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ABSTRACT 

Background 

Numerous large genome-wide association studies (GWASs) have been performed to understand the 

genetic factors of numerous traits, including type 2 diabetes. Many identified risk loci are located in 

non-coding and intergenic regions, which complicates the understanding how genes and their 

downstream pathways are influenced. An integrative data approach is required to understand the 

mechanism and consequences of identified risk loci.  

 

Results 

Here, we developed the R-package CONQUER. Data for SNPs of interest (build GRCh38/hg38) were 

acquired from static- and dynamic repositories, such as, GTExPortal, Epigenomics Project, 4D genome 

database and genome browsers such as ENSEMBL. CONQUER modularizes SNPs based on the 

underlying co-expression data and associates them with biological pathways in specific tissues. 

CONQUER was used to analyze 403 previously identified type 2 diabetes risk loci. In all tissues, the 

majority of SNPs (mean = 13.50, SD = 11.70) were linked to metabolism. A tissue-shared effect was 

found for four type 2 diabetes-associated SNPs (rs601945, rs1061810, rs13737, rs4932265) that were 

associated with differential expression of HLA-DQA2, HSD17B12, MAN2C1 and AP3S2 respectively. 

Seven SNPs were identified that influenced the expression of seven ribosomal proteins in multiple 

tissues. Finally, one SNP (rs601945) was found to influence multiple HLA genes in all twelve tissues 

investigated.  

 

Conclusion 

We present an universal R-package that aggregates and visualizes data in order to better understand 

functional consequences of GWAS loci. Using CONQUER, we showed that type 2 diabetes risk loci have 

many tissue-shared effects on multiple pathways including metabolism, the ribosome and HLA 

pathway.  
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BACKGROUND 

In the past decades, numerous genome-wide association studies (GWAS) have been performed to 

understand the genetic contribution of traits. While GWASs have provided valuable insight into 

putative mechanistic pathways, the way the identified risk loci exert their effect on traits remain 

largely unclear. For type 2 diabetes (T2D), several large meta-GWASs have been performed to 

understand the genetic drivers of T2D [1-3]. In general, GWAS associated loci are not limited to coding 

regions but are frequently found in intergenic regions [4]. As such, inferring how risk loci influence 

genes and their downstream pathways remains often unclear, especially for loci in non-coding regions. 

To increase the understanding of those variants, an integrative approach is required where the effects 

of variants are investigated at a multitude of molecular levels.  

In recent years, the number of rich open source biological data sets and repositories has 

tremendously increased, including GTExPortal [5], Epigenomics Project [6], 4D genome database[7] 

and genome browsers such as ENSEMBL [8]. Extracting, combining and analyzing relevant biological 

information from these public datasets is complicated and time-consuming. Platforms that integrate 

such data exist [9, 10], but are often online, miss intuitive user experience or contain outdated data 

or genome builds. To provide researchers with a easy to use interface with the latest data to 

comprehend the effects of variants, we developed an R-package named CONQUER (‘COmprehend 

fuNctional conseQUencEs R’). Given a single SNP or multiple SNPs, CONQUER allows the user to 

efficiently extract relevant biological information from various repositories/databases and represents 

the information through insightful and interactive visualizations. Additionally, CONQUER links SNPs 

with biological pathways trough enrichment of the associated genes. Here, we use CONQUER to 

investigate the 403 risk loci associated with T2D in more detail. With CONQUER we identified T2D risk 

loci that influence the expression of genes in diabetes-relevant tissues.  

 

RESULTS 

CONQUER: an universal R-package for GWAS loci 

CONQUER is a universal tool that retrieves and visualizes a multitude of public data associated with 

any SNP of interest. The package can be used both for single and multiple SNPs. In both cases, 

CONQUER collects data about a SNP from various public databases and stores the data locally per SNP 

in a file. Data is collected on multiple levels, including expression-, methylation, metabolomics- and 

protein QTLs, chromosomal interactions, histone modifications and GWAS catalogue (see methods). 

All tissues included in GTEx can be investigated with CONQUER. When multiple SNPs are investigated, 

CONQUER will find shared pathways across the SNPs investigated (see methods). Results are 

integrated in an interactive offline web interface for the analysis of multiple SNPs 
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(https://github.com/roderickslieker/CONQUER). Altogether, CONQUER has two separate views 1) 

where in-depth analyses of single SNPs can performed and 2) where multiple SNPs and their 

aggregated consequences can be investigated and linked to biological pathways. Here, CONQUER was 

used to analyze 403 T2D-associated SNPs.  

 

Type 2 diabetes-associated eQTLs are tissue-shared  

From the most recent meta-GWAS, 403 T2D-associated SNPs were obtained [1]. Out of those, 17 SNPs 

were associated with in total 23 unique pQTLs (22 trans, 1 cis). Of those, nine were associated with 

the immune system (REACTOME, P=0.01), including IL17RC, ICAM1, SAA1, ULBP1, C3, DSG1, CFI, 

IL18RAP, MBL2. Two trans pQTLs were involved in cholesterol metabolism, LPA and ANGPTL3. Of note, 

the LPA protein was the single cis signal and associated with rs474513 (P=8.27·10-37). Although this 

variant is an eQTL in 17 tissues for SLC22A2, it was an eQTLs for LPA in the liver (P=1.29·10-5). SLC22A2 

encodes the organic cation transporter 2 gene (OCT2) which is involved in the uptake of the glucose-

lowering drug metformin in the kidneys [11] and LPA encodes the lipoprotein A protein which is 

thought to be atherogenic [12]. 

Next, SNPs were investigated in gene expression data of tissues relevant in the etiology of 

diabetes (subcutaneous and visceral fat, sigmoid- and transverse colon, liver, skeletal muscle, 

pancreas, pituitary, terminal ileum of the small intestine, stomach, thyroid and whole blood) from 

healthy individuals. Of the included tissues, sample sizes range from N = 187 (terminal ileum) to N = 

803 (skeletal muscle). Characteristics are shown in Table 1. The percentage males was relatively equal 

across tissues (63.1% - 72.1%, Table 1) with the majority middle-aged (50-69 years, Table 1). For the 

eQTL – eGene analysis, CONQUER retrieved 348 SNPs. Fifty-five SNPs were excluded because they 

were not a significant eQTL (33 SNPs) or the variant ID was not present (23 SNPs). Sample sizes are 

correlated with the number of significant eQTLs (R2=0.91). We take this into account when evaluating 

the results by applying a liberal threshold (P≤0.001) and by assessing the normalized effect sizes (NES) 

across tissues. Using the 348 SNPs, cis- and trans genes were calculated with the GTEx API. After 

applying a threshold (P ≤ 0.05), sets of co-expressed genes were determined after which all included 

genes (eGenes and co-expressed genes) were clustered. Out of the 348 SNPs, 214 SNPs were 

significant. This resulted in 6664 calculated eQTL - eGene pairs across tissues (Fig.1a).  

Four SNPs had strong (NESs) present in all tissues (Fig. 1). The strongest positive NESs were 

observed with a single SNP across all tissues between rs601945 and HLA-DQA2. The mean NES was 

1.12 (SD=0.10, P ≤ 2.32·10-16, Fig. 1b). HLA-DQA2 is involved in multiple disease- and immune 

response-related pathways [11]. Among the strongest negative NESs was rs1061810 which is an eQTL 

for HSD17B12.This eQTL - eGene pair had a mean NES of -0.64 (SD=0.11, P≤ 4.86·10-19, Fig. 1c) across 
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all tissues. HSD17B12 is involved in synthesis of fatty acids [11]. The strongest NES for this eQTL was 

observed in subcutaneous fat (NES = -0.80, P = 6.77·10-125). A strong eQTL NES was also observed 

between MAN2C1 and rs13737 in all tissues, the mean NES was -0.68 (SD = 0.18, P≤ 6.49·10-17, Fig. 

1d). The strongest normalized effect size of this pair was observed in subcutaneous fat (NES = -0.90, P 

=1.22·10-76), MAN2C1 is involved in glycan degradation [11]. Lastly, AP3S2 was observed to be 

influenced by the risk allele of rs4932265, the mean effect size was 0.65 (SD = 0.27, P≤ 3.02·10-13, Fig. 

1e). AP3S2 is thought to play a role in the lysosome [11]. 

 

Type 2 diabetes-associated eQTLs link to metabolism and the ribosome pathway 

In all tissues the majority of the SNPs mapped to metabolic pathways, with in absolute terms the 

highest numbers in whole blood (38 SNPs, Fig. 2a), transverse colon (28 SNPs), thyroid (23 SNPs), 

stomach (22 SNPs) and pancreas (15 SNPs). Rs576123 (synonym for rs505922) was mapped in six 

tissues (transverse colon, pancreas, stomach, thyroid, whole blood and the Ileum) to metabolic 

pathways involving the ABO gene. Of note, a SNP in LD with rs576123 (rs8176719, R2 = 0.93, Fig. 2b) 

is a frameshift variant for ABO. The NES for ABO was positive (NES ≥ 0.17), except for whole blood 

(NES = -0.35, P = 6.98·10-11, Fig. 2c). The strongest NES for ABO was observed in the pancreas (NES = 

0.74, P = 1.50·10-21 , Fig. 2d).  

 The second most enriched process was genetic information processing. The ribosome 

pathway was enriched in eleven tissues (Fig. 3a). The modules in the various tissues that were 

enriched for the ribosome pathway all had varying numbers of associated eQTLs (n = 1-5) and eGenes 

(Fig. 3b, Fig. 3c). However, all modules shared a common eQTL - eGene pair, namely, rs12719778 and 

RPL8. The highest NES of rs12719778 on RPL8 was observed in whole blood (NES = -0.10, P = 8.46·10-

13, Fig. 3d). In nine of the eleven tissues in which the ribosome pathway was enriched, the modules 

also contained rs12920022 and RPL13, which had the strongest NES in skeletal muscle (NES = -0.26 , 

P = 3.36·10-26, Fig. 3e).  

 

In-depth analysis of rs601945 shows an association with primarily HLA genes  

Among the enriched pathways, multiple pathways were immune-related (i.e. Th 17 cell differentiation,  

Th 1 and Th 2 cell differentiation). All immune-related pathways that were enriched were linked with  

rs601945 and HLA-DQA2. As such, we explored the observed effect of rs601945 on the HLA gene HLA-

DQA2 in more detail (Fig. 1b). Rs601945 is located in an intergenic region and is in LD (R2 ≥ 0.8) with 

94 SNPs. Four genes are located in this LD region: HLA-DRB5, HLA-DRB1, HLA-DQA1 and RNU1-61P. 

For this LD region, 57 chromatin interactions are known in blood cells (CD34+, CD4+ memory , CD4+ 

naïve and CD4+ T-cells, Fig. 4a), 40 of which are interactions with loci located in HLA genes (HLA-DQA1 
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= 19, HLA-DQB1 = 13, HLA-DRB1 = 6, HLA-DQA2 = 3, HLA-DRA = 3, HLA-DRB5 = 3, HLA-DOB = 1). In 

CD4+ memory cells 13 SNPs were located in enhancer regions and 3 SNPs in flanking active 

transcription start sites (TSS). In CD4+ naïve cells 11 SNPs were located in enhancer regions and 3 SNPs 

in flanking active TSSs. Sixty-six eGenes were identified that were influenced by rs601945 (P ≤ 0.05, 

cis = 25, trans = 41). Taking into account the more stringent adjusted P-value defined by GTEx, 19 

eGenes remained (cis = 11, trans = 8, Fig. 4b). Among the significantly affected eGenes were primarily 

HLA genes. Rs601945 had positive and negative NESs with multiple HLA genes (Fig. 4c). As previously 

described, the strongest positive NESs were observed with HLA-DQA2 with the strongest association 

observed in skeletal muscle (NES = 1.19, P = 2.50·10-78, Fig. 4d). The strongest opposite effect was 

observed with HLA-DQB1 (NES = -0.50, P = 1.18·10-16, Fig. 4e). As rs601945 influences primarily HLA 

genes that are involved in many biological pathways, rs601945 was linked to seven pathways in 

multiple tissues. That is cell adhesion molecules pathway (Fig. 4f) in all twelve tissues, to five pathways, 

including phagosome and various immune pathways in eleven tissues (Fig. 4g, Fig. 4h) and linked to 

one pathway, intestinal immune network for IgA production in ten tissues (Fig. 4h).  

 

DISCUSSION 

In this study, we developed an R-package that aided us in understanding the functional consequences 

of T2D-associated SNPs. The R-package, called CONQUER collects up-to-date data, directed by SNPs 

of interest from a multitude of databases and repositories and analyses and visualizes the data. In 

contrast to previous studies that had similar approaches[12, 13], we have developed open-source 

software that is available as an R-package where only the SNPs and tissues of interest have to be 

specified and that can be used with minimal programming experience. 

With CONQUER we developed a tool that is universal and versatile as it can be used for various 

diseases and phenotypes where SNPs are of interest. Because we included data from multiple sources 

of various molecular levels, it provides researchers with a broad range of information that aids them 

in understanding their phenotype of interest. Additionally, CONQUER expands the search space of 

consequential effects by including co-expressed genes of eGenes which might reveal up- and 

downstream consequences. With increasing amounts of data, the complexity also increases. To 

maintain clear overview of the data, we implemented two separate views 1) where in-depth analyses 

of single SNPs can performed and 2) where multiple SNPs and their aggregated consequences can be 

investigated and linked to biological pathways. CONQUER is dependent on the availability of the 

Application Programming Interfaces (API) to access databases (GTEx, Ensembl and LDlink). This is a 

strength, as the latest versions of these databases will always be accessed without changing the 

programming structure of CONQUER. However, if API access itself is changed or the databases are 
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discontinued, then, updates to CONQUER are required. In contrast, access to the static data sources 

(e.g. meQTLs, miQTLs, pQTLs, chromatin states and chromatin interactions) is more secure as we 

maintain the source package (conquer.db). In addition, we will regularly update conquer.db as new 

studies will become available. All eQTLs are calculated with the GTEx API. Within GTEx sample sizes 

vary substantially per tissues, as a consequence, the number of significant eQTLs is correlated with 

the number of samples (R2=0.91). In the current study we take this into account by applying a liberal 

threshold and by assessing the NES across tissues. However, specific signatures of tissues with low 

sample counts might go unnoticed.  

CONQUER was used to investigate 403 diabetes-associated SNPs in more detail. T2D is a 

metabolic disorder, in accordance, most SNPs linked to metabolic pathways. The metabolic pathways 

as curated by KEGG [11] consists of 1489 genes and is an encompassing term for all pathways that are 

involved in metabolism. Our results show that SNPs that are directly linked to metabolism do not 

influence a single metabolic process but are scattered among various metabolic pathways (e.g. 

oxidative phosphorylation, fatty acid degradation, fructose and mannose metabolism and glycine 

serine and threonine metabolism). Due to this dispersion of SNPs between numerous pathways it 

remains difficult to assign groups of SNPs to specific processes in specific tissues. This together with 

the variety of pathways to which SNPs are mapped shows that T2D has a lot of different points of 

engagement through which it can originate and progress, which is accordance with heterogeneous 

nature of T2D [14]. We also linked SNPs to different pathways classified as genetic information 

processing. As such, proteasome, RNA transport, spliceosome and protein processing in endoplasmic 

reticulum were pathways to which various SNPs were mapped. Additionally, seven SNPs were mapped 

to the ribosome pathway. The link between T2D SNPs and the ribosome pathway was observed in 

eleven tissues. Seven ribosomal genes with predominately negative effect sizes were associated with 

seven T2D GWAS hits. Although the association between ribosomal content and T2D has extensively 

been studied[15-17], genetic susceptibility to T2D has previously not been linked to a decreased 

expression of ribosomal genes. Moreover, the hormone insulin and ribosomal content are tightly 

connected. Insulin stimulates the synthesis of ribosomal proteins in various tissues[18, 19] and a loss 

of ribosomal proteins is associated with an inhibition of AKT phosphorylation activity and the insulin 

pathway[20]. Rs601945 was highlighted as it influences many HLA genes that are involved in multiple 

pathways. Rs601945 was associated with the HLA region. The HLA region has previously been 

associated with T2D[3, 21], however, our results reveal that the effects are wide-spread as its 

association with altered expression of various HLA genes was observed in all investigated tissues. 

Interestingly, while the HLA region represents the highest risk for T1D [22], our results are pointing to 

a connection between HLA-DQA2 and T2D. In addition, our pQTL analyses also highlighted immune 
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response pathways. Our data support that T2D has an immunometabolic component involving, like 

T1D, members of both innate and adaptive immune response. Altogether, CONQUER revealed three 

biological main processes that could explain, in part, the association between SNPs and T2D 

susceptibility. In addition our results show that T2D SNPs influence metabolism through various 

pathways, that the ribosome pathway is influenced in multiple tissues through different combinations 

of SNPs and that rs601945 has wide-spread effects as it influences many genes that are involved in 

multiple immune related pathways.  CONQUER was also used to analyze single SNP effects. Both 

AP3S2 and HSD17B12 have previously been found in relation to T2D, but in limited number of tissues. 

AP3S2 in human pancreatic islets[31] and HSD17B12 in adipose, liver and muscle tissue and, whole 

blood[3], which are relevant for the treatment of T2D [32]. However, the genetic consequences are 

not limited to these tissues as our results show. As such, rs1061810 was found to be associated with 

altered expression of HSD17B12. The effect of rs1061810 on HSD17B12 has previously been described 

in adipose, liver and muscle tissue and, whole blood [3]. However, our results showed that the 

influence of rs1061810 on HSD17B12 is not only present in these tissues but in all twelve tissues that 

we investigated. rs11037579 had lower expression of HSD17B12 in all twelve tissues that we 

investigated, including adipose tissue. This result corroborates the finding that HSD17B12 expression 

is downregulated in the adipose tissue of insulin-resistant subjects [23] and plays a role in 

adipogenesis [24]. The HSD17B12 gene codes a bifunctional enzyme involved in the biosynthesis of 

estradiol and the elongation of very long chain fatty acids. One of the strongest observed effects was 

between rs4932265 and AP3S2. AP3S2 is a subunit of the AP-3 complex which is involved in budding 

of vesicles from the Golgi membrane [25]. AP3S2 has been linked to T2D in six different GWASs [21, 

26-30] with various populations (South Asian, Japanese and European ancestry) and with four 

different SNPs, three of which (rs12912009, rs2028299, rs8031576) are in LD (R2 ≥ 0.80) with 

rs4932265. In the current study we established that AP3S2 has a higher expression in the twelve 

tissues in individuals carrying the risk allele of rs4932265. Despite increasing evidence for the role 

AP3S2 in T2D susceptibility it remains unclear how AP3S2 is involved, although there is some evidence 

pointing at a beta-cell defect (wood et al https://doi.org/10.2337/db16-1452). In twelve tissues we 

have observed a negative effect size for MAN2C1 with the T2D risk allele of rs13737. Downregulation 

of MAN2C1 is known to cause delay in cell growth and inducing apoptosis [31, 32]. MAN2C1 binds 

with PTEN and thereby inhibits its lipid phosphatase activity [31]. PTEN inhibits activation of PI3K-AKT 

signaling pathway[31, 33], a pathway known to be involved in T2D development[33]. As we observe a 

negative effect size for MAN2C1, it is suggested that in the twelve investigated tissues, for individuals 

carrying the risk allele of rs13737 the PI3K-AKT signaling pathway could be inhibited in part, by a 

reduced expression of MAN2C1 through PTEN. This could explain the association of rs13737 with T2D 
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susceptibility. In six tissues we linked rs576123, located in intronic region of the ABO gene to metabolic 

pathways. While, ABO is at the basis of the ABO blood group system as it indirectly encodes for blood 

group antigens [34], a recent study has observed an impaired insulin secretion within O blood type 

subjects. In this study, SNPs located within the first intron have been connected to a reduced activity 

of the glycosyltransferases encoded by the ABO gene and specific targeting of the ABO gene by shRNA 

has led to a reduced glucose stimulated insulin secretion[35]. The effect of reduced ABO expression 

in the other tissues needs to be established. 

 

CONCLUSION 

The R-package CONQUER allows efficient integration of multiple datasets. With data on various levels, 

visualized in a tidy manner, we were able to uncover potential consequences of T2D associated risk 

loci. As such, SNPs could be linked through various biological mechanisms to insulin resistance and 

insulin secretion and comprehend the increased T2D risk. Our findings highlight the importance of an 

integrative approach where risk loci for T2D are not only seen as individual risk factors but also as a 

network of risk factors. With CONQUER we developed software that does this, uses the latest available 

data and is easy to use.  

 

METHODS 

 

CONQUER 

CONQUER was developed in R version 3.6.1 and is available from Git 

(https://github.com/roderickslieker/CONQUER). The user end the package consists of two intuitive 

function calls, summarize and visualize. The summarize function minimally requires a list of SNPs (rs* 

IDs), a directory to store them in and a token from LDlink to allow access to their API. Additional 

options multiAnalyze (boolean), to allow integrated analysis of multiple SNPs. This option, requires a 

list of tissues in which the integrated analysis should be performed. Summarize will collect all data 

described below for each SNP and store this in a small file that can be used in a later stage. The 

visualize function invokes a Shiny-based dashboard, with interactive plots of the integrated analysis 

(if performed) and a tab where individual SNPs can be visualized. Interactive figures were made using 

JavaScript Data-Driven Documents (d3.js) version 4.13.0, based on existing and newly developed plots. 

D3.js code was integrated in R making use of the htmlwidgets R-package[36] and all tools were 

integrated into the R package CONQUER.d3. Interactive heatmaps were made using plotly[37]. The 

interactive circos plot was made with the R-package BioCircos[38]. Interactive tables were generated 

with the DT package[39].  
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Data acquisition  

The data acquired for CONQUER are based on the human genome reference build GRCh38/hg38. The 

data is both collected from static sources and Application Programming Interfaces (APIs). The static 

sources are available in a separate R data package called conquer.db. CONQUER loads this data 

package when needed. As conquer.db is a separate package it is easily updated with the latest datasets 

without altering the programming structure of CONQUER. Static data include chromatin interactions, 

chromatin state segmentations, expression data, transcription factor binding sites, pQTLs, miQTLs. 

The chromatin interactions were obtained from the 4D genome database[7]. To have data from 

multiple tissues (N=31), only IM-PET data was included in CONQUER. Originally this data was based on 

the human genome reference build GRCh19/hg19. UCSC LiftOver tool[40] was used to lift over the 

data to GRCh38/hg38. Chromatin state segmentations were obtained from the Roadmap Epigenomics 

Project for all cell types available (N=127, 15-state model) [6]. Normalized (TPM, Transcript per 

Million) expression data of all available tissues (N=54) was obtained from GTEx v8[5]. Missing 

expression values were imputed with k-nearest neighbor and default parameters of the impute.knn 

function from the R-package impute[41]. Data of pQTLs [44-47] , meQTLs[48], miQTLs [49-52] were 

acquired from their corresponding references. 

 The remaining data (linkage disequilibrium, gene information, eQTLs) are obtained from APIs 

and are collected once the user has given the command. Elementary information about the SNP of 

interest is acquired from the Ensembl API [8]. The linkage disequilibrium (LD) structure originates from 

the LDlink API[51]. For both the Ensembl API and LDlink API the population can be specified, by default 

the population is set on Utah Residents with Northern and Western European Ancestry (CEU) from 

the 1000 Genomes Project phase 3[52]. The eQTLs and eGenes corresponding to the SNP of interest 

are computed making use of GTEx API. By default, GTEx has an eQTL mapping window of one Mb 

upstream and downstream of the transcription start site of a gene. In CONQUER, we expanded the 

search space by including genes that have chromosomal interaction with the LD region (R2 ≥ 0.80) of 

the leading SNP. CONQUER automatically sends a request to the GTEx API to calculate eQTLs for every 

available tissue utilizing GTEx v8[5]. Lastly, phenotype associations are acquired from the GWAS-

catalog[53]. For every queried SNP, CONQUER generates an RData object containing all previously 

described data and stores it in a directory the user has provided.  

 

Statistical analyses 

First, CONQUER was used to retrieve all the available data of the 403 risk loci associated with T2D [1]. 

Next, the modularization and pathway enrichment were performed by CONQUER on twelve T2D 
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relevant tissues (Table 1). It should be noted that GTEx reports normalized effect sizes (NES) as effect 

of the alternative allele relative to the reference allele. However, a variant associated with T2D can be 

either the reference allele or alternative allele. Therefore, we investigated the effect size of the risk 

allele of T2D relative to the other allele based on an additive model. Also, due to the variability of 

sample sizes of GTEx across tissues and their association with P-values of eQTLs, we use both 

normalized effect size and P-values for the interpretation of the results. Figures were directly from 

CONQUER or additionally made using ggplot2.  

 

Modularization and pathway enrichment 

With multiple SNPs, CONQUER can modularize SNPs and associate them with biological pathways in 

tissues of interest (Fig. 5). All tissues in GTEX can be included. Based on the GTEx data, eQTLs and their 

associating eGenes are selected (P-value ≤ 0.05). For these eGenes, co-expressed genes are identified 

by performing correlation analyses with imputed GTEx expression data in the corresponding tissues. 

Co-expression between genes is assumed when rho ≥ 0.90. Next, the eGenes and their co-expressed 

genes are hierarchical clustered[54, 55] based the distance between genes (1 – rho). The number of 

modules within the clustered data is optimized by maximizing the globalSEmax of the gap statistic[56] 

using the cluster R package[57]. Modules of co-expressed genes and eGenes are then tested for 

pathway enrichment based on KEGG pathways. For each pathway odds ratios and accompanying P-

values are calculated with Fisher’s exact test[58]. If a module does not contain an eQTL or is not 

enriched for a pathway, it is omitted from the analysis.  
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Figure legends 
 

 
Figure 1 Volcano plot of all the 6664 calculated eQTL - eGene pairs, with the strongest tissue-wide 

eQTL NESs highlighted. a) Global overview b) rs601945 - HLA-DQA2. c) rs1061810 - HSD17B12. d) 

rs13737 -MAN2C1. e) rs4932265 - AP3S2. 
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Figure 2 Overview of eQTLs mapped to metabolism and in-depth analysis of lead SNP rs576123. a) 

Overview of the number of eQTLs that are mapped to the corresponding pathways in the investigated 

tissues. b) Locus zoom of rs576123 with R2 of the surrounding SNPs and recombination rate, including 

rs8176719 (frameshift variant). c) Violin plot of the normalized expression levels of ABO in whole blood 

with the haplotypes of rs576123. d) Violin plot of the normalized expression levels of ABO in the 

pancreas with the haplotypes of rs576123. 
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Figure 3 Overview of eQTLs mapped to Ribosome a) Number of tissues in which the corresponding 

pathways were enriched b) Overview of the number of eQTLs that are mapped to the corresponding 

pathways in the investigated tissues. c) Pathway enrichment results for ribosomes, with the eQTLs 

and eGenes involved. d) Violin plot of the normalized expression levels of RPL8 in whole blood with 

the haplotypes of rs12719778. e) Violin plot of the normalized expression levels of RPL13 in skeletal 

muscle with the haplotypes of rs12920022. 
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Figure 4 In-depth analysis of rs601945 a) Chromatin interactions in blood cells (CD34+, CD4+ memory 

, CD4+ naïve and CD4+ T) of the region that is in LD (R2 ≥ 0.8) with rs601945 and chromatin states of 

CD4+ naïve (outer-ring) and In CD4+ memory cells (inner-ring). b) Hive plot showing the association of 

rs601945 (center axis) with eGenes (right axis) in various tissues (left axis). c) NESs of all HLA genes 

investigated with rs601945. d) Violin plot of the normalized expression levels of HLA-DQA2 in skeletal 

muscle with the haplotypes of rs601945. e) Violin plot of the normalized expression levels of HLA-

DQB1 in skeletal muscle with the haplotypes of rs12719778. f, g, h) Number of tissues in which the 

corresponding pathways were enriched with HLA associated pathways highlighted. 
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Figure 5 Schematic overview of SNP modularization. Starting with a set of SNPs, cis- and trans genes 

are calculated with the GTEx API. After applying a threshold (P ≤ 0.05), sets of co-expressed genes are 

determined after which all included genes (eGenes and co-expressed genes) are clustered. Each 

module (cluster) resulting from the cluster analysis is then enriched with KEGG.  
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Table 1. Characteristics of the individuals in the GTEX data  

 

Data characteristics of the investigated tissues classified by age and separately by cause of death. Cause of death 

based on 4-point Hardy-Scale: 0) Cases on ventilator before death 1) violent and fast death, i.e. accident 2) fast 

death of natural causes 3) intermediate death with terminal phase of 1-24 hours 4) slow death after long illness. 

   Age    

Tissue N Sex (male) 20-29 30-39 40-49 50-59 60-69 70-79 0 1     

Adipose Subcutaneous 663 445 (67,1 %) 52 (7,8 %) 58 (8,7 %) 103 (15,5 %) 213 (32,1 %) 216 (32,6 %) 
21 (3,2 

%) 352 (53,1 %) 21 (3               

Adipose Visceral Omentum 541 371 (68,6 %) 45 (8,3 %) 44 (8,1 %) 86 (15,9 %) 184 (34 %) 163 (30,1 %) 
19 (3,5 

%) 314 (58 %) 16 (               

Colon Sigmoid 373 240 (64,3 %) 36 (9,7 %) 39 (10,5 %) 54 (14,5 %) 109 (29,2 %) 123 (33 %) 
12 (3,2 

%) 236 (63,3 %) 9 (2,               

Colon Transverse 406 259 (63,8 %) 43 (10,6 %) 47 (11,6 %) 75 (18,5 %) 136 (33,5 %) 94 (23,2 %) 
11 (2,7 

%) 316 (77,8 %) 4 (1              

Liver 226 161 (71,2 %) 7 (3,1 %) 17 (7,5 %) 35 (15,5 %) 83 (36,7 %) 79 (35 %) 5 (2,2 %) 86 (38,1 %) 13 (5               

Muscle Skeletal 803 543 (67,6 %) 67 (8,3 %) 65 (8,1 %) 124 (15,4 %) 255 (31,8 %) 264 (32,9 %) 
28 (3,5 

%) 424 (52,8 %) 31 (3               

Pancreas 328 207 (63,1 %) 29 (8,8 %) 31 (9,5 %) 66 (20,1 %) 118 (36 %) 79 (24,1 %) 5 (1,5 %) 275 (83,8 %) 3 (0,               

Pituitary 283 204 (72,1 %) 9 (3,2 %) 8 (2,8 %) 24 (8,5 %) 87 (30,7 %) 138 (48,8 %) 17 (6 %) 13 (4,6 %) 21 (7               

Small Intestine Terminal Ileum 187 120 (64,2 %) 28 (15 %) 22 (11,8 %) 35 (18,7 %) 56 (29,9 %) 42 (22,5 %) 4 (2,1 %) 174 (93 %) 2 (1,               

Stomach 359 227 (63,2 %) 44 (12,3 %) 39 (10,9 %) 64 (17,8 %) 128 (35,7 %) 79 (22 %) 5 (1,4 %) 301 (83,8 %) 3 (0,               

Thyroid 653 434 (66,5 %) 47 (7,2 %) 51 (7,8 %) 110 (16,8 %) 211 (32,3 %) 212 (32,5 %) 
22 (3,4 

%) 358 (54,8 %) 24 (3               

Whole Blood 755 501 (66,4 %) 68 (9 %) 68 (9 %) 113 (15 %) 234 (31 %) 249 (33 %) 23 (3 %) 412 (54,6 %) 29 (3               
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