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Abstract

Brain networks store new memories using functional and structural synaptic plasticity. Memory formation
is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in
stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation
of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with
numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing
rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the
presentation of incomplete cues. Storing is fast, governed by the homeostatic drift. In contrast, forgetting is
slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections
between them, leading to the formation of memory engrams. In conclusion, homeostatic structural plasticity

induces a specific type of “silent memories”, different from conventional attractor states.

1 Introduction

Memories are formed in the brain using cell assemblies that emerge through coordinated synaptic plasticity. Cell
assemblies with strong enough recurrent connections lead to bi-stable firing rates, which allows a network to encode
memories as dynamic attractor states. In most theoretical models of cell assembly formation, the assemblies are
generated by strengthening already existing synaptic contacts using appropriate synaptic learning rules [30, 46].
It was shown that attractor networks can also emerge through the creation of neuronal clusters with increased

connectivity among neurons, leaving the weights of individual synaptic contacts unchanged [29].

The creation of clusters through changes in connectivity between cells would require synaptic rewiring, or structural
plasticity. Structural plasticity has been frequently reported in different areas of the brain, and sprouting and
pruning of synaptic contacts was found to be often activity-dependent [22, 31]. Sustained turnover of synapses,
however, poses a severe challenge to the idea of memories being stored in synaptic connections [33]. Recent
theoretical work has attempted to address the question, how stable assemblies can be maintained despite ongoing

synaptic rewiring [10, 11].

The formation of neuronal assemblies, or clusters, is traditionally attributed to Hebbian plasticity, driven by the
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correlation between pre- and postsynaptic neuronal activity on a certain time scale. For a typical Hebbian rule,
a positive correlation in activity leads to an increase in synaptic weight, which in turn increases the correlation
between neuronal firing. This positive feedback cycle can result in unbounded growth, runaway activity and dy-
namic instability of the network, if additional regulatory mechanisms are lacking. In fact, neuronal networks of the
brain are known to employ homeostatic control mechanisms that regulate neuronal activity [43], and possibly even
stabilize the firing rate of individual neurons at specific target levels [19, 40]. However, even though homeostatic
mechanisms have been reported in experiments to operate on a range of different time scales, they seem to be
too slow to trap the instabilities caused by Hebbian learning rules [47]. All things considered, what are the exact
roles of Hebbian and homeostatic plasticity, and how these different processes interact to form cell assemblies in a

robust and stable way, remains to be elucidated [25].

Concerning the interplay between Hebbian and homeostatic plasticity, we have recently demonstrated by simula-
tions that homeostatic structural plasticity alone can lead to the formation of assemblies of strongly interconnected
neurons, and that this process of memory formation has associative properties [12]. Moreover, we found that vary-
ing the strength of the stimulation and the fraction of stimulated neurons in combination with repetitive protocols
can lead to even stronger assemblies [32]. In both papers, we used a structural plasticity model based on firing
rate homeostasis, which had been used before to study synaptic rewiring linked with neurogenesis [6, 7], and the
role of structural plasticity after focal stroke [3, 5] and after retinal lesion [2]. This model has also been used to
study the emergence of criticality in developing networks [39] and other topological aspects of plastic networks
[4]. The memories formed in networks of this type, however, are of a different nature than the ones found in
attractor networks. Firstly, structural plasticity operates at a slower time scale than functional plasticity, leading
to slower assembly formation. Secondly, the formed assemblies represent a form of silent memory that is not in

every moment reflected by neuronal activity.

The long-standing discussion about memory engrams in the brain has been revived recently. Researchers were able
to identify and manipulate engrams [24], and to allocate memories to specific neurons during classical conditioning
tasks [23]. These authors have also emphasized that an engram is not yet a memory, but the physical substrate
of a potential memory in the brain [24]. Similar to the idea of a memory trace, it should provide the necessary
conditions for a retrievable memory to emerge. Normally, the process of engram formation is thought to involve the
strengthening of already existing synaptic connections. Here, we propose that new engrams could also be formed

by an increase in synaptic connectivity and the formation of neuronal clusters.

Among other things, we perform numerical simulations of a classical conditioning task in a recurrent network
with structural plasticity based on firing rate homeostasis. We show that the cell assemblies formed share all
characteristics of a memory engram. We further explore the properties of the formed engrams and develop a
mean-field theory to explain the mechanisms of memory formation with homeostatic structural plasticity. We
show that these networks are able to effectively store repeatedly presented patterns, and that the formed engrams
implement a special type of silent memory, which normally exists in a quiescent state and can be successfully

retrieved based on incomplete cues.
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Figure 1: Formation of memory engrams in a neuronal network with homeostatic structural plasticity. (A) In a
classical conditioning scenario, a conditioned stimulus C1 is paired with an unconditioned stimulus US (“encod-
ing”), and another conditioned stimulus C2 is presented alone. (B) Before the paired stimulation (“baseline”),
the readout neuron responds strongly only upon direct stimulation of the neuronal ensemble corresponding to the
US. After the paired stimulation (“retrieval”), however, a presentation of C1 alone triggers a strong response of
the readout neuron. This is not the case for a presentation of C2 alone. Top: stimulation and retrieval of the
conditioning protocol; middle: firing rate of the readout neuron; bottom: spike train of the readout neuron during
the baseline (left), encoding (middle) and retrieval (right) phase. (C) After encoding, the connectivity matrix indi-
cates that engrams have formed, and we find enhanced connectivity within all three ensembles as a consequence of
repeated stimulation. Bidirectional inter-connectivity across different engrams, however, is only observed for the
pair C1 and US, which experienced paired stimulation. (D) The connectivity dynamics shows that engram identity

are strengthened with each stimulus presentation, and that they decay during unspecific external stimulation.

2 Results

2.1 Formation of memory engrams by homeostatic structural plasticity

We simulate a classical conditioning paradigm using a recurrent network. The network is composed of excita-
tory and inhibitory leaky integrate-and-fire neurons, and the excitatory-to-excitatory connections are subject to
structural plasticity regulated by firing rate homeostasis. Three different non-overlapping neuronal ensembles are
sampled randomly from the network. The various stimuli considered here are conceived as increased external input
to one of the specific ensembles, or combinations thereof. As the stimuli are arranged exactly as in behavioral
experiments, we also adopt their terminology “unconditioned stimulus” (US) and “conditioned stimulus” (C1 and
(C2). The unconditioned response (UR) is conceived as the activity of a single readout neuron, which receives input

from the ensemble of excitatory neurons associated with the US (Figure 1A, top).

Figure 1B illustrates the protocol of the conditioning experiment simulated here. During a baseline period, the

engrams representing US, C1 and C2 are stimulated one after the other. In this phase, the activity of the US
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ensemble is high only upon direct stimulation (Figure 1B, middle). The baseline period is followed by an encoding
period, in which C1 is paired with US, while C2 is always presented in isolation. Simultaneous stimulation of
neurons in a recurrent network with homeostatic structural plasticity can lead to the formation of reinforced
ensembles [12], which are strengthened by repetitive stimulation [32]. After the encoding period, each of the
three neuronal ensembles has increased within-ensemble connectivity, as compared to baseline. Memory traces,
or engrams, have formed (Figure 1C). Moreover, the US and C1 engrams also have higher bidirectional across-

ensemble connectivity, representing an association between their corresponding memories.

Between encoding and retrieval, memory traces remain in a dormant state. Due to the homeostatic nature of
network remodeling, the spontaneous activity after encoding is very similar to the activity before encoding, but
specific rewiring of input and output connections have lead to the formation of structural engrams. It turns
out that these “silent memories” are quite persistent, as “forgetting” is much slower than “learning” them (see
below for a detailed analysis of this phenomenon). Any silent memory can be retrieved with a cue, or in our
case, by presentation of the conditioned stimulus. Stimulation of C1 alone, but not of C2 alone, triggers a
conditioned response (Figure 1B) that is similar to the unconditioned response. Inevitably, stimulation of C1 and
C2 during recall briefly destabilizes the corresponding cell assemblies, as homeostatic plasticity is still ongoing. The
corresponding engrams then go through a reconsolidation period, during which the within-assembly connectivity
grows even higher than before retrieval (Figure 1D, red and green). As a consequence, stored memories get
stronger with each recall. Interestingly, as in our case the retrieval involves stimulation of either C1 or C2 alone,

the connectivity between the US and C1 engrams decreases a bit after the recall (Figure 1D, purple).

Memories and associations are formed by changes in synaptic wiring, triggered by neuronal activity during the
encoding period. They persist in a dormant state and can be reactivated by a retrieval cue that reflects the activity
experienced during encoding. This setting exactly characterizes a memory engram [24]. In the following sections,
we will analyze the process of memory formation further and explore the nature of the formed engrams in more

detail.

2.2 Engrams represent silent memories, not attractors

Learned engrams have a subtle influence on network activity. For a demonstration, we first grow a network under
the influence of homeostatic structural plasticity (see 4.10.1). We then randomly select an ensemble E; of excitatory
neurons and stimulate it repeatedly. Each stimulation cycle is comprised of a period of 150s increased input to
E; and another 150s relaxation period with no extra input. After 8 such stimulation cycles, the within-engram
connectivity has increased to Cg, g, ~ 0.21. At this point, the spontaneous activity of the network exhibits
no apparent difference to the activity before engram encoding (Figure 2A). Due to the homeostatic nature of
structural plasticity, neurons fire on average at their target rate, even though massive rewiring has led to higher
within-engram connectivity. Looking closer, though, reveals a conspicuous change in the second-order properties
of neuronal ensemble activity. We quantify this phenomenon using the overlap m* (see 4.10.8 for a detailed
explanation of the concept). Figure 2B depicts the time-dependent overlap of spontaneous network activity with
the engram E; (mf1). It also shows the overlap with 10 different random ensembles x (m?), which are of the
same size as F; but have no neurons in common with it. The variance of m! is slightly larger than that of
m® (Figure 2C). This indicates that the increased connectivity also increases the tendency of neurons belonging

to the same learned engram to synchronize their activity and increase their correlation, in comparison to other
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Figure 2: Silent memory based on structural engrams. (A—C) The spontaneous activity of neurons belonging to
the engram F; is hardly distinguishable from the activity of the rest of the network. (A) Raster plot showing
the spontaneous activity of 50 neurons randomly selected from FE;, 100 neurons randomly selected from FEs but
not belonging to E7, and 50 neurons randomly selected from the pool I of inhibitory neurons. (B) Overlap of

E1orange) and for 10 different random ensembles z

spontaneous network activity with the learned engram E; (m
disjoint with Fy (m®, purple). (C) Cumulative distribution of m* shown in (B). (D-F) The activity evoked upon
stimulation of E; is higher, if the within-engram connectivity is large enough (Cg, g, > 0.1) as a consequence of
learning. (D) Same as (A) for evoked activity, the stimulation starts at ¢ = 1s. The neurons belonging to engram
E, are stimulated before (top, Cg, g, = 0.1) and after (bottom, Cg, g, = 0.21) engram encoding. (E) Overlap with
the learned engram (m%1, orange) and with random ensembles (m?, purple) during specific stimulation of engram
E,. (F) Population rate of all excitatory neurons during stimulation of E; before (black) and after (orange) engram
encoding. (E, F) Solid line and shading depict mean and standard deviation across 10 independent simulation

runs, respectively. In all panels, the bin size for calculating overlaps are 10ms, and the bin size for calculating

population rates is 100 ms.

pairs of neurons. An increase in pairwise correlations within the engram also leads to increased fluctuations of the

population activity [26], which also affects population measures such as the overlap used here.

During specific stimulation, the differences between the evoked activity of learned engrams and random ensembles
are more pronounced. Figure 2D shows raster plots of network activity during stimulation of F; before and after
the engram has been encoded. The high recurrent connectivity within the F; assembly after encoding amplifies
the effect of stimulation, leading to much higher firing rates of F; neurons. This effect can even be seen in the
population activity of all excitatory neurons in the network (Figure 2F). During stimulation, the increase in firing
rate of engram neurons is accompanied by a suppression of activity of all other excitatory neurons not belonging
to the engram. This is what underlies the conspicuous decrease in the overlap m” with random ensembles x during

stimulation (Figure 2E).

How does all this affect the strength of a memory? To answer this question, we looked into evoked activity
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at different points in time during stimulation. The within-engram connectivity increases with every stimulation
cycle (Figure 3A), and so does the population activity of excitatory neurons during stimulation (Figure 3B). The
in-degree of excitatory neurons, in contrast, is kept at a fixed level by the homeostatic controller, even after
engram encoding (Figure 4C). This behavior is well captured by a simple mean-field firing rate model (grey line
in Figure 3B), in which the within-engram connectivity is varied and all the remaining excitatory connections are

adjusted to maintain a fixed in-degree of excitatory neurons.

Engrams exhibit pattern completion to a degree that depends on the strength of the memory. We quantitatively
assess pattern completion by measuring how the overlap of network activity with the engram, m®, depends on
partial stimulation. For an unstructured random network, m®' increases at a certain rate with the fraction of
stimulated neurons (Figure 3C, black line). We speak of “pattern completion”, if m® increases at a larger rate
with size than in an unstructured random network. Figure 3C demonstrates very clearly that the degree of pattern
completion associated with a specific engram increases monotonically with the strength of the memory, that is,

with the within-engram connectivity.

The difference in evoked activity between learned engrams and random ensembles of the same size can be taken
as evidence for the existence of a stored memory. To demonstrate the potential of this idea, we employ a simple
readout neuron for this task (Figure 3D). This neuron has the same properties as any other neuron in the network,
and it receives input from a random sample comprising a certain fraction (here 9 %) of all excitatory and the same
fraction of all inhibitory neurons in the network. We encode two engrams in the same network, one being slightly
stronger (Cg, g, ~ 0.19, green) than the other one (Cg,p, ~ 0.18, orange). We record the firing of the readout
neuron during spontaneous activity, during specific stimulation of the engrams, and during stimulation of random
ensembles. Figure 3E shows a raster plot of the activity of 10 different readout neurons, each of them sampling a
different subset of the network. With the parameters considered here, the activity of a readout neuron is generally
very low, except when a learned memory engram is stimulated. Due to the gradual increase in population activity
with memory strength (Figure 3B), readout neurons respond with higher rates upon the stimulation of stronger

engrams (green).

Homeostatic structural plasticity enables memories based on neuronal ensembles with increased within-ensemble
connectivity, or engrams. Memories are acquired quickly and can persist for a long time. Moreover, the specific
network configuration considered here admits a gradual response to the stimulation of an engram according to
the strength of the memory. Mathematically speaking, the engram connectivity lies on a line attractor which
turns into a slow manifold, if fluctuations are taken into consideration. This configuration allows the network to
simultaneously learn to recognize a stimulus (“Does the current stimulation corresponds to a known memory?”)
and to assess its confidence of the recognition (“How strong is the memory trace of this pattern?”). Such behavior
would be absolutely impossible in a system that relies on bistable firing rates (attractors) to define engrams. Details

of our analysis will be explained later in section 2.4.

2.3 The mechanism of engram formation

We have shown how homeostatic structural plasticity creates and maintains the memory engrams, and we will
now further elucidate the mechanisms underlying this process. We consider a minimal stimulation protocol [12] to

study the encoding process for a single engram FE;. We perform numerical simulations and develop a dynamical
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Figure 3: Evoked activity depends on the strength of memories. (A) Starting from a random network grown under
the influence of unstructured stimulation (black dot), we repeatedly stimulate the same ensemble of excitatory
neurons F; to eventually form an engram. Multiple stimulation cycles increase the recurrent connectivity within
the engram. (B) Population activity of all excitatory neurons upon stimulation of E;, for different levels of
engram connectivity C'g, g,. Crosses depict the population rate observed in a simulation. Colors indicate engram
connectivity Cg, g, , matching the colors used in panels (A) and (C). The grey line outlines the expectation from
a simple mean-field theory. (C) Time-averaged overlap (m%1), for different fractions of E; being stimulated.
The recurrent nature of memory engrams enables them to perform pattern completion. The degree of pattern
completion depends monotonically on engram strength. (D) Two engrams (orange and green) are encoded in a
network. Both engrams have a different strength with regard to their within-engram connectivity (green stronger
than orange). A simple readout neuron receives input from a random sample comprising 9% of all excitatory
and 9 % of all inhibitory neurons in the network. (E) Raster plot for the activity of 10 different readout neurons
during the stimulation of learned engrams and random ensembles, respectively. Readout neurons are active, when
an encoded engram is stimulated (orange and green), and they generally respond with higher firing rates for
the stronger engram (green). The activity of a readout neuron is low in absence of a stimulus (white), or upon

stimulation of a random ensemble of neurons (purple and blue).

network theory to explain the emergence of associative (Hebbian) properties. In Figure 4, the results of numerical
simulations are plotted together with the results of our theoretical analysis (see Section 4.6). Upon stimulation, the
firing rate follows the typical homeostatic dynamics [44]. In the initial phase, the network stabilizes at the target
rate (Figure 4A). Upon external stimulation, it transiently responds with a higher firing rate. With a certain delay,
the rate is down-regulated to the set-point. When the stimulus is turned off, the network transiently responds

with a lower firing rate, which is eventually up-regulated to the set-point again.

Firing rate homeostasis is based on the intracellular calcium concentration ¢;(t) of each neuron i (Figure 4D),

which can be considered as a proxy for the firing rate of the neuron. In our simulations, it is obtained as a low-pass
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Figure 4: Hebbian properties emerge through interaction of selective input and homeostatic control. (A) The
activity of the neuronal network is subject to homeostatic control. For increased external input, it transiently
responds with a higher firing rate. With a certain delay, the rate is down-regulated to the imposed set-point.
When the stimulus is turned off, the network transiently responds with a lower firing rate, which is eventually
up-regulated to the set-point again. The activity is generally characterized by irregular and asynchronous spike
trains. (B) It is assumed that the intracellular calcium concentration follows the spiking dynamics, according to a
first-order low-pass characteristic. Dots correspond to numerical simulations of the system, and solid lines reflect
theoretical predictions from a mean-field model of dynamic network remodeling. (C) Dendritic elements (building
blocks of synapses) are generated until an in-degree of Kj, = 1000 has been reached. It decreases during specific
stimulation, but then recovers after the stimulus has been removed. (D) Synaptic connectivity closely follows the
dynamics of dendritic elements until the recovery phase, when the recurrent connectivity within the stimulated
group E; overshoots. (E, F) Phase space analysis of the activity. The purple lines represent projections of the
full, high-dimensional dynamics to two-dimensional subspaces: (E) within-engram connectivity vs. across-ensemble
connectivity and (F) within-engram connectivity vs. engram calcium trace. The dynamic flow is represented by the
gray arrows. The steady state of the plastic network is characterized by a line attractor (thick gray line), defined
by a fixed total in-degree and out-degree. The ensemble of stimulated neurons forms a stable engram, and the
strength of the engram is encoded by its position on the line attractor. (G) The overshoot in connectivity can be
explained as follows: After turning off the stimulus, neurons in the recently stimulated group are active below their
target rate (set-point of the homeostatic controller), while other neurons are close to their equilibrium activity.
This leads to a faster creation of recurrent connectivity within the stimulated group, as compared to connections

involving neurons outside it.
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filtered version of the spike train S;(t) of the same neuron

Tea®i(t) = (Si(t) — ¢i(t)), (1)

with time constant 7¢,. Each excitatory neuron i uses its own calcium trace ¢;(¢) to control its number of synaptic
elements. Deviations of the instantaneous firing rate (calcium concentration) ¢;(¢) from the target rate v; (the

set-point) trigger either creation or deletion of elements according to
Bad;(t) = vi — ¢;(t), Bai(t) = vi — ¢i(t), (2)

where a;(t) and d;(t) are the number of axonal and dendritic elements, respectively. The parameters 3, and [y

are the associated growth parameters (see Section 4.2 for more details).

During the initial growth phase, the number of elements increase to values corresponding to an in-degree K™ = €N,
which is the number of excitatory inputs to the neuron that are necessary to sustain firing at the target rate
(Figure 4D). Upon stimulation (during the learning phase), the number of connections is down-regulated due to
the transiently increased firing rate of neurons. After the stimulus is turned off, the activity returns to its set-
point. During the growing and learning phases, connectivity closely follows the dynamics of synaptic elements
(Figure 4D), and connectivity is proportional to the number of available synaptic elements (Figure 4D). After
removal of the stimulus, however, in the reconsolidation phase, the recurrent connectivity within the stimulated
group E; overshoots (Figure 4D), and the average connectivity in the network returns to baseline (Figure 4C).
While recurrent connectivity Cg, g, of the engram FE; increases, both the connectivity to the rest of network
Cg,E, and from rest of the network Cg, g, decrease, keeping the mean input to all neurons fixed. This indicates
that although the network is globally subject to homeostatic control, local changes effectively exhibit associative
features, as already pointed out in [12]. Our theoretical predictions generally match the simulations very well
(Figure 4), with the exception that it predicts a larger overshoot. This discrepancy will only be resolved in

Section 2.4.

Deriving a theoretical framework of network remodeling (see Section 4.3) for the algorithm suggested by [2] poses
a great challenge due to the large number of variables of both continuous (firing rates, calcium trace) and discrete
(spike times, number of elements, connectivity, rewiring step) nature. The dimensionality of the system was
effectively reduced by using a mean-field approach, which conveniently aggregates discrete counting variables into

continuous averages (see Section 4.4 and Section 4.6 for more details of derivation).

The number of newly created synaptic elements are denoted as free axonal a™(¢) and free dendritic d* (¢) elements,
while the number of deleted elements is denoted by a~(t) and d~(t). Free axonal elements are paired with free
dendritic elements in a completely random fashion to form synapses. The deletion of dendritic or axonal elements
in neuron ¢ automatically induces the deletion of incoming or outgoing synapses of that neuron, respectively. We
derived a stochastic differential equation (Section 4.4) which describes the time evolution of connectivity C;;(t)

from neuron j to neuron ¢

+

; + ; + —
ACsy(t) _ ol O () _ (pdi (1 )

,Da; (t) + dWspike noise + dWstructural noise
dt (1) K1) |

K9 (t) dt dt

stochastic noise

deterministic drift

In this equation, pZ (t), pdii (t) is the rate of creation/deletion of the axonal and dendritic elements of neuron i,

respectively, and p(t) is the rate of creation of elements in the whole network. Note that p’T is a corrected version
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of pT (see Section 4.4 for details). The stochastic process described by Equation 3 decomposes into a deterministic
drift process and a diffusive noise process. The noise process has two sources. The first derives from the stochastic
nature of the spike trains, and the second is linked with the stochastic nature of axon-dendrite bonding. In this
section, we ignore the noise and discuss only the deterministic part of the equation. This is equivalent to reducing

the spiking dynamics to a firing rate model and, at the same time, coarse-grain the fine structure of connectivity.

Stable steady-state solutions of the system described by Equation 3 represent a hyperplane in the space of connec-
tivity (see Equation 17 in Section 4.7). The solutions of Equation 3 are (random) network configurations with a
fixed in-degree K™ and out-degree K" such that Crj o K;“K;“t. In the case of only one engram, the attractor
reduces to a line (Figure 4E and F, gray line). This also explains how memories are stored in the network: When
a group of neurons is repeatedly stimulated, the network each time diverges from the line attractor and takes
a different path back during reconsolidation. The new position on the line encodes the strength of the memory
CE, E,- Furthermore, as the attractor is a skew hyperplane in the space of connectivity, the memory is distributed
across the whole neural network, and not only in recurrent connections among stimulated neurons in E;. As a

reflection of this, other connectivity parameters (Cg,g,, Cg, 5, Cp,E,, cf. Figure 4D) are also slightly changed.

To understand why changes in recurrent connectivity Cg, g, are associative, we note that the creation part of
Equation 3 is actually an outer product of pf () and pz{i (t), similar to a pre-post pair in a typical Hebbian rule.
The main difference to a classical Hebbian rule is that only neurons firing below their target rate are creating
new synapses. The effective rule is depicted in Figure 4G. Only neurons with free axonal or dendritic elements,
respectively, can form a new synapse, and those neurons are mostly the ones with low firing rates. The deletion
part of Equation 3 depends linearly on pg. () and p, (t), reducing to a simple multiplicative homeostasis. Upon
excitatory stimulation, the homeostatic part is dominant and the number of synaptic elements decreases. After
removal of the stimulus, the Hebbian part takes over, inducing a post-stimulation overshoot in connectivity. This
leads to a peculiar dynamics of first decreasing connectivity and then overshooting, an important signature of this

rule. We summarize this process in an effective rule

ACZ‘]‘ X )\ ALAIJ - Ya cij (t)AIZ - Yd cij (t)AI], (4)
——
effective Hebbian dendritic homeostasis axonal homeostasis

where Al; is the input perturbation of neuron i. The term AI;Al; is explicitly Hebbian with regard to input
perturbations. Equation 4 only holds, however, if the stimulus is presented for a long enough time such that the

calcium concentration tracks the change in activity and connectivity drops.

2.4 Fluctuation-driven decay of engrams

The qualitative aspects of memory formation have been explored in Section 2.3. Now we investigate the process
of memory maintenance. A noticeable discrepancy between theory and numerical simulations was pointed out in
Figure 4D. The overshoot is exaggerated and memories last forever. We will now demonstrate that this discrepancy

is resolved when we take the spiking nature of neurons into account (Section 4.5).

Neurons use discrete spike trains S;(t) = >, 6(t — ¢},) for signaling, and we conceive them here as stochastic point
processes. We found that Gamma processes (Section 4.5) can reproduce the first two moments of the spike train
statistics of the simulated networks with sufficient precision. The homeostatic controller in our model uses the

trace of the calcium concentration ¢;(t) as a proxy for the actual firing rate of the neuron. As the calcium trace
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Figure 5: Noisy spiking induces fluctuations that lead to memory decay. (A) The gray histogram shows the
distribution of calcium levels for a single neuron across 5000 s of simulation. The colored lines result from modeling
the spike train as a Poisson process (red) or a Gamma process (purple), respectively. (B) The rate of creation
or deletion of synaptic elements depends on the difference between the actual firing rate from the target rate
(set-point), for different levels of spiking noise. The negative gain (slope) of the homeostatic controller in presence
of noise is transformed into two separate processes of creation and deletion of synaptic elements. In the presence
of noise (red lines, darker colors correspond to stronger noise), even when the firing rate is on target, residual
fluctuations in the calcium signal induce a constant rewiring of the network, corresponding to a diffusion process.
(C) If noisy spiking and the associated diffusion is included into the model, predictions from a mean-field theory
match the simulation results very well. This concerns the initial decay (yellow), the overshoot (red) and subsequent
slow decay (brown). (D) Change in connectivity during the decay period (brown), for different values of the calcium
time constant and the target rate. We generally observe exponential relaxation as a consequence of a constant
rewiring rate. (E) Time constant of the diffusive decay as a function of the calcium time constant and the target
rate. Lines show our predictions from theory, and dots represent the values extracted from numerical simulations
of plastic networks. The decay time Tqecay increases with /7c.. The memory is generally more stable for small
target rates v, but collapses for very small rates. This predicts an optimum for low firing rates, at about 3 Hz.
(F, G) Same phase diagrams as shown in Figures 4E and F, but taking noise into consideration. (F) The spiking
noise compromises the stability of the line attractor, which turns into a slow manifold. (G) The relaxation to
the high-entropy connectivity configuration during the decay phase is indeed confined to a constant firing rate

manifold.

@i(t) is just a filtered version of the stochastic spike train S;(t), it is a stochastic process in its own respect. In
Figure 5A we show the stationary distribution of the time-dependent calcium concentration ¢;(t). Apparently, a
filtered Gamma process (purple line) provides a better fit to the simulated data than a filtered Poisson process
(red line). The reason is that Gamma processes have an extra degree of freedom to match the irregularity of spike

trains (coefficient of variation, here CV & 0.7) as compared to Poisson processes (always CV = 1).

The homeostatic controller strives to stabilize ¢;(t) at a fixed target value v, but ¢;(t) fluctuates (Figure 5A) due
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to the random nature of the spiking. These fluctuations result in some degree of random creation and deletion
of connections. Our theory (Section 4.5) reflects this aspect by an effective homeostatic function (Equation 12),
which is obtained by averaging Equation 3 over the spiking noise (Figure 5B, red lines). The shape of this function
indicates that connections are randomly created and deleted even when neurons are firing at their target rate.
The larger the amplitude of the noise, the larger is the asymptotic variance of the process and the amount of

spontaneous rewiring taking place.

We now extend our mean-field model of the rewiring process (see Section 2.3) to account for the spiking noise
(see Section 4.5). According to the enhanced model, both the overshoot and the decay now match very well
with numerical simulations of plastic networks (Figure 5C). The decay of connectivity following its overshoot
is exponential (Figure 2.4D), and Equation 3 reveals that the homeostasis is multiplicative and that the decay
rate should be constant. The exponential nature of the decay is best understood by inspecting the phase space
(Figure 5F and G). In terms of connectivity, the learning process is qualitatively the same as in the noise-less
case (Figure 4E), where a small perturbation leads to a fast relaxation to the line attractor (see Equation 16 in
Section 4.7). In the presence of spiking noise (Figure 5F), however, the line attractor is deformed into a slow
stochastic manifold (see Equation 18 in Section 4.8). The process of memory decay corresponds to a very slow
movement toward the most entropic stable configuration compatible with firing rates clamped at their target value
(Figure 5G). In our case, this leads to a constraint on the in-degree K" = ¢ Np. We summarize the memory decay
process by the equation

Kin

%1 Tdiffusion x in prout _
IP’L[CU] E— C’Z-j = const. X Kj Kj = TE’

(5)
PL[C}] s Cy; + Stimulus.

The fast “drift” process of relaxation back toward the slow manifold corresponds to the deterministic part of
Equation 3. In contrast, the slow “diffusion” process of memory decay along the slow manifold corresponds to the
stochastic part of Equation 3. In the equation above, T4,is represents the time scale of the fast drift process, and

Tdiffusion 1S the time scale of the slow diffusion process.

The drift process is strongly non-linear, and its bandwidth is limited by the time constant of the calcium filter 7¢s,
but also by the growth parameters of the dendritic elements S; and axonal elements 5,. The diffusion process, on
the other hand, is essentially constrained to the slow manifold of constant in-degree and firing rate (Section 4.8).
Analytic calculations yield the relation

dntca NEgc
"V ogt

(6)

Tdiffusion =

where N is number of excitatory neurons, c is the average connectivity between excitatory neurons, and 7 is a
correction factor to account for the reduced irregularity of spike trains as compared to a Poisson process. Both
size and connectivity of the network increase the longevity of stored memories. Assuming that neurons rewire at
a constant speed, it takes more time to rewire more elements. There is an interesting interference with the noise
process, as memory longevity depends on the time constant of calcium in proportion to |/7ca (Figure 5 E). On
the other hand, the time scale of learning 74,i¢ is limited by the low-pass characteristics of calcium, represented
by 7Tca. Increasing 7c,, which leads to more persistent memories, will eventually make the system unresponsive
and prevent learning. We also find that the longevity of memories depends as % on the target rate. Therefore,

making the target rate small enough should lead to very persistent memories. This path to very stable memories is

not viable, though, because the average connectivity ¢ implicitly changes with target rate. In Figure 5E longevity
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of the memory is depicted as a function of the target rate with corrected connectivity ¢ = ¢(v), and we find that
for very small target rates memory longevity tends to zero instead. This suggests that there is an optimal range
of target rates centered at a few spikes per second, fully consistent with experimental recordings from cortical

neurons [8].

To summarize, the process of forming an engram (“learning”, see Section 2.3) exploits the properties of a line
attractor. Taking spiking noise into account, the structure of the line attractor is deformed into a slow stochastic
manifold. This still allows learning, but introduces controlled “forgetting” as a new feature. Forgetting is not
necessarily an undesirable property of a memory system. In a dynamic environment, it might be an advantage
for the organism to forget non-persistent or unimportant aspects of it. Homeostatic plasticity implements a
mechanism of forgetting with an exponential time profile. Strong memories will be sustained longer, but they will
eventually also be forgotten. In the framework of this model, the only way to keep memories forever is to repeat the
corresponding stimulus from time to time, as illustrated in Figure 1D. If we think of the frequency of occurrence
as a measure of the relevance of a stimulus, this implies that irrelevant memories decay and relevant ones remain.
Memories are stored in a distributed fashion in the slow manifold of the system, instead of being stored in individual
synaptic connections [33]. Forgetting is reflected by a diffusion to the most entropic network configuration along
the slow manifold. As a result, the system performs continuous inference from a persistent stream of information
about the environment. Already stored memories are constantly refreshed in terms of a movement in directions
away from the most entropic point of the slow manifold (novel memories define new directions), while diffusion

pushes the system back to the most entropic configuration.

2.5 Network stability and constraints on growth parameters

So far, we have described the process of forming and maintaining memory engrams based on homeostatic structural
plasticity. We have explained the mechanisms behind the striking associative properties of the system. Now, we will
explore the limits of stability of networks with homeostatic structural plasticity and derive meaningful parameter
regimes for a robust memory system. A homeostatic controller that operates on the basis of firing rates can be
expected to be very stable by construction. Indeed we find that, whenever parameters are assigned meaningful
values, the Jacobian obtained by linearization of the system around the stable mean connectivity J = J(€) has
only eigenvalues A with non-positive real parts Re[A] < 0 (see Section 4.9). As a demonstration, we consider the real
part of the two “most unstable” eigenvalues as a function of two relevant parameters, the dendritic/axonal growth
parameter 8, and the calcium time constant 7¢, (Figure 6B, upper panel). The real part of these eigenvalues
remains negative for any meaningful choice of time constants. It should be noted at this point, however, that the
system under consideration is strongly non-linear, and linear stability alone does not guarantee global stability.
We will discuss an interesting case of non-linear instability in Section 2.6. Oscillatory transients represent another
potential issue in general control systems, and we will now explore the damped oscillatory phase of activity in

more detail.

In Figure 6A we depict three typical cases of homeostatic growth responses: non-oscillatory (left, green), weakly
oscillatory (middle, blue), and strongly oscillatory (right, red) network remodeling. The imaginary parts of the two
eigenvalues shown in Figure 6B (bottom left), which are actually responsible for the oscillations, become non-zero
when the dendritic and axonal growth parameters are too small (for other parameters, see Section 2.3), and both

creation and deletion of elements are too fast. Oscillations occur, on the other hand, for large values of the calcium
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Figure 6: Linear stability of a network with homeostatic structural plasticity. (A) For a wide parameter regime, the
structural evolution of the network has a single fixed point, which is also stable. Three typical types of homeostatic
growth responses are depicted for this configuration: non-oscillatory (left), weakly oscillatory (middle), and strongly
oscillatory (right) network remodeling. (B) All eigenvalues of the linearized system have a negative real part, for
all values of the growth parameters of dendritic (axonal) elements ;4 and calcium 7¢,. In the case of fast synaptic
elements (small §;) or slow calcium (large 7¢,), the system exhibits oscillatory responses. Shown are real parts
and imaginary parts of the two “most unstable” eigenvalues, for different values of 54 (left column, 7c, = 10s)
and 7c, (right column, 84 = 2). (C) Phase diagram of the linear response. The black region below the red
line indicates non-oscillatory responses, which corresponds to the configuration 7¢, < 384s. Dots indicate the

parameter configurations shown in panel (A), with matching colors.

time constant 7¢, (Figure 6B, bottom right). The system oscillates, if the low-pass filter is too slow as compared
to the turnover of synaptic elements. The combination of 84 and 7¢, that leads to the onset of oscillations can be
derived from the condition Im[A] = 0. We can further exploit the fact that two oscillatory eigenvalues are complex

conjugates of each other, and that the imaginary part is zero, when the real part bifurcates.

To elucidate the relative importance of the two parameters 84 and 7¢,, we now explore how they together contribute
to the emergence of oscillations (Figure 6C). The effect of parameters on oscillations is a combination of the two
mechanisms discussed above: low-pass filtering and agility of control. We use the bifurcation of the real part of
the least stable eigenvalues as a criterion for the emergence of Im[A] = 0, which yields the boundary between the

oscillatory and the non-oscillatory region (Figure 6C, red line). The black region of the phase diagram corresponds
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to a simple fixed point with no oscillations, the green point corresponds to the case shown in Figure 6A, left. From
Figure 6B, bottom, we conclude that the fastest oscillations are created when 4 is very small, as the oscillation
frequency then exhibits a é asymptotic dependence. The calcium dependence is a slowly changing function.
The specific case indicated by a red point in Figure 6C corresponds to the dynamics shown in Figure 6A, right.
Although intermediate parameter values result in damped oscillations (Figure 6C, blue dot; Figure 6A, middle),
its amplitude remains relatively small. This link between two parameters can be used to predict a meaningful

range of values for ;. Experimentally reported values for 7¢, are combined with the heuristic of not exhibiting

strong oscillations.

The analysis outlined in the previous paragraph clearly suggests that, in order to avoid excessive oscillations, the
calcium signal (a proxy for neuronal activity) has to be faster than the process which creates elements. Oscillations
in network growth are completely suppressed, if it is at least tree times faster. Strong oscillations can compromise
non-linear stability, as we will show in Section 2.6. This is a dynamic regime to be strictly avoided by the
controller, for reasons explained later. We assume that the calcium time constant is in the range between 1s and
105, in line with the values reported for somatic calcium transients in experiments [16, 17, 20, 49]. This indicates
that homeostatic structural plasticity should not use element growth parameters smaller than around 0.4. Faster
learning must be based on other types of synaptic plasticity (e.g. spike-timing dependent plasticity, or fast synaptic

scaling).

We use this analysis framework now to compute turnover rates (TOR) and compare them to the values typically
found in experiments. In Sections 2.3 and 2.4 we use a calcium time constant of 10s and a growth parameters for
synaptic elements of 3, = 84 = 2, which results in TOR of around 18 % per day (see Methods). Interestingly, [41]
measured TOR in the barrel cortex of young mice and found TOR values of around 20 % per day. After sensory
deprivation, the TOR increased to a maximum of around 30 % per day in the barrel cortex (but not elsewhere).
In our model, stimulus-dependent rewiring is strongest in the directly stimulated engram F; (Figure 4C). This

particular ensemble rewires close to 25 % of its dendritic elements per stimulation cycle.

2.6 Loss of control leads to bursts of high activity

A network the connectivity of which is subject to homeostatic regulation generally exhibits robust linear stability
around the fixed point of connectivity €, as explained in detail in Section 2.5 and Section 4.9. But what happens,
if the system is forced far away from its equilibrium? To illustrate the new phenomena arising, we repeat the
stimulation protocol described in Section 2.3 with one stimulated ensemble F;. However, we now increase both the
strength and the duration of the stimulation (Figure 7A). The network behaves as before during the growth and the
stimulation phase (Figure 7A, upper panel), but during the reconsolidation phase connectivity gets out of control.
New recurrent synapses are formed at a very high rate until excessive feedback of activity triggered by input
from the non-stimulated ensemble causes an explosion of firing rates (Figure 7A bottom panel). The homeostatic
response of the network to such seizure-like activity can only be a brisk decrease in recurrent connectivity. As a

consequence, the activity rg, quickly drops to zero and the deregulated growth cycle starts all over.

We explore the mechanism underlying this runaway process by plotting the long-term dynamics in a phase plane
spanned by recurrent connectivity Cg, g, and the activity of the engram rg, (Figure 7B). A special type of limit

cycle emerges, and we can track it using the input connectivity from the rest of the network to the learned engram
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Figure 7: Non-linear stability of a network with homeostatic structural plasticity. (A) The engram FE; is stimulated
with a very strong external input. As the homeostatic response triggers excessive pruning of recurrent connections,
the population E; is completely silenced after the stimulus is turned off. This, in turn, initiates a strong com-
pensatory overshoot of connectivity and consecutive runaway population activity. The dots with corresponding
color show the results of a plastic network simulation, and the solid lines indicate the corresponding predictions
from our theory. The theoretical instantaneous firing rate is clipped at 100Hz. (B) The network settles in a
limit cycle of connectivity dynamics. The hysteresis-like behavior is caused by the faster growth of within-engram
connectivity Cg, g, as compared to connectivity from the non-engram ensemble Cg, g,. During the initial phase
of the cycle, the increase of Cg, g, has no effect on the activity of population E; yet, as its neurons are not active.
Only when the input from population Ey through Cg, g, gets large enough, the rate rg, becomes non-zero and
rises to very high values quickly due to already large recurrent Cg, g, connectivity. (C) The calcium signal ¢ adds
an additional delay to the cycle. (D) This leads to smoother trajectories when scattering calcium concentration
against connectivity. (E) Connectivity within the stimulated group Cg, g, plotted against input connectivity from
the non-engram population Cg, g,. The black line shows configurations with constant in-degree, of which the black
dot represents the most entropic one. The red dot corresponds to critical connectivity, beyond which the limit
cycle behavior is triggered. The limit cycle transients in connectivity space are orthogonal to the line attractor,

indicating that the total in-degree is oscillating and no homeostatic equilibrium can be established.
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(CE, E,, see Figure TB). The cycle is started when the engram F; is stimulated with a very strong external input.
As the homeostatic response of the network triggers excessive pruning of its recurrent connections, the population
E; is completely silenced, rg, = 0, after the stimulus has been turned off. Then, homeostatic plasticity sets in and
tries to compensate the activity below target by increasing the recurrent excitatory input to the engram FE;. The
growth of intra-ensemble connectivity Cg, g, is faster than the changes in inter-ensemble connectivity Cg, g,, as
the growth rate of Cg, g, is quadratic in the rate rg, (Figure 4G), but Cg, g, depends only linearly on it. However,
while there are no recurrent spikes, rg, = 0, the increase in intra-ensemble connectivity cannot restore the activity
to its target value. As soon as input from the rest of the network via Cg, g, is strong enough to increase the rate
rg, to non-zero values, engram neurons very quickly increase their own rate by activating recurrent connectivity
Cg,E,- At this point, however, the network has entered a second attractor of connectivity, coinciding with a
pronounced outbreak of population activity rz,. The increase in rate is then immediately counteracted by the
homeostatic controller. Due to the seizure-like activity burst, a high amount of calcium is accumulated in all
participating cells. As a consequence, neurons delete many excitatory connections, and the firing rates are driven
back to zero. This hysteresis-like cycle of events is repeated over and over again (Figure 7B), even if the stimulus
has meanwhile been turned off. The period of the limit cycle is strongly influenced by the calcium variable, which
lags behind activity (Figure 7C). Replacing activity rg, by recurrent connectivity Cg, g,, a somewhat smoother

picture emerges (Figure 7D).

Two aspects are important for the emergence of the limit cycle. Firstly, the specific relation between the time
scales of calcium and synaptic elements gives rise to different types of instabilities (see Figure 6 and Figure 7C
and D). Secondly, the rates of creation and deletion of elements do not have the same bounds. While the rate
with which elements are created p™ is limited by %1/, the rate of deletion p~ is limited by ii This peculiar
asymmetry causes the observed brisk decrease in connectivity after an extreme seizure-like burst of activity. An
appropriate choice of the calcium time constant, in combination with a strict limit on the rate of deletion, might
lead to a system without the (pathological) limit cycle behavior observed in simulations. Finally, we have derived
a criterion for bursts of population activity to arise, related to the loss of stability due to excessive recurrent

connectivity (see Section 4.9, Equation 22). Indeed, a network with fixed in-degrees becomes dynamically unstable,

if its connectivity Cg, g, exceeds the critical value Cglt, = e(1 + NZ:;, £22-), which for our parameters is at about
29%. The neurons comprising the engram FE; receive too much recurrent input (Figure 7E), and the balance of
excitation and inhibition brakes. In this configuration, only one attractive fixed point exists for high firing rates,
and a population burst is inevitable. In simulations, the stochastic nature of the system tends to elicit population
bursts even earlier, at about 22 % connectivity in our hands. We conclude that 22-29 % connectivity is a region of
bi-stability, with two attractive fixed points coexisting. Early during limit cycle development, the total in-degree
is less than eN (the connectivity is in the region below the black line in Figure 7E), and the excitation-inhibition
balance is broken by positive feedback. Later, the limit cycle settles into a configuration, where the total in-degree
exceeds eN (the black line is crossed from below in Figure 4E). We have shown before that stable learning leads
to silent memories in the network (Section 2.1 and 2.2), but in the case discussed here, sustained high activity is

at odds with stable homeostatic control of network growth.
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3 Discussion

We have demonstrated by numerical simulations and by mathematical analysis that structural plasticity controlled
by firing rate homeostasis has the potential to implement a memory system based on the emergence and the decay
of engrams. Input patterns are defined by stimulation of the corresponding ensemble of neurons in a recurrent
network. Presenting two patterns concurrently leads to their association by newly formed synaptic connections.
This mechanism can be used, among other things, to effectively implement classical conditioning. The memories
are dynamic. They decay if previously learned stimuli are no longer presented, but they get stronger with every
single recall. The memory is not affecting the firing rates during spontaneous activity, but even weak memory
traces can be identified by the correlation of activity. Memories become visible as a firing rate increase of a specific
pattern upon external stimulation, though. The embedding network is able to perform pattern completion, if a
partial cue is presented. Finally, we have devised a simple recognition memory mechanism, in which downstream

neurons respond with a higher firing rate, if any of the previously learned patterns is stimulated.

Memory engrams emerge, because the homeostatic rule acts as an effective Hebbian rule with associative properties.
This unexpected behavior is achieved by an interaction between the temporal dynamics of homeostatic control
and a network-wide distributed formation of synapses. Memory formation is a fast process, exploiting degrees
of freedom orthogonal to a line attractor as it reacts to the stimulus, and storing memories as positions on the
line attractor. The spiking of neurons introduces fluctuations, which lead to the decay of memory on a slow time
scale through diffusion along the line attractor. In absence of specific stimulation, the network relaxes to the
most entropic configuration of uniform connectivity across all pairs of neurons. In contrast, multiple repetitions
of a stimulus pushes the system to states of lower entropy, corresponding to stronger memories. The dynamics of
homeostatic networks is, by construction, very robust for a wide parameter range. Instabilities occur when the
time scales of creating and deleting synaptic elements are much smaller than the time scales of the calcium trace,
which feeds the homeostatic controller. Under these conditions, the network displays damped oscillations, but
remains linearly stable. Stability is lost, though, when the stimulus is too strong. In this case, the compensatory

forces lead to limit cycle dynamics with pathologically large amplitudes.

Experiments involving engram manipulation have increased our current knowledge about this type of memory [24],
and some of these findings are actually in accordance with our model. For example, memory re-consolidation was
disrupted if a protein synthesis inhibitor was administered immediately after the retrieval cue during an auditory
fear conditioning experiment [34]. In our model, engram connectivity initially decreases upon stimulation, and
memories are shortly destabilized and consolidated again after every retrieval. Interfering with plasticity during
or after retrieval can, therefore, also lead to active forgetting. It was also shown in experiments that neurons are
more likely to be allocated to an engram, if they are more excitable before stimulation [45, 48]. In our model,
more excitable neurons would fire more during stimulation, making them more likely to become part of an engram.
Moreover, our analysis of the model suggests that decreasing excitability of some neurons soon after stimulation
should also increase the likelihood of them becoming part of the engram. Further research with our model of
homeostatic engram formation might include even more specific predictions for comparison with experiments
involving engram manipulation. This would also help to better characterize and understand the process of engram

formation in the brain.

High turnover rates of synapses increases the volatility of network structure. This, in turn, poses a grand challenge
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to any synaptic theory of memory [33], and it is not yet clear how memories can at all persist in a system that
is constantly rewiring. In our model, the desired relative stability of memories is achieved by storing them with
the help of a slow manifold mechanism. An estimation of turnover rates in our model amounts to about 18 % per
day, which is comparable to the 20 % per day that have been measured in mouse barrel cortex [41]. In general,
however, adult mice have more persistent synapses with much lower turnover rates as low as 4 % per month [31,
50, 21]. This can be accounted for in our model, as increased growth parameters of axonal, f,, and dendritic, B4,
elements would lead to smaller synaptic turnover rates and, consequently, to more persistent spines (see Methods).
The downside of increasing the growth parameters is that the learning process becomes slower. The turnover rate
of 18 % per day corresponds to a specific value of the parameter B4. It is conceivable, however, to implement an
age-dependent parameter 4. For example, one could have a high turnover rate in the beginning and let the growth
become slower with time. This would reflect the idea that the brains of younger animals are more plastic than the
brains of older ones. As animals grow older, synapses become more persistent. Similar to certain machine learning
strategies (“simulated annealing”), this could be the optimal strategy for an animal, which first explores a given

environment and then exploits the acquired adaptations to thrive in it.

Recently, [10] showed that Hebbian structural plasticity could be the force behind memory consolidation through
a process of stabilization of connectivity, which is based on the existence of an attractive fixed point in the plastic
network structure. In our model, because of the decay of the slow manifold, memories are never permanent,
and repeated stimulation is necessary to stabilize them. We would argue, though, that forgetting is an important
aspect of any biological system. In our case, we observe an exponential decay, if the stimulus is no longer presented.
Furthermore, using a similar structural plasticity model, it was shown that a network can repair itself after lesion
[2]. Together with our results, this suggests that a structural perturbation of engrams (e.g. by removing connections
or deleting neurons) could actually trigger “healing” and a rescue of memories. In the case of unspecific lesions,
however, such perturbation might also lead to the formation of “fake” memories, or to the false association of

actually unconnected memories.

It appears that the attractor metaphor of persistent activity is not consistent with our model of homeostatic
plasticity. As explained in Section 2.6, homeostatic control tends to delete connections between neurons which
are persistently active, and in extreme cases could even lead to pathological oscillations. In the case discussed in
Section 2.2, in contrast, the memories formed are “silent” (elsewhere classified as “transient” [38]), very different
from the persistent activity usually considered in working memory tasks (elsewhere classified as “persistent”, or
“dynamic” [38]). The latter type of activity seems to be consistent with Hebbian plasticity models [10, 30, 46],

and one may wonder what is the relation of our model with these alternative models.

One possible way to integrate both mechanisms in a single network would be to keep their characteristic time
scales separate. This could be accomplished, for example, by choosing faster time constants for Hebbian functional
plasticity, and slower ones for homeostatic structural plasticity. An effective separation of time scales could also
be obtained, if homeostatic structural plasticity would use somatic calcium as a signal, but not exert any control
of the intermediate calcium levels [18]. This would eliminate the need to specify a target rate in the model, and
fast functional plasticity would shape connectivity in the allowed range of values where neurons have a distribution
of firing rates reflecting previous experience. This induces a natural separation of time scales, where memories
encoded by homeostatic plasticity would last much longer than in the present model, as only extreme transients

would trigger rewiring. Homeostatic plasticity would perform Bayesian-like inference similar to structure learning,
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while functional plasticity would perform fast associative learning, similar to the system proposed by [13].

We showed that very strong stimulation can damage the network by deleting too many synapses in a short time.
The compensatory force, which normally guarantees stability, becomes too strong and leads to seizure-like bursts
of very high activity. This pathological behaviour of the overstimulated system could be relevant for the study of
certain brain diseases, such as epilepsy. The disruption of healthy stable activity is caused by a broken excitation-
inhibition balance due to the high activity of one subgroup (Figure 7A). This, in turn, leads to the emergence
of an abnormal connectivity cycle (Figure 7E). Strategies for intervention in this case must take the whole cycle
into account, and not just the phase of extreme activity. Inhibiting neurons during the high-activity phase, for
example, could have an immediate effect, but it would not provide a sustainable solution to the problem of runaway
connectivity. Our results suggest, against intuition maybe, that additional excitation of the highly active neurons
could actually terminate the vicious cycle quite efficiently. It is important to note, however, that our system has not
been designed as a model of epilepsy, and therefore does not reproduce all features of it [36]. In particular, seizure
occurrence is stochastic in nature, but the limit cycle we describe here implies periodic activity. Furthermore,
the process in real tissue is accompanied by other structural changes such as neuronal death and glia-related
reorganization. In any case, our results do shed light on a novel mechanism of pathological overcompensation and

could potentially instruct alternative approaches in future epilepsy research.

René Descartes already proposed a theory of memory, paraphrased in [33]: Putting needles through a linen cloth
would leave traces in the cloth that either stay open, or can more easily be opened again. Richard Semon, who
originally coined the term “engram” in his book [24, 37], proposes that an engram is a “permanent record” formed
after a stimulus impacts an “irritable substance”. Putting these two ideas together, we can think of Descartes’
needles not to penetrate an inanimate linen cloth, but a living brain, the irritable substance. In this case, we
should expect the formation not of permanent holes, but of scar tissue, which grows further by repeating the
procedure. Therefore, the memory of the system is just a “scar” left by sensory experience. We think that this
is a good metaphor for the type of memories described in our paper, formed through homeostatically controlled
structural plasticity. Interestingly, this model was originally meant as a model for rewiring after lesion [2]. In our
work, however, the “lesion” is imposed by stimulation, which induces phenomena similar to scar formation. The
dynamics of this healing process is very universal, where resources from the whole network are used to fix a local

problem leading to a scar. A perturbation introduces heterogeneity in a previously homogeneous organic substrate.

4 Methods

4.1 Network model

The neuronal network consists of Ng = 10000 excitatory and N; = 2500 inhibitory current-based leaky integrate-
and-fire (LIF) neurons. The sub-threshold dynamics of the membrane potential V; of neuron i obeys the differential
equation

dv;

TmE Z—Vi-l-Tij:CijJiij(t—D). (7)

The membrane time constant 7,,, is the same for all neurons. The number of synaptic contacts between a presynaptic

neuron j and a postsynaptic neuron ¢ is denoted by Cj;. The synaptic weights of individual contacts J;; is the

peak amplitude of the postsynaptic potential and depends only on the type of the presynaptic neuron. Excitatory

20


https://doi.org/10.1101/2020.03.27.011171
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.27.011171; this version posted March 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

connections have a strength of Jg = J = 0.1mV. Inhibitory connections are stronger by a factor ¢ = 8 such
that J; = —gJ = —0.8mV. A spike train S;(t) =), 6(t — t;‘) consists of all spikes produced by neuron j. The
external input to a given neuron in the network is conceived as a Poisson process of rate vext = 15kHz. The
external input to different neurons is assumed to be independent. All synapses have a constant transmission delay
of D = 1.5ms. When the membrane potential reaches the firing threshold V;;, = 20mV, the neuron emits a spike
that is transmitted to all postsynaptic neurons. Its membrane potential is then reset to V. = 10 mV and held there

for a refractory period of .. = 2ms.

The number of input synapses is fixed at 0.1 Ny for inhibitory-to-inhibitory and inhibitory-to-excitatory connections,
and at 0.1 Ng for excitatory-to-inhibitory synapses. Once synaptic connections of these three types are established,
they remain unchanged throughout the simulation. In contrast, excitatory-to-excitatory connections are initially

absent and grow only under the control of a structural plasticity rule.

4.2 Plasticity model

Growth and decay of excitatory-to-excitatory (EE) connections follow a known model of structural plasticity
regulated by firing rate homeostasis [2, 12]. In this model, each neuron 7 has a certain number of synaptic elements
of two kinds available, axonal elements a;(t) and dendritic elements d;(t). These elements are bonded together
to create functional synapses. Synaptic elements that have not yet found a counterpart are called free elements,
denoted by a; and d, respectively. If Ki* = 37, Cy;(t) denotes the in-degree and K" = 3. Cji(t) the out-

degree of neuron i, the number of free elements in every moment is given by a; (t) = [a;(t) — K?"(¢)], and

df (t) = [di(t) — K;“(t)]Jr, with [z]; = max(z,0).

+

Firing rate homeostasis is implemented by allowing each neuron to individually control the number of its synaptic
elements. We assume that each neuron ¢ maintains a time-dependent estimate of its own firing rate, using its
intracellular calcium concentration ¢;(t) as a proxy. This variable reflects the spikes S;(t) the neuron has generated
in the past, according to

Tea®i(t) = —¢i(t) + Si(t),

with a time constant of 7¢, = 10s for all neurons. This implements a first-order low-pass filter. In this model,
more weight is given to more recent spikes, following a decaying exponential. The calcium trace ¢;(t) of individual
neurons is used as a control signal for the number of axonal elements a;(t) and dendritic elements d;(t) according

to the homeostatic equations
Babi(t) = v; — ¢4(t) Bai(t) = vi — ¢i(t),

where (4 is the dendritic and 3, is the axonal growth parameter. Both have a value of 2 in our default setup.
The parameter v; is called the target rate. Whenever the firing rate estimate (in fact, the calcium concentration)
is below the target rate, the neuron creates new axonal and dendritic elements, from which new synapses can
be formed. Whenever the estimated firing rate is larger than the target rate, the neuron deletes some of its
elements, removing the synapses they form. The (negative) decrements a; and d; in the number of synaptic
elements, respectively, are in each moment given by a; (t) = [a;(t) — KP"'(t)]_ and d; (t) = [di(t) — K*(t)] _ for

[z]— = min(z,0).

After time intervals of duration ATy, all negative elements are collected, and a; of the existing outgoing connections

of neuron ¢ are randomly deleted. Similarly d;” connections are randomly deleted. The deletion of bonded elements
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of one type frees their counterparts that were previously connected to the deleted element. Then, all free dendritic
|d™| and axonal elements |a™| are collected and randomly combined into pairs, creating n = min(|a™|, |d™|) new
synaptic connections. This algorithm has originally been devised by [2], an efficient implementation of it in NEST

exists [9] and has been employed for all our simulations.

4.3 Mathematical re-formulation of the algorithm

The algorithm of homeostatically controlled structural plasticity can be expressed as a discrete-time stochastic
process. Rewiring takes place at regular intervals of duration ATy

Trcwirc = {to = O,tl = ATS,tQ = 2ATS, e ,tn = TLTATS}.

Between any two rewiring events, for ¢t € (t,tx + ATs), the neuron just accumulates synaptic elements

AC;(t) =0
w() = | ém-mt'))dt’
a0 = | ém—@(f’))dt’

while the already established connectivity remains unchanged. At every rewiring step, the rearrangement of
connectivity is completely random, driven by the probabilities P(A4C;;(tx) = cla(ty), d(tx), C(tg—1)) of creating
or deleting ¢ connections from neuron j to neuron ¢ at time ¢, during a time step of duration AT;. This gives rise

to a discrete-time Markov process
Cij(tr) = Cij(te—1) + Ay Cij(tk) — Ag-Cij(tr) — Dg-Cij(tw),

for ty € Trewire. Here, we define A} Cj;(ty) as the random variable representing the creation of synapses, while
A,-Ci;(t) and Ag- Cy;(t) are random variables describing the deletion of synapses by removing their corresponding

axonal and dendritic elements, respectively.

We first calculate the probability to create just one new connection pj; (tr) = P(ALCy5(tk) = 1a(ty), d(tr), C(tk—1))-

We can express this as a process of selecting a presynaptic partner j with probability P(presynaptic neuron =
+ +

i) = % and then a postsynaptic partner ¢ with probability P(postsynaptic neuron = i) = %. We then

connect the pair with the product of both probabilities

+ _ df (tr) aj (tx)
Pij(te) = [F (i) g A (0]
—_————

prob. of choosing a post neuron  prob. of choosing a pre neuron
as they are independent random variables. We now have the probability of creating individual connections, but the
full probability of an increment for the whole network is hard to calculate. This is because of statistical dependencies
that arise from the fact that rewiring affects all neurons in the network simultaneously. First, the total number
of new connections is n = min(Ja*|,|d"|). Second, the number of new connections for a given pair of neurons is
bounded by the number of free axonal and dendritic elements in the two neurons, respectively, n;; = min(df, aj).
Finally, we cannot delete more connections than we actually have. This indicates that independent combinations
of individual probabilities cannot be expressed by simple binomial distributions, but a hypergeometric distribution
arises instead. We obtain for the probability of creating ¢ synapses from neuron j to neuron @
(dj(tk)caj(tk)) (|a+(tk)Hd+(tk)|—di+(tk)a;r(tk))

n(ty)—c

(|a+(tk)\ld+(tk)|)

n(t)

P(ALCij(tr) = cla(ty),d(tr), C(ty-1)) =
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This probability is easy to understand: We divide the ensemble of all possible new synapses (which has size
|at||dT|) into the ensemble of potential synapses between the pair (4, j) (which has size d;"a;’) and all the rest. We
then choose ¢;; < n;;(tx) connections from the preferred ensemble, and the rest of connections from the remaining
pool. This is “sampling without replacement” as there is a fixed number of new connections n(ty) in each time

step.

We can now calculate the probability to delete one connection using axonal “negative” elements as pf; (tx) =

P(A,-Csj(ty) = 1la(tr), C(tk—1)). This is the probability to choose one to-be-deleted element from all existing

elements p;“(ty) = (i((;:)) and pd; (tr) = P(A4-Cij(tx) = 1d(tr), C(tr-1)) = (2;:((;:)). Out of a;(tx) candidates

for deletion, we select a; (tx), subject to the condition not to delete more than C;;(t)) for this particular pair of
neurons. This constraint is reflected by the hypergeometric distribution. The preferred population is represented
by the elements bonded into connections from neurons j to neuron ¢, and the other population is comprised by all
remaining elements of neuron j. Finally, during rewiring events in Tiewire, We obtain for the stochastic evolution

of Oij (tk)

Cij(tr) = Cij(te—1) + Ay Cij(tr) — AL Cij(tr) — A Cij(tx)
A1 Cij(ty) ~ Hypergeometric (A+ng( k) = cldf (tx)a} (t), |d™||a*|, min(la*|, |d*])) (8)
A Cjj(ty,) ~ Hypergeometric (A4 Ci;(tr) = cla; (tr), a;(tx), Cij(tu—1))
AP Cij(ty) ~ Hypergeometric (A} Ci;(tr) = cld; (tx), di(ty), Cij(te—1)) -

To calculate the total change AC;;(t;) we have to account for all these contributions. The distribution of the total
increment is not simply the convolution of the three distributions given above, as they are not independent. On
the contrary, (negative) decrements occasionally influence (positive) increments, as we first delete connections and
thereby create additional free elements. Therefore, the number of free elements has to be corrected as
+ +
a'l (ty) = aj(tk) + Z Ab,Cli(tk), b (t) = d;r(tk) + Z A% Cy(tg).
1 1
Equation 8 defines a complicated discrete-time stochastic process, but since we are at this point interested only in
the expected change of connectivity, we can restrict ourselves to the evolution of expectations. We use E; to denote

the (linear) operator of expectation over the structural noise, i.e. over the realizations of the increments,/decrements

AC;;(tx). We have

b (tk)d'; (t)
max(|a’* (t)], b/ (t)])

EL[ACH ()] - +EL[Cy(t 1) (df (t) | % “’”) . 0

di(te) — aj(t)

Further on in this paper, for notational convenience, we write C;(tx) for the expectation E4[C;;(tx)].

4.4 Time-continuous limit

We now switch over to continuous equations, which result from the limit ATy — 0. In this case, we can express

free elements and negative elements as

0= |- o] a0 = |20 a0)a L,

which will assign infinitesimally small values to the numbers of free elements and negative elements. Since the

+

rewiring takes place continuously, the numbers of elements are, up to infinitesimal correction, the same as the
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degrees, a; ~ K" and d; ~ K{"*. We can now define the rates of creation and deletion of axonal elements as
+ . at I + . at . . .
Pa; = limgs o -+ and dendritic of elements as pg; = limg; 0 —; and we write explicitly

paE(t) = ﬂla[ i), pd%u)—;d

As noted above, we have omitted here the expectation over the structural noise E; from the notation. We can now

[vi — ¢i(t)] - (10)

calculate the evolution of connectivity from Equation 9 as

’+ ’+ _ _
Cm(t) _ Pd; (t)paj (t) o Oq](t) <,0d1 (t) 4 Pa (t) ) ’ (11)

p(t) Kin(t) - K§(t)

where p(t) = max(|p'} ()], |0/ (t)]). The specific implementation requires that the deletion of elements takes place
first, with the corresponding synaptic partner remaining available as a free element to form new connections. After
an axonal element has been deleted, the previously bonded dendritic element becomes a free element. This requires

a correction on the rate of free elements

IR S pay, (t)

Pai (t) = B [vi — Km ) Ckz (1)

;+ 1 Pak )
() = — _|_ E Cl

pdz ( ) Bd [ k Kout )

4.5 Spiking noise

We assume that spike trains S;(t) = >, 6(¢ — t}) reflect an asynchronous-irregular state of the network, so they
can be modeled as a stochastic point process. As described in [1, 42], the coefficient of variation of the spike trains

generated by a leaky integrate-and-fire neuron driven by Gaussian white noise current is given by

Vg—n

CV(u,0) = 27r(1/07'm)2/

Vir—p
o

e dx/ ev’ (1 + erf(y))? dy,

—00
where p and o are the parameters of the current input, and 7,,, V,. and 6 are the parameters of the neuron,
respectively. The configuration used here yields CV ~ 0.7. A good approximation for spike trains of a given rate r
and irregularity CV is obtained with a speciﬁc class of renewal processes, so-called Gamma processes. These have

r
cvz:

an ISI distribution f(t) = H(¢ )F(a) (pt)*~te~r', with parameters a = gz and p =

In our model, the fluctuating intracellular calcium concentration is a shotnoise, a continuous signal that arises
from a point process through filtering. Here, the point process has a mean rate v, and the calcium signal is a

convolution with an exponential kernel F'(¢) = @(t)%e_%. Campbell’s theorem allows us compute the mean

T

HCa = E[NT] fo s)ds = v and the variance J%a = % fg F(s)2 ds ~ CV? QT"Ca of the calcium variable. Here
we used the fact that spike count of Gamma process Np = fOT S(t)dt has a mean E[Nyp] = vT and a variance
Var[Nr| =~ %T = Z, provided the observation time 7' is long enough [35]. As a consequence of the Central
Limit Theorem, the amplitude distribution of the calcium signal is approximately Gaussian A (pca, O’%a), provided
the mean spike rate is much larger than the inverse time constant of the calcium signal (r;(t)) > ?1@ In other
words, if the mean firing rate is 8 Hz and the calcium constant is 7c, = 10s, there are on average 80 spikes in the

characteristic time interval 7c,.

We are actually interested in the equilibrium rates of free and negative elements in Equation 10. These rates are
rectified versions of the shifted calcium trace, and in order to calculate them we resort to the ergodic theorem and to

an adiabatic approximation. The former is a self-averaging property, according to which the time-averaged variable
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for a long observation is equal to the equilibrium mean value = (z;),. The adiabatic property comes from

S @i (t) dt
T
the fact that spiking dynamics of a network is much faster than network remodeling due to structural plasticity.
At every point in time, plasticity is driven by the average adiabatic rate. This implies that, at every point in time
t, the structural plasticity sees the equilibrium distribution of the calcium trace Peoq(di(t)) = N (uca(t), 02, (t)).
The right-hand side of Equation 10 becomes

1

(i) = 5- = a0 = B,

. v — (ri(t)) )

Ba

1 vi — (ri(t))
(a0 = - (s - anol) = 1, (2. (12)
Ba Be
L2
The transfer function for synaptic elements is given by R,(u) = 1 (u—i—uerf (ﬁ) + \/Eoez;ﬂ) and the
variance of the rate of elements is 02 = 2;’2”;2. The parameter 7 is a correction factor, which accounts for the

regularity of spike trains. In our case n = CV. Even if the mean number of free elements is zero, the noise will still

Og

NeZ
to their target rates, the inherent calcium fluctuations and the associated uncertainty of firing rate inference will

drive the creation and deletion of elements with rate

Even if homeostatic control manages to drive all neurons

still induce random rewiring.

4.6 Mean-field approximation of population dynamics

We define population means for variables « € {r, ¢, a,b} and neuronal populations Y, Z as
1
zy (t) = Ny Z%(t)
€Y

Cyyz (t) = NleZ Z Z Cij (t),

i€Y jezZ

where Ny is the size of population Y. An individual neuron in population Y typically gets many inputs from
every other neuronal population, which invites use of mean-field approximation due to the central limit theorem.

The resulting currents aggregate to a Gaussian white noise process with mean and variances given as

py (t) = Jr Y " Cyz(t)Nzry(t — D) — gJrCrri(t — D) + 7JCpleat,
ze€
U%/(t) = J2T Z Cyz(t)Nsz(t — D) + gQJQTC[T'[(t — D) + TJQCEI/ezt.
Ze€

The stationary firing rate of a leaky integrate-and-fire neuron driven by input with mean p and variance o2 is [1]

Vy—6
-

r=fluo) = (wrmﬁr/w

Mr—p
o

e (14 erf(u)) du) .

Solving the time-dependent self-consistency problem for multiple interacting plastic populations is a challenging
problem. We suggest here to use an adiabatic approximation, resorting to the fact that the firing rate dynamics
is much faster than the plastic growth processes. Therefore, we employ a Wilson-Cowan type of the firing rate
dynamics [27]

Trately (t) = =1y () + f(py (1), ov (2)). (13)

The relaxation time is set to Tyate < T, to account for the fact that population response is generally much faster

than the membrane potential dynamics [14]. The parameter 7,at0 is the only free parameter in this model, but our
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results do not depend on its exact value as long as 7Tyate < 7. The heuristic described by Equation 13 results in a

tractable and numerically stable system to be analyzed with standard dynamical system tools.

As the equation is linear, the average number of elements can be computed without approximation

Teady (1) = 1y (t) — by (t). (14)

As a consequence, the rate of element creation and deletion is also linear

pay (1) = éw — oy () pay(t) = ﬁiwy oy (1)),

a

Finally we calculate the average connectivity

;7 + Y z
ey ) — pdy(lt))(glz(t) + Cyu(t) (ﬁ;:&(tt)) ¥ '(Zl;((tt))) , (15)

Here, pai(t) = Ro(£pa(t)), pat(t) = Ry (£pai(t)), and p(t) is same as before, while the corrected rate for free

elements is

1 7t
A0 = 50 = 0v0) + 3 RN Chon, ()
A0 = L — o) + Y Cyp(n, L)
dy Ba = Kout(t)’

4.7 Line attractor of the deterministic system

We represent the state of the network consisting of one static inhibitory and two plastic excitatory ensembles as a

vector
Y(t) = (¢E1 (t)7 ¢E2 (t), CEI Eq (t)7 CE1E2 (t)v CE2E1 (t)7 CE2 Eo (t)7 TE, (t)7 TE, (t)7 I (t))T )

the components of which adhere to the calcium dynamics Equation 14, the connectivity dynamics Equation 15,
and the activity dynamics Equation 13. The joint ODE system d—y = F(y,t) defines the vector field F. We first
explore the stationary states of the deterministic system (o, = 0), setting the left hand side of all ODEs to zero.
In this case, calcium concentration and excitatory firing rates are fixed at their target values, and inhibitory firing
rates 77 can be obtained using the self-consistency Equation 13. Stationary connectivity is calculated from the
condition that the rates of creation and deletion of synaptic elements are zero. This implies that the numbers
of free axonal and dendritic elements are zero, at = 0 and d* = 0, which in turn implies that a = 17 - C and
d = C - 1. The second condition is that all axonal elements are bonded with a dendritic element, and the total

number of both types of elements are the same |a| = |d|.

Let us consider the case of two plastic excitatory ensembles E; and E5 and one static inhibitory population I.
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Using the parameter x = Cg, g, , the stationary state of the deterministic network is a line

P v

P2 v

BB z
Ch,, ik

(2) = | Ch,, | = Nes N ~ (16)

* (K§2 _ Ne1 KE1>+x<NE1)2

EzE; NEg2 NEg2 NEg2 NEg2

i v

Tho v

Lot ]| i ]

Here, K3 is the mean stationary in-degree, and we assume that the dendritic element growth factor 34 is less or
equal to the axonal element growth factor §8,. The attractor is a line segment, as a consequence of linear conditions
for element numbers and non-negativity of excitatory connections Cj; > 0. This solution can be easily generalized
to a solution for individual connections of N excitation neurons, or for the case of ng excitatory populations. The
minimal invariant changes of the stationary connectivity matrix C that keep in-degree and out-degree conditions

valid are of the type

where all missing entries are considered to be zero. This transformation defines a hyperplane section invariant

space. The stationary connectivity can be solved as

|a| = |d| (17)
Ciy Ch(Np—1) dy — S ET O
C =
Ng—1
Cing-1)1 CiNg-1)(Np—-1) dng—1 =221 CNp—1)k
a =305 O ang 1 = 0 Crvemny Ao — gk + 050y Cim

Note that we have put degree conditions in the place of the last raw and last column, but there is a permutation
symmetry. The hyperplane for individual neurons has Ng(Ng — 3) + 1 dimensions, if there are no self-connections.

In the case of ng excitatory populations, the hyperplane has ng(ng — 2) + 1 dimensions.

4.8 Slow manifold and diffusion to the global fixed point

Now we calculate the stationary state for the stochastic system and assess the geometry and stability of the
underlying phase space. In the case of finite noise, o4 > 0, Equation 11 has an attractive fixed point, instead of a

hyperplane attractor. The fixed point is given by

s+ o+
X Pdi Paj KinKom, (18)

Oi . = — — " i
7 P(Pdi K;Ut + Paj ij)
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Here, without loss of generality, we have assumed that the growth rate of dendritic elements is smaller or equal
as compared to axonal elements. We obtain a normalized outer product of the indegree and outdegree vectors,
respectively. In the case of identical dynamics for axonal and dendritic elements, and if all neurons have the same
target rate v; = v, we obtain the fixed point by plugging in the homogeneous solution

in
. K

WS N, ¢ (19)

This fixed point depends only on the indegree of neurons. For a two-population system, the fixed point isy = 1(%),
the most entropic configuration of the line segment attractor. This suggests a special importance for the relic of
the line-attractor, which turns into a stochastic slow manifold through the presence of noise. The system relaxes
along the direction of the slow manifold. Therefore, although rates of creation and deletion are the same around
slow manifold, upon perturbation the system follows a fast trajectory off the slow manifold, and it relaxes slowly

along the slow manifold towards the fixed point.

We now calculate the relaxation time for the three-population system to assess the persistence of a memory trace.

To this end, we calculate the Jacobian J = %ﬁ:’t)y:l(w)

field F (see Section 4.7). For the stochastic system, the Jacobian J(C*) about the global fixed point is

on the slow manifold, using a linearization of the vector

B — 0] 0 0o 0 0 = 0 0 ]
0O - 0 0 0 0 0 = 0
J31 Js2 |Jsz Jaa Jzs Jzs| O 00
Ja1 Jag |Jaz Jaa Jas Jass| O 0 O

J=1 Ja sz |Js3 Jsa Jss Jsg| O 00 (20)

Jo1 Jo2 |Jes Jea Jos Jes| O 0 0
0 0 Jrs Jra O 0 |Jrr Jzs Jro
0 0 0 0 Jss Jse |Jss Jrs Jsg

0 0 0 0 0 0 |[Joo Jus Joof

The Jacobian has a block structure, which corresponds to calcium activity (black rectangle in Equation 20),
connectivity J. (blue rectangle) and spike activity J, (red rectangle). The connectivity block around fixed point

y = 1(c) is given by

2 2 2 2
—Ngo Ngo Ngo —Ngo
NgiNg2 —Np1Ngz —NpiNgzs NgiNgs
jc =c0 )
NgiNg2 —NgiNgz —NpiNgas NgeiNgs
2 2 2 2
I —Ngy Ngy Ngy —Ngy i
Y/ W:Ca 1 1 . . . . . . .. .
where co = —375 7t 5 ) Jacobian entries responsible for interaction between connectivity variables and
E a
calcium activity variables are —Jyo = —J50 = Jg1 = %7 Jyzo = —Jy = —J51 = %, J31 = _%%ZEQ and
Jgo = —%. The spike activity terms in the Jacobian are
EPb
1+ jeeCr ., Nm1 JEeECE, E. NE2 JEIENT
1
Ir = _— JEECE, B, NE1 ~1+jeeCEr,E, NE2 JEreNg
rate
JjieeNg: JreeNg1 —1+ jrreNy
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Here we define the effective interaction of different neuron types neurons as excitatory-to-excitatory jpp =
2

JT 8f(§5;;gE) +% af(gf,;oE) , inhibitory-to-excitatory jpr = —gJr % (55;’5 ) o of (gf;E ), excitatory-to-inhibitory
Jig =Jt af%z;m) +% 8f(g;;01) and inhibitory-to-inhibitory neurons as j;; = —gJ7 af(a*if;a’) + 92(;1]27 af(géj"”) . The

1

Trate

Jacobian elements which are responsible for influence of connectivity change to rates are J;3 = JEeNE1TEL,

1

Trate

Jry = ——jpENgarpe, Jss = 71 JEeNEi1TE1 and Jgg = JEENEar2. These terms are the largest in the

Trate rate

Jacobian, but since connectivity changes only through a change of calcium, they will not play an essential role for

long-term stability.

We exploit the block structure of the Jacobian J to separate between connectivity variables, the fast firing rate

and calcium variables. We can solve the connectivity eigenproblem analytically,

0 0 0 0
0 0 0 0
1 1 1 1
N
1 1 — &AL ~ N
A= |1 A= | e XN=| 1 A= | —RE (21)
1 __Ng1 __Ng1 (NE1)2
Np2 Np2 Ng2
0 0 0 0
0 0 0
0 0 0 0
with eigenvalues A\g = 0 and A\ = _%}W'

The persistence of a memory trace in the system with noise is essentially determined by the diffusion to the global
fixed point. In fact, the line attractor of the noiseless system turns into a slow manifold of the noisy system.
The eigenvalue \g is degenerate, and the three-dimensional invariant space defines the central manifold of the
connectivity subsystem. The eigenvalue \; is also an eigenvalue of the full Jacobian J and it represents the
slowest time scale of the system in the direction of the slow manifold. It is easy to check that 9,1(z) = A;. This
means that the noiseless line attractor is exactly corresponding to the slow manifold of the system. The other
eigenvectors have components orthogonal to the slow manifold. Those are dominated by fast variables, and they
relax quickly. As a result, the relaxation dynamics is dominated by the eigenvalue \;, and the relaxation time of

the system under consideration is
dntca NEgc

2y, L, 1-
’rIV ﬂd+ﬁa

Tdiffusion =
For the default parameters used here, its value is around 5000s, fully in accordance with numerical simulations.

A quantitative measure for the volatility of network structure used in experiments is the turnover ratio (TOR)
of dendritic spines [41]. It is defined as TOR = W, where the changes ANpjew and ANgeleted are
epines

typically measured per day. For the case when the network plasticity is selectively driven by diffusion, this

quantity corresponds to the eigenvalue Aq, corresponding to a value around 18 % per day for standard parameters.

4.9 Linear stability analysis

Numerical exploration of the eigenvalues show that for our system there is linear stability for a wide parameter

range. However this system can produce damped oscillations, which may cause problems. We use a reduced
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system of only one plastic excitatory population and one static inhibitory population to analyze the influence of

the calcium time constant and element growth. This gives rise to the Jacobian

-1 0 L 0
TCa TCa
1
g | 0 0 0
1 p—
0 L jppeNgp —-t L ipgpeN L jmreN
Trate ]EE E Trate Trate jEE E Trate ‘]EI I
0 0 L J,peNg L+ L jeNs
L Trate Trate Trate d

The eigenvalues of J; have been reduced to radicals using Mathematica 12.0, and the complex conjugated eigen-

values \3,4 responsible for oscillations are plotted in Figure 6.

Although there is linear stability around the global fixed points for wide parameter range, the same is not the
true for all points along the line attractor. The connectivity eigenvalue A; is constant on the slow manifold, but if
one population presents large recurrent connectivity, spike activity jumps to a persistent high activity state. We
can track this instability in the Jacobian J(z) along the line attractor I(x). As the recurrent connectivity of the
first ensemble E1 is increased, one of the eigenvalues becomes positive, and its corresponding eigenvector makes

the biggest contributions in the direction of spike activity 7z and rgo. Here we use this fact and use the reduced

Jacobian
OF:(yt)  OFi(y.t) , :
7 Do gres | 1 |71+ ieECEENE JBECE B, NE2
= =
OFs(yt) OFs(y.t) Trat . .
aerl aerz rate JeECE, B, NE1 -1+ jgeCr,E,NE2

to find the approximate position of this transition on the line attractor. The spiking activity becomes unstable,
when the real part of the second eigenvalue A}, becomes positive, and at this point the determinant of the Jacobian
changes its sign (since both eigenvalues are real). We can use this criterion to determine when the system loses
linear stability, leading to the critical value cqit of connectivity Cg, g,

Ngs )
Cerit = € 1+ - , 22
i ( NEi1JjE (22)

where jg is a dimension-less measure of effective excitatory excitability jr = eNgjgg. The value cqpy; is the upper

bound of full stability, but the system loses stability even below this value, as discussed in our results.

4.10 Network simulations

All simulations have been performed using the neural network simulator NEST 2.16.0 [28].

4.10.1 Grown networks

All numerical stimulation experiments start from grown networks. To this end, we initialize a network with random
connections to and from inhibitory neurons and no excitatory-to-excitatory connections, whatsoever. The latter
are then grown under the control of homeostatic structural plasticity. The controlled variable is the firing rate of
excitatory neurons, the target rate is set to v = 8 Hz for all neurons. During this initial growth period, excitatory
neurons receive external Poisson input of rate vex = 15kHz. After a long-enough growth time tgrowtn, the network

structure has reached its equilibrium and all neurons fire at their target rate, apart from small fluctuations.
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4.10.2 Conditioning paradigm

Non-overlapping neuronal ensembles comprising 10 % of all excitatory neurons each are selected and labeled US,
C1 and C2. Non-plastic connections of weight Jg = 0.1 mV are created from all neurons labeled US to a readout
neuron, which has the same properties as all the other neurons in the network. Stimulation is specific for a certain
group of neurons. A stimulation cycle consists of an increased external input rate of 1.4 ey for a period of 2s,

followed by a relaxation period of 48s, during which the external input is set back to Vext.

The whole protocol consists of 5 different episodes: growth, baseline, encoding, decay and retrieval. During
“baseline” each of the 3 groups is stimulated alone in the order US, C1, C2. The “encoding” episode consists of
6 stimulation cycles. In 3 out of the 6 cycles, C2 is stimulated alone. In the other 3 cycles, neurons from both
US and C1 are stimulated at the same time. The “decay” episode lasts 100s, during which no stimulation beyond
Vext 18 applied. During “retrieval”, there are 2 stimulation cycles, C1 alone is followed by C2 alone. Connectivity
is recorded every 1s. In this protocol, plasticity is always on, and all measurements are performed in the plastic

network. Growth time is ¢growtn = 100's, the remaining parameters are 84 = 8, = 0.4, 7ca = 15, AT, = 10ms.

4.10.3 Repeated stimulation

Starting from a grown network, a random neuronal ensemble comprising 10 % of all excitatory neurons in the
network is repeatedly stimulated for 8 cycles. Here, a stimulation cycle consists of a stimulation period of 150s,
during which the external input to the ensemble neurons is increased to 1.05 veyt. It is followed by a relaxation
period of 150s, during which the external input is set back to veyx;. During stimulation, the connectivity is
recorded every 15s. After encoding the engram, plasticity is turned off, and all measurements are now performed
in a non-plastic network. Growth time is tgrowen = 500, the remaining parameters are 84 = B4 = 2, 7ca = 105,

AT, = 100 ms.

4.10.4 Readout neuron

Two non-overlapping ensembles comprising 10 % of all excitatory neurons each are randomly selected and labeled
Ay and As. Starting from a grown network, A; is stimulated twice. During each stimulation cycle, the external
input to stimulated neurons is increased to 1.1 eyt for a time period of 150s. This is followed by a relaxation
period of 150s, during which the external input is set back to vey. After a pause of 100s, As is stimulated once
using otherwise the same protocol. Growth time is ¢growth = 500s, the remaining parameters are 34 = 3, = 2,

Tca = 108, ATs = 100 ms.

After the encoding of engrams, plasticity is turned off. A readout neuron is added to the network, which has the
same properties as all other neurons in the network. Non-plastic connections of weight Jz = 0.1 mV are created
from a random sample comprising 9% of all excitatory and 9% of all inhibitory neurons in the network. Two
new non-overlapping ensembles comprising 10 % of all excitatory neurons each are selected as random patterns As
and A4. Neurons in the network are stimulated in the order Az, As, A1, A4. During each stimulation cycle, the
external input to neurons in the corresponding group is increased to 1.1 vey: for a period of 1s duration. This is

followed by a non-stimulation period of 4s, during which external input rate is set back to Vext.
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4.10.5 Formation and decay of engrams

Starting from a grown network, a subgroup comprising 10 % of all excitatory neurons is randomly selected and
stimulated for 150, followed by a prolonged relaxation period of 5500s. During stimulation, the external input

to stimulated neurons is increased to 1.1 veyt. For all simulations, 8y = B, = 2, ATy = 100 ms.

The simulations to demonstrate how Tgecay changes with 7¢, were performed with a target rate v = 8Hz and
Tca = 2,4,8,16,32s. The simulations showing how Tgecay changes with v were performed with 7c, = 10s and
v = 2,4,8,16,32Hz. In the simulations performed with v = 2,4Hz, Tyrowtn = 5000s, neurons are stimulated
for 1500s, and the relaxation period is 26 000s. The parameter Tgecay is estimated from simulated time series by
performing a least-squares fit of an exponential function to the connectivity values during the decay period, and

extracting the fitted time constant.

4.10.6 Linear stability

Starting from a grown network, a subgroup comprising 10 % of all excitatory neurons is randomly selected and
stimulated for a time period fstim,. During stimulation, the external input to stimulated neurons is increased
to 1.1 vext. Stimulation is followed by a period of duration tieax, during which the external input is set back
to vexy and the connectivity relaxes back to a new equilibrium. The parameters used are for non-oscillatory
regime: lgrowth = tstim = trelax = 8008, B¢ = Ba = 2, Tca = 55, AT, = 1ms; for the weakly oscillatory regime:
terowth = tstim = trelax = 400, Bq = Bo = 0.2, 7ca = 20s, AT, = 0.2ms; and for the strongly oscillatory regime:
terowth = tstim = trelax = 2008, Bq = B = 0.03, Tca = 105, ATy = 0.2ms.

4.10.7 Non-Linear stability

Starting from a grown network, a subgroup comprising 10% of all excitatory neurons is randomly selected and
stimulated for 200s. During stimulation, the external input rate to stimulated neurons is increased to 1.25 Vexy.
Stimulation is followed by a relaxation time in which external input rate is set back to Vexs. Growth time ¢growen =

500s, Bq = Ba =2, 7ca = 108, ATs = 0.1 ms. During and after stimulation, connectivity is recorded every 5s.

4.10.8 Overlap measure

The similarity between network activity during stimulation, spontaneous and evoked responses is measured by the
corresponding overlaps [15] defined as

m* = [Na(l —a)]~* Z(fﬁ —a)s;(t). (23)

3
The pattern £# is a vector of dimension N. Each entry ¢! is a binary variable indicating whether or not neuron
i is stimulated by pattern &, and it has a mean value of a = (¢!);. The activity vector s;(t) is also composed of
binary variables, which indicate whether or not neuron ¢ is active in a given time bin. In all figures, the bin size

used for calculating overlaps is 10 ms.
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4.10.9 Population firing rate

In Figure 3B, the population response of excitatory neurons is estimated for different connectivity values using a
mean-field rate model [1]. We consider a model with three populations, two of which are excitatory (F; comprises
10% and FEy comprises 90 % of all Ny = 10000 excitatory neurons), and one is inhibitory with N; = 2500
neurons. All connectivities involving inhibitory neurons are fixed and set to e = 0.1. For the excitatory-to-
excitatory connections, we systematically vary the connectivity within the F; population (Cg, g, ), and calculate
the other values to achieve a constant excitatory in-degree of eNg. All other parameters used are unchanged.
For the different values of Cg, g, we calculate the population rate of excitatory neurons for E; receiving a larger

external input of 1.05 vex as compared to the Fy and I populations (vext = 15kHz).

4.10.10 Pattern completion

To address pattern completion, we employ the non-plastic network after engram encoding (see 4.10.3). Different
fractions of the neurons belonging to the engram are stimulated for 10s, and we calculate the overlap averaged
over the stimulation time (mf1). For each fraction of stimulated neurons, 50 different simulations are run, during

which a different subsample of the engram neurons is stimulated.
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Table 1: List of symbols

Symbol Description

o(t) Calcium trace

TCa Calcium time constant

S(t) Spike train

r(t) Instantaneous firing rate
v Target rate
a(t) Number of axonal elements

d(t) Number of dendritic elements

Ba Dendritic growth parameter

Ba Axonal growth parameter

C;;(t)  Number of synaptic connections from neuron j (presynaptic) to neuron ¢ (postsynaptic)

E Excitatory neurons
F, Stimulated excitatory neurons
FEs Non-stimulated excitatory neurons
I Inhibitory neurons
Tdrift Effective time constant of encoding

Tdiffusion  Biffective time constant of forgetting

m*(t) Overlap of network activity with pattern x

Trate Relaxation time of rate dynamics
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