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Abstract

Background

Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical
genome interpretation. State-of-the-art machine learning tools are useful for genome-wide
variant prioritisation but remain imprecise. Since the relationship between molecular
consequence and likelihood of pathogenicity varies between genes with distinct molecular
mechanisms, we hypothesised that a disease-specific classifier may outperform existing

genome-wide tools.

Methods

We present a novel disease-specific variant classification tool, CardioBoost, that estimates
the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and
arrhythmias, trained with variants of known clinical effect. To benchmark against state-of-the-
art genome-wide pathogenicity classification tools, we assessed classification of hold-out test
variants using both overall performance metrics, and metrics of high-confidence (>90%)
classifications relevant to variant interpretation. We further evaluated the prioritisation of
variants associated with disease and patient clinical outcomes, providing validations that are

robust to potential mis-classification in gold-standard reference datasets.

Results

CardioBoost has higher discriminating power than published genome-wide variant
classification tools in distinguishing between pathogenic and benign variants based on overall
classification performance measures with the highest area under the Precision-Recall Curve
as 91% for cardiomyopathies and as 96% for inherited arrhythmias. When assessed at high-
confidence (>90%) classification thresholds, prediction accuracy is improved by at least 120%
over existing tools for both cardiomyopathies and arrhythmias, with significantly improved

sensitivity and specificity. Finally, CardioBoost improves prioritisation of variants significantly
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84  associated with disease, and stratifies survival of patients with cardiomyopathies, confirming
85  biologically relevant variant classification.

86

87  Conclusions

88  We demonstrate that a disease-specific variant pathogenicity prediction tool outperforms
89  state-of-the-art genome-wide tools for the classification of rare missense variants of uncertain
90 significance for inherited cardiac conditions. To facilitate evaluation of CardioBoost, we
91 provide pre-computed pathogenicity scores for all possible rare missense variants in genes

92  associated with cardiomyopathies and arrhythmias (https://www.cardiodb.org/cardioboost/).

93  Ourresults also highlight the need to develop and evaluate variant classification tools focused
94  on specific diseases and clinical application contexts. Our proposed model for assessing
95 variants in known disease genes, and the use of application-specific evaluations, is broadly
96 applicable to improve variant interpretation across a wide range of Mendelian diseases.
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140  Background

141  The accurate prediction of the effect of a previously unseen genetic variant on disease risk is
142  an unmet need in clinical genetics. According to guidelines developed by the American
143  College of Medical Genetics and Genomics/Association for Molecular Pathology
144  (ACMG/AMP)', computational prediction of variant pathogenicity is integrated as one line of
145  supporting evidence to assess the clinical significance of human genetic variation. Several
146  tools have been developed to predict the effects of rare variants given multiple functional
147  annotations, such as evolutionary conservation scores and biochemical properties, and to
148  derive scores describing the likelihood of pathogenicity?®. Recent efforts have employed
149  state-of-the-art machine learning classification methods including ensemble learning”® and
150  deep learning® to improve predictions.

151

152 While existing genome-wide variant classification tools learn from large-scale data over the
153  entire genome, they might also compromise the prediction accuracy for specific sets of genes
154  and diseases'’ in the following ways. First, variation in a single gene can cause distinct clinical
155 phenotypes via different allelic mechanisms. Genome-wide machine learning tools that
156  classify variants as deleterious or not, without reference to a specific disease or mechanism,
157  may not perform as well as those that separate gene-disease relations since, for example,
158  they do not distinguish between gain- and loss-of-function variants. Second, genome-wide
159 classification tools may not benefit from specific lines of evidence only available for a subset
160  of well-characterised genes or diseases. We have previously shown'! that the addition of
161 gene- and disease-specific evidence into a transparent Bayesian model improves variant
162 interpretation in inherited cardiac diseases. Finally, most genome-wide prediction tools are
163 reported to have low specificity'.

164

165  Furthermore, the measures used in the evaluation of existing machine learning variant
166  classification tools are not always well defined or the most clinically-relevant. The performance

167  of variant classification is routinely evaluated using conventional classification performance

6
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168  measures such as the receiver operating characteristic (ROC) curve, that assesses diagnostic
169  performance across a range of discrimination thresholds, or metrics such as sensitivity and
170  specificity derived from the confusion matrix at a single, specified threshold. We argue that
171  these measures should be tailored to the specific application at hand. In particular, it is
172 necessary to consider the relative cost of decisions based on the Type | and Type Il errors in
173 any specific application, as different contexts may favour the control of Type | error (limiting
174 false positive assertions) or Type Il error (limiting false negative assertions). For example,
175  when classifying a variant for predictive genetic testing, control of the Type | error is usually
176  prioritised: familial cascade testing on a variant falsely reported as pathogenic can be

177  extremely harmful'?

. Conversely, if considering whether to offer a patient a therapy proven to
178  be effective in a subgroup of patients with a particular molecular aetiology (e.g., Sulfonylureas
179  in some types of monogenic diabetes'®), one might prioritise the control of Type Il error, since
180 it is important to identify all who might benefit from targeted treatment when its benefits
181  outweigh the side-effects. Most current variant classifier tools favour sensitivity over control of
182 the Type | error with over-prediction of pathogenic variants'. The inappropriate use of
183  performance measures not only affects the construction of the best classifier, but also the
184  evaluation of its utility in clinical applications.

185

186  To address the disadvantages of using genome-wide classification tools, we sought to develop
187  an accurate variant classifier considering gene-disease relations by taking inherited cardiac
188  conditions (ICCs) as examples. The resulting disease-specific variant classification tool,
189  CardioBoost, includes two disease-specific variant classifiers for two groups of closely related
190  syndromes: one classifier for familial cardiomyopathies (CM) that include hypertrophic
191  cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and the other for inherited
192 arrythmia syndromes (IAS) that include long QT syndrome (LQTS) and Brugada syndrome.
193

194  While optimally it may be desirable to train a specific model for every gene-disease pair, this

195 is not feasible due to current limitations in the number of variants with well-characterised
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196 disease consequences for training (and testing). Moreover we have previously demonstrated
197  benefit from jointly-fitting some parameters across closely-related genes or diseases''.We
198  therefore constructed models that aggregate related genes as described above, hypothesising
199 that these disease-specific models are biologically plausible since the relevance of
200  computational evidence types to interpret variant effect is more likely transferable within
201  closely related syndromes.

202

203  Trained on well-curated disease-specific data, CardioBoost integrates multiple variant
204  annotations and pathogenicity scores obtained from previously published computational tools,
205 and predicts the probability that rare missense variants are pathogenic for monogenic
206 inherited cardiac conditions, based on the Adaptive Boosting (AdaBoost) algorithm'>. Our tool
207  has improved performances over state-of-the-art genome-wide tools in a variety of tasks
208 including separation of pathogenic from benign variants and prioritisation of variants highly

209  associated with disease and adverse clinical outcomes.
210
211 Methods

212 Building CardioBoost

213 A full description of data collection, model development and validation is given in the
214  Supplementary Methods. In brief, we constructed two classifiers, one for inherited
215  cardiomyopathies, and one for inherited arrhythmia syndromes, to output the estimated
216  probability of pathogenicity for rare missense variants in genes robustly associated with these
217 diseases. The CM classifier is applicable for 16 genes associated with hypertrophic and
218 dilated cardiomyopathies. To obtain training and test sets, we collected 356 unique rare
219  (gnomAD minor allele frequency < 0.1%) missense variants in established cardiomyopathy-
220 associated genes (Supplementary Table 1) identified in 9,007 individuals either with a
221  confirmed clinical diagnosis of CM, or referred for genetic testing with a diagnosis of CM, and
222 interpreted as Pathogenic or Likely Pathogenic. For the inherited arrhythmia classifier, we

223 consider genes associated with long QT syndrome and Brugada syndrome. 252 unique rare
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224 missense variants reported to be Pathogenic or Likely Pathogenic with no conflicting
225 interpretations (Benign or Likely benign) in established arrhythmia-associated genes
226  (Supplementary Table 2) were collected from NCBI ClinVar Database'. As a benign variant
227  set, 302 unique rare missense variants in cardiomyopathy genes, and 237 unique rare
228  missense variants in arrhythmia genes were collected from the targeted sequencing of 2,090
229  healthy volunteers. Since these volunteers have no family history of ICCs and confirmed
230  without ICCs on ECG or cardiac MR, this cohort provides a lower disease prevalence than a
231  general population thus the rare missense variants carried by them shall be considered as
232 highly likely benign to inherited cardiac conditions. To avoid over-fitting, for each condition the
233 data set were randomly split, with two-thirds used for training and one-third reserved as a hold-
234 out test set (Supplementary Table 3-5).

235

236  For each variant, we collected 76 functional annotations (Supplementary Table 6 and
237  Supplementary Methods) as features in our disease-specific variant classification tool,
238  including intra- and inter-species conservation scores, amino acid substitution scores, and
239  pathogenicity predictions from published genome-wide variant classifiers. We selected nine
240  classification algorithms including best-in-class representatives of all of the major families of
241  machine learning algorithms, and applied a nested cross-validation' to select the optimal
242 algorithm for our tool. In the inner 5-fold cross-validation loop, a candidate classification
243  algorithm was trained in order to optimise its hyper-parameters. In the outer 10-fold cross-
244 validation loop, the optimised candidate algorithms were compared and the best-performing
245  one was selected (see Figure 1 and Supplementary Methods).

246

247 For both conditions, AdaBoost' was selected with the best cross-validated out-of-sample
248  performance (see Supplementary Methods and Supplementary Table 7-8). AdaBoost is a
249  boosting tree classification algorithm combining many decision trees. Each decision tree is
250 learned sequentially to assign more weight to samples misclassified by the previous decision

251 tree, and weighted by its classification accuracy. Having selected AdaBoost as the basis for

9
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252 our disease-specific classifier, a predictive model was constructed by training AdaBoost on
253  the whole training set, to produce a final variant classification model for each disease, named
254  CardioBoost.

255

256  CardioBoost was benchmarked against genome-wide classification tools using an unseen
257  hold-out test set. We applied conventional global classification performance measures, as well
258 as specific measures focusing on high-confidence thresholds. To ensure robustness, we
259  further assessed for prioritisation of variants associated with disease in independent cohorts
260 and associated with patients’ survival measures. These two approaches are relatively
261 independent of the gold-standard classification from human experts’ interpretation, and
262  directly assess the relationship between the clinical phenotype and the prioritised variants (for
263  the descriptions of the benchmarking methods see Supplementary Methods).

264

265 Results

266 CardioBoost outperforms state-of-the-art genome-wide prediction tools based on
267  conventional classification performance measures

268  The hold-out test sets were used to evaluate the classifiers’ performance on unseen data.
269  CardioBoost was compared against two recently developed genome-wide variant
270  classification algorithms, M-CAP and REVEL, reported to have leading performance in
271  pathogenicity prediction of rare missense variants. Classification performance was first
272  summarised using the area under the Precision-Recall Curve'® (PR-AUC), the area under the
273  Receiver Operating Characteristic Curve (ROC-AUC) and Brier Score'’, without relying on a
274  single pre-defined classification threshold to discriminate pathogenic and benign variants.
275

276  In both inherited cardiac conditions, CardioBoost achieved the best values in all the three
277 measures (Figure 2). The difference in performance was statistically significant for
278  cardiomyopathies, with significantly increased PR-AUC (maximum P-value = 0.005 between

279  the pairwise statistical comparisons of CardioBoost vs. M-CAP and CardioBoost vs. REVEL

10
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280  via permutation test), ROC-AUC (maximum P-value = 5x10® between the pairwise statistical
281  comparisons using Delong test'®), and Brier Score (maximum P-value = 0.005 between the
282  pairwise comparisons via permutation test). CardioBoost also has significantly improved the
283  Brier Score for arrhythmia syndromes (maximum P-value = 0.02 between the pairwise
284  comparisons via permutation test).

285

286  While CardioBoost was trained and tested on independent datasets, some variants had been
287  used previously in the training of M-CAP and REVEL, whose pathogenicity scores were used
288 as input features for CardioBoost (Supplementary Table 6). Thus, CardioBoost has been
289 indirectly exposed to these variants. This may worsen classification performance if the variants
290  were erroneously labelled during upstream training, or lead to artificially inflated performance
291 estimates through concealed overfitting. To estimate the extent to which these potential
292 limitations affect the prediction performance, we performed a stratification analysis to compare
293  the performance of CardioBoost on variants used to train upstream genome-wide learners
294 (indirectly “seen”), and variants that were completely novel (“unseen”) in the hold-out test data
295  set. CardioBoost improved on cardiomyopathy- and arrhythmia-specific prediction over
296  existing genome-wide classification tools both on indirectly “seen” (used in the training of M-
297  CAP and REVEL) and “unseen” data. The overall accuracy of CardioBoost between the
298  unseen and seen data sets is not significantly different for either CM or IAS. (Supplementary
299  Table 9-10 and Supplementary Methods).

300

301 CardioBoost outperforms existing genome-wide prediction tools on high-confidence
302 classification measures

303 In addition to estimating conventional classification performance, we evaluated performance
304 at thresholds corresponding to accepted levels of certainty required for clinical decision
305 making' (90%; see definitions on Figure 1b, Figure 1c and Supplementary Methods). Using
306 these thresholds (Pathogenic/Likely Pathogenic: probability of pathogenicity (Pr) = 0.9;

307  Benign/Likely Benign: Pr < 0.1; Indeterminate: 0.1 < Pr < 0.9), CardioBoost again outperforms
11
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308  existing genome-wide machine learning variant classification tools when assessed using hold-
309 out test data (Table 1).

310

311  CardioBoost also maximises the identification of both pathogenic and benign variants. In both
312  conditions, the proposed variant classification model had the highest true positive rate (TPR)
313 (CM69.5%; IAS 83.3%) and true negative rate (TNR) (CM 56%; IAS 78.6%) (P-value < 0.001).
314 In total, CardioBoost correctly classified 63.3% of cardiomyopathy test variants and 81.2% of
315 arrhythmia test variants with 90% or greater confidence-level. Such proportions of correctly
316 classified variants are significantly higher (P-value < 0.001) than those obtained with M-CAP
317 (CM 28.4%; IAS 30.5%) and REVEL (CM 17.4%; IAS 37%). In addition, CardioBoost
318  minimises the number of indeterminate variants. Only 29.8% of cardiomyopathy test variants
319 and 11.7% of arrhythmia test variants achieved indeterminate scores between 0.1 and 0.9,
320  which were significantly fewer (P-value < 0.001) than those obtained with M-CAP (CM 66.1%;
321  1AS 66.2%) or REVEL (CM 78%; IAS 59.7%) (Table 1).

322

323  Overall, using these thresholds CardioBoost assigned high-confidence classifications to 70.2%
324  of cardiomyopathy test variants, among which 90.2% were correct. For arrhythmias,
325  CardioBoost reported 88.3% of test variants with high confidence, with 91.9% prediction
326  accuracy. The reported results are robust to the choice of classification thresholds. While
327  guidelines propose 90% confidence as appropriate thresholds for likely pathogenic or likely
328  benign classifications, some may advocate a higher confidence threshold. When assessed at
329 a 95%-certainty classification threshold, CardioBoost continues to consistently outperform
330 genome-wide tools with significantly (P-value < 0.001) higher accuracies (Supplementary
331 Table 11).

332

333  CardioBoost is not intended to replace a full expert variant assessment in clinical practice, but
334  for comparative purposes it is informative to consider how classification performance changes

335 under application in different contexts. PPV and NPV are both dependent on the proportion of
12
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336  pathogenic variants in the variant set being tested, and so it is important to consider how our
337  benchmarking translates to real-world application. Here we used the TPR and TNR calculated
338  on our hold-out benchmarking test set to derive estimates of PPV and NPV for CardioBoost
339 applied in different contexts where the true proportion of pathogenic variants might differ. Our
340  estimation provides a lower bound of PPV and NPV under the assumption that pathogenic
341 variants are fully penetrant. In the context of predictive genetic testing, the limitation of false
342  positive prediction is prioritised, necessitating conservative estimates of PPV. Here we
343  estimate reasonably conservative PPVs and corresponding NPVs of CardioBoost applied in
344  two scenarios: in a diagnostic referral series and in samples from a general population. In a
345  diagnostic laboratory cardiomyopathy referral series, where we estimate approximately 60%
346  rare missense variants found in cardiomyopathy-associated genes to be pathogenic, the PPV
347  and NPV of CardioBoost were estimated at 89% and 96% respectively. By contrast, if applied
348  to variants in the same genes in a general population, where we estimate the proportion of
349  rare variants that are pathogenic as ~ 1%, the PPV and NPV reach 5% and 99.9%. Similarly,
350  we estimated the performance of CardioBoost in an arrhythmia cohort (PPV: 95%; NPV: 87%)
351 and a general population (PPV:3%; NPV: 99.9%). This suggests that the predictions of
352  pathogenicity by CardioBoost are calibrated for high confidence only when applied in a
353 diagnostic context, as would be expected. Classifications are appropriate for variants found in
354 individuals with disease, with a reasonable prior probability of pathogenicity (the estimation
355  details are described in Supplementary Methods).

356

357  Finally, as novel pathogenic variants are more likely to be ultra-rare (Minor allele frequency <
358 0.01%), we also tested CardioBoost performance on a hold-out set of only ultra-rare variants
359 and confirmed that it consistently outperforms existing genome-wide tools (Supplementary
360 Table 12). Its performance on ultra-rare variants is comparable with that on rare variants.
361

362 Replication on additional independent test data confirms that CardioBoost improves

363 prediction of pathogenic and benign variants

13
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364  We collected four additional sets of independent test data to further assess the CardioBoost
365 performance, using variants reported as pathogenic in ClinVar and HGMD'® (both databases
366 of aggregated classified variants), a diagnostic laboratory referral series from the Oxford
367 Molecular Genetics Laboratory (OMGL), and a large registry of HCM patients, SHaRe?.
368 CardioBoost consistently achieved the highest TPRs: predicting the most pathogenic variants
369  with over 90% certainty (Table 2). On a set of rare variants found in the gnomAD reference
370  dataset, which is not enriched for inherited cardiac conditions and hence where the prevalence
371  of disease should be equivalent to the general population, CardioBoost consistently predicts
372  the most variants as benign (Table 2). CardioBoost also performed best when assessed at a
373  higher 95%-certainty classification threshold (Supplementary Table 13) and on sets of ultra-
374  rare variants (Supplementary Table 14).

375

376 CardioBoost discriminates variants that are highly disease associated

377  Since benchmarking against a gold-standard test set may be susceptible to errors present in
378  the benchmark data set, we employed two additional approaches to evaluate CardioBoost
379  predictions directly against patient characteristics, to confirm biological and clinical relevance.
380

381  First, we directly assessed the strength of the association between the specified disease and
382  rare variants stratified by the different tools. We compared the proportions of rare missense
383 variants in a cohort of 6,327 genetically-characterised patients with HCM, from the SHaRe
384  registry®®, with 138,632 reference samples from gnomAD v2.0 (Table 3). We calculated the
385 Odds Ratio (OR) of each sarcomere gene for all rare variants observed, and for variants
386  stratified by CardioBoost, M-CAP, and REVEL after excluding variants seen in our training
387  data.

388

389  For six out of eight CM-associated genes encoding sarcomere components (TNNI3, TPM1,
390 ACTC1, TNNT2, MYBPC3 and MYL3), the OR for variants prioritised by CardioBoost (i.e.

391  predicted pathogenic with Pr = 0.9) was significantly greater (P-value < 0.05) than the baseline
14
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392  OR (including all observed variants without discriminating pathogenic and benign variants),
393 indicating that the tool is discriminating a set of pathogenic variants more strongly associated
394  with the disease. Concordantly, variants in all the eight sarcomere genes predicted as benign
395 have significantly decreased association with disease compared with the baseline OR (P-
396 value < 0.05). By contrast, M-CAP or REVEL did not show any demonstrable difference in
397 disease ORs between predicted pathogenic and predicted benign variants (Table 3).

398

399 CardioBoost variant classification significantly associates with adverse clinical
400 outcome

401 As a further assessment independent of gold-standard classification, we tested the
402  association of variants stratified by CardioBoost with clinical outcomes in the same cohort of
403  patients. Patients with HCM who carry known pathogenic variants in genes encoding
404  sarcomeric proteins have been shown to follow an adverse clinical course compared with
405  “genotype-negative” individuals (no rare pathogenic variant or VUS in a sarcomere-encoding
406  gene, and no other pathogenic variant identified) 2°-??, with a higher burden of adverse events.
407  Patients carrying benign variants in HCM-associated genes would be expected to follow a
408  similar trajectory to those genotype-negative patients.

409

410  We evaluated clinical outcomes in a subset of the SHaRe cohort comprising of 803 HCM
411  patients each with a rare missense pathogenic variant or missense VUS in a sarcomere-
412  encoding gene, and 1,927 genotype-negative HCM patients, after excluding all patients
413  carrying variants that were seen in the CardioBoost training set. We compared event-free
414  survival (i.e. age until the first occurrence of a composite adverse clinical outcome including
415 heart failure events, arrhythmic events, stroke and death) of these patients, stratified by
416  CardioBoost-predicted pathogenicity (the full definition of a composite adverse clinical
417  outcome is described in Supplementary Methods).

418

419  CardioBoost classification stratifies novel variants with significantly different patient-survival
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420 curves (Figure 3). Patients carrying variants predicted as pathogenic (CardioBoost
421  Pathogenic) were likely to have earlier onset and a higher adverse event rate than those
422  without identified rare variants (CardioBoost Pathogenic vs Genotype negative: P-value <
423 2x107'%; Hazard Ratio (HR) = 1.9), or those with variants predicted to be benign (CardioBoost
424  Pathogenic vs CardioBoost Benign: P-value = 0.03; HR = 1.7). The probability of developing
425  the overall composite outcome by age 60 is 84% for CardioBoost Pathogenic patients, versus
426 60% for Genotype-negative patients. By contrast, groups stratified by M-CAP or REVEL
427  variant classification did not show significantly different event-free survival time (M-CAP
428  Pathogenic vs M-CAP Benign: P-value = 0.31; REVEL Pathogenic vs REVEL Benign: P-value
429  =0.30).

430

431 Discussion

432  Our results show that in silico prediction of variant pathogenicity for inherited cardiac
433  conditions is improved within a disease-specific framework trained using expert-curated
434  interpreted variants. This is demonstrated through improved classification performance,
435  stronger disease-association, and significantly improved stratification of patient outcomes
436  over published genome-wide variant classification tools.

437

438  There are several factors that may contribute to improved performance for a gene- and
439  disease-specific classifier like CardioBoost over genome-wide tools. First, the use of disease-
440  specific labels could decrease the false prediction of benign variants as pathogenic. A variant
441  causative of one Mendelian dominant disorder may be benign with respect to a different
442  disorder (associated with the same gene), if the conditions result from distinct molecular
443  pathways. Since genome-wide tools are trained on universal labels (i.e. whether a variant ever
444  causes any diseases), they would be expected to yield some false positive predictions in the
445  context of specific diseases. Second, while the representative genome-wide tools M-CAP and
446  REVEL are trained on variants from HGMD curated from literature, CardioBoost is trained on

447  high-quality expert-curated variants, thus reducing label bias and increasing the prediction
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448  performances. Thirdly, as the genome-wide tools are trained across the genome, the learning
449  function that maps the input features into the pathogenicity score is fitted using the training
450  samples from all genes in the genome. However, different genes may have different mapping
451  functions, for example related to different molecular mechanisms or the relevance of different
452  features. Restricting to a set of well-defined disease-related genes may exclude influences
453  from other unrelated genes.
454
455 We might expect a gene-disease-specific model would most accurately represent the
456  genotype-phenotype relationship. However, there is a trade-off between the size of available
457  training data and the specialization of prediction tasks. Here, CardioBoost groups together
458 genes for two sets of closely related disorders, including three genes in which variants with
459  different functional consequences lead to distinct phenotypes in our training set (i.e. SCN5A,
460  TNNI3, MYH7). This is a potential limitation, since we hypothesise that distinct functional
461  consequences might optimally be modelled separately. We explored alternative models for
462  cardiomyopathy classifiers, for which our training data set is larger than for arrhythmias. Two
463  disease-specific models (HCM-specific and DCM-specific) and three gene-syndrome-specific
464  models (MYH7-HCM-specific, MYH7-DCM-specific, and MYBPC3-HCM-specific) with the
465 largest training data size were built and compared (see Supplementary Table 15). None of
466  the alternative models had comparable performance to the combined-cardiomyopathy model.
467  We therefore conclude that given the current availability of training data, a cardiomyopathy-
468  specific predictive model provides the best empirical balance between grouping variants with
469  similar molecular or phenotypic effects and making use of relatively large training data set. It
470  improves prediction both over genome-wide models that entirely ignore variants’ phenotypic
471  effects, and over gene-disease-specific models for which there is insufficient training data. We
472  therefore adopted the broadly disease-specific models as our final classifier, but anticipate
473  that complete separation of distinct phenotypes may be advantageous when more training
474  data becomes available in the future.
475
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476  CardioBoost natively outputs a continuous probability of pathogenicity that is directly and
477  intuitively interpretable. Users may therefore define their own confidence thresholds according
478  tointended application. The posterior probability can also be updated by incorporating further
479  evidence, such as linkage scores calculated from the evaluation of segregation in a family, to
480  generate an updated posterior probability.

481

482  There are several further potential limitations and avenues for future refinement. First, we have
483  only considered the prediction of pathogenicity for missense variants thus far. The inclusion
484  of different classes of variants in disease-specific model is challenging since the available
485  computational features or evidences for other types of variant are limited, and there is limited
486  high-confidence training data for non-missense variants.

487

488  Asecond key limitation of CardioBoost is that it does not consider all relevant lines of evidence,
489  and therefore it is not intended to serve as a tool for comprehensive assessment of variant
490 pathogenicity. Some evidence types are limited by availability such as population allele
491 frequency data and segregation data. Others could not be systematically included into a
492  machine learning framework either because they are not well structured as in the case of
493  functional data, de novo data and allelic data, or they are too sparse. For example, many
494  variants lack experimental data, and the precise population allele frequency of many variants
495 is unknown, though this implies significant rarity. In our training data, 45% of variants in
496  cardiomyopathies and 44% of variants in arrhythmias were not seen in the gnomAD control
497  population. Here, we do not model the imputation of absent allele frequencies in gnomAD for
498 rare variants since the relation between variant pathogenicity and allele frequency scale
499  beyond current observation is not clearly known.

500

501 For these reasons, while we show benefits of the proposed model for variant classification in
502  known disease genes, and its superiority over existing genome-wide machine learning tools,

503  we emphasize that CardioBoost is not intended for use as a standalone clinical decision tool,
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504  or as a replacement for the existing ACMG/AMP guidelines for clinical variant interpretation.
505 Rather, in its current form it could provide a numerical value for evidence PP3 (“Multiple lines
506  of computational evidence support a deleterious effect on the gene/gene product’) and BP4
507  (“Multiple lines of computational evidence suggest no impact on gene /gene product”) that is
508  more reliable and accurate than existing genome-wide variant classifiers in the context of
509 inherited cardiac conditions. We suggest that CardioBoost high-confidence classifications
510  might appropriately activate PP3 (Pr>0.9) and BP4 (Pr<0.1). It is interpreted as the supporting
511  evidence being activated with at least 90% confidence.

512

513 The widely-adopted ACMG/AMP framework is semi-quantitative, and the framework is largely
514 internally consistent with a quantitative Bayesian framework®, but one limitation is that the
515  weightings applied to different rules are not all evidence-based or proven to be mathematically
516  well-calibrated. We do anticipate that, with more training data and robust validation,
517 quantitative tools like CardioBoost will prove informative for variant interpretation, and will
518  carry more weight in a quantitative decision framework than the current ACMG/AMP PP3 and
519  BP4 rule affords.

520

521 As exemplified in two inherited cardiac conditions, we have substantiated that a disease-
522  specific variant classifier improves the in silico prediction of variant pathogenicity over the
523  best-performing genome-wide tools. We also demonstrate that development of a bioinformatic
524  variant classifier represents a trade-off between biological specificity (i.e. a gene-disease-
525  specific model) and practical availability of training data (i.e. a genome-wide model). For
526  specific Mendelian disorders, it is important to understand the limitations of current genome-
527  wide tools, and consider that a targeted gene-specific or disease-specific model may be
528  advantageous given sufficient training data.

529

530 Conclusions
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531 We developed a machine-learning based variant classifier, CardioBoost, that is trained
532 particularly on disease-specific variants to interpret rare missense variant pathogenicity on
533  familial cardiomyopathies and inherited arrhythmias. In benchmarking with the existing
534 genome-wide variant classification tools, CardioBoost significantly distinguishes more
535 pathogenic and benign variants accurately with high confidence. Variants prioritised by
536  CardioBoost with high confidence are also validated to be significantly associated disease
537  state and predictive of patient survival in independent cohorts of cardiomyopathies. Our study
538 also emphasizes the pitfalls of relying on genome-wide variant classification tools and the
539  necessity to develop disease-specific variant classification tools to accurately interpret variant
540  pathogenicity on specific phenotypes and diseases. We also highlight the need to evaluate
541  variant classification tools in clinical settings including accuracies on high confidence
542  classification thresholds equivalent to accepted certainty required for clinical decision making,
543  variant association with disease and patients’ clinical outcomes. To support accurate variant
544  interpretation in inherited cardiac conditions, we provide pre-computed pathogenicity scores
545  for all possible rare missense variants in genes associated with inherited cardiomyopathies

546  and arrhythmias (https://www.cardiodb.org/cardioboost/). The demonstrated development

547  and evaluation framework could be applicable to develop accurate disease-specific variant
548  classifiers and improve variant interpretation in a wide range of Mendelian disorders.
549
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List of Abbreviations

CM: (Inherited) Cardiomyopathy

FNR: False Negative Rate

FPR: False Positive Rate

gnomAD: Genome Aggregation Database release 2.0

HGMD: Human Genetics Mutation Database Pro version 201712
HR: Hazard Ratio

IAS: Inherited Arrhythmia Syndrome

ICC: Inherited Cardiac Condition

NPV: Negative Predictive Value

OMGL: Oxford Medical Genetics Laboratory

OR: Odds Ratio

PPV: Positive Predictive Value

PR-AUC: Area under the Precision-Recall Curve

Pr: Probability of pathogenicity

ROC-AUC: Area under the Receiver Operating Characteristic Curve
SHaRe: Sarcomeric Human Cardiomyopathy Registry version 2019Q3
TNR: True Negative Rate

TPR: True Positive Rate

VUS: Variant of Uncertain Significance

DM: Disease Mutation

ExAC: Exome Aggregation Consortium release 0.3

LMM: Laboratory of Molecular Medicine

MCC: Matthews Correlation Coefficient

RBH: Royal Brompton & Harefield Hospitals NHS Trust
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Training and test data used in the development of the tool were either already in the
public domain, or do not constitute personal data, or were obtained with patient consent

and/or approval of the relevant research ethics committee or institutional review board.

Availability of data and materials

The source code and data to reproduce our model development and validation analyses can
be found on github at https://github.com/ImperialCardioGenetics/CardioBoost_manuscript.
The pre-computed pathogenicity scores for all possible rare missense variants in genes
associated with inherited cardiomyopathies and arrhythmias can be found at:

https://www.cardiodb.org/cardioboost/.
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List of Figures with Legends

Figure 1. Training, and testing of CardioBoost, and definition of high-confidence variant

classification thresholds for performance assessment. (a) Construction of CardioBoost: (1)

After defining gold-standard data, (2) the dataset was split with a 2:1 proportion into training

and test tests. The training set was used for two rounds of cross-validation: first to optimise

individually a number of possible machine learning algorithms, and second to select the best

performing tool. (3) AdaBoost was the best performing algorithm, and forms the basis of

CardioBoost. (4) CardioBoost was benchmarked against existing best-in-class tools using the

hold-out test data, (5) a number of additional independent test sets, and (6) approaches based
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695  onassociation with clinical characteristics of variant carriers that do not rely on a gold-standard
696 classification. (b) lllustrative distributions of predicted pathogenicity scores for a set of
697  pathogenic and benign variants obtained by a hypothetical binary classifier. In a clinical
698  context (based on ACMG/AMP guidelines), variants are classified into the following categories
699 according to the probability of pathogenicity: Pathogenic/Likely Pathogenic (Probability of
700  pathogenicity (Pr) >=0.9), Benign/Likely Benign (Pr <=0.1) and a clinically indeterminate group
701  of Variants of Uncertain Significance with low interpretative confidence (0.1 < Pr<0.9). (¢)The
702  corresponding confusion matrix with the defined double classification thresholds Pr >=0.9 and
703  Pr<=0.1.

704

705  Figure 2. CardioBoost outperforms genome-wide prediction tools on hold-out test data. (a-c)
706  Precision-Recall Curves, ROC Curves and Brier Scores for cardiomyopathy variant
707  pathogenicity prediction. (d-f) Precision-Recall Curves, ROC Curves and Brier Score for
708 inherited arrhythmia variant pathogenicity prediction. In (a) and (d), the marked point (e)
709 indicates the precision (positive predictive value) and recall (true positive rate) at the 90%
710  confidence level defined as clinically reportable in international guidelines. The dashed lines
711  demonstrate the performance of a random classifier.

712

713 Figure 3. CardioBoost variant classification stratifies key clinical outcomes in patients with
714  HCM. Clinical outcomes provide an opportunity to assess classifier performance independent
715  of the labels used in the gold-standard training data. (a) Kaplan-Meier event-free survival
716  curves are shown for patients in the SHaRe cardiomyopathy registry, stratified by genotype
717  asinterpreted by CardioBoost. The patients carrying variants seen in the CardioBoost training
718  set were excluded in this analysis. Patients with pathogenic variants in sarcomere-encoding
719  genes have more adverse clinical events compared with patients without sarcomere-encoding
720  variants (“genotype-negative”), and compared with patients with sarcomere-encoding variants
721  classified as benign. Survival curves stratified by variants as adjudicated by experts (marked

722 in figure with prefix “SHaRe”) are shown for comparison. The composite endpoint comprised
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723 the first incidence of any component of the ventricular arrhythmic or heart failure composite
724  endpoint, atrial fibrillation, stroke or death. (b) P-values of the log-rank test in the pairwise
725  comparisons of Kaplan-Meier survival curves. (¢) Forest plot displays the hazard ratio (with
726  confidence interval) and P-value of tests comparing patients' survival stratified by CardioBoost
727  classification and SHaRe experts’ classification based on Cox proportional hazards models.
728  (d) Kaplan-Meier event-free survival curves for patients in the SHaRe cardiomyopathy registry,
729  stratified by genotype as interpreted by M-CAP. The patients with variants predicted
730  pathogenic by M-CAP did not have significantly different survival time compared to those with
731  predicted benign variants (log-rank test P-value = 0.31). (e) Kaplan-Meier event-free survival
732 curves for patients in the SHaRe cardiomyopathy registry, stratified by genotype as interpreted
733 by REVEL. Patients with predicted pathogenic variants by REVEL did not have significantly
734  different survival time compared to those with predicted benign variants (log-rank test P-value
735  =0.30).

736
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745  Figure 1. Training, and testing of CardioBoost, and definition of high-confidence variant
746  classification thresholds for performance assessment.
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748  Figure 2. CardioBoost outperforms genome-wide prediction tools on hold-out test data.
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Figure 3. CardioBoost variant classification stratifies key clinical outcomes in patients

with HCM.
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758  Table 1 CardioBoost outperforms existing genome-wide tools for the classification of
759  hold-out test variants. The performance of each tool is reported using the clinically relevant
760  variant classification thresholds: high-confidence pathogenic (Pr = 0.9), high-confidence
761  benign (Pr < 0.1), and indeterminate. For each predictive performance measure (see
762  Supplementary Methods for details) the best algorithm is highlighted in bold. Permutation
763  tests were performed to evaluate whether the performance of CardioBoost was significantly
764  different from the best value obtained by M-CAP or REVEL (significance levels: ***P-value <

765  0.001, **P-value < 0.01, *P-value =< 0.05).

% Cardiomyopathies Arrhythmias
(%) yop y

CardioBoost M-CAP REVEL CardioBoost M-CAP REVEL

Overall

63.3*** 28.4 17.4 81.2*** 30.5 37
accuracy
Proportion of
variants 70.2%** 33.9 22 88.3%* 33.8 40.3
classified with
high confidence
Accuracy of
high-confidence 90.2 83.8 79.2 91.9 90.4 91.9
classifications
Proportion of
variants with 29.8*** 66.1 78 11.7% 66.2 59.7
indeterminate
classification
TPR 69.5*** 41.5 28 83.3*** 48.8 65.5
PPV 86.3 81.7 76.7 90.9 91.1 91.7
TNR 56*** 13 5 78.6*** 8.6 2.9
NPV 96.6 92.9 100 93.2 85.7 100
766
767
768
769
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Table 2 Evaluation of performances on additional test sets. CardioBoost performance
was evaluated against additional variant sets. Four resources provided known pathogenic
variants (SHaRe cardiomyopathy registry, ClinVar (two-star submissions), a UK regional
genetic laboratory (Oxford Medical Genetics Laboratory — OMGL) and the Human Gene
Mutation Database — HGMD). Variants found in gnomAD population controls were expected
to be predominantly benign. Since gnomAD includes variants seen in the previous ExXAC
dataset that was partially used to train M-CAP and REVEL, we tested against the subset of
variants in gnomAD that were not in EXAC. The number of variants in each set is shown in
brackets. The TPR is reported for pathogenic variant test sets (with threshold Pr = 0.9), and
the TNR for benign variant test sets (with threshold Pr < 0.1). For each performance
measure the best algorithm is highlighted in bold. Permutation tests were carried out to
evaluate whether the performance of CardioBoost was significantly different from the best
value obtained by M-CAP or REVEL (significance levels: ***P-value < 0.001, **P-value <

0.01, *P-value < 0.05)
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Cardiomyopathies

Pathogenic test variants

Benign/population
test variants

(TPR) (TNR)
SHaRe Clinvar HGMD gnomAD
(N =129) (N =15) (N = 145) (N =2,003)
CardioBoost 62.0*** 66.7 41.4** 51.5***
M-CAP 37.2 40.0 22.1 20.3
REVEL 24.0 53.3 22.8 5.6
Arrhythmias
Pathogenic test variants Benign test variants
(TPR) (TNR)
OMGL HGMD gnomAD
(N=77) (N =138) (N =1,237)
CardioBoost 88.3*** 72.5*** 64.3***
M-CAP 59.7 39.9 9.8
REVEL 68.8 52.9 28
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Table 3. CardioBoost variant classification stratifies variants with increased disease Odds Ratio for sarcomere-encoding genes. Odd
Ratios (ORs) and their confidence intervals were calculated for rare variants observed in sarcomere-encoding genes using SHaRe HCM cohorts
and gnomAD. We compared the ORs for three groups of variants: (i) all rare variants, (ii) rare variants predicted pathogenic by CardioBoost (Pr
2 0.9, and excluding those seen in our training data), and (iii) rare variants predicted as benign by CardioBoost (Pr < 0.1, and excluding those
seen in our training data). The ORs of variants classified by M-CAP and REVEL were also calculated. For most of the sarcomere-encoding genes,
variants classified as pathogenic by CardioBoost are enriched for disease-association, and those classified as benign are depleted, compared

with unstratified rare missense variants.
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all observed rare CardioBoost CardioBoost M-CAP M-CAP REVEL REVEL
Gene . . . : : pathogenic benign pathogenic benign
symbol varc!ants pathogeryc variants benlgnovanants variants variants variants variants
(95% CI) (95% CI) (95% Cl) (95% Cl) 95%Cl)  (95%Cl)  (95% Cl)
14.5 14.7 1.2 14.8 15.9
MYH?7 R R
(14.4-14.6) (14.5-14.8) (0.7-1.7) (14.7-14.9) (15.7-16.1)
12.6 14.0 3.3 1.0 4.7 12.1 1.0
TNNI3
(12.4-12.9) (13.1-14.8) (2.6-4.0) (1-1.1) (3.7-5.28) (11-13.2) 0.9-1.1)
—_—— 11.2 33.7 1.4 1.0 0.5 38.9 .
(10.7-11.7) (33.1 — 34.3) (0.4-2.4) (0.9-1.1) (0-2.5) (37-40.8) -
11.2 15.2 1.0 1.0 1.0 19.8 *
ACTCT (10.9-11.5) (14.6-15.8) (0.9-1.1) (0.9-1.1) 09-11)  (19.1-20.6)
TNNT2 6.0 17.7 2.8 1.0 1.0 25.8 28.9
(5:8-6.2) (17.2-18.3) (2:2-3.4) (0.9-1.1) (0-3)  (23.7:278) (27.1-30.6)
5.6 55.1 1.2 1.0 0.7 12.8 1.2
MYBPC3
(5.5-5.6) (54.8-55.4) (0.9-1.4) (0.9-1.1) (0.2-1.2)  (12.3-134)  (0.8-1.6)
WYL2 5.2 3.8 1.0 1.0 0.2 1.7 1.0
(5.0-5.5) (3.2-4.5) (0.9-1.0) (0.9-1.1) (0-2.2) (0.2-3.1) (0.9-1.1)
2.7 7.9 0.8 1.0 0.3 19.4
MYL3 *
(2.3-3.0) (7.1-8.8) (0-1.7) (0.9-1.1) (0-2.3) (18.5-20.2)

825  "OR not calculated since the number of missense variants predicted as benign is zero in the gnomAD population.

35


https://doi.org/10.1101/2020.03.27.010736
http://creativecommons.org/licenses/by-nc-nd/4.0/

