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Copy number variation is crucial in deciphering the mechanism
and cure of complex disorders and cancers. The recent advance-
ment of scDNA sequencing technology sheds light upon address-
ing intratumor heterogeneity, detecting rare subclones, and re-
constructing tumor evolution lineages at single-cell resolution.
Nevertheless, the current circular binary segmentation based
approach proves to fail to efficiently and effectively identify copy
number shifts on some exceptional trails. Here, we propose
SCYN, a CNV segmentation method powered with dynamic
programming. SCYN resolves the precise segmentation on two
in silico datasets. Then we verified SCYN manifested accurate
copy number inferring on triple negative breast cancer scDNA
data, with array comparative genomic hybridization results of
purified bulk samples as ground truth validation. We tested
SCYN on two datasets of the newly emerged 10x Genomics CNV
solution. SCYN successfully recognizes gastric cancer cells from
1% and 10% spike-ins 10x datasets. Moreover, SCYN is about
150 times faster than state of the art tool when dealing with the
datasets of approximately 2000 cells. SCYN robustly and ef-
ficiently detects segmentations and infers copy number profiles
on single cell DNA sequencing data. It serves to reveal the tumor
intra-heterogeneity. The source code of SCYN can be accessed
in https://github.com/xikanfeng2/SCYN. The visual-
ization tools are hosted on https://sc.deepomics.org/.
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Background
Numerous studies have shown that copy number varia-
tions(CNV) can cause common complex disorders (1–5).
Copy number aberration (CNA), aka, somatic CNV, is also
reported to be a driving force for tumor progression and
metastasis. For example, George et al reported the high am-
plification of oncogene gene PD-L1 in small-cell lung can-
cer (6) and amplification of MYC is announced prevailing in
pan-cancer studies (7). The loss of tumor suppressor genes
like KDM6A and KAT6B are proclaimed indirectly amplifies
harmful cancer-related pathways (8, 9).
Conventional experimental protocols for CNV segmentation
lies in the following scenarios. Researchers may infer a
coarse CNV profiles utilizing bulk RNA sequencing (10) and
single cell RNA sequencing (11–13). Moreover, scientists
may leverage bulk genome such as DNA array comparative
genomic hybridization (aCGH) (14), single-nucleotide poly-
morphism (SNP) arrays (15, 16), and DNA next generation

sequencing (NGS) (17, 18) to generate high resolution CNV.
Although bulk genome sequencing studies have contributed
insights into tumor biology, the data they provide may mask
a degree of heterogeneity (19). For instance, if the averaged
read-out overrepresents the genomic data from the dominant
group of the tumor cells, rare clones will be masked from the
signals. The advent of single-cell DNA (scDNA) sequencing
delivers a potential solution (20–22). Researchers can over-
whelm the deficiencies of bulk approaches to address intratu-
mor heterogeneity (ITH) (22), detect rare subclones (19), and
reconstruct tumor evolution lineages (20, 23).

In this study, we concentrate on the CNV segmentation and
turning points detection approaches customized for single
cell DNA sequencing. CNV Segmentation refers to partition-
ing the genome into non-overlapping segments with the ob-
jective of that each segment shares intra-homogeneous CNV
profile, and the segment boundaries are often termed to be
checkpoints or turning points (24). Although numerous CNV
segmentation tools have emerged leveraging high through-
put sequencing data such as Circular Binary Segmentation
(CBS) (25, 26) and Hidden Markov Model (HMM) (27, 28),
the methods customized for scDNA data is in its infancy.
Gingko (29), SCNV (30), and SCOPE (31) applied diverse
strategies to normalize the scDNA intensities through simul-
taneously considering sparsity, noise, and cell heterogene-
ity, and adopted variational CBS for checkpoint detection.
While after in silico experiments, we argue that those CBS
approaches might not lead to an optimal segmentation result,
some turning points might be masked. Furthermore, with
the advance of large scale high throughput technologies, the
scale of cells for a single dataset climbs exponentially. For in-
stance, the newly emerged 10x Genomics CNV solution can
profile the whole genome sequencing of thousands of cells
at one time (22). Thus, efficiently processing scDNA-seq
data is crucial. However, current scDNA CNV segmenta-
tion methods are too time-consuming to process thousands
of cells.

Therefore, in this paper, we propose SCYN, an effecient
and effective dynamic programming approach for single cell
data CNV segmentation and checkpoint detection. SCYN re-
solves the precise turning points on two in silico datasets,
while existing tools fail. SCYN manifested more precise
copy number inference on a triple-negative breast cancer
scDNA dataset, with array comparative genomic hybridiza-
tion results of purified bulk samples as ground truth valida-
tion. We tested SCYN on two datasets of the newly emerged
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10x Genomics CNV solution. SCYN successfully recognizes
gastric cancer cells from 1% and 10% spike-ins 10x datasets.
Last but not least, SCYN is about 150 times faster than state
of the art tool when dealing with thousands of cells.

Results

Overview of SCYN. We developed an algorithm, SCYN,
that adopts a dynamic programming approach to find opti-
mal single-cell CNV profiles. The framework for SCYN
displayed in Figure 1A. First, the raw scDNA-seq reads of
FASTQ format are pre-processed with standard procedures
(see Figure 1A). SCYN then takes the aligned BAM files as
the input. SCYN integrates SCOPE (31), which partitions
chromosomes into consecutive bins and computes the cell-
by-bin read depth matrix, to process the input BAM files and
get the raw and normalized read depth matrices. The seg-
mentation detection algorithm is then performed on the raw
and normalized read depth matrices using our dynamic pro-
gramming to identify the optimal segmentation along each
chromosome. The segmentation results are further applied to
copy number calculation. Finally, SCYN outputs the cell-by-
bin copy number matrix and the segmentation results of all
chromosomes for further CNV analysis.

SCYN effectively identifies all breakpoints on syn-
thetic trials. To evaluate the segmentation power of SYCN
against SCOPE, we generated two different combinations of
the CNV intensities of blue cell and orange cell along 200 bin
regions. In the first simulation, the ground truth segmentation
are (1, ..., 49), (50, ..., 99) (100,..., 149), (150,..., 200); and
the copy number state alternates between haploid and diploid.
Figure 2 shows the SCOPE unable to detect the turning point
100 here, leading to erroneously dropping the loss of het-
erogeneity event of bin range [100, 123]. In contrast with
SCOPE, SCYN accurately detected all turning points and as-
signed the correct copy number to all bin regions. Then,
with fixed copy number turning points (50, 100, and 150)
and copy number state alternates between one and four, we
simulated the situation where blue cell and orange cell are
always heterogeneous. In Figure 2, SCYN successfully cate-
gorized all turning points and copy number states with 100%
accuracy and uncovered the cell heterogeneity. Even though
SCOPE assigned correct copy number to each bin region, we
found that it output five turning points 50, 100, 143, 146, and
150. In other words, SCOPE considered there exited con-
secutive copy number shifts among bin ranges [101, 143],
[144, 146], and [147, 150], which opposite against the ho-
mogeneous fact. As previously mentioned, the core principle
of CNV segmentation is partitioning the genome into non-
overlapping areas with the objective of that each area shares
intra-homogeneous CNV profile (24, 30). SCOPE fails to hit
the correct answer as its turning point detection fails. Over-
all, these two experiments on synthetic data suggest that em-
powered with dynamic programming, SCYN can achieve the
correct copy number turning point detection against the seg-
mentation schema SCOPE proposed.

SCYN successfully identifies subclones in wet-lab
cancer datasets. We illustrate the performance of SCYN in
cancer single-cell datasets. We collected two cancer data sets,
namely the Nature_TNBC (two triple-negative breast can-
cers) (32) and 10x_Gastric (gastric cancer spike-ins). We il-
lustrated the tumor intra-heterogeneity discovered by SCYN
and validated the results of SCYN against the estimation
made by SCOPE for ground truth available datasets.

The first benchmark dataset we investigated is Na-
ture_TNBC. 100 single cells were separately sequenced from
two triple-negative breast cancer samples, namely, T10 and
T16 (32). For T10, we removed cell SRR054599 as it did
not pass the quantity control, resulting 99 single cells from
held four subgroups: Diploid (D), Hypodiploid (H), Aneu-
ploid A (A1), and Aneuploid B (A2). We first verified if
SYCN could replicate the subclone findings previously re-
ported. Figure 3A demonstrates the genome-wide copy num-
ber profiles across the 100 single cells for T10. Overall, the
cell subclones recognized by SCYN are concordant with the
outputs of SCOPE (see Additional file 1, Supplementary Fig-
ure S1A) and Navin et al.’s findings. With hierarchical clus-
tering, SCYN categorizes T10 into seven clusters. As illus-
trated in Figure3 and Additional file 1 Supplementary Figure
S2A-3A, for T10, cluster 1 matches the diploid (D) cells and
cluster 3 represents the hypodiploid (H) group. There are
two hyperdiploid subgroups. Cluster 4 corresponds to ane-
uploid A (A1) and cluster 2,5,6,7 together represents aneu-
ploid B (A2). Navin et al. also separately profiled the four
subgroups through array comparative genomic hybridization
(aCGH) (33), here we regarded the CNV profiled from aCGH
as golden-standard to examine the SYCN and SCOPE per-
formance. As illustrated in Figure 3B-C, SCYN owns a
higher Pearson correlation and a lower root mean squared er-
ror (RMSE) of ground-truth against SCOPE.

T16 sample is a mixture of one primary breast tumor (T16P,
52 single cells) and its corresponded liver metastasis (T16M,
48 single cells). Navin et al. identified five cell sub-
populations: Primary Diploid (PD), Primary Pseudodiploid
(PPD), Primary Aneuploid (PA), Metastasis Diploid (MD),
and Metastasis Aneuploid (MA). Figure 4A records T16
genome-wide copy number profiles across the 100 single
cells. In all, the cell subclones recognized by SCYN are con-
sistent with SCOPE (see Additional file 1, Supplementary
Figure S1B) and Navin et al.’s findings. Hierarchical clus-
tering characterizes T16 into seven subgroups. As depicted
in Figure4 and Additional file 1 Supplementary Figure S2B-
3B, cluster 1 mates the primary diploid (PD) cells. Cluster
3 represents metastasis aneuploid (MA), and cluster 6,7 to-
gether pictures primary aneuploid (PA). As Navin et al. only
profiled four bulk dissections using of T16 aCGH (33), there
lacks the CNV gold standard for 16T in su subclones. So we
calculated the CNV correlation and RMSE between inferred
primary aneuploid (PA) subpopulation and the four dissec-
tions, respectively. From Figure 4B-C, although the associa-
tion between PA group and four bulk dissections is relatively
low, SCYN profiles a closer correlation than SCOPE with
higher correlation and lower discrepancy.
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We next employed SCYN and SCOPE to the lately published
single cell DNA spike-in demo datasets available at the 10x
Genomics official website. 10x Genomics mixed BJ fibrob-
last euploid cell line with 1% and 10% spike-in of cells from
MKN-45 gastric cancer cell line. As illustrated in the CNV
heatmap Figure5A and Additional file 1 Supplementary Fig-
ure S4, SCOPE successfully distinguished the two spike-in
gastric cancer cells. Furthermore, we visualized the first two
principal components of the estimated CNV profiles in Fig-
ure5B-C. Cells whose Gini coefficient more massive than
0.12 were highlighted in yellow and regarded as gastric can-
cer cells from the 1% and 10% spike-ins, respectively. Then,
we checked if SYCN produced CNV profiles better preserves
the cell subpopulation information against SCOPE. Lever-
aging Gini 0.12 as the cut-off value, we partitioned cells
into normal and cancer subset as benchmark labels. Next,
we practiced hierarchical clustering into CNV matrices at-
tained from SYCN and SCOPE, and get two clusters for each
spike-in sets. Then, we adopt four metrics to inquire about
the clustering accuracy of SYCN against SCOPE. The ad-
justed Rand index (ARI) (34), Normalized mutual informa-
tion (NMI) (35), and Jaccard index (JI) (36) measures the
similarity between the implied groups and golden-standard
labels; a value approaching 0 purports random assignment,
and one reveals accurate inferring. As evidenced in Table 1
and Table 2, with ARI, NMI, and JI as measurements, SYCN
holds equal clustering accuracy to SCOPE on both 1% and
10% spike-in sets, which indicates SYCN captures substan-
tial interior tumor heterogeneity.

SCYN segmentation is fast. Recall that efficient process-
ing of scRNA-seq data is essential, especially in today’s thou-
sands of single cells throughput. To evaluate the efficiency of
SCYN against SCOPE, we measured the segmentation task
CPU running time of SCYN and SCOPE on T10, T16M,
T16P, 10x 10% spike-in, 10x 1% spike-in, and several simu-
lation data sets (90-1, 90-2, 2000-1, 2000-2, 2000-3, 2000-4,
and 2000-5), with the cell number ranging from 48 to around
2000. We respectively ran SCYN and SCOPE on each dataset
ten times and calculated the mean CPU running time. As il-
lustrated in Table 3 and Figure 6, the CPU consuming time of
SCYN is almost linear in log scale with the increase of cell
number. However, the CPU time of SCOPE rises dramat-
ically when the cell number goes to hundreds or thousands.
For instance, for large datasets with 2k cells, SCYN is around
150 times faster than SCOPE, SCYN finished the tasks within
eight minutes, while SCOPE is unable to scale 2k cells within
16 hours. In all, SCYN is super fast in respective of datasets
scale up to hundreds or thousands.

SCYN segmentation has better mBIC values. SCYN is
fast because we only adopt the simplified version (see Equa-
tion 1 in Method) of total SCOPE-mBIC (31) as the objec-
tive of segmentation and optimize it utilizing dynamic pro-
gramming. Experiments on synthetic datasets and real cancer
datasets successfully validated the tumor intra-heterogeneity
exposure efficacy of SCYN against SCOPE. Here we further
evaluate SCYN optimization effectiveness against SCOPE in

respective of the original SCOPE-mBIC objective. We com-
pared SCOPE-mBIC value by adopting the segmentation re-
sults of SCYN and SCOPE on real cancer datasets T10, T16P,
T16M, and 10x spike-ins. As illustrated in Figure 7A and
Supplementary Figure S5A, the mBICs yielded from SCYN
on samples across all chromosomes are always more massive
than the mBICs produced by SCOPE, except chromosome 16
of 1% spike-in. Clearly, SCYN achieves better segmentation
concerning the tedious SCOPE objective. Furthermore, as
illustrated in Figure 7B and Supplementary Figure S5B, the
proportions of the simplified mBIC against overall SCOPE-
mBICs are overwhelming across all chromosomes, indicating
all residual terms actually can be neglected without loss of ac-
curacy. SCYN produced smaller mBIC values than SCOPE
on chromosome 16 for 1% spike-in dataset, suggesting that
the residual terms take effect on circumstances such as the
tiny proportion of cancer cells. However, we believe that the
1% spike case is rare in scDNA sequencing samples and is in-
valid for downstream analysis, and the minor fluctuations of
mBIC will not affect the ability of SCYN to detect subclones,
as proved in the previous section.

Discussion
In this study, we proposed SCYN, a fast and accurate dy-
namic programming approach for CNV segmentation and
checkpoint detection customized for single cell DNA se-
quencing data. We demonstrated SCYN guaranteed to re-
solve the precise turning points on two in silico datasets
against SCOPE. Then we proved SCYN manifested a more
accurate copy number inferring on triple-negative breast can-
cer scDNA data, with array CGH results of purified bulk
samples as ground truth validation. Furthermore, we bench-
marked SCYN against SCOPE on 10x Genomics CNV solu-
tion datasets. SCYN successfully recognizes gastric cancer
cell spike-ins from diploid cells. Last but not least, SCYN is
about 150 times faster than state of the art tool when dealing
with thousands of cells. In conclusion, SCYN robustly and
efficiently detects turning points and infers copy number pro-
files on single cell DNA sequencing data. It serves to reveal
the tumor intra-heterogeneity.
The implementation of SCYN is wrapped in python packages
https://github.com/xikanfeng2/SCYN. It pro-
vides the segmented CNV profiles and cell meta-information
available for downstream analysis, such as hierarchical clus-
tering and phylogeny reconstruction. Last but not least, the
CNV profiles obtained from SCYN can be directly visu-
alized in https://sc.deepomics.org/, which sup-
ports real-time interaction and literature-style figure down-
loading.
We neglected one crucial issue. Cancer scDNA-seq inten-
sities should be regarded as a mixture of subclone cell sig-
nals with confounding of sparsity, GC bias, and amplifica-
tion bias (31). The perfect CNV segmentation heavily re-
lies on the cross-cell normalization of intensities in the first
place. While we brutely adopt the normalization schema
from SCOPE; there lacks a comprehensive evaluation of
scDNA intensities normalization. Speaking to further work,
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inferring CNV profiles from single-cell RNA sequencing
(scRNA-seq) is trending (11–13, 37). Incorporating DNA
and RNA to profile single cell CNV segmentation might lead
to tumor intra-heterogeneity to a higher resolution.

Methods
Data sets.

Synthetic data. Two synthetic datasets were generated to
evaluate the segmentation power of SCYN. The dimension
of each dataset is 400 bins and two cells. The ground truth
segmentation is (1, ..., 49), (50, ..., 99) (100,..., 149), (150,...,
200) for both of datasets. For the first dataset, the reads count
of two cells for the four segments was designed to around
(100, 100), (400, 400), (100, 100) and (400, 400), respec-
tively. For the second dataset, the reads count of two cells for
the four segments was designed to around (100, 400), (400,
100), (100, 400) and (400, 100), respectively. Random noise
was applied to these reads counts.

Single-end Real scDNA-seq data. Two single-end breast can-
cer scDNA-seq datasets were downloaded from NCBI Se-
quence Read Archive with the SRA number of SRA018951.
The raw fastq files were aligned using BWA-mem (38) to
the human hg19 reference genome, and the BAM files were
sorted using SAMtools (39). Picard toolkit (40) was used to
remove duplicate reads. The clean BAM files were fed as the
input of SCYN package.

Ten-X (10x) data. The 10x spike-in scDNA-seq data was col-
lected from the 10x Genomics official dataset with the ac-
cession link https://support.10xgenomics.com/
single-cell-dna/datasets. The cell-mixed BAM
files were demultiplexed to cellular BAMs according to cel-
lular barcodes using Python scripts.

Notations. To profile the CNV along genomes, first, we par-
tition the genome into fix-size bins. Assume the number of
bins as m. If the number of cells is n, then the input matri-
ces, Ym×n and Ŷm×n, contain the raw and normalized reads
counts, respectively; that is, Yi,j includes the number of raw
reads count belong to bin i at cell j and Ŷm×n contains the
number of normalized reads count belong to bin i at cell j,
where 1≤ i≤m and 1≤ j ≤ n.

Segmentation. The first task is to partitioning the bins into
segments to optimize an objective function. Here, we choose
the objective function to maximize the simplified version of
modified Bayesian information criteria (mBIC) proposed by
Wang et al. (31).
To calculate the simplified mBIC, we need to partition the
sequence of bins into ` segments s1, ...,s`, where sk =
(ik−1 + 1, ..., ik), k0 = 0 ≤ k1 < k2 < ... < k` = n. De-
note the number of bins in segment sk as |sk|With the parti-
tioning, we can calculate two matrices X`×n, X̂`×n, where
Xk,j = 1

|sk|
∑
i∈sk Yi,j , X̂k,j = 1

|sk|
∑
i∈sk Ŷi,j , 1≤ k ≤ `.

Given a segmentation S = (s1, ...,s`), its simplified mBIC is
calculated as

β(S) = log Lτ
L0
− log

(
m

`−1

)
− (`−1)(κ1−κ2) (1)

where log LτL0
is the generalized log-likelihood ratio, κ1 and

κ2 are two pre-defined constants and

log Lτ
L0

=
∑̀
k=1

X̂k(1− b2Xk/X̂ke2 )+Xk log(b2Xk/X̂ke2 )

(2)

For more details on the interpretation of the terms in mBIC,
we refer the readers to Wang et al. (31). Our objective here is
to find a segmentation Sopt such that β(Sopt) is maximized.

Optimal algorithm. Let β(k, i) store the simplified mBIC
value for the optimal segmentation which partitions bins
1, ..., i into k segments. Associated with β(k, i), we also store
the corresponding generalized log-likelihood ratio L(k, i),
which is the first term in Equation 1, the log-likelihood ratio
l(i, j) for a single segment starting at the i-th bin and end-
ing at the j-th bin, and the (k− 1)-th optimal turning point
position T (k−1, i) to partition bins 1, ..., i into k segments.
The β(k, i) is calculated by the following recursive formula-
tions:

β(k,i) =max1≤i′<i(L(k−1, i′)+ l(i′+1, ..., i)+C)

(3)
L(k,i) = argmax

i′
(β(k, i))L(k−1, i′)+ l(i′+1, ..., i)

(4)
T (k−1, i) = argmax

i′
(β(k, i)) (5)

where C is the sum of last two terms in Equation 1.
As demonstrated in Equation 3, the value of each cell β(k,i)
in table β can be computed based on the earlier store data
L(k− 1, i′) and l(i′+ 1, ..., i). The computed β(k,i) is then
used to incrementally with k and i to compute the correct
values of β. Clearly, the values of β and L for one segment
can be initialized to equal to l.
The values of β can be stored in a two dimensional array,
i.e., a table. The procedure for computing the table β is also
displayed in Algorithm 1. The table β will be constructed
starting from a single segment β(1, i), and moving towards
more segments β(k, i). The β(1, i) and L(1, i) are initial-
ized to l(1, i) and T (0, i) is initialized to 0 when there is only
one segment. When computing a cell β(k, i)(k > 1), we will
checks all possible i′, (k ≤ i′ < i) and compute all values of
(L(k− 1, i′) + l(i′+ 1, ..., i) +C) and β(k, i) is determined
by max(L(k−1,i′)+l(i′+1,...,i))+C . Processing the bins form
in increasing order on length guarantees that the final opti-
mal segmentation can be detected when i is equal to the total
number of bins m. At the last, the positions of k−1 turning
points are stored in table T .

Backtracking. The backtracking process of finding the posi-
tions of the optimal turning points is demonstrated in Figure
1B. Let the table at the left-side of Figure 1B as T , where i
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Algorithm 1 Computing the table β

1: procedure COMPUTINGTHETABLEβ
2: for segment number k from 1 to pre-defined K do
3: for each bin i from 1 to m do
4: if k == 1 then
5: β(1, i) = l(1, i)
6: L(1, i) = l(1, i)
7: T (0, i) = 0
8: else
9: β(k, i) =max1≤i′<i(L(k−1, i′)+ l(i′+

1, ..., i)+C)
10: L(k, i) = argmaxi′(β(k, i))(L(k −

1, i′)+ l(i′+1, ..., i))
11: T (k−1, i) = argmaxi′(β(k, i))
12: end if
13: end for
14: end for
15: end procedure

and j are the indexes of turning points and bins respectively.
T (i, j) is the position of the i-th optimal turning point for a
segment s(0, j). The optimal total turning points number is
determined by the maximum value of β(i,m), where m is
the total number of bins. Then the positions of the optimal
turning points can be found by the following formulation:

T (k−1,m) = argmax
k
β(k,m) (6)

T (k−2, j) = T (k−2,T (k−1,m)−1) (7)

where k is the total segmentation number (1 < k ≤ K), j is
the index of bin and m is the total number of bins.

Time complexity. The time complexity of this algorithm is
O(m2n+m2k), where m is the total bin number, n is the
total cell number and k is the total segment number. The
time complexity of calculating each l(i, j) is O(n) and we
need to go over O(m2) possible segments for m bins. There-
fore we need to O(m2n) time to construct the table l. For a
given segments number k, we need to calculate O(m) pos-
sible (L(k1, i′) + l(i′+ 1, ..., i)) values to get the maximum
L(k, i) for m possible i, total O(m2) times. The time com-
plexity for calculating the table L is O(m2k). In conclusion,
the time complexity of our algorithm is O(m2n+m2k).

Benchmark settings. SCOPE is a state-of-the-art tool for
single cell CNV calling. We followed the steps in SCOPE
README tutorial to perform the call CNV tasks in all
datasets and the default parameters were used in all experi-
ments. For SCYN, the function ’call()’ was used and all pa-
rameters were set to default values. For running time analysis
experiments, all experiments were run on a Dell server with
an Intel(R) Xeon(R) CPU E5-2630 v3 with a clock speed of
2.40GHz. The mean value of 5 independent runs was re-
garded as the final running time for each tool.

Availability of data and materials
The data and source code included in this study can be
found in https://github.com/xikanfeng2/SCYN.
The visualisation tools are hosted on https://sc.
deepomics.org/.
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Figures

Tables
Table 1. 10x 1% spike-in datasets clustering evaluation

Method ARI NMI JI
SCYN 0.67650 0.7623 0.5238
SCOPE 0.67650 0.7623 0.5238

Table 2. 10x 10% spike-in datasets clustering evaluation

Method ARI NMI JI
SCYN 0.9139 0.8770 0.8718
SCOPE 0.9139 0.8770 0.8718
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Fig. 1. Overview of SCYN

●

●
●

●

●
●

●
●

●

●

●

●●●
●
●

●

●

●

●

●

●●
●●●

●
●
●

●

●

●
●
●

●

●

●

●
●

●●
●

●
●
●

●●●
●
●

●
●●
●
●
●
●●
●
●
●
●●●●
●

●
●
●
●
●
●●●●●
●●●
●

●
●●
●

●
●
●
●
●
●●
●
●●●
●●●●
●

●

●
●

●

●
●

●
●

●

●

●

●●●
●
●

●

●

●

●

●

●●
●●●

●
●
●

●

●

●
●
●

●

●

●

●
●

●●
●

●
●
●

●●●
●
●

●
●●
●
●
●
●●
●
●
●
●●●●
●

●
●
●
●
●
●●●●●
●●●
●

●
●●
●

●
●
●
●
●
●●
●
●●●
●●●●
●

0 50 100 150 200

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

SCOPE performance on case 1

bin

co
py

 n
um

be
r

●●●
●
●●
●

●

●

●

●
●

●●
●●

●

●
●
●

●●

●

●●●

●
●
●
●
●
●

●●
●
●●
●

●

●●
●
●

●●●●

●
●●

●●●●●●●
●

●
●
●
●
●●●●
●
●●
●
●●
●
●●●
●●●
●
●●
●●●●●
●
●
●●●●
●●●●
●●●

●●●
●
●●
●

●

●

●

●
●

●●
●●

●

●
●
●

●●

●

●●●

●
●
●
●
●
●

●●
●
●●
●

●

●●
●
●

●●●●

●
●●

●●●●●●●
●

●
●
●
●
●●●●
●
●●
●
●●
●
●●●
●●●
●
●●
●●●●●
●
●
●●●●
●●●●
●●●

●

●
●

●

●
●

●
●

●

●

●

●●●
●
●

●

●

●

●

●

●●
●●●

●
●
●

●

●

●
●
●

●

●

●

●
●

●●
●

●
●
●

●●●
●
●

●
●●
●
●
●
●●
●
●
●
●●●●
●

●
●
●
●
●
●●●●●
●●●
●

●
●●
●

●
●
●
●
●
●●
●
●●●
●●●●
●

●

●
●

●

●
●

●
●

●

●

●

●●●
●
●

●

●

●

●

●

●●
●●●

●
●
●

●

●

●
●
●

●

●

●

●
●

●●
●

●
●
●

●●●
●
●

●
●●
●
●
●
●●
●
●
●
●●●●
●

●
●
●
●
●
●●●●●
●●●
●

●
●●
●

●
●
●
●
●
●●
●
●●●
●●●●
●

0 50 100 150 200

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

SCYN performance on case 1

bin

co
py

 n
um

be
r

●●●
●
●●
●

●

●

●

●
●

●●
●●

●

●
●
●

●●

●

●●●

●
●
●
●
●
●

●●
●
●●
●

●

●●
●
●

●●●●

●
●●

●●●●●●●
●

●
●
●
●
●●●●
●
●●
●
●●
●
●●●
●●●
●
●●
●●●●●
●
●
●●●●
●●●●
●●●

●●●
●
●●
●

●

●

●

●
●

●●
●●

●

●
●
●

●●

●

●●●

●
●
●
●
●
●

●●
●
●●
●

●

●●
●
●

●●●●

●
●●

●●●●●●●
●

●
●
●
●
●●●●
●
●●
●
●●
●
●●●
●●●
●
●●
●●●●●
●
●
●●●●
●●●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200

1.
0

2.
0

3.
0

4.
0

SCOPE performance on case 2

bin

co
py

 n
um

be
r

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●

●

●

●

●

●

●●
●●

●

●
●
●

●●

●

●
●●

●
●
●

●

●
●

●
●
●
●●●

●

●●
●
●

●●●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●

●

●

●

●

●

●●
●●

●

●
●
●

●●

●

●
●●

●
●
●

●

●
●

●
●
●
●●●

●

●●
●
●

●●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200

1.
0

2.
0

3.
0

4.
0

SCYN performance on case 2

bin

co
py

 n
um

be
r

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●

●

●

●

●

●

●●
●●

●

●
●
●

●●

●

●
●●

●
●
●

●

●
●

●
●
●
●●●

●

●●
●
●

●●●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●

●

●

●

●

●

●●
●●

●

●
●
●

●●

●

●
●●

●
●
●

●

●
●

●
●
●
●●●

●

●●
●
●

●●●
●

●

●●

A B

C D

Fig. 2. SCYN performance on synthetic cases
Hollow circles and horizontal lines denote the copy number before and after smoothing respectively. Vertical dashed lines signify the detected turning points. Orange and
blue refer to cell 1 and cell 2 respectively.
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A

B C

Fig. 3. Performance of SCYN on T10
(A) Heatmap of whole genome CNV profiles (B-C) Pearson correlation and RMSE as evaluation metrics comparing results by SCYN and SCOPE against aGCH.
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A

B C

Fig. 4. Performance of SCYN on T16
(A) Heatmap of whole genome CNV profiles (B-C) Pearson correlation and RMSE as evaluation metrics comparing results by SCYN and SCOPE against aGCH.
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A

B C

Fig. 5. Performance of SCYN on 10x spike-ins
(A) Heatmap of whole genome CNV profiles of 10% spike-in dataset (B-C) PCA plots on 1% and 10% spike-in datasets respectively. The yellow and purple dots denote
cancer and normal cell respectively.
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Fig. 6. Runtime performance of SCYN
(A) CPU time of SCYN and SCOPE on different cell number scale, respectively. (B) CPU time fold change of SCOPE against SCYN on different cell number scale.
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Fig. 7. (A) SCOPE-mBIC of T10, T16M and T16P across all chromosomes generated by SCYN and SCOPE, respectively. (B) The proportion of residual terms over mBIC
across all chromosomes on T10, T16M, and T16P, respectively
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Table 3. benchmark for runtimes (Minutes)

Sample Cell Number SCYN SCOPE Fold change on time
T10 99 2.917 46.995 16.111
T16M 48 2.566 21.94 8.55
T16P 52 2.786 23.927 8.588
90-1 93 2.73 44.14 16.168
90-2 92 2.769 40.415 14.596
10X-1% spike-in 1056 3.598 485.768 135.011
10X-10% spike-in 462 2.615 208.854 79.868
2000-1 2173 6.714 1147.658 170.935
2000-2 2214 7.602 1122.881 147.709
2000-3 1722 6.817 947.66 139.014
2000-4 1909 8.139 1122.335 137.896
2000-5 2048 7.128 1118.038 156.852
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