majority middle-aged (50-69 years, Table 1). For the
eQTL — eGene analysis, CONQUER retrieved 348 SNPs. Fifty-five SNPs were excluded because they
were not a significant eQTL (33 SNPs) or the variant ID was not present (23 SNPs). Sample sizes are
correlated with the number of significant eQTLs (R?=0.91). We take this into account when evaluating
the results by applying a liberal threshold (P<0.001) and by assessing the normalized effect sizes (NES)
across tissues. Using the 348 SNPs, cis- and trans genes were calculated with the GTEx API. After
applying a threshold (P < 0.05), sets of co-expressed genes were determined after which all included
genes (eGenes and co-expressed genes) were clustered. Out of the 348 SNPs, 214 SNPs were
significant. This resulted in 6664 calculated eQTL - eGene pairs across tissues (Fig.1a).

Four SNPs had strong (NESs) present in all tissues (Fig. 1). The strongest positive NESs were
observed with a single SNP across all tissues between rs601945 and HLA-DQAZ2. The mean NES was
1.12 (SD=0.10, P < 2.32-10%, Fig. 1b). HLA-DQA2 is involved in multiple disease- and immune
response-related pathways [11]. Among the strongest negative NESs was rs1061810 which is an eQTL
for HSD17B12.This eQTL - eGene pair had a mean NES of -0.64 (SD=0.11, P< 4.86-10%%, Fig. 1c) across
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all tissues. HSD17B12 is involved in synthesis of fatty acids [11]. The strongest NES for this eQTL was
observed in subcutaneous fat (NES = -0.80, P = 6.77-101%). A strong eQTL NES was also observed
between MAN2C1 and rs13737 in all tissues, the mean NES was -0.68 (SD = 0.18, P< 6.49-10", Fig.
1d). The strongest normalized effect size of this pair was observed in subcutaneous fat (NES =-0.90, P
=1.22-107%), MAN2C1 is involved in glycan degradation [11]. Lastly, AP352 was observed to be
influenced by the risk allele of rs4932265, the mean effect size was 0.65 (SD = 0.27, P< 3.02-10"%3, Fig.

le). AP3S2 is thought to play a role in the lysosome [11].

Type 2 diabetes-associated eQTLs link to metabolism and the ribosome pathway

In all tissues the majority of the SNPs mapped to metabolic pathways, with in absolute terms the
highest numbers in whole blood (38 SNPs, Fig. 2a), transverse colon (28 SNPs), thyroid (23 SNPs),
stomach (22 SNPs) and pancreas (15 SNPs). Rs576123 (synonym for rs505922) was mapped in six
tissues (transverse colon, pancreas, stomach, thyroid, whole blood and the lleum) to metabolic
pathways involving the ABO gene. Of note, a SNP in LD with rs576123 (rs8176719, R?= 0.93, Fig. 2b)
is a frameshift variant for ABO. The NES for ABO was positive (NES > 0.17), except for whole blood
(NES =-0.35, P = 6.98-10, Fig. 2c). The strongest NES for ABO was observed in the pancreas (NES =
0.74, P = 1.50-10!, Fig. 2d).

The second most enriched process was genetic information processing. The ribosome
pathway was enriched in eleven tissues (Fig. 3a). The modules in the various tissues that were
enriched for the ribosome pathway all had varying numbers of associated eQTLs (n = 1-5) and eGenes
(Fig. 3b, Fig. 3c). However, all modules shared a common eQTL - eGene pair, namely, rs12719778 and
RPL8. The highest NES of rs12719778 on RPL8 was observed in whole blood (NES =-0.10, P = 8.46-10
13 Fig. 3d). In nine of the eleven tissues in which the ribosome pathway was enriched, the modules
also contained rs12920022 and RPL13, which had the strongest NES in skeletal muscle (NES = -0.26
P = 3.36-10%, Fig. 3e).

In-depth analysis of rs601945 shows an association with primarily HLA genes

Among the enriched pathways, multiple pathways were immune-related (i.e. Th 17 cell differentiation,
Th 1 and Th 2 cell differentiation). All immune-related pathways that were enriched were linked with
rs601945 and HLA-DQA2. As such, we explored the observed effect of rs601945 on the HLA gene HLA-
DQA2 in more detail (Fig. 1b). Rs601945 is located in an intergenic region and is in LD (R?> 0.8) with
94 SNPs. Four genes are located in this LD region: HLA-DRB5, HLA-DRB1, HLA-DQA1 and RNU1-61P.
For this LD region, 57 chromatin interactions are known in blood cells (CD34%, CD4® memory , CD4*

naive and CD4" T-cells, Fig. 4a), 40 of which are interactions with loci located in HLA genes (HLA-DQA1
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=19, HLA-DQB1 = 13, HLA-DRB1 = 6, HLA-DQA2 = 3, HLA-DRA = 3, HLA-DRB5 = 3, HLA-DOB = 1). In
CD4* memory cells 13 SNPs were located in enhancer regions and 3 SNPs in flanking active
transcription start sites (TSS). In CD4" naive cells 11 SNPs were located in enhancer regions and 3 SNPs
in flanking active TSSs. Sixty-six eGenes were identified that were influenced by rs601945 (P < 0.05,
cis = 25, trans = 41). Taking into account the more stringent adjusted P-value defined by GTEx, 19
eGenes remained (cis = 11, trans = 8, Fig. 4b). Among the significantly affected eGenes were primarily
HLA genes. Rs601945 had positive and negative NESs with multiple HLA genes (Fig. 4c). As previously
described, the strongest positive NESs were observed with HLA-DQA2 with the strongest association
observed in skeletal muscle (NES = 1.19, P = 2.50-107%, Fig. 4d). The strongest opposite effect was
observed with HLA-DQB1 (NES = -0.50, P = 1.18-10°%, Fig. 4e). As rs601945 influences primarily HLA
genes that are involved in many biological pathways, rs601945 was linked to seven pathways in
multiple tissues. That is cell adhesion molecules pathway (Fig. 4f) in all twelve tissues, to five pathways,
including phagosome and various immune pathways in eleven tissues (Fig. 4g, Fig. 4h) and linked to

one pathway, intestinal immune network for IgA production in ten tissues (Fig. 4h).

DISCUSSION

In this study, we developed an R-package that aided us in understanding the functional consequences
of T2D-associated SNPs. The R-package, called CONQUER collects up-to-date data, directed by SNPs
of interest from a multitude of databases and repositories and analyses and visualizes the data. In
contrast to previous studies that had similar approaches[12, 13], we have developed open-source
software that is available as an R-package where only the SNPs and tissues of interest have to be
specified and that can be used with minimal programming experience.

With CONQUER we developed a tool that is universal and versatile as it can be used for various
diseases and phenotypes where SNPs are of interest. Because we included data from multiple sources
of various molecular levels, it provides researchers with a broad range of information that aids them
in understanding their phenotype of interest. Additionally, CONQUER expands the search space of
consequential effects by including co-expressed genes of eGenes which might reveal up- and
downstream consequences. With increasing amounts of data, the complexity also increases. To
maintain clear overview of the data, we implemented two separate views 1) where in-depth analyses
of single SNPs can performed and 2) where multiple SNPs and their aggregated consequences can be
investigated and linked to biological pathways. CONQUER is dependent on the availability of the
Application Programming Interfaces (API) to access databases (GTEx, Ensembl and LDlink). This is a
strength, as the latest versions of these databases will always be accessed without changing the

programming structure of CONQUER. However, if API access itself is changed or the databases are
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discontinued, then, updates to CONQUER are required. In contrast, access to the static data sources
(e.g. meQTLs, miQTLs, pQTLs, chromatin states and chromatin interactions) is more secure as we
maintain the source package (conquer.db). In addition, we will regularly update conquer.db as new
studies will become available. All eQTLs are calculated with the GTEx API. Within GTEx sample sizes
vary substantially per tissues, as a consequence, the number of significant eQTLs is correlated with
the number of samples (R?=0.91). In the current study we take this into account by applying a liberal
threshold and by assessing the NES across tissues. However, specific signatures of tissues with low
sample counts might go unnoticed.

CONQUER was used to investigate 403 diabetes-associated SNPs in more detail. T2D is a
metabolic disorder, in accordance, most SNPs linked to metabolic pathways. The metabolic pathways
as curated by KEGG [11] consists of 1489 genes and is an encompassing term for all pathways that are
involved in metabolism. Our results show that SNPs that are directly linked to metabolism do not
influence a single metabolic process but are scattered among various metabolic pathways (e.g.
oxidative phosphorylation, fatty acid degradation, fructose and mannose metabolism and glycine
serine and threonine metabolism). Due to this dispersion of SNPs between numerous pathways it
remains difficult to assign groups of SNPs to specific processes in specific tissues. This together with
the variety of pathways to which SNPs are mapped shows that T2D has a lot of different points of
engagement through which it can originate and progress, which is accordance with heterogeneous
nature of T2D [14]. We also linked SNPs to different pathways classified as genetic information
processing. As such, proteasome, RNA transport, spliceosome and protein processing in endoplasmic
reticulum were pathways to which various SNPs were mapped. Additionally, seven SNPs were mapped
to the ribosome pathway. The link between T2D SNPs and the ribosome pathway was observed in
eleven tissues. Seven ribosomal genes with predominately negative effect sizes were associated with
seven T2D GWAS hits. Although the association between ribosomal content and T2D has extensively
been studied[15-17], genetic susceptibility to T2D has previously not been linked to a decreased
expression of ribosomal genes. Moreover, the hormone insulin and ribosomal content are tightly
connected. Insulin stimulates the synthesis of ribosomal proteins in various tissues[18, 19] and a loss
of ribosomal proteins is associated with an inhibition of AKT phosphorylation activity and the insulin
pathway[20]. Rs601945 was highlighted as it influences many HLA genes that are involved in multiple
pathways. Rs601945 was associated with the HLA region. The HLA region has previously been
associated with T2D[3, 21], however, our results reveal that the effects are wide-spread as its
association with altered expression of various HLA genes was observed in all investigated tissues.
Interestingly, while the HLA region represents the highest risk for T1D [22], our results are pointing to

a connection between HLA-DQA2 and T2D. In addition, our pQTL analyses also highlighted immune


https://doi.org/10.1101/2020.03.27.011627
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.27.011627; this version posted March 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

response pathways. Our data support that T2D has an immunometabolic component involving, like
T1D, members of both innate and adaptive immune response. Altogether, CONQUER revealed three
biological main processes that could explain, in part, the association between SNPs and T2D
susceptibility. In addition our results show that T2D SNPs influence metabolism through various
pathways, that the ribosome pathway is influenced in multiple tissues through different combinations
of SNPs and that rs601945 has wide-spread effects as it influences many genes that are involved in
multiple immune related pathways. CONQUER was also used to analyze single SNP effects. Both
AP3S2 and HSD17B12 have previously been found in relation to T2D, but in limited number of tissues.
AP3S2 in human pancreatic islets[31] and HSD17B12 in adipose, liver and muscle tissue and, whole
blood[3], which are relevant for the treatment of T2D [32]. However, the genetic consequences are
not limited to these tissues as our results show. As such, rs1061810 was found to be associated with
altered expression of HSD17B12. The effect of rs1061810 on HSD17B12 has previously been described
in adipose, liver and muscle tissue and, whole blood [3]. However, our results showed that the
influence of rs1061810 on HSD17B12 is not only present in these tissues but in all twelve tissues that
we investigated. rs11037579 had lower expression of HSD17B12 in all twelve tissues that we
investigated, including adipose tissue. This result corroborates the finding that HSD17B12 expression
is downregulated in the adipose tissue of insulin-resistant subjects [23] and plays a role in
adipogenesis [24]. The HSD17B12 gene codes a bifunctional enzyme involved in the biosynthesis of
estradiol and the elongation of very long chain fatty acids. One of the strongest observed effects was
between rs4932265 and AP352. AP3S2 is a subunit of the AP-3 complex which is involved in budding
of vesicles from the Golgi membrane [25]. AP352 has been linked to T2D in six different GWASs [21,
26-30] with various populations (South Asian, Japanese and European ancestry) and with four
different SNPs, three of which (rs12912009, rs2028299, rs8031576) are in LD (R* > 0.80) with
rs4932265. In the current study we established that AP3S2 has a higher expression in the twelve
tissues in individuals carrying the risk allele of rs4932265. Despite increasing evidence for the role
AP352 in T2D susceptibility it remains unclear how AP3S2 is involved, although there is some evidence
pointing at a beta-cell defect (wood et al https://doi.org/10.2337/db16-1452). In twelve tissues we
have observed a negative effect size for MAN2C1 with the T2D risk allele of rs13737. Downregulation
of MAN2C1 is known to cause delay in cell growth and inducing apoptosis [31, 32]. MAN2C1 binds
with PTEN and thereby inhibits its lipid phosphatase activity [31]. PTEN inhibits activation of PI3K-AKT
signaling pathway[31, 33], a pathway known to be involved in T2D development[33]. As we observe a
negative effect size for MAN2C1, it is suggested that in the twelve investigated tissues, for individuals
carrying the risk allele of rs13737 the PI3K-AKT signaling pathway could be inhibited in part, by a
reduced expression of MAN2C1 through PTEN. This could explain the association of rs13737 with T2D
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susceptibility. In six tissues we linked rs576123, located in intronic region of the ABO gene to metabolic
pathways. While, ABO is at the basis of the ABO blood group system as it indirectly encodes for blood
group antigens [34], a recent study has observed an impaired insulin secretion within O blood type
subjects. In this study, SNPs located within the first intron have been connected to a reduced activity
of the glycosyltransferases encoded by the ABO gene and specific targeting of the ABO gene by shRNA
has led to a reduced glucose stimulated insulin secretion[35]. The effect of reduced ABO expression

in the other tissues needs to be established.

CONCLUSION

The R-package CONQUER allows efficient integration of multiple datasets. With data on various levels,
visualized in a tidy manner, we were able to uncover potential consequences of T2D associated risk
loci. As such, SNPs could be linked through various biological mechanisms to insulin resistance and
insulin secretion and comprehend the increased T2D risk. Our findings highlight the importance of an
integrative approach where risk loci for T2D are not only seen as individual risk factors but also as a
network of risk factors. With CONQUER we developed software that does this, uses the latest available

data and is easy to use.

METHODS

CONQUER

CONQUER was developed in R version 3.6.1 and is available from Git

(https://github.com/roderickslieker/CONQUER). The user end the package consists of two intuitive

function calls, summarize and visualize. The summarize function minimally requires a list of SNPs (rs*
IDs), a directory to store them in and a token from LDlink to allow access to their API. Additional
options multiAnalyze (boolean), to allow integrated analysis of multiple SNPs. This option, requires a
list of tissues in which the integrated analysis should be performed. Summarize will collect all data
described below for each SNP and store this in a small file that can be used in a later stage. The
visualize function invokes a Shiny-based dashboard, with interactive plots of the integrated analysis
(if performed) and a tab where individual SNPs can be visualized. Interactive figures were made using
JavaScript Data-Driven Documents (d3.js) version 4.13.0, based on existing and newly developed plots.
D3.js code was integrated in R making use of the htmlwidgets R-package[36] and all tools were
integrated into the R package CONQUER.d3. Interactive heatmaps were made using plotly[37]. The
interactive circos plot was made with the R-package BioCircos[38]. Interactive tables were generated

with the DT package[39].
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Data acquisition

The data acquired for CONQUER are based on the human genome reference build GRCh38/hg38. The
data is both collected from static sources and Application Programming Interfaces (APIs). The static
sources are available in a separate R data package called conquer.db. CONQUER loads this data
package when needed. As conquer.db is a separate package it is easily updated with the latest datasets
without altering the programming structure of CONQUER. Static data include chromatin interactions,
chromatin state segmentations, expression data, transcription factor binding sites, pQTLs, miQTLs.
The chromatin interactions were obtained from the 4D genome database[7]. To have data from
multiple tissues (N=31), only IM-PET data was included in CONQUER. Originally this data was based on
the human genome reference build GRCh19/hg19. UCSC LiftOver tool[40] was used to lift over the
data to GRCh38/hg38. Chromatin state segmentations were obtained from the Roadmap Epigenomics
Project for all cell types available (N=127, 15-state model) [6]. Normalized (TPM, Transcript per
Million) expression data of all available tissues (N=54) was obtained from GTEx v8[5]. Missing
expression values were imputed with k-nearest neighbor and default parameters of the impute.knn
function from the R-package impute[41]. Data of pQTLs [44-47] , meQTLs[48], miQTLs [49-52] were
acquired from their corresponding references.

The remaining data (linkage disequilibrium, gene information, eQTLs) are obtained from APIs
and are collected once the user has given the command. Elementary information about the SNP of
interest is acquired from the Ensembl API [8]. The linkage disequilibrium (LD) structure originates from
the LDlink API[51]. For both the Ensembl APl and LDlink APl the population can be specified, by default
the population is set on Utah Residents with Northern and Western European Ancestry (CEU) from
the 1000 Genomes Project phase 3[52]. The eQTLs and eGenes corresponding to the SNP of interest
are computed making use of GTEx API. By default, GTEx has an eQTL mapping window of one Mb
upstream and downstream of the transcription start site of a gene. In CONQUER, we expanded the
search space by including genes that have chromosomal interaction with the LD region (R? > 0.80) of
the leading SNP. CONQUER automatically sends a request to the GTEx API to calculate eQTLs for every
available tissue utilizing GTEx v8[5]. Lastly, phenotype associations are acquired from the GWAS-
catalog[53]. For every queried SNP, CONQUER generates an RData object containing all previously

described data and stores it in a directory the user has provided.

Statistical analyses
First, CONQUER was used to retrieve all the available data of the 403 risk loci associated with T2D [1].

Next, the modularization and pathway enrichment were performed by CONQUER on twelve T2D


https://doi.org/10.1101/2020.03.27.011627
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.27.011627; this version posted March 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

relevant tissues (Table 1). It should be noted that GTEx reports normalized effect sizes (NES) as effect
of the alternative allele relative to the reference allele. However, a variant associated with T2D can be
either the reference allele or alternative allele. Therefore, we investigated the effect size of the risk
allele of T2D relative to the other allele based on an additive model. Also, due to the variability of
sample sizes of GTEx across tissues and their association with P-values of eQTLs, we use both
normalized effect size and P-values for the interpretation of the results. Figures were directly from

CONQUER or additionally made using ggplot2.

Modularization and pathway enrichment

With multiple SNPs, CONQUER can modularize SNPs and associate them with biological pathways in
tissues of interest (Fig. 5). All tissues in GTEX can be included. Based on the GTEx data, eQTLs and their
associating eGenes are selected (P-value < 0.05). For these eGenes, co-expressed genes are identified
by performing correlation analyses with imputed GTEx expression data in the corresponding tissues.
Co-expression between genes is assumed when rho > 0.90. Next, the eGenes and their co-expressed
genes are hierarchical clustered[54, 55] based the distance between genes (1 — rho). The number of
modules within the clustered data is optimized by maximizing the globalSEmax of the gap statistic[56]
using the cluster R package[57]. Modules of co-expressed genes and eGenes are then tested for
pathway enrichment based on KEGG pathways. For each pathway odds ratios and accompanying P-
values are calculated with Fisher’s exact test[58]. If a module does not contain an eQTL or is not

enriched for a pathway, it is omitted from the analysis.
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Figure 4 In-depth analysis of rs601945 a) Chromatin interactions in blood cells (CD34*, CD4* memory
, CD4* naive and CD4" T) of the region that is in LD (R*> 0.8) with rs601945 and chromatin states of
CD4* naive (outer-ring) and In CD4" memory cells (inner-ring). b) Hive plot showing the association of
rs601945 (center axis) with eGenes (right axis) in various tissues (left axis). c) NESs of all HLA genes
investigated with rs601945. d) Violin plot of the normalized expression levels of HLA-DQA?Z2 in skeletal
muscle with the haplotypes of rs601945. e) Violin plot of the normalized expression levels of HLA-
DQB1 in skeletal muscle with the haplotypes of rs12719778. f, g, h) Number of tissues in which the

corresponding pathways were enriched with HLA associated pathways highlighted.
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Table 1. Characteristics of the individuals in the GTEX data

Age
Tissue N  Sex (male) 20-29 30-39 40-49 50-59 60-69 70-79 0
21 (3,2
Adipose Subcutaneous 663 445(67,1%) 52(7,8%) 58(8,7%) 103(15,5%) 213(32,1%) 216(32,6%) %) 352 (53,1%) 21{:
19 (3,5
Adipose Visceral Omentum 541 371(68,6%) 45(83%) 44(8,1%) 86(159%) 184(34%) 163(30,1%) %) 314 (58 %) 16
12 (3,2
Colon Sigmoid 373 240(64,3%) 36(9,7%) 39(10,5%) 54(14,5%) 109(29,2%) 123 (33 %) %) 236 (63,3%) 9(2
11 (2,7
Colon Transverse 406 259(63,8%) 43(10,6%) 47(11,6%) 75(18,5%) 136(33,5%) 94(23,2%) %) 316 (77,8 %) 4
Liver 226 161(71,2%) 7(3,1%) 17(7,5%) 35(15,5%) 83(36,7 %) 79 (35 %) 5(2,2%) 86(38,1%) 13(°
28 (3,5
Muscle Skeletal 803 543(67,6%) 67(83%) 65(8,1%) 124(154%) 255(31,8%) 264(32,9%) %) 424 (52,8 %) 31{:
Pancreas 328 207(63,1%) 29(8,8%) 31(9,5%) 66(20,1%) 118(36%) 79(24,1%) 5(1,5%) 275(83,8%) 3(0
Pituitary 283 204 (72,1%) 9(3,2%) 8 (2,8 %) 24 (8,5 %) 87(30,7%) 138(48,8%) 17 (6%) 13(46%) 213
Small Intestine Terminal lleum 187 120(64,2%) 28(15%) 22(11,8%) 35(18,7%) 56(29,9%) 42(22,5%) 4(2,1%) 174 (93 %) 2(1
Stomach 359 227(63,2%) 44(12,3%) 39(10,9%) 64(17,8%) 128(357%) 79(22%) 5(1,4%) 301(83,8%) 3(0
22 (3,4
Thyroid 653 434 (66,5%) 47(7,2%) 51(7,8%) 110(16,8%) 211(32,3%) 212(32,5%) %) 358 (54,8 %) 24 (:
Whole Blood 755 501 (66,4%) 68 (9 %) 68(9%) 113 (15%) 234(31%) 249(33%) 23(3%) 412(54,6%) 29

Data characteristics of the investigated tissues classified by age and separately by cause of death. Cause of death
based on 4-point Hardy-Scale: 0) Cases on ventilator before death 1) violent and fast death, i.e. accident 2) fast

death of natural causes 3) intermediate death with terminal phase of 1-24 hours 4) slow death after long illness.
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