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Abstract

Brain networks store new memories using functional and structural synaptic plasticity. Memory formation

is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in

stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation

of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with

numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing

rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the

presentation of incomplete cues. Storing is fast, governed by the homeostatic drift. In contrast, forgetting is

slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections

between them, leading to the formation of memory engrams. In conclusion, homeostatic structural plasticity

induces a specific type of “silent memories”, different from conventional attractor states.

1 Introduction

Memories are formed in the brain using cell assemblies that emerge through coordinated synaptic plasticity. Cell

assemblies with strong enough recurrent connections lead to bi-stable firing rates, which allows a network to encode

memories as dynamic attractor states. In most theoretical models of cell assembly formation, the assemblies are

generated by strengthening already existing synaptic contacts using appropriate synaptic learning rules [30, 46].

It was shown that attractor networks can also emerge through the creation of neuronal clusters with increased

connectivity among neurons, leaving the weights of individual synaptic contacts unchanged [29].

The creation of clusters through changes in connectivity between cells would require synaptic rewiring, or structural

plasticity. Structural plasticity has been frequently reported in different areas of the brain, and sprouting and

pruning of synaptic contacts was found to be often activity-dependent [22, 31]. Sustained turnover of synapses,

however, poses a severe challenge to the idea of memories being stored in synaptic connections [33]. Recent

theoretical work has attempted to address the question, how stable assemblies can be maintained despite ongoing

synaptic rewiring [10, 11].

The formation of neuronal assemblies, or clusters, is traditionally attributed to Hebbian plasticity, driven by the

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.011171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.011171
http://creativecommons.org/licenses/by-nc-nd/4.0/


correlation between pre- and postsynaptic neuronal activity on a certain time scale. For a typical Hebbian rule,

a positive correlation in activity leads to an increase in synaptic weight, which in turn increases the correlation

between neuronal firing. This positive feedback cycle can result in unbounded growth, runaway activity and dy-

namic instability of the network, if additional regulatory mechanisms are lacking. In fact, neuronal networks of the

brain are known to employ homeostatic control mechanisms that regulate neuronal activity [43], and possibly even

stabilize the firing rate of individual neurons at specific target levels [19, 40]. However, even though homeostatic

mechanisms have been reported in experiments to operate on a range of different time scales, they seem to be

too slow to trap the instabilities caused by Hebbian learning rules [47]. All things considered, what are the exact

roles of Hebbian and homeostatic plasticity, and how these different processes interact to form cell assemblies in a

robust and stable way, remains to be elucidated [25].

Concerning the interplay between Hebbian and homeostatic plasticity, we have recently demonstrated by simula-

tions that homeostatic structural plasticity alone can lead to the formation of assemblies of strongly interconnected

neurons, and that this process of memory formation has associative properties [12]. Moreover, we found that vary-

ing the strength of the stimulation and the fraction of stimulated neurons in combination with repetitive protocols

can lead to even stronger assemblies [32]. In both papers, we used a structural plasticity model based on firing

rate homeostasis, which had been used before to study synaptic rewiring linked with neurogenesis [6, 7], and the

role of structural plasticity after focal stroke [3, 5] and after retinal lesion [2]. This model has also been used to

study the emergence of criticality in developing networks [39] and other topological aspects of plastic networks

[4]. The memories formed in networks of this type, however, are of a different nature than the ones found in

attractor networks. Firstly, structural plasticity operates at a slower time scale than functional plasticity, leading

to slower assembly formation. Secondly, the formed assemblies represent a form of silent memory that is not in

every moment reflected by neuronal activity.

The long-standing discussion about memory engrams in the brain has been revived recently. Researchers were able

to identify and manipulate engrams [24], and to allocate memories to specific neurons during classical conditioning

tasks [23]. These authors have also emphasized that an engram is not yet a memory, but the physical substrate

of a potential memory in the brain [24]. Similar to the idea of a memory trace, it should provide the necessary

conditions for a retrievable memory to emerge. Normally, the process of engram formation is thought to involve the

strengthening of already existing synaptic connections. Here, we propose that new engrams could also be formed

by an increase in synaptic connectivity and the formation of neuronal clusters.

Among other things, we perform numerical simulations of a classical conditioning task in a recurrent network

with structural plasticity based on firing rate homeostasis. We show that the cell assemblies formed share all

characteristics of a memory engram. We further explore the properties of the formed engrams and develop a

mean-field theory to explain the mechanisms of memory formation with homeostatic structural plasticity. We

show that these networks are able to effectively store repeatedly presented patterns, and that the formed engrams

implement a special type of silent memory, which normally exists in a quiescent state and can be successfully

retrieved based on incomplete cues.
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Figure 1: Formation of memory engrams in a neuronal network with homeostatic structural plasticity. (A) In a

classical conditioning scenario, a conditioned stimulus C1 is paired with an unconditioned stimulus US (“encod-

ing”), and another conditioned stimulus C2 is presented alone. (B) Before the paired stimulation (“baseline”),

the readout neuron responds strongly only upon direct stimulation of the neuronal ensemble corresponding to the

US. After the paired stimulation (“retrieval”), however, a presentation of C1 alone triggers a strong response of

the readout neuron. This is not the case for a presentation of C2 alone. Top: stimulation and retrieval of the

conditioning protocol; middle: firing rate of the readout neuron; bottom: spike train of the readout neuron during

the baseline (left), encoding (middle) and retrieval (right) phase. (C) After encoding, the connectivity matrix indi-

cates that engrams have formed, and we find enhanced connectivity within all three ensembles as a consequence of

repeated stimulation. Bidirectional inter-connectivity across different engrams, however, is only observed for the

pair C1 and US, which experienced paired stimulation. (D) The connectivity dynamics shows that engram identity

are strengthened with each stimulus presentation, and that they decay during unspecific external stimulation.

2 Results

2.1 Formation of memory engrams by homeostatic structural plasticity

We simulate a classical conditioning paradigm using a recurrent network. The network is composed of excita-

tory and inhibitory leaky integrate-and-fire neurons, and the excitatory-to-excitatory connections are subject to

structural plasticity regulated by firing rate homeostasis. Three different non-overlapping neuronal ensembles are

sampled randomly from the network. The various stimuli considered here are conceived as increased external input

to one of the specific ensembles, or combinations thereof. As the stimuli are arranged exactly as in behavioral

experiments, we also adopt their terminology “unconditioned stimulus” (US) and “conditioned stimulus” (C1 and

C2). The unconditioned response (UR) is conceived as the activity of a single readout neuron, which receives input

from the ensemble of excitatory neurons associated with the US (Figure 1A, top).

Figure 1B illustrates the protocol of the conditioning experiment simulated here. During a baseline period, the

engrams representing US, C1 and C2 are stimulated one after the other. In this phase, the activity of the US

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.011171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.011171
http://creativecommons.org/licenses/by-nc-nd/4.0/


ensemble is high only upon direct stimulation (Figure 1B, middle). The baseline period is followed by an encoding

period, in which C1 is paired with US, while C2 is always presented in isolation. Simultaneous stimulation of

neurons in a recurrent network with homeostatic structural plasticity can lead to the formation of reinforced

ensembles [12], which are strengthened by repetitive stimulation [32]. After the encoding period, each of the

three neuronal ensembles has increased within-ensemble connectivity, as compared to baseline. Memory traces,

or engrams, have formed (Figure 1C). Moreover, the US and C1 engrams also have higher bidirectional across-

ensemble connectivity, representing an association between their corresponding memories.

Between encoding and retrieval, memory traces remain in a dormant state. Due to the homeostatic nature of

network remodeling, the spontaneous activity after encoding is very similar to the activity before encoding, but

specific rewiring of input and output connections have lead to the formation of structural engrams. It turns

out that these “silent memories” are quite persistent, as “forgetting” is much slower than “learning” them (see

below for a detailed analysis of this phenomenon). Any silent memory can be retrieved with a cue, or in our

case, by presentation of the conditioned stimulus. Stimulation of C1 alone, but not of C2 alone, triggers a

conditioned response (Figure 1B) that is similar to the unconditioned response. Inevitably, stimulation of C1 and

C2 during recall briefly destabilizes the corresponding cell assemblies, as homeostatic plasticity is still ongoing. The

corresponding engrams then go through a reconsolidation period, during which the within-assembly connectivity

grows even higher than before retrieval (Figure 1D, red and green). As a consequence, stored memories get

stronger with each recall. Interestingly, as in our case the retrieval involves stimulation of either C1 or C2 alone,

the connectivity between the US and C1 engrams decreases a bit after the recall (Figure 1D, purple).

Memories and associations are formed by changes in synaptic wiring, triggered by neuronal activity during the

encoding period. They persist in a dormant state and can be reactivated by a retrieval cue that reflects the activity

experienced during encoding. This setting exactly characterizes a memory engram [24]. In the following sections,

we will analyze the process of memory formation further and explore the nature of the formed engrams in more

detail.

2.2 Engrams represent silent memories, not attractors

Learned engrams have a subtle influence on network activity. For a demonstration, we first grow a network under

the influence of homeostatic structural plasticity (see 4.10.1). We then randomly select an ensemble E1 of excitatory

neurons and stimulate it repeatedly. Each stimulation cycle is comprised of a period of 150 s increased input to

E1 and another 150 s relaxation period with no extra input. After 8 such stimulation cycles, the within-engram

connectivity has increased to CE1E1
≈ 0.21. At this point, the spontaneous activity of the network exhibits

no apparent difference to the activity before engram encoding (Figure 2A). Due to the homeostatic nature of

structural plasticity, neurons fire on average at their target rate, even though massive rewiring has led to higher

within-engram connectivity. Looking closer, though, reveals a conspicuous change in the second-order properties

of neuronal ensemble activity. We quantify this phenomenon using the overlap mµ (see 4.10.8 for a detailed

explanation of the concept). Figure 2B depicts the time-dependent overlap of spontaneous network activity with

the engram E1 (mE1). It also shows the overlap with 10 different random ensembles x (mx), which are of the

same size as E1 but have no neurons in common with it. The variance of mE1 is slightly larger than that of

mx (Figure 2C). This indicates that the increased connectivity also increases the tendency of neurons belonging

to the same learned engram to synchronize their activity and increase their correlation, in comparison to other
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Figure 2: Silent memory based on structural engrams. (A–C) The spontaneous activity of neurons belonging to

the engram E1 is hardly distinguishable from the activity of the rest of the network. (A) Raster plot showing

the spontaneous activity of 50 neurons randomly selected from E1, 100 neurons randomly selected from E2 but

not belonging to E1, and 50 neurons randomly selected from the pool I of inhibitory neurons. (B) Overlap of

spontaneous network activity with the learned engram E1 (mE1 , orange) and for 10 different random ensembles x

disjoint with E1 (mx, purple). (C) Cumulative distribution of mµ shown in (B). (D–F) The activity evoked upon

stimulation of E1 is higher, if the within-engram connectivity is large enough (CE1E1 > 0.1) as a consequence of

learning. (D) Same as (A) for evoked activity, the stimulation starts at t = 1 s. The neurons belonging to engram

E1 are stimulated before (top, CE1E1
≈ 0.1) and after (bottom, CE1E1

≈ 0.21) engram encoding. (E) Overlap with

the learned engram (mE1 , orange) and with random ensembles (mx, purple) during specific stimulation of engram

E1. (F) Population rate of all excitatory neurons during stimulation of E1 before (black) and after (orange) engram

encoding. (E, F) Solid line and shading depict mean and standard deviation across 10 independent simulation

runs, respectively. In all panels, the bin size for calculating overlaps are 10 ms, and the bin size for calculating

population rates is 100 ms.

pairs of neurons. An increase in pairwise correlations within the engram also leads to increased fluctuations of the

population activity [26], which also affects population measures such as the overlap used here.

During specific stimulation, the differences between the evoked activity of learned engrams and random ensembles

are more pronounced. Figure 2D shows raster plots of network activity during stimulation of E1 before and after

the engram has been encoded. The high recurrent connectivity within the E1 assembly after encoding amplifies

the effect of stimulation, leading to much higher firing rates of E1 neurons. This effect can even be seen in the

population activity of all excitatory neurons in the network (Figure 2F). During stimulation, the increase in firing

rate of engram neurons is accompanied by a suppression of activity of all other excitatory neurons not belonging

to the engram. This is what underlies the conspicuous decrease in the overlap mx with random ensembles x during

stimulation (Figure 2E).

How does all this affect the strength of a memory? To answer this question, we looked into evoked activity
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at different points in time during stimulation. The within-engram connectivity increases with every stimulation

cycle (Figure 3A), and so does the population activity of excitatory neurons during stimulation (Figure 3B). The

in-degree of excitatory neurons, in contrast, is kept at a fixed level by the homeostatic controller, even after

engram encoding (Figure 4C). This behavior is well captured by a simple mean-field firing rate model (grey line

in Figure 3B), in which the within-engram connectivity is varied and all the remaining excitatory connections are

adjusted to maintain a fixed in-degree of excitatory neurons.

Engrams exhibit pattern completion to a degree that depends on the strength of the memory. We quantitatively

assess pattern completion by measuring how the overlap of network activity with the engram, mE1 , depends on

partial stimulation. For an unstructured random network, mE1 increases at a certain rate with the fraction of

stimulated neurons (Figure 3C, black line). We speak of “pattern completion”, if mE1 increases at a larger rate

with size than in an unstructured random network. Figure 3C demonstrates very clearly that the degree of pattern

completion associated with a specific engram increases monotonically with the strength of the memory, that is,

with the within-engram connectivity.

The difference in evoked activity between learned engrams and random ensembles of the same size can be taken

as evidence for the existence of a stored memory. To demonstrate the potential of this idea, we employ a simple

readout neuron for this task (Figure 3D). This neuron has the same properties as any other neuron in the network,

and it receives input from a random sample comprising a certain fraction (here 9 %) of all excitatory and the same

fraction of all inhibitory neurons in the network. We encode two engrams in the same network, one being slightly

stronger (CE1E1
≈ 0.19, green) than the other one (CE2E2

≈ 0.18, orange). We record the firing of the readout

neuron during spontaneous activity, during specific stimulation of the engrams, and during stimulation of random

ensembles. Figure 3E shows a raster plot of the activity of 10 different readout neurons, each of them sampling a

different subset of the network. With the parameters considered here, the activity of a readout neuron is generally

very low, except when a learned memory engram is stimulated. Due to the gradual increase in population activity

with memory strength (Figure 3B), readout neurons respond with higher rates upon the stimulation of stronger

engrams (green).

Homeostatic structural plasticity enables memories based on neuronal ensembles with increased within-ensemble

connectivity, or engrams. Memories are acquired quickly and can persist for a long time. Moreover, the specific

network configuration considered here admits a gradual response to the stimulation of an engram according to

the strength of the memory. Mathematically speaking, the engram connectivity lies on a line attractor which

turns into a slow manifold, if fluctuations are taken into consideration. This configuration allows the network to

simultaneously learn to recognize a stimulus (“Does the current stimulation corresponds to a known memory?”)

and to assess its confidence of the recognition (“How strong is the memory trace of this pattern?”). Such behavior

would be absolutely impossible in a system that relies on bistable firing rates (attractors) to define engrams. Details

of our analysis will be explained later in section 2.4.

2.3 The mechanism of engram formation

We have shown how homeostatic structural plasticity creates and maintains the memory engrams, and we will

now further elucidate the mechanisms underlying this process. We consider a minimal stimulation protocol [12] to

study the encoding process for a single engram E1. We perform numerical simulations and develop a dynamical
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Figure 3: Evoked activity depends on the strength of memories. (A) Starting from a random network grown under

the influence of unstructured stimulation (black dot), we repeatedly stimulate the same ensemble of excitatory

neurons E1 to eventually form an engram. Multiple stimulation cycles increase the recurrent connectivity within

the engram. (B) Population activity of all excitatory neurons upon stimulation of E1, for different levels of

engram connectivity CE1E1
. Crosses depict the population rate observed in a simulation. Colors indicate engram

connectivity CE1E1
, matching the colors used in panels (A) and (C). The grey line outlines the expectation from

a simple mean-field theory. (C) Time-averaged overlap 〈mE1〉, for different fractions of E1 being stimulated.

The recurrent nature of memory engrams enables them to perform pattern completion. The degree of pattern

completion depends monotonically on engram strength. (D) Two engrams (orange and green) are encoded in a

network. Both engrams have a different strength with regard to their within-engram connectivity (green stronger

than orange). A simple readout neuron receives input from a random sample comprising 9 % of all excitatory

and 9 % of all inhibitory neurons in the network. (E) Raster plot for the activity of 10 different readout neurons

during the stimulation of learned engrams and random ensembles, respectively. Readout neurons are active, when

an encoded engram is stimulated (orange and green), and they generally respond with higher firing rates for

the stronger engram (green). The activity of a readout neuron is low in absence of a stimulus (white), or upon

stimulation of a random ensemble of neurons (purple and blue).

network theory to explain the emergence of associative (Hebbian) properties. In Figure 4, the results of numerical

simulations are plotted together with the results of our theoretical analysis (see Section 4.6). Upon stimulation, the

firing rate follows the typical homeostatic dynamics [44]. In the initial phase, the network stabilizes at the target

rate (Figure 4A). Upon external stimulation, it transiently responds with a higher firing rate. With a certain delay,

the rate is down-regulated to the set-point. When the stimulus is turned off, the network transiently responds

with a lower firing rate, which is eventually up-regulated to the set-point again.

Firing rate homeostasis is based on the intracellular calcium concentration φi(t) of each neuron i (Figure 4D),

which can be considered as a proxy for the firing rate of the neuron. In our simulations, it is obtained as a low-pass
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Figure 4: Hebbian properties emerge through interaction of selective input and homeostatic control. (A) The

activity of the neuronal network is subject to homeostatic control. For increased external input, it transiently

responds with a higher firing rate. With a certain delay, the rate is down-regulated to the imposed set-point.

When the stimulus is turned off, the network transiently responds with a lower firing rate, which is eventually

up-regulated to the set-point again. The activity is generally characterized by irregular and asynchronous spike

trains. (B) It is assumed that the intracellular calcium concentration follows the spiking dynamics, according to a

first-order low-pass characteristic. Dots correspond to numerical simulations of the system, and solid lines reflect

theoretical predictions from a mean-field model of dynamic network remodeling. (C) Dendritic elements (building

blocks of synapses) are generated until an in-degree of Kin = 1 000 has been reached. It decreases during specific

stimulation, but then recovers after the stimulus has been removed. (D) Synaptic connectivity closely follows the

dynamics of dendritic elements until the recovery phase, when the recurrent connectivity within the stimulated

group E1 overshoots. (E, F) Phase space analysis of the activity. The purple lines represent projections of the

full, high-dimensional dynamics to two-dimensional subspaces: (E) within-engram connectivity vs. across-ensemble

connectivity and (F) within-engram connectivity vs. engram calcium trace. The dynamic flow is represented by the

gray arrows. The steady state of the plastic network is characterized by a line attractor (thick gray line), defined

by a fixed total in-degree and out-degree. The ensemble of stimulated neurons forms a stable engram, and the

strength of the engram is encoded by its position on the line attractor. (G) The overshoot in connectivity can be

explained as follows: After turning off the stimulus, neurons in the recently stimulated group are active below their

target rate (set-point of the homeostatic controller), while other neurons are close to their equilibrium activity.

This leads to a faster creation of recurrent connectivity within the stimulated group, as compared to connections

involving neurons outside it.
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filtered version of the spike train Si(t) of the same neuron

τCaφ̇i(t) = (Si(t)− φi(t)), (1)

with time constant τCa. Each excitatory neuron i uses its own calcium trace φi(t) to control its number of synaptic

elements. Deviations of the instantaneous firing rate (calcium concentration) φi(t) from the target rate νi (the

set-point) trigger either creation or deletion of elements according to

βdḋi(t) = νi − φi(t), βaȧi(t) = νi − φi(t), (2)

where ai(t) and di(t) are the number of axonal and dendritic elements, respectively. The parameters βa and βd

are the associated growth parameters (see Section 4.2 for more details).

During the initial growth phase, the number of elements increase to values corresponding to an in-degree K in = εN ,

which is the number of excitatory inputs to the neuron that are necessary to sustain firing at the target rate

(Figure 4D). Upon stimulation (during the learning phase), the number of connections is down-regulated due to

the transiently increased firing rate of neurons. After the stimulus is turned off, the activity returns to its set-

point. During the growing and learning phases, connectivity closely follows the dynamics of synaptic elements

(Figure 4D), and connectivity is proportional to the number of available synaptic elements (Figure 4D). After

removal of the stimulus, however, in the reconsolidation phase, the recurrent connectivity within the stimulated

group E1 overshoots (Figure 4D), and the average connectivity in the network returns to baseline (Figure 4C).

While recurrent connectivity CE1E1 of the engram E1 increases, both the connectivity to the rest of network

CE2E1
and from rest of the network CE1E2

decrease, keeping the mean input to all neurons fixed. This indicates

that although the network is globally subject to homeostatic control, local changes effectively exhibit associative

features, as already pointed out in [12]. Our theoretical predictions generally match the simulations very well

(Figure 4), with the exception that it predicts a larger overshoot. This discrepancy will only be resolved in

Section 2.4.

Deriving a theoretical framework of network remodeling (see Section 4.3) for the algorithm suggested by [2] poses

a great challenge due to the large number of variables of both continuous (firing rates, calcium trace) and discrete

(spike times, number of elements, connectivity, rewiring step) nature. The dimensionality of the system was

effectively reduced by using a mean-field approach, which conveniently aggregates discrete counting variables into

continuous averages (see Section 4.4 and Section 4.6 for more details of derivation).

The number of newly created synaptic elements are denoted as free axonal a+(t) and free dendritic d+(t) elements,

while the number of deleted elements is denoted by a−(t) and d−(t). Free axonal elements are paired with free

dendritic elements in a completely random fashion to form synapses. The deletion of dendritic or axonal elements

in neuron i automatically induces the deletion of incoming or outgoing synapses of that neuron, respectively. We

derived a stochastic differential equation (Section 4.4) which describes the time evolution of connectivity Cij(t)

from neuron j to neuron i

dCij(t)

dt
=
ρ′d

+
i (t)ρ′a

+
j (t)

ρ(t)
− Cij(t)

(
ρd
−
i (t)

Kin
i (t)

+
ρa
−
j (t)

Kout
j (t)

)
︸ ︷︷ ︸

deterministic drift

+
dWspike noise

dt
+
dWstructural noise

dt︸ ︷︷ ︸
stochastic noise

. (3)

In this equation, ρ±ai(t), ρ
±
di

(t) is the rate of creation/deletion of the axonal and dendritic elements of neuron i,

respectively, and ρ(t) is the rate of creation of elements in the whole network. Note that ρ′+ is a corrected version
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of ρ+ (see Section 4.4 for details). The stochastic process described by Equation 3 decomposes into a deterministic

drift process and a diffusive noise process. The noise process has two sources. The first derives from the stochastic

nature of the spike trains, and the second is linked with the stochastic nature of axon-dendrite bonding. In this

section, we ignore the noise and discuss only the deterministic part of the equation. This is equivalent to reducing

the spiking dynamics to a firing rate model and, at the same time, coarse-grain the fine structure of connectivity.

Stable steady-state solutions of the system described by Equation 3 represent a hyperplane in the space of connec-

tivity (see Equation 17 in Section 4.7). The solutions of Equation 3 are (random) network configurations with a

fixed in-degree K in
i and out-degree Kout

i such that C∗i,j ∝ K in
i K

out
j . In the case of only one engram, the attractor

reduces to a line (Figure 4E and F, gray line). This also explains how memories are stored in the network: When

a group of neurons is repeatedly stimulated, the network each time diverges from the line attractor and takes

a different path back during reconsolidation. The new position on the line encodes the strength of the memory

CE1E1 . Furthermore, as the attractor is a skew hyperplane in the space of connectivity, the memory is distributed

across the whole neural network, and not only in recurrent connections among stimulated neurons in E1. As a

reflection of this, other connectivity parameters (CE2E2
, CE1E2

, CE2E1
, cf. Figure 4D) are also slightly changed.

To understand why changes in recurrent connectivity CE1E1
are associative, we note that the creation part of

Equation 3 is actually an outer product of ρ+
ai(t) and ρ+

di
(t), similar to a pre-post pair in a typical Hebbian rule.

The main difference to a classical Hebbian rule is that only neurons firing below their target rate are creating

new synapses. The effective rule is depicted in Figure 4G. Only neurons with free axonal or dendritic elements,

respectively, can form a new synapse, and those neurons are mostly the ones with low firing rates. The deletion

part of Equation 3 depends linearly on ρ−ai(t) and ρ−di(t), reducing to a simple multiplicative homeostasis. Upon

excitatory stimulation, the homeostatic part is dominant and the number of synaptic elements decreases. After

removal of the stimulus, the Hebbian part takes over, inducing a post-stimulation overshoot in connectivity. This

leads to a peculiar dynamics of first decreasing connectivity and then overshooting, an important signature of this

rule. We summarize this process in an effective rule

∆cij ∝ λ ∆Ii∆Ij︸ ︷︷ ︸
effective Hebbian

− γa cij(t)∆Ii︸ ︷︷ ︸
dendritic homeostasis

− γd cij(t)∆Ij ,︸ ︷︷ ︸
axonal homeostasis

(4)

where ∆Ii is the input perturbation of neuron i. The term ∆Ii∆Ij is explicitly Hebbian with regard to input

perturbations. Equation 4 only holds, however, if the stimulus is presented for a long enough time such that the

calcium concentration tracks the change in activity and connectivity drops.

2.4 Fluctuation-driven decay of engrams

The qualitative aspects of memory formation have been explored in Section 2.3. Now we investigate the process

of memory maintenance. A noticeable discrepancy between theory and numerical simulations was pointed out in

Figure 4D. The overshoot is exaggerated and memories last forever. We will now demonstrate that this discrepancy

is resolved when we take the spiking nature of neurons into account (Section 4.5).

Neurons use discrete spike trains Si(t) =
∑
k δ(t− tik) for signaling, and we conceive them here as stochastic point

processes. We found that Gamma processes (Section 4.5) can reproduce the first two moments of the spike train

statistics of the simulated networks with sufficient precision. The homeostatic controller in our model uses the

trace of the calcium concentration φi(t) as a proxy for the actual firing rate of the neuron. As the calcium trace
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Figure 5: Noisy spiking induces fluctuations that lead to memory decay. (A) The gray histogram shows the

distribution of calcium levels for a single neuron across 5 000 s of simulation. The colored lines result from modeling

the spike train as a Poisson process (red) or a Gamma process (purple), respectively. (B) The rate of creation

or deletion of synaptic elements depends on the difference between the actual firing rate from the target rate

(set-point), for different levels of spiking noise. The negative gain (slope) of the homeostatic controller in presence

of noise is transformed into two separate processes of creation and deletion of synaptic elements. In the presence

of noise (red lines, darker colors correspond to stronger noise), even when the firing rate is on target, residual

fluctuations in the calcium signal induce a constant rewiring of the network, corresponding to a diffusion process.

(C) If noisy spiking and the associated diffusion is included into the model, predictions from a mean-field theory

match the simulation results very well. This concerns the initial decay (yellow), the overshoot (red) and subsequent

slow decay (brown). (D) Change in connectivity during the decay period (brown), for different values of the calcium

time constant and the target rate. We generally observe exponential relaxation as a consequence of a constant

rewiring rate. (E) Time constant of the diffusive decay as a function of the calcium time constant and the target

rate. Lines show our predictions from theory, and dots represent the values extracted from numerical simulations

of plastic networks. The decay time τdecay increases with
√
τCa. The memory is generally more stable for small

target rates ν, but collapses for very small rates. This predicts an optimum for low firing rates, at about 3 Hz.

(F, G) Same phase diagrams as shown in Figures 4E and F, but taking noise into consideration. (F) The spiking

noise compromises the stability of the line attractor, which turns into a slow manifold. (G) The relaxation to

the high-entropy connectivity configuration during the decay phase is indeed confined to a constant firing rate

manifold.

φi(t) is just a filtered version of the stochastic spike train Si(t), it is a stochastic process in its own respect. In

Figure 5A we show the stationary distribution of the time-dependent calcium concentration φi(t). Apparently, a

filtered Gamma process (purple line) provides a better fit to the simulated data than a filtered Poisson process

(red line). The reason is that Gamma processes have an extra degree of freedom to match the irregularity of spike

trains (coefficient of variation, here CV ≈ 0.7) as compared to Poisson processes (always CV = 1).

The homeostatic controller strives to stabilize φi(t) at a fixed target value ν, but φi(t) fluctuates (Figure 5A) due
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to the random nature of the spiking. These fluctuations result in some degree of random creation and deletion

of connections. Our theory (Section 4.5) reflects this aspect by an effective homeostatic function (Equation 12),

which is obtained by averaging Equation 3 over the spiking noise (Figure 5B, red lines). The shape of this function

indicates that connections are randomly created and deleted even when neurons are firing at their target rate.

The larger the amplitude of the noise, the larger is the asymptotic variance of the process and the amount of

spontaneous rewiring taking place.

We now extend our mean-field model of the rewiring process (see Section 2.3) to account for the spiking noise

(see Section 4.5). According to the enhanced model, both the overshoot and the decay now match very well

with numerical simulations of plastic networks (Figure 5C). The decay of connectivity following its overshoot

is exponential (Figure 2.4D), and Equation 3 reveals that the homeostasis is multiplicative and that the decay

rate should be constant. The exponential nature of the decay is best understood by inspecting the phase space

(Figure 5F and G). In terms of connectivity, the learning process is qualitatively the same as in the noise-less

case (Figure 4E), where a small perturbation leads to a fast relaxation to the line attractor (see Equation 16 in

Section 4.7). In the presence of spiking noise (Figure 5F), however, the line attractor is deformed into a slow

stochastic manifold (see Equation 18 in Section 4.8). The process of memory decay corresponds to a very slow

movement toward the most entropic stable configuration compatible with firing rates clamped at their target value

(Figure 5G). In our case, this leads to a constraint on the in-degree K in = εNE . We summarize the memory decay

process by the equation

PL[C∗ij ]
τdiffusion−−−−−→ C∗ij = const.×Kin

i K
out
j =

Kin

NE
, (5)

PL[C∗ij ]
τdrift←−−−−− C∗ij + Stimulus.

The fast “drift” process of relaxation back toward the slow manifold corresponds to the deterministic part of

Equation 3. In contrast, the slow “diffusion” process of memory decay along the slow manifold corresponds to the

stochastic part of Equation 3. In the equation above, τdrift represents the time scale of the fast drift process, and

τdiffusion is the time scale of the slow diffusion process.

The drift process is strongly non-linear, and its bandwidth is limited by the time constant of the calcium filter τCa,

but also by the growth parameters of the dendritic elements βd and axonal elements βa. The diffusion process, on

the other hand, is essentially constrained to the slow manifold of constant in-degree and firing rate (Section 4.8).

Analytic calculations yield the relation

τdiffusion =

√
4πτCa

η2ν

NEc
1
βd

+ 1
βa

(6)

where NE is number of excitatory neurons, c is the average connectivity between excitatory neurons, and η is a

correction factor to account for the reduced irregularity of spike trains as compared to a Poisson process. Both

size and connectivity of the network increase the longevity of stored memories. Assuming that neurons rewire at

a constant speed, it takes more time to rewire more elements. There is an interesting interference with the noise

process, as memory longevity depends on the time constant of calcium in proportion to
√
τCa (Figure 5 E). On

the other hand, the time scale of learning τdrift is limited by the low-pass characteristics of calcium, represented

by τCa. Increasing τCa, which leads to more persistent memories, will eventually make the system unresponsive

and prevent learning. We also find that the longevity of memories depends as 1√
ν

on the target rate. Therefore,

making the target rate small enough should lead to very persistent memories. This path to very stable memories is

not viable, though, because the average connectivity c implicitly changes with target rate. In Figure 5E longevity
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of the memory is depicted as a function of the target rate with corrected connectivity c = c(ν), and we find that

for very small target rates memory longevity tends to zero instead. This suggests that there is an optimal range

of target rates centered at a few spikes per second, fully consistent with experimental recordings from cortical

neurons [8].

To summarize, the process of forming an engram (“learning”, see Section 2.3) exploits the properties of a line

attractor. Taking spiking noise into account, the structure of the line attractor is deformed into a slow stochastic

manifold. This still allows learning, but introduces controlled “forgetting” as a new feature. Forgetting is not

necessarily an undesirable property of a memory system. In a dynamic environment, it might be an advantage

for the organism to forget non-persistent or unimportant aspects of it. Homeostatic plasticity implements a

mechanism of forgetting with an exponential time profile. Strong memories will be sustained longer, but they will

eventually also be forgotten. In the framework of this model, the only way to keep memories forever is to repeat the

corresponding stimulus from time to time, as illustrated in Figure 1D. If we think of the frequency of occurrence

as a measure of the relevance of a stimulus, this implies that irrelevant memories decay and relevant ones remain.

Memories are stored in a distributed fashion in the slow manifold of the system, instead of being stored in individual

synaptic connections [33]. Forgetting is reflected by a diffusion to the most entropic network configuration along

the slow manifold. As a result, the system performs continuous inference from a persistent stream of information

about the environment. Already stored memories are constantly refreshed in terms of a movement in directions

away from the most entropic point of the slow manifold (novel memories define new directions), while diffusion

pushes the system back to the most entropic configuration.

2.5 Network stability and constraints on growth parameters

So far, we have described the process of forming and maintaining memory engrams based on homeostatic structural

plasticity. We have explained the mechanisms behind the striking associative properties of the system. Now, we will

explore the limits of stability of networks with homeostatic structural plasticity and derive meaningful parameter

regimes for a robust memory system. A homeostatic controller that operates on the basis of firing rates can be

expected to be very stable by construction. Indeed we find that, whenever parameters are assigned meaningful

values, the Jacobian obtained by linearization of the system around the stable mean connectivity J = J (ε) has

only eigenvalues λ with non-positive real parts Re[λ] ≤ 0 (see Section 4.9). As a demonstration, we consider the real

part of the two “most unstable” eigenvalues as a function of two relevant parameters, the dendritic/axonal growth

parameter βd and the calcium time constant τCa (Figure 6B, upper panel). The real part of these eigenvalues

remains negative for any meaningful choice of time constants. It should be noted at this point, however, that the

system under consideration is strongly non-linear, and linear stability alone does not guarantee global stability.

We will discuss an interesting case of non-linear instability in Section 2.6. Oscillatory transients represent another

potential issue in general control systems, and we will now explore the damped oscillatory phase of activity in

more detail.

In Figure 6A we depict three typical cases of homeostatic growth responses: non-oscillatory (left, green), weakly

oscillatory (middle, blue), and strongly oscillatory (right, red) network remodeling. The imaginary parts of the two

eigenvalues shown in Figure 6B (bottom left), which are actually responsible for the oscillations, become non-zero

when the dendritic and axonal growth parameters are too small (for other parameters, see Section 2.3), and both

creation and deletion of elements are too fast. Oscillations occur, on the other hand, for large values of the calcium
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Figure 6: Linear stability of a network with homeostatic structural plasticity. (A) For a wide parameter regime, the

structural evolution of the network has a single fixed point, which is also stable. Three typical types of homeostatic

growth responses are depicted for this configuration: non-oscillatory (left), weakly oscillatory (middle), and strongly

oscillatory (right) network remodeling. (B) All eigenvalues of the linearized system have a negative real part, for

all values of the growth parameters of dendritic (axonal) elements βd and calcium τCa. In the case of fast synaptic

elements (small βd) or slow calcium (large τCa), the system exhibits oscillatory responses. Shown are real parts

and imaginary parts of the two “most unstable” eigenvalues, for different values of βd (left column, τCa = 10 s)

and τCa (right column, βd = 2). (C) Phase diagram of the linear response. The black region below the red

line indicates non-oscillatory responses, which corresponds to the configuration τCa ≤ 3βd s. Dots indicate the

parameter configurations shown in panel (A), with matching colors.

time constant τCa (Figure 6B, bottom right). The system oscillates, if the low-pass filter is too slow as compared

to the turnover of synaptic elements. The combination of βd and τCa that leads to the onset of oscillations can be

derived from the condition Im[λ] = 0. We can further exploit the fact that two oscillatory eigenvalues are complex

conjugates of each other, and that the imaginary part is zero, when the real part bifurcates.

To elucidate the relative importance of the two parameters βd and τCa, we now explore how they together contribute

to the emergence of oscillations (Figure 6C). The effect of parameters on oscillations is a combination of the two

mechanisms discussed above: low-pass filtering and agility of control. We use the bifurcation of the real part of

the least stable eigenvalues as a criterion for the emergence of Im[λ] = 0, which yields the boundary between the

oscillatory and the non-oscillatory region (Figure 6C, red line). The black region of the phase diagram corresponds
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to a simple fixed point with no oscillations, the green point corresponds to the case shown in Figure 6A, left. From

Figure 6B, bottom, we conclude that the fastest oscillations are created when βd is very small, as the oscillation

frequency then exhibits a 1
βd

asymptotic dependence. The calcium dependence is a slowly changing function.

The specific case indicated by a red point in Figure 6C corresponds to the dynamics shown in Figure 6A, right.

Although intermediate parameter values result in damped oscillations (Figure 6C, blue dot; Figure 6A, middle),

its amplitude remains relatively small. This link between two parameters can be used to predict a meaningful

range of values for βd. Experimentally reported values for τCa are combined with the heuristic of not exhibiting

strong oscillations.

The analysis outlined in the previous paragraph clearly suggests that, in order to avoid excessive oscillations, the

calcium signal (a proxy for neuronal activity) has to be faster than the process which creates elements. Oscillations

in network growth are completely suppressed, if it is at least tree times faster. Strong oscillations can compromise

non-linear stability, as we will show in Section 2.6. This is a dynamic regime to be strictly avoided by the

controller, for reasons explained later. We assume that the calcium time constant is in the range between 1 s and

10 s, in line with the values reported for somatic calcium transients in experiments [16, 17, 20, 49]. This indicates

that homeostatic structural plasticity should not use element growth parameters smaller than around 0.4. Faster

learning must be based on other types of synaptic plasticity (e.g. spike-timing dependent plasticity, or fast synaptic

scaling).

We use this analysis framework now to compute turnover rates (TOR) and compare them to the values typically

found in experiments. In Sections 2.3 and 2.4 we use a calcium time constant of 10 s and a growth parameters for

synaptic elements of βa = βd = 2, which results in TOR of around 18 % per day (see Methods). Interestingly, [41]

measured TOR in the barrel cortex of young mice and found TOR values of around 20 % per day. After sensory

deprivation, the TOR increased to a maximum of around 30 % per day in the barrel cortex (but not elsewhere).

In our model, stimulus-dependent rewiring is strongest in the directly stimulated engram E1 (Figure 4C). This

particular ensemble rewires close to 25 % of its dendritic elements per stimulation cycle.

2.6 Loss of control leads to bursts of high activity

A network the connectivity of which is subject to homeostatic regulation generally exhibits robust linear stability

around the fixed point of connectivity ε, as explained in detail in Section 2.5 and Section 4.9. But what happens,

if the system is forced far away from its equilibrium? To illustrate the new phenomena arising, we repeat the

stimulation protocol described in Section 2.3 with one stimulated ensemble E1. However, we now increase both the

strength and the duration of the stimulation (Figure 7A). The network behaves as before during the growth and the

stimulation phase (Figure 7A, upper panel), but during the reconsolidation phase connectivity gets out of control.

New recurrent synapses are formed at a very high rate until excessive feedback of activity triggered by input

from the non-stimulated ensemble causes an explosion of firing rates (Figure 7A bottom panel). The homeostatic

response of the network to such seizure-like activity can only be a brisk decrease in recurrent connectivity. As a

consequence, the activity rE1
quickly drops to zero and the deregulated growth cycle starts all over.

We explore the mechanism underlying this runaway process by plotting the long-term dynamics in a phase plane

spanned by recurrent connectivity CE1E1
and the activity of the engram rE1

(Figure 7B). A special type of limit

cycle emerges, and we can track it using the input connectivity from the rest of the network to the learned engram
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Figure 7: Non-linear stability of a network with homeostatic structural plasticity. (A) The engram E1 is stimulated

with a very strong external input. As the homeostatic response triggers excessive pruning of recurrent connections,

the population E1 is completely silenced after the stimulus is turned off. This, in turn, initiates a strong com-

pensatory overshoot of connectivity and consecutive runaway population activity. The dots with corresponding

color show the results of a plastic network simulation, and the solid lines indicate the corresponding predictions

from our theory. The theoretical instantaneous firing rate is clipped at 100 Hz. (B) The network settles in a

limit cycle of connectivity dynamics. The hysteresis-like behavior is caused by the faster growth of within-engram

connectivity CE1E1 as compared to connectivity from the non-engram ensemble CE1E2 . During the initial phase

of the cycle, the increase of CE1E1 has no effect on the activity of population E1 yet, as its neurons are not active.

Only when the input from population E2 through CE1E2
gets large enough, the rate rE1

becomes non-zero and

rises to very high values quickly due to already large recurrent CE1E1
connectivity. (C) The calcium signal φ adds

an additional delay to the cycle. (D) This leads to smoother trajectories when scattering calcium concentration

against connectivity. (E) Connectivity within the stimulated group CE1E1 plotted against input connectivity from

the non-engram population CE1E2
. The black line shows configurations with constant in-degree, of which the black

dot represents the most entropic one. The red dot corresponds to critical connectivity, beyond which the limit

cycle behavior is triggered. The limit cycle transients in connectivity space are orthogonal to the line attractor,

indicating that the total in-degree is oscillating and no homeostatic equilibrium can be established.

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.011171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.011171
http://creativecommons.org/licenses/by-nc-nd/4.0/


(CE1E2 , see Figure 7B). The cycle is started when the engram E1 is stimulated with a very strong external input.

As the homeostatic response of the network triggers excessive pruning of its recurrent connections, the population

E1 is completely silenced, rE1
= 0, after the stimulus has been turned off. Then, homeostatic plasticity sets in and

tries to compensate the activity below target by increasing the recurrent excitatory input to the engram E1. The

growth of intra-ensemble connectivity CE1E1 is faster than the changes in inter-ensemble connectivity CE1E2 , as

the growth rate of CE1E1
is quadratic in the rate rE1

(Figure 4G), but CE1E2
depends only linearly on it. However,

while there are no recurrent spikes, rE1
= 0, the increase in intra-ensemble connectivity cannot restore the activity

to its target value. As soon as input from the rest of the network via CE1E2
is strong enough to increase the rate

rE1 to non-zero values, engram neurons very quickly increase their own rate by activating recurrent connectivity

CE1E1
. At this point, however, the network has entered a second attractor of connectivity, coinciding with a

pronounced outbreak of population activity rE1
. The increase in rate is then immediately counteracted by the

homeostatic controller. Due to the seizure-like activity burst, a high amount of calcium is accumulated in all

participating cells. As a consequence, neurons delete many excitatory connections, and the firing rates are driven

back to zero. This hysteresis-like cycle of events is repeated over and over again (Figure 7B), even if the stimulus

has meanwhile been turned off. The period of the limit cycle is strongly influenced by the calcium variable, which

lags behind activity (Figure 7C). Replacing activity rE1
by recurrent connectivity CE1E1

, a somewhat smoother

picture emerges (Figure 7D).

Two aspects are important for the emergence of the limit cycle. Firstly, the specific relation between the time

scales of calcium and synaptic elements gives rise to different types of instabilities (see Figure 6 and Figure 7C

and D). Secondly, the rates of creation and deletion of elements do not have the same bounds. While the rate

with which elements are created ρ+ is limited by 1
βd
ν, the rate of deletion ρ− is limited by 1

βd
1
τref

. This peculiar

asymmetry causes the observed brisk decrease in connectivity after an extreme seizure-like burst of activity. An

appropriate choice of the calcium time constant, in combination with a strict limit on the rate of deletion, might

lead to a system without the (pathological) limit cycle behavior observed in simulations. Finally, we have derived

a criterion for bursts of population activity to arise, related to the loss of stability due to excessive recurrent

connectivity (see Section 4.9, Equation 22). Indeed, a network with fixed in-degrees becomes dynamically unstable,

if its connectivity CE1E1 exceeds the critical value Ccrit
E1E1

= ε(1 + NE2

NE1jE
), which for our parameters is at about

29 %. The neurons comprising the engram E1 receive too much recurrent input (Figure 7E), and the balance of

excitation and inhibition brakes. In this configuration, only one attractive fixed point exists for high firing rates,

and a population burst is inevitable. In simulations, the stochastic nature of the system tends to elicit population

bursts even earlier, at about 22 % connectivity in our hands. We conclude that 22–29 % connectivity is a region of

bi-stability, with two attractive fixed points coexisting. Early during limit cycle development, the total in-degree

is less than εN (the connectivity is in the region below the black line in Figure 7E), and the excitation-inhibition

balance is broken by positive feedback. Later, the limit cycle settles into a configuration, where the total in-degree

exceeds εN (the black line is crossed from below in Figure 4E). We have shown before that stable learning leads

to silent memories in the network (Section 2.1 and 2.2), but in the case discussed here, sustained high activity is

at odds with stable homeostatic control of network growth.
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3 Discussion

We have demonstrated by numerical simulations and by mathematical analysis that structural plasticity controlled

by firing rate homeostasis has the potential to implement a memory system based on the emergence and the decay

of engrams. Input patterns are defined by stimulation of the corresponding ensemble of neurons in a recurrent

network. Presenting two patterns concurrently leads to their association by newly formed synaptic connections.

This mechanism can be used, among other things, to effectively implement classical conditioning. The memories

are dynamic. They decay if previously learned stimuli are no longer presented, but they get stronger with every

single recall. The memory is not affecting the firing rates during spontaneous activity, but even weak memory

traces can be identified by the correlation of activity. Memories become visible as a firing rate increase of a specific

pattern upon external stimulation, though. The embedding network is able to perform pattern completion, if a

partial cue is presented. Finally, we have devised a simple recognition memory mechanism, in which downstream

neurons respond with a higher firing rate, if any of the previously learned patterns is stimulated.

Memory engrams emerge, because the homeostatic rule acts as an effective Hebbian rule with associative properties.

This unexpected behavior is achieved by an interaction between the temporal dynamics of homeostatic control

and a network-wide distributed formation of synapses. Memory formation is a fast process, exploiting degrees

of freedom orthogonal to a line attractor as it reacts to the stimulus, and storing memories as positions on the

line attractor. The spiking of neurons introduces fluctuations, which lead to the decay of memory on a slow time

scale through diffusion along the line attractor. In absence of specific stimulation, the network relaxes to the

most entropic configuration of uniform connectivity across all pairs of neurons. In contrast, multiple repetitions

of a stimulus pushes the system to states of lower entropy, corresponding to stronger memories. The dynamics of

homeostatic networks is, by construction, very robust for a wide parameter range. Instabilities occur when the

time scales of creating and deleting synaptic elements are much smaller than the time scales of the calcium trace,

which feeds the homeostatic controller. Under these conditions, the network displays damped oscillations, but

remains linearly stable. Stability is lost, though, when the stimulus is too strong. In this case, the compensatory

forces lead to limit cycle dynamics with pathologically large amplitudes.

Experiments involving engram manipulation have increased our current knowledge about this type of memory [24],

and some of these findings are actually in accordance with our model. For example, memory re-consolidation was

disrupted if a protein synthesis inhibitor was administered immediately after the retrieval cue during an auditory

fear conditioning experiment [34]. In our model, engram connectivity initially decreases upon stimulation, and

memories are shortly destabilized and consolidated again after every retrieval. Interfering with plasticity during

or after retrieval can, therefore, also lead to active forgetting. It was also shown in experiments that neurons are

more likely to be allocated to an engram, if they are more excitable before stimulation [45, 48]. In our model,

more excitable neurons would fire more during stimulation, making them more likely to become part of an engram.

Moreover, our analysis of the model suggests that decreasing excitability of some neurons soon after stimulation

should also increase the likelihood of them becoming part of the engram. Further research with our model of

homeostatic engram formation might include even more specific predictions for comparison with experiments

involving engram manipulation. This would also help to better characterize and understand the process of engram

formation in the brain.

High turnover rates of synapses increases the volatility of network structure. This, in turn, poses a grand challenge
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to any synaptic theory of memory [33], and it is not yet clear how memories can at all persist in a system that

is constantly rewiring. In our model, the desired relative stability of memories is achieved by storing them with

the help of a slow manifold mechanism. An estimation of turnover rates in our model amounts to about 18 % per

day, which is comparable to the 20 % per day that have been measured in mouse barrel cortex [41]. In general,

however, adult mice have more persistent synapses with much lower turnover rates as low as 4 % per month [31,

50, 21]. This can be accounted for in our model, as increased growth parameters of axonal, βa, and dendritic, βd,

elements would lead to smaller synaptic turnover rates and, consequently, to more persistent spines (see Methods).

The downside of increasing the growth parameters is that the learning process becomes slower. The turnover rate

of 18 % per day corresponds to a specific value of the parameter βd. It is conceivable, however, to implement an

age-dependent parameter βd. For example, one could have a high turnover rate in the beginning and let the growth

become slower with time. This would reflect the idea that the brains of younger animals are more plastic than the

brains of older ones. As animals grow older, synapses become more persistent. Similar to certain machine learning

strategies (“simulated annealing”), this could be the optimal strategy for an animal, which first explores a given

environment and then exploits the acquired adaptations to thrive in it.

Recently, [10] showed that Hebbian structural plasticity could be the force behind memory consolidation through

a process of stabilization of connectivity, which is based on the existence of an attractive fixed point in the plastic

network structure. In our model, because of the decay of the slow manifold, memories are never permanent,

and repeated stimulation is necessary to stabilize them. We would argue, though, that forgetting is an important

aspect of any biological system. In our case, we observe an exponential decay, if the stimulus is no longer presented.

Furthermore, using a similar structural plasticity model, it was shown that a network can repair itself after lesion

[2]. Together with our results, this suggests that a structural perturbation of engrams (e.g. by removing connections

or deleting neurons) could actually trigger “healing” and a rescue of memories. In the case of unspecific lesions,

however, such perturbation might also lead to the formation of “fake” memories, or to the false association of

actually unconnected memories.

It appears that the attractor metaphor of persistent activity is not consistent with our model of homeostatic

plasticity. As explained in Section 2.6, homeostatic control tends to delete connections between neurons which

are persistently active, and in extreme cases could even lead to pathological oscillations. In the case discussed in

Section 2.2, in contrast, the memories formed are “silent” (elsewhere classified as “transient” [38]), very different

from the persistent activity usually considered in working memory tasks (elsewhere classified as “persistent”, or

“dynamic” [38]). The latter type of activity seems to be consistent with Hebbian plasticity models [10, 30, 46],

and one may wonder what is the relation of our model with these alternative models.

One possible way to integrate both mechanisms in a single network would be to keep their characteristic time

scales separate. This could be accomplished, for example, by choosing faster time constants for Hebbian functional

plasticity, and slower ones for homeostatic structural plasticity. An effective separation of time scales could also

be obtained, if homeostatic structural plasticity would use somatic calcium as a signal, but not exert any control

of the intermediate calcium levels [18]. This would eliminate the need to specify a target rate in the model, and

fast functional plasticity would shape connectivity in the allowed range of values where neurons have a distribution

of firing rates reflecting previous experience. This induces a natural separation of time scales, where memories

encoded by homeostatic plasticity would last much longer than in the present model, as only extreme transients

would trigger rewiring. Homeostatic plasticity would perform Bayesian-like inference similar to structure learning,
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while functional plasticity would perform fast associative learning, similar to the system proposed by [13].

We showed that very strong stimulation can damage the network by deleting too many synapses in a short time.

The compensatory force, which normally guarantees stability, becomes too strong and leads to seizure-like bursts

of very high activity. This pathological behaviour of the overstimulated system could be relevant for the study of

certain brain diseases, such as epilepsy. The disruption of healthy stable activity is caused by a broken excitation-

inhibition balance due to the high activity of one subgroup (Figure 7A). This, in turn, leads to the emergence

of an abnormal connectivity cycle (Figure 7E). Strategies for intervention in this case must take the whole cycle

into account, and not just the phase of extreme activity. Inhibiting neurons during the high-activity phase, for

example, could have an immediate effect, but it would not provide a sustainable solution to the problem of runaway

connectivity. Our results suggest, against intuition maybe, that additional excitation of the highly active neurons

could actually terminate the vicious cycle quite efficiently. It is important to note, however, that our system has not

been designed as a model of epilepsy, and therefore does not reproduce all features of it [36]. In particular, seizure

occurrence is stochastic in nature, but the limit cycle we describe here implies periodic activity. Furthermore,

the process in real tissue is accompanied by other structural changes such as neuronal death and glia-related

reorganization. In any case, our results do shed light on a novel mechanism of pathological overcompensation and

could potentially instruct alternative approaches in future epilepsy research.

René Descartes already proposed a theory of memory, paraphrased in [33]: Putting needles through a linen cloth

would leave traces in the cloth that either stay open, or can more easily be opened again. Richard Semon, who

originally coined the term “engram” in his book [24, 37], proposes that an engram is a “permanent record” formed

after a stimulus impacts an “irritable substance”. Putting these two ideas together, we can think of Descartes’

needles not to penetrate an inanimate linen cloth, but a living brain, the irritable substance. In this case, we

should expect the formation not of permanent holes, but of scar tissue, which grows further by repeating the

procedure. Therefore, the memory of the system is just a “scar” left by sensory experience. We think that this

is a good metaphor for the type of memories described in our paper, formed through homeostatically controlled

structural plasticity. Interestingly, this model was originally meant as a model for rewiring after lesion [2]. In our

work, however, the “lesion” is imposed by stimulation, which induces phenomena similar to scar formation. The

dynamics of this healing process is very universal, where resources from the whole network are used to fix a local

problem leading to a scar. A perturbation introduces heterogeneity in a previously homogeneous organic substrate.

4 Methods

4.1 Network model

The neuronal network consists of NE = 10 000 excitatory and NI = 2 500 inhibitory current-based leaky integrate-

and-fire (LIF) neurons. The sub-threshold dynamics of the membrane potential Vi of neuron i obeys the differential

equation

τm
dVi
dt

= −Vi + τm
∑
j

CijJijSj(t−D). (7)

The membrane time constant τm is the same for all neurons. The number of synaptic contacts between a presynaptic

neuron j and a postsynaptic neuron i is denoted by Cij . The synaptic weights of individual contacts Jij is the

peak amplitude of the postsynaptic potential and depends only on the type of the presynaptic neuron. Excitatory
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connections have a strength of JE = J = 0.1 mV. Inhibitory connections are stronger by a factor g = 8 such

that JI = −gJ = −0.8 mV. A spike train Sj(t) =
∑
k δ(t − tkj ) consists of all spikes produced by neuron j. The

external input to a given neuron in the network is conceived as a Poisson process of rate νext = 15 kHz. The

external input to different neurons is assumed to be independent. All synapses have a constant transmission delay

of D = 1.5 ms. When the membrane potential reaches the firing threshold Vth = 20 mV, the neuron emits a spike

that is transmitted to all postsynaptic neurons. Its membrane potential is then reset to Vr = 10 mV and held there

for a refractory period of tref = 2 ms.

The number of input synapses is fixed at 0.1NI for inhibitory-to-inhibitory and inhibitory-to-excitatory connections,

and at 0.1NE for excitatory-to-inhibitory synapses. Once synaptic connections of these three types are established,

they remain unchanged throughout the simulation. In contrast, excitatory-to-excitatory connections are initially

absent and grow only under the control of a structural plasticity rule.

4.2 Plasticity model

Growth and decay of excitatory-to-excitatory (EE) connections follow a known model of structural plasticity

regulated by firing rate homeostasis [2, 12]. In this model, each neuron i has a certain number of synaptic elements

of two kinds available, axonal elements ai(t) and dendritic elements di(t). These elements are bonded together

to create functional synapses. Synaptic elements that have not yet found a counterpart are called free elements,

denoted by a+
i and d+

j , respectively. If K in
i =

∑
j Cij(t) denotes the in-degree and Kout

i =
∑
j Cji(t) the out-

degree of neuron i, the number of free elements in every moment is given by a+
i (t) = [ai(t)−Kout

i (t)]+ and

d+
i (t) =

[
di(t)−K in

i (t)
]
+

, with [x]+ = max(x, 0).

Firing rate homeostasis is implemented by allowing each neuron to individually control the number of its synaptic

elements. We assume that each neuron i maintains a time-dependent estimate of its own firing rate, using its

intracellular calcium concentration φi(t) as a proxy. This variable reflects the spikes Si(t) the neuron has generated

in the past, according to

τCaφ̇i(t) = −φi(t) + Si(t),

with a time constant of τCa = 10 s for all neurons. This implements a first-order low-pass filter. In this model,

more weight is given to more recent spikes, following a decaying exponential. The calcium trace φi(t) of individual

neurons is used as a control signal for the number of axonal elements ai(t) and dendritic elements di(t) according

to the homeostatic equations

βdḃi(t) = νi − φi(t) βaȧi(t) = νi − φi(t),

where βd is the dendritic and βa is the axonal growth parameter. Both have a value of 2 in our default setup.

The parameter νi is called the target rate. Whenever the firing rate estimate (in fact, the calcium concentration)

is below the target rate, the neuron creates new axonal and dendritic elements, from which new synapses can

be formed. Whenever the estimated firing rate is larger than the target rate, the neuron deletes some of its

elements, removing the synapses they form. The (negative) decrements a−i and d−i in the number of synaptic

elements, respectively, are in each moment given by a−i (t) = [ai(t)−Kout
i (t)]− and d−i (t) =

[
di(t)−K in

i (t)
]
− for

[x]− = min(x, 0).

After time intervals of duration ∆Ts, all negative elements are collected, and a−i of the existing outgoing connections

of neuron i are randomly deleted. Similarly d−i connections are randomly deleted. The deletion of bonded elements
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of one type frees their counterparts that were previously connected to the deleted element. Then, all free dendritic

|d+| and axonal elements |a+| are collected and randomly combined into pairs, creating n = min(|a+|, |d+|) new

synaptic connections. This algorithm has originally been devised by [2], an efficient implementation of it in NEST

exists [9] and has been employed for all our simulations.

4.3 Mathematical re-formulation of the algorithm

The algorithm of homeostatically controlled structural plasticity can be expressed as a discrete-time stochastic

process. Rewiring takes place at regular intervals of duration ∆Ts

Trewire = {t0 = 0, t1 = ∆Ts, t2 = 2∆Ts, . . . , tn = nT∆Ts}.

Between any two rewiring events, for t ∈ (tk, tk + ∆Ts), the neuron just accumulates synaptic elements

∆Cij(t) = 0

ai(t) =

∫ t

tk

1

βa
(νi − φ(t′)) dt′

di(t) =

∫ t

tk

1

βd
(νi − φi(t′)) dt′

while the already established connectivity remains unchanged. At every rewiring step, the rearrangement of

connectivity is completely random, driven by the probabilities P (∆±Cij(tk) = c|a(tk),d(tk),C(tk−1)) of creating

or deleting c connections from neuron j to neuron i at time tk, during a time step of duration ∆Ts. This gives rise

to a discrete-time Markov process

Cij(tk) = Cij(tk−1) + ∆+Cij(tk)−∆a−Cij(tk)−∆d−Cij(tk),

for tk ∈ Trewire. Here, we define ∆+Cij(tk) as the random variable representing the creation of synapses, while

∆a−Cij(t) and ∆d−Cij(t) are random variables describing the deletion of synapses by removing their corresponding

axonal and dendritic elements, respectively.

We first calculate the probability to create just one new connection p+
ij(tk) = P (∆+Cij(tk) = 1|a(tk),d(tk),C(tk−1)).

We can express this as a process of selecting a presynaptic partner j with probability P (presynaptic neuron =

j) =
a+j (tk)

|a+(tk)| and then a postsynaptic partner i with probability P (postsynaptic neuron = i) =
d+i (tk)

|d+(tk)| . We then

connect the pair with the product of both probabilities

p+
ij(tk) =

d+
i (tk)

|d+(tk)|︸ ︷︷ ︸
prob. of choosing a post neuron

×
a+
j (tk)

|a+(tk)|︸ ︷︷ ︸
prob. of choosing a pre neuron

as they are independent random variables. We now have the probability of creating individual connections, but the

full probability of an increment for the whole network is hard to calculate. This is because of statistical dependencies

that arise from the fact that rewiring affects all neurons in the network simultaneously. First, the total number

of new connections is n = min(|a+|, |d+|). Second, the number of new connections for a given pair of neurons is

bounded by the number of free axonal and dendritic elements in the two neurons, respectively, nij = min(d+
i , a

+
j ).

Finally, we cannot delete more connections than we actually have. This indicates that independent combinations

of individual probabilities cannot be expressed by simple binomial distributions, but a hypergeometric distribution

arises instead. We obtain for the probability of creating c synapses from neuron j to neuron i

P (∆+Cij(tk) = c|a(tk),d(tk),C(tk−1)) =

(
d+i (tk)a+j (tk)

c

)(|a+(tk)||d+(tk)|−d+i (tk)a+j (tk)

n(tk)−c

)
(|a+(tk)||d+(tk)|

n(tk)

) .
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This probability is easy to understand: We divide the ensemble of all possible new synapses (which has size

|a+||d+|) into the ensemble of potential synapses between the pair (i, j) (which has size d+
i a

+
j ) and all the rest. We

then choose cij < nij(tk) connections from the preferred ensemble, and the rest of connections from the remaining

pool. This is “sampling without replacement” as there is a fixed number of new connections n(tk) in each time

step.

We can now calculate the probability to delete one connection using axonal “negative” elements as pa
−

ij (tk) =

P (∆a−Cij(tk) = 1|a(tk),C(tk−1)). This is the probability to choose one to-be-deleted element from all existing

elements p−aij (tk) =
a−i (tk)

ai(tk) and pd
−

ij (tk) = P (∆d−Cij(tk) = 1|d(tk),C(tk−1)) =
d−i (tk)

di(tk) . Out of ai(tk) candidates

for deletion, we select a−i (tk), subject to the condition not to delete more than Cij(tk) for this particular pair of

neurons. This constraint is reflected by the hypergeometric distribution. The preferred population is represented

by the elements bonded into connections from neurons j to neuron i, and the other population is comprised by all

remaining elements of neuron j. Finally, during rewiring events in Trewire, we obtain for the stochastic evolution

of Cij(tk)

Cij(tk) = Cij(tk−1) + ∆+Cij(tk)−∆a
−Cij(tk)−∆b

−Cij(tk)

∆+Cij(tk) ∼ Hypergeometric
(
∆+Cij(tk) = c|d+

i (tk)a+
j (tk), |d+||a+|,min(|a+|, |d+|)

)
(8)

∆a
−Cij(tk) ∼ Hypergeometric

(
∆+Cij(tk) = c|a−j (tk), aj(tk), Cij(tk−1)

)
∆b
−Cij(tk) ∼ Hypergeometric

(
∆+Cij(tk) = c|d−i (tk), di(tk), Cij(tk−1)

)
.

To calculate the total change ∆Cij(tk) we have to account for all these contributions. The distribution of the total

increment is not simply the convolution of the three distributions given above, as they are not independent. On

the contrary, (negative) decrements occasionally influence (positive) increments, as we first delete connections and

thereby create additional free elements. Therefore, the number of free elements has to be corrected as

a′
+
i (tk) = a+

i (tk) +
∑
l

∆b
−Cli(tk), b′

+
i (tk) = d+

i (tk) +
∑
l

∆a
−Cil(tk).

Equation 8 defines a complicated discrete-time stochastic process, but since we are at this point interested only in

the expected change of connectivity, we can restrict ourselves to the evolution of expectations. We use Es to denote

the (linear) operator of expectation over the structural noise, i.e. over the realizations of the increments/decrements

∆Cij(tk). We have

Es[∆Cij(tk)] =
b′

+
i (tk)a′

+
j (tk)

max(|a′+(tk)|, |b′+(tk)|)
+ Es[Cij(tk−1)]

(
d−i (tk)

di(tk)
+
a−j (tk)

aj(tk)

)
. (9)

Further on in this paper, for notational convenience, we write Cij(tk) for the expectation Es[Cij(tk)].

4.4 Time-continuous limit

We now switch over to continuous equations, which result from the limit ∆Ts → 0. In this case, we can express

free elements and negative elements as

a±i (t) =

[
1

βa
(νi − φi(t))dt

]
±
, d±i (t) =

[
1

βd
(νi − φi(t))dt

]
±
,

which will assign infinitesimally small values to the numbers of free elements and negative elements. Since the

rewiring takes place continuously, the numbers of elements are, up to infinitesimal correction, the same as the
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degrees, ai ≈ K in
i and di ≈ Kout

i . We can now define the rates of creation and deletion of axonal elements as

ρa
±
i = limdt→0

a±i
dt and dendritic of elements as ρd

±
i = limdt→0

d±i
dt and we write explicitly

ρa
±
i (t) =

1

βa
[νi − φi(t)]± , ρd

±
i (t) =

1

βd
[νi − φi(t)]± . (10)

As noted above, we have omitted here the expectation over the structural noise Es from the notation. We can now

calculate the evolution of connectivity from Equation 9 as

Ċij(t) =
ρ′d

+
i (t)ρ′a

+
j (t)

ρ(t)
− Cij(t)

(
ρd
−
i (t)

Kin
i (t)

+
ρa
−
j (t)

Kout
j (t)

)
, (11)

where ρ(t) = max(|ρ′+a (t)|, |ρ′+d (t)|). The specific implementation requires that the deletion of elements takes place

first, with the corresponding synaptic partner remaining available as a free element to form new connections. After

an axonal element has been deleted, the previously bonded dendritic element becomes a free element. This requires

a correction on the rate of free elements

ρ′a
+
i (t) =

1

βa
[νi − φi(t)]+ +

∑
k

ρd
−
k (t)

Kin
k (t)

Cki(t)

ρ′d
+
i (t) =

1

βd
[νi − φi(t)]+ +

∑
k

Cik(t)
ρa
−
k (t)

Kout
k (t)

.

4.5 Spiking noise

We assume that spike trains Si(t) =
∑
k δ(t − tik) reflect an asynchronous-irregular state of the network, so they

can be modeled as a stochastic point process. As described in [1, 42], the coefficient of variation of the spike trains

generated by a leaky integrate-and-fire neuron driven by Gaussian white noise current is given by

CV(µ, σ) = 2π(ν0τm)2

∫ Vθ−µ
σ

Vr−µ
σ

ex
2

dx

∫ x

−∞
ey

2

(1 + erf(y))2 dy,

where µ and σ are the parameters of the current input, and τm, Vr and θ are the parameters of the neuron,

respectively. The configuration used here yields CV ≈ 0.7. A good approximation for spike trains of a given rate r

and irregularity CV is obtained with a specific class of renewal processes, so-called Gamma processes. These have

an ISI distribution f(t) = H(t) ρ
Γ(α) (ρt)α−1e−ρt, with parameters α = 1

CV2 and ρ = r
CV2 .

In our model, the fluctuating intracellular calcium concentration is a shotnoise, a continuous signal that arises

from a point process through filtering. Here, the point process has a mean rate ν, and the calcium signal is a

convolution with an exponential kernel F (t) = Θ(t) 1
τCa

e
− t
τCa . Campbell’s theorem allows us compute the mean

µCa = E[NT ]
T

∫ t
0
F (s) ds = ν and the variance σ2

Ca = Var[NT ]
T

∫ t
0
F (s)2 ds ≈ CV2 ν

2τCa
of the calcium variable. Here

we used the fact that spike count of Gamma process NT =
∫ T

0
S(t) dt has a mean E[NT ] = νT and a variance

Var[NT ] ≈ σ2
ISI

µ3
ISI
T = ν

α , provided the observation time T is long enough [35]. As a consequence of the Central

Limit Theorem, the amplitude distribution of the calcium signal is approximately Gaussian N (µCa, σ
2
Ca), provided

the mean spike rate is much larger than the inverse time constant of the calcium signal 〈ri(t)〉 � 1
τCa

. In other

words, if the mean firing rate is 8 Hz and the calcium constant is τCa = 10 s, there are on average 80 spikes in the

characteristic time interval τCa.

We are actually interested in the equilibrium rates of free and negative elements in Equation 10. These rates are

rectified versions of the shifted calcium trace, and in order to calculate them we resort to the ergodic theorem and to

an adiabatic approximation. The former is a self-averaging property, according to which the time-averaged variable
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for a long observation is equal to the equilibrium mean value
∫ T
0
xi(t) dt

T = 〈xi〉t. The adiabatic property comes from

the fact that spiking dynamics of a network is much faster than network remodeling due to structural plasticity.

At every point in time, plasticity is driven by the average adiabatic rate. This implies that, at every point in time

t, the structural plasticity sees the equilibrium distribution of the calcium trace Peq(φi(t)) = N (µCa(t), σ2
Ca(t)).

The right-hand side of Equation 10 becomes

〈ρa±i (t)〉 =
1

βa
〈[νi − φi(t)]±〉 = R±σa

(
νi − 〈ri(t)〉

βa

)
〈ρd±i (t)〉 =

1

βd
〈[νi − φi(t)]±〉 = R±σb

(
νi − 〈ri(t)〉

βb

)
. (12)

The transfer function for synaptic elements is given by Rσ(µ) = 1
2

(
µ+ µ erf

(
µ√
2σ

)
+
√

2
πσe

− µ2

2σ2

)
, and the

variance of the rate of elements is σ2
x = η2νi

2τCaβ2
x

. The parameter η is a correction factor, which accounts for the

regularity of spike trains. In our case η = CV. Even if the mean number of free elements is zero, the noise will still

drive the creation and deletion of elements with rate σx√
2π

. Even if homeostatic control manages to drive all neurons

to their target rates, the inherent calcium fluctuations and the associated uncertainty of firing rate inference will

still induce random rewiring.

4.6 Mean-field approximation of population dynamics

We define population means for variables x ∈ {r, φ, a, b} and neuronal populations Y,Z as

xY (t) =
1

NY

∑
i∈Y

xi(t)

CY Z(t) =
1

NYNZ

∑
i∈Y

∑
j∈Z

Cij(t),

where NY is the size of population Y . An individual neuron in population Y typically gets many inputs from

every other neuronal population, which invites use of mean-field approximation due to the central limit theorem.

The resulting currents aggregate to a Gaussian white noise process with mean and variances given as

µY (t) = Jτ
∑
Z∈E

CY Z(t)NZrZ(t−D)− gJτCIrI(t−D) + τJCEνext,

σ2
Y (t) = J2τ

∑
Z∈E

CY Z(t)NZrZ(t−D) + g2J2τCIrI(t−D) + τJ2CEνext.

The stationary firing rate of a leaky integrate-and-fire neuron driven by input with mean µ and variance σ2 is [1]

r = f(µ, σ) =

(
τr + τm

√
π

∫ Vr−θ
σ

Vr−µ
σ

eu
2

(1 + erf(u)) du

)−1

.

Solving the time-dependent self-consistency problem for multiple interacting plastic populations is a challenging

problem. We suggest here to use an adiabatic approximation, resorting to the fact that the firing rate dynamics

is much faster than the plastic growth processes. Therefore, we employ a Wilson-Cowan type of the firing rate

dynamics [27]

τrateṙY (t) = −rY (t) + f(µY (t), σY (t)). (13)

The relaxation time is set to τrate < τm to account for the fact that population response is generally much faster

than the membrane potential dynamics [14]. The parameter τrate is the only free parameter in this model, but our
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results do not depend on its exact value as long as τrate ≤ τm. The heuristic described by Equation 13 results in a

tractable and numerically stable system to be analyzed with standard dynamical system tools.

As the equation is linear, the average number of elements can be computed without approximation

τCaφ̇Y (t) = rY (t)− φY (t). (14)

As a consequence, the rate of element creation and deletion is also linear

ρdY (t) =
1

βd
(νY − φY (t)) ρaY (t) =

1

βa
(νY − φY (t)).

Finally we calculate the average connectivity

ĊY,Z(t) =
ρ′d

+
Y (t)ρ′a

+
Z (t)

ρ(t)
+ CY,Z(t)

(
ρd
−
Y (t)

kiY (t)
+
ρa
−
Z (t)

koY (t)

)
. (15)

Here, ρd
±
Y (t) = Rσ(±ρd±Y (t)), ρa

±
Y (t) = Rσ(±ρa±Y (t)), and ρ(t) is same as before, while the corrected rate for free

elements is

ρ′a
+
Y (t) =

1

βd
(νY − φY (t)) +

∑
Z∈E

ρd
−
Z (t)

Kin
Z (t)

NZCpopk,Y (t)

ρ′d
+
Y (t) =

1

βa
(νY − φY (t)) +

∑
Z∈E

CY Z(t)NZ
ρa
−
k (t)

Kout
Z (t)

.

4.7 Line attractor of the deterministic system

We represent the state of the network consisting of one static inhibitory and two plastic excitatory ensembles as a

vector

y(t) = (φE1(t), φE2(t), CE1E1(t), CE1E2(t), CE2E1(t), CE2E2(t), rE1(t), rE2(t), rI(t))
T
,

the components of which adhere to the calcium dynamics Equation 14, the connectivity dynamics Equation 15,

and the activity dynamics Equation 13. The joint ODE system dy
dt = F(y, t) defines the vector field F. We first

explore the stationary states of the deterministic system (σx = 0), setting the left hand side of all ODEs to zero.

In this case, calcium concentration and excitatory firing rates are fixed at their target values, and inhibitory firing

rates r∗I can be obtained using the self-consistency Equation 13. Stationary connectivity is calculated from the

condition that the rates of creation and deletion of synaptic elements are zero. This implies that the numbers

of free axonal and dendritic elements are zero, a± = 0 and d± = 0, which in turn implies that a = 1T · C and

d = C · 1. The second condition is that all axonal elements are bonded with a dendritic element, and the total

number of both types of elements are the same |a| = |d|.

Let us consider the case of two plastic excitatory ensembles E1 and E2 and one static inhibitory population I.
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Using the parameter x = CE1E1 , the stationary state of the deterministic network is a line

l(x) =



φ∗E1

φ∗E2

C∗E1E1

C∗E1E2

C∗E2E1

C∗E2E2

r∗E1

r∗E2

r∗I



=



ν

ν

x

K∗
E1

NE2
− xNE1

NE2

K∗
E1

NE2
− xNE1

NE2(
K∗
E2

NE2
− NE1

NE2

K∗
E1

NE2

)
+ x

(
NE1

NE2

)2

ν

ν

r∗I



. (16)

Here, K∗Y is the mean stationary in-degree, and we assume that the dendritic element growth factor βd is less or

equal to the axonal element growth factor βa. The attractor is a line segment, as a consequence of linear conditions

for element numbers and non-negativity of excitatory connections Cij ≥ 0. This solution can be easily generalized

to a solution for individual connections of NE excitation neurons, or for the case of nE excitatory populations. The

minimal invariant changes of the stationary connectivity matrix C that keep in-degree and out-degree conditions

valid are of the type 

. . .
...

1 . . . −1
...

. . .
...

−1 . . . 1

...
. . .


,

where all missing entries are considered to be zero. This transformation defines a hyperplane section invariant

space. The stationary connectivity can be solved as

|a| = |d| (17)

C =



C11 · · · C1(NE−1) d1 −
∑NE−1
k=1 C1k

...
. . .

...
...

C(NE−1)1 · · · C(NE−1)(NE−1) dNE−1 −
∑NE−1
k=1 C(NE−1)k

a1 −
∑NE−1
k=1 Ck1 · · · aNE−1 −

∑NE−1
k=1 Ck(NE−1) dn −

∑N−1
k ak +

∑NE−1
l=1,m=1 Clm


Note that we have put degree conditions in the place of the last raw and last column, but there is a permutation

symmetry. The hyperplane for individual neurons has NE(NE−3) + 1 dimensions, if there are no self-connections.

In the case of nE excitatory populations, the hyperplane has nE(nE − 2) + 1 dimensions.

4.8 Slow manifold and diffusion to the global fixed point

Now we calculate the stationary state for the stochastic system and assess the geometry and stability of the

underlying phase space. In the case of finite noise, σd > 0, Equation 11 has an attractive fixed point, instead of a

hyperplane attractor. The fixed point is given by

C∗i,j =
ρ′d

+
i ρ
′
a

+
j

ρ(ρd
−
i K

out
j + ρa

−
j K

in
j )

Kin
i K

out
j . (18)
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Here, without loss of generality, we have assumed that the growth rate of dendritic elements is smaller or equal

as compared to axonal elements. We obtain a normalized outer product of the indegree and outdegree vectors,

respectively. In the case of identical dynamics for axonal and dendritic elements, and if all neurons have the same

target rate νi = ν, we obtain the fixed point by plugging in the homogeneous solution

C∗i,j =
K in

NE
= c. (19)

This fixed point depends only on the indegree of neurons. For a two-population system, the fixed point is y = l(K
in

NE
),

the most entropic configuration of the line segment attractor. This suggests a special importance for the relic of

the line-attractor, which turns into a stochastic slow manifold through the presence of noise. The system relaxes

along the direction of the slow manifold. Therefore, although rates of creation and deletion are the same around

slow manifold, upon perturbation the system follows a fast trajectory off the slow manifold, and it relaxes slowly

along the slow manifold towards the fixed point.

We now calculate the relaxation time for the three-population system to assess the persistence of a memory trace.

To this end, we calculate the Jacobian J = ∂F(y,t)
∂y y=l(x) on the slow manifold, using a linearization of the vector

field F (see Section 4.7). For the stochastic system, the Jacobian J (C∗) about the global fixed point is

J =



− 1
τCa

0 0 0 0 0 1
τCa

0 0

0 − 1
τCa

0 0 0 0 0 1
τCa

0

J31 J32 J33 J34 J35 J35 0 0 0

J41 J42 J43 J44 J45 J46 0 0 0

J51 J52 J53 J54 J55 J56 0 0 0

J61 J62 J63 J64 J65 J66 0 0 0

0 0 J73 J74 0 0 J77 J78 J79

0 0 0 0 J85 J86 J88 J78 J89

0 0 0 0 0 0 J99 J98 J99



. (20)

The Jacobian has a block structure, which corresponds to calcium activity (black rectangle in Equation 20),

connectivity Jc (blue rectangle) and spike activity Jr (red rectangle). The connectivity block around fixed point

y = l(c) is given by

Jc = c0



−N2
E2 N2

E2 N2
E2 −N2

E2

NE1NE2 −NE1NE2 −NE1NE2 NE1NE2

NE1NE2 −NE1NE2 −NE1NE2 NE1NE2

−N2
E1 N2

E1 N2
E1 −N2

E1


,

where c0 =
η
√

ν
πτCa

2cN3
E

(
1
βa

+ 1
βb

)
. Jacobian entries responsible for interaction between connectivity variables and

calcium activity variables are −J42 = −J52 = J61 = NE1

N2
Eβb

, J32 = −J41 = −J51 = NE2

N2
Eβb

, J31 = −nE1+2NE2

N2
Eβb

and

J62 = − 2NE1+NE2

N2
Eβb

. The spike activity terms in the Jacobian are

Jr =
1

τrate


−1 + jEECE1E1NE1 jEECE1E2NE2 jEIεNI

jEECE2E1NE1 −1 + jEECE2E2NE2 jEIεNI

jIEεNE1 JIEεNE1 −1 + jIIεNI


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Here we define the effective interaction of different neuron types neurons as excitatory-to-excitatory jEE =

Jτ ∂f(µE ,σE)
∂µE

+J2τ
σE

∂f(µE ,σE)
∂σE

, inhibitory-to-excitatory jEI = −gJτ ∂f(µE ,σE)
∂µE

+J2τ
σE

∂f(µE ,σE)
∂σE

, excitatory-to-inhibitory

jIE = Jτ ∂f(µI ,σI)
∂µI

+ J2τ
σI

∂f(µI ,σI)
∂σI

and inhibitory-to-inhibitory neurons as jII = −gJτ ∂f(µI ,σI)
∂µI

+ g2J2τ
σI

∂f(µI ,σI)
∂σI

. The

Jacobian elements which are responsible for influence of connectivity change to rates are J73 = 1
τrate

jEENE1rE1,

J74 = 1
τrate

jEENE2rE2, J85 = 1
τrate

jEENE1rE1 and J86 = 1
τrate

jEENE2r2. These terms are the largest in the

Jacobian, but since connectivity changes only through a change of calcium, they will not play an essential role for

long-term stability.

We exploit the block structure of the Jacobian J to separate between connectivity variables, the fast firing rate

and calcium variables. We can solve the connectivity eigenproblem analytically,

λ0
0 =



0

0

1

1

1

1

0

0

0



λ1
0 =



0

0

1

1

−NE1

NE2

−NE1

NE2

0

0

0



λ2
0 =



0

0

1

−NE1

NE2

1

−NE1

NE2

0

0

0



λ1 =



0

0

1

−NE1

NE2

−NE1

NE2(
NE1

NE2

)2

0

0

0



, (21)

with eigenvalues λ0 = 0 and λ1 = −Rσa (0)+Rσb (0)

cNE
.

The persistence of a memory trace in the system with noise is essentially determined by the diffusion to the global

fixed point. In fact, the line attractor of the noiseless system turns into a slow manifold of the noisy system.

The eigenvalue λ0 is degenerate, and the three-dimensional invariant space defines the central manifold of the

connectivity subsystem. The eigenvalue λ1 is also an eigenvalue of the full Jacobian J and it represents the

slowest time scale of the system in the direction of the slow manifold. It is easy to check that ∂xl(x) = λ1. This

means that the noiseless line attractor is exactly corresponding to the slow manifold of the system. The other

eigenvectors have components orthogonal to the slow manifold. Those are dominated by fast variables, and they

relax quickly. As a result, the relaxation dynamics is dominated by the eigenvalue λ1, and the relaxation time of

the system under consideration is

τdiffusion =

√
4πτCa

η2ν

NEc
1
βd

+ 1
βa

.

For the default parameters used here, its value is around 5 000 s, fully in accordance with numerical simulations.

A quantitative measure for the volatility of network structure used in experiments is the turnover ratio (TOR)

of dendritic spines [41]. It is defined as TOR = ∆Nnew+∆Ndeleted

2Nspines
, where the changes ∆Nnew and ∆Ndeleted are

typically measured per day. For the case when the network plasticity is selectively driven by diffusion, this

quantity corresponds to the eigenvalue λ1, corresponding to a value around 18 % per day for standard parameters.

4.9 Linear stability analysis

Numerical exploration of the eigenvalues show that for our system there is linear stability for a wide parameter

range. However this system can produce damped oscillations, which may cause problems. We use a reduced
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system of only one plastic excitatory population and one static inhibitory population to analyze the influence of

the calcium time constant and element growth. This gives rise to the Jacobian

J1 =



− 1
τCa

0 1
τCa

0

− 1
NEβd

0 0 0

0 1
τrate

jEEcNE − 1
τrate

+ 1
τrate

jEEcNE
1

τrate
jEIεNI

0 0 1
τrate

JIEεNE − 1
τrate

+ 1
τrate

jIIεNI


.

The eigenvalues of J1 have been reduced to radicals using Mathematica 12.0, and the complex conjugated eigen-

values λ3/4 responsible for oscillations are plotted in Figure 6.

Although there is linear stability around the global fixed points for wide parameter range, the same is not the

true for all points along the line attractor. The connectivity eigenvalue λ1 is constant on the slow manifold, but if

one population presents large recurrent connectivity, spike activity jumps to a persistent high activity state. We

can track this instability in the Jacobian J (x) along the line attractor l(x). As the recurrent connectivity of the

first ensemble E1 is increased, one of the eigenvalues becomes positive, and its corresponding eigenvector makes

the biggest contributions in the direction of spike activity rE1 and rE2. Here we use this fact and use the reduced

Jacobian

Jr =

∂F7(y,t)
∂rE1

∂F7(y,t)
∂rE2

∂F8(y,t)
∂rE1

∂F8(y,t)
∂rE2

 =
1

τrate

−1 + jEECE1E1
NE1 jEECE1E2

NE2

jEECE2E1NE1 −1 + jEECE2E2NE2


to find the approximate position of this transition on the line attractor. The spiking activity becomes unstable,

when the real part of the second eigenvalue λr2 becomes positive, and at this point the determinant of the Jacobian

changes its sign (since both eigenvalues are real). We can use this criterion to determine when the system loses

linear stability, leading to the critical value ccrit of connectivity CE1E1

ccrit = ε

(
1 +

NE2

NE1jE

)
, (22)

where jE is a dimension-less measure of effective excitatory excitability jE = εNEjEE . The value ccrit is the upper

bound of full stability, but the system loses stability even below this value, as discussed in our results.

4.10 Network simulations

All simulations have been performed using the neural network simulator NEST 2.16.0 [28].

4.10.1 Grown networks

All numerical stimulation experiments start from grown networks. To this end, we initialize a network with random

connections to and from inhibitory neurons and no excitatory-to-excitatory connections, whatsoever. The latter

are then grown under the control of homeostatic structural plasticity. The controlled variable is the firing rate of

excitatory neurons, the target rate is set to ν = 8 Hz for all neurons. During this initial growth period, excitatory

neurons receive external Poisson input of rate νext = 15 kHz. After a long-enough growth time tgrowth, the network

structure has reached its equilibrium and all neurons fire at their target rate, apart from small fluctuations.
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4.10.2 Conditioning paradigm

Non-overlapping neuronal ensembles comprising 10 % of all excitatory neurons each are selected and labeled US,

C1 and C2. Non-plastic connections of weight JE = 0.1 mV are created from all neurons labeled US to a readout

neuron, which has the same properties as all the other neurons in the network. Stimulation is specific for a certain

group of neurons. A stimulation cycle consists of an increased external input rate of 1.4 νext for a period of 2 s,

followed by a relaxation period of 48 s, during which the external input is set back to νext.

The whole protocol consists of 5 different episodes: growth, baseline, encoding, decay and retrieval. During

“baseline” each of the 3 groups is stimulated alone in the order US, C1, C2. The “encoding” episode consists of

6 stimulation cycles. In 3 out of the 6 cycles, C2 is stimulated alone. In the other 3 cycles, neurons from both

US and C1 are stimulated at the same time. The “decay” episode lasts 100 s, during which no stimulation beyond

νext is applied. During “retrieval”, there are 2 stimulation cycles, C1 alone is followed by C2 alone. Connectivity

is recorded every 1 s. In this protocol, plasticity is always on, and all measurements are performed in the plastic

network. Growth time is tgrowth = 100 s, the remaining parameters are βd = βa = 0.4, τCa = 1 s, ∆Ts = 10 ms.

4.10.3 Repeated stimulation

Starting from a grown network, a random neuronal ensemble comprising 10 % of all excitatory neurons in the

network is repeatedly stimulated for 8 cycles. Here, a stimulation cycle consists of a stimulation period of 150 s,

during which the external input to the ensemble neurons is increased to 1.05 νext. It is followed by a relaxation

period of 150 s, during which the external input is set back to νext. During stimulation, the connectivity is

recorded every 15 s. After encoding the engram, plasticity is turned off, and all measurements are now performed

in a non-plastic network. Growth time is tgrowth = 500 s, the remaining parameters are βd = βa = 2, τCa = 10 s,

∆Ts = 100 ms.

4.10.4 Readout neuron

Two non-overlapping ensembles comprising 10 % of all excitatory neurons each are randomly selected and labeled

A1 and A2. Starting from a grown network, A1 is stimulated twice. During each stimulation cycle, the external

input to stimulated neurons is increased to 1.1 νext for a time period of 150 s. This is followed by a relaxation

period of 150 s, during which the external input is set back to νext. After a pause of 100 s, A2 is stimulated once

using otherwise the same protocol. Growth time is tgrowth = 500 s, the remaining parameters are βd = βa = 2,

τCa = 10 s, ∆Ts = 100 ms.

After the encoding of engrams, plasticity is turned off. A readout neuron is added to the network, which has the

same properties as all other neurons in the network. Non-plastic connections of weight JE = 0.1 mV are created

from a random sample comprising 9 % of all excitatory and 9 % of all inhibitory neurons in the network. Two

new non-overlapping ensembles comprising 10 % of all excitatory neurons each are selected as random patterns A3

and A4. Neurons in the network are stimulated in the order A3, A2, A1, A4. During each stimulation cycle, the

external input to neurons in the corresponding group is increased to 1.1 νext for a period of 1 s duration. This is

followed by a non-stimulation period of 4 s, during which external input rate is set back to νext.
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4.10.5 Formation and decay of engrams

Starting from a grown network, a subgroup comprising 10 % of all excitatory neurons is randomly selected and

stimulated for 150 s, followed by a prolonged relaxation period of 5 500 s. During stimulation, the external input

to stimulated neurons is increased to 1.1 νext. For all simulations, βd = βa = 2, ∆Ts = 100 ms.

The simulations to demonstrate how τdecay changes with τCa were performed with a target rate ν = 8 Hz and

τCa = 2, 4, 8, 16, 32 s. The simulations showing how τdecay changes with ν were performed with τCa = 10 s and

ν = 2, 4, 8, 16, 32 Hz. In the simulations performed with ν = 2, 4 Hz, τgrowth = 5 000 s, neurons are stimulated

for 1 500 s, and the relaxation period is 26 000 s. The parameter τdecay is estimated from simulated time series by

performing a least-squares fit of an exponential function to the connectivity values during the decay period, and

extracting the fitted time constant.

4.10.6 Linear stability

Starting from a grown network, a subgroup comprising 10 % of all excitatory neurons is randomly selected and

stimulated for a time period tstim. During stimulation, the external input to stimulated neurons is increased

to 1.1 νext. Stimulation is followed by a period of duration trelax, during which the external input is set back

to νext and the connectivity relaxes back to a new equilibrium. The parameters used are for non-oscillatory

regime: tgrowth = tstim = trelax = 800 s, βd = βa = 2, τCa = 5 s, ∆Ts = 1 ms; for the weakly oscillatory regime:

tgrowth = tstim = trelax = 400 s, βd = βa = 0.2, τCa = 20 s, ∆Ts = 0.2 ms; and for the strongly oscillatory regime:

tgrowth = tstim = trelax = 200 s, βd = βa = 0.03, τCa = 10 s, ∆Ts = 0.2 ms.

4.10.7 Non-Linear stability

Starting from a grown network, a subgroup comprising 10% of all excitatory neurons is randomly selected and

stimulated for 200 s. During stimulation, the external input rate to stimulated neurons is increased to 1.25 νext.

Stimulation is followed by a relaxation time in which external input rate is set back to νext. Growth time tgrowth =

500 s, βd = βa = 2, τCa = 10 s, ∆Ts = 0.1 ms. During and after stimulation, connectivity is recorded every 5 s.

4.10.8 Overlap measure

The similarity between network activity during stimulation, spontaneous and evoked responses is measured by the

corresponding overlaps [15] defined as

mµ = [Na(1− a)]−1
∑
i

(ξµi − a)si(t). (23)

The pattern ξµ is a vector of dimension N . Each entry ξµi is a binary variable indicating whether or not neuron

i is stimulated by pattern ξµ, and it has a mean value of a = 〈ξµi 〉i. The activity vector si(t) is also composed of

binary variables, which indicate whether or not neuron i is active in a given time bin. In all figures, the bin size

used for calculating overlaps is 10 ms.
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4.10.9 Population firing rate

In Figure 3B, the population response of excitatory neurons is estimated for different connectivity values using a

mean-field rate model [1]. We consider a model with three populations, two of which are excitatory (E1 comprises

10 % and E2 comprises 90 % of all NE = 10 000 excitatory neurons), and one is inhibitory with NI = 2 500

neurons. All connectivities involving inhibitory neurons are fixed and set to ε = 0.1. For the excitatory-to-

excitatory connections, we systematically vary the connectivity within the E1 population (CE1E1
), and calculate

the other values to achieve a constant excitatory in-degree of εNE . All other parameters used are unchanged.

For the different values of CE1E1 we calculate the population rate of excitatory neurons for E1 receiving a larger

external input of 1.05 νext as compared to the E2 and I populations (νext = 15 kHz).

4.10.10 Pattern completion

To address pattern completion, we employ the non-plastic network after engram encoding (see 4.10.3). Different

fractions of the neurons belonging to the engram are stimulated for 10 s, and we calculate the overlap averaged

over the stimulation time 〈mE1〉. For each fraction of stimulated neurons, 50 different simulations are run, during

which a different subsample of the engram neurons is stimulated.
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Table 1: List of symbols

Symbol Description

φ(t) Calcium trace

τCa Calcium time constant

S(t) Spike train

r(t) Instantaneous firing rate

ν Target rate

a(t) Number of axonal elements

d(t) Number of dendritic elements

βd Dendritic growth parameter

βa Axonal growth parameter

Cij(t) Number of synaptic connections from neuron j (presynaptic) to neuron i (postsynaptic)

E Excitatory neurons

E1 Stimulated excitatory neurons

E2 Non-stimulated excitatory neurons

I Inhibitory neurons

τdrift Effective time constant of encoding

τdiffusion Effective time constant of forgetting

mx(t) Overlap of network activity with pattern x

τrate Relaxation time of rate dynamics
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