

1 **Disease-specific variant pathogenicity prediction significantly improves variant**
2 **interpretation in inherited cardiac conditions**

3

4 **Authors to include**

5 Xiaolei Zhang^{1,2}, Roddy Walsh^{1,2}, Nicola Whiffin^{1,2}, Rachel Buchan^{1,2}, William Midwinter^{1,2},
6 Alicja Wilk^{1,2}, Risha Govind^{1,2}, Nicholas Li^{2,5}, Mian Ahmad^{1,2}, Francesco Mazzarotto^{1,6,7},
7 Angharad Roberts^{1,2}, Pantazis Theotokis^{1,2}, Erica Mazaika^{1,2}, Mona Allouba^{1,8}, Antonio de
8 Marvao⁵, Chee Jian Pua⁹, Sharlene M Day¹⁰, Euan Ashley¹¹, Steven D Colan¹², Michelle
9 Michels¹³, Alexandre C Pereira¹⁴, Daniel Jacoby¹⁵, Carolyn Y Ho¹⁶, Iacopo Olivotto⁶, Gunnar
10 T Gunnarsson¹⁷, John Jefferies¹⁸, Chris Semsarian^{19,20}, Jodie Ingles¹⁹, Declan P. O'Regan⁵,
11 Yasmine Aguib^{1,8}, Magdi H. Yacoub^{1,8}, Stuart A. Cook^{1,2,9,21}, Paul J.R. Barton^{1,2}, Leonardo
12 Bottolo^{22,23,24}, James S. Ware^{1,2,5}

13

14 1. National Heart and Lung Institute, Imperial College London, London, United Kingdom
15 2. Cardiovascular Research Centre, Royal Brompton and Harefield NHS, Foundation
16 Trust London, London, United Kingdom
17 3. Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation
18 Trust, The Churchill Hospital, Oxford, United Kingdom
19 4. Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
20 5. MRC London Institute of Medical Sciences, Imperial College London, London, United
21 Kingdom
22 6. Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
23 7. Department of Clinical and Experimental Medicine, University of Florence, Florence,
24 Italy
25 8. Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
26 9. National Heart Centre Singapore, Singapore
27 10. Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman
28 School of Medicine, University of Pennsylvania, Philadelphia, USA

29 11. Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford,
30 CA, USA
31 12. Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
32 13. Department of Cardiology, Thoraxcenter, Erasmus MC Rotterdam, The Netherlands
33 14. Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
34 15. Yale University, New Haven, CT, USA
35 16. Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
36 17. Faculty of Medicine, University of Iceland, Akureyri, Iceland
37 18. Cincinnati Children's Hospital, University of Cincinnati Department of Pediatrics,
38 Cincinnati, OH, USA
39 19. Centenary Institute, The University of Sydney, Sydney, Australia
40 20. Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
41 21. Duke-National University of Singapore, Singapore
42 22. Department of Medical Genetics, University of Cambridge, Cambridge, United
43 Kingdom
44 23. Alan Turing Institute, London, United Kingdom
45 24. MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
46

47 **Corresponding authors:**

48 Leonardo Bottolo (lb664@cam.ac.uk);
49 James Ware (j.ware@imperial.ac.uk)

50
51
52
53
54
55
56

57 **Abstract**

58 **Background**

59 Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical
60 genome interpretation. State-of-the-art machine learning tools are useful for genome-wide
61 variant prioritisation but remain imprecise. Since the relationship between molecular
62 consequence and likelihood of pathogenicity varies between genes with distinct molecular
63 mechanisms, we hypothesised that a disease-specific classifier may outperform existing
64 genome-wide tools.

65

66 **Methods**

67 We present a novel disease-specific variant classification tool, CardioBoost, that estimates
68 the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and
69 arrhythmias, trained with variants of known clinical effect. To benchmark against state-of-the-
70 art genome-wide pathogenicity classification tools, we assessed classification of hold-out test
71 variants using both overall performance metrics, and metrics of high-confidence (>90%)
72 classifications relevant to variant interpretation. We further evaluated the prioritisation of
73 variants associated with disease and patient clinical outcomes, providing validations that are
74 robust to potential mis-classification in gold-standard reference datasets.

75

76 **Results**

77 CardioBoost has higher discriminating power than published genome-wide variant
78 classification tools in distinguishing between pathogenic and benign variants based on overall
79 classification performance measures with the highest area under the Precision-Recall Curve
80 as 91% for cardiomyopathies and as 96% for inherited arrhythmias. When assessed at high-
81 confidence (>90%) classification thresholds, prediction accuracy is improved by at least 120%
82 over existing tools for both cardiomyopathies and arrhythmias, with significantly improved
83 sensitivity and specificity. Finally, CardioBoost improves prioritisation of variants significantly

84 associated with disease, and stratifies survival of patients with cardiomyopathies, confirming
85 biologically relevant variant classification.

86

87 **Conclusions**

88 We demonstrate that a disease-specific variant pathogenicity prediction tool outperforms
89 state-of-the-art genome-wide tools for the classification of rare missense variants of uncertain
90 significance for inherited cardiac conditions. To facilitate evaluation of CardioBoost, we
91 provide pre-computed pathogenicity scores for all possible rare missense variants in genes
92 associated with cardiomyopathies and arrhythmias (<https://www.cardiobase.org/cardioboost/>).

93 Our results also highlight the need to develop and evaluate variant classification tools focused
94 on specific diseases and clinical application contexts. Our proposed model for assessing
95 variants in known disease genes, and the use of application-specific evaluations, is broadly
96 applicable to improve variant interpretation across a wide range of Mendelian diseases.

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112 **Keywords**

113 pathogenicity prediction, variant interpretation, missense variant, cardiomyopathy, Long QT
114 syndrome, Brugada syndrome

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140 **Background**

141 The accurate prediction of the effect of a previously unseen genetic variant on disease risk is
142 an unmet need in clinical genetics. According to guidelines developed by the American
143 College of Medical Genetics and Genomics/Association for Molecular Pathology
144 (ACMG/AMP)¹, computational prediction of variant pathogenicity is integrated as one line of
145 supporting evidence to assess the clinical significance of human genetic variation. Several
146 tools have been developed to predict the effects of rare variants given multiple functional
147 annotations, such as evolutionary conservation scores and biochemical properties, and to
148 derive scores describing the likelihood of pathogenicity²⁻⁶. Recent efforts have employed
149 state-of-the-art machine learning classification methods including ensemble learning^{7,8} and
150 deep learning⁹ to improve predictions.

151

152 While existing genome-wide variant classification tools learn from large-scale data over the
153 entire genome, they might also compromise the prediction accuracy for specific sets of genes
154 and diseases¹⁰ in the following ways. First, variation in a single gene can cause distinct clinical
155 phenotypes via different allelic mechanisms. Genome-wide machine learning tools that
156 classify variants as deleterious or not, without reference to a specific disease or mechanism,
157 may not perform as well as those that separate gene-disease relations since, for example,
158 they do not distinguish between gain- and loss-of-function variants. Second, genome-wide
159 classification tools may not benefit from specific lines of evidence only available for a subset
160 of well-characterised genes or diseases. We have previously shown¹¹ that the addition of
161 gene- and disease-specific evidence into a transparent Bayesian model improves variant
162 interpretation in inherited cardiac diseases. Finally, most genome-wide prediction tools are
163 reported to have low specificity¹.

164

165 Furthermore, the measures used in the evaluation of existing machine learning variant
166 classification tools are not always well defined or the most clinically-relevant. The performance
167 of variant classification is routinely evaluated using conventional classification performance

168 measures such as the receiver operating characteristic (ROC) curve, that assesses diagnostic
169 performance across a range of discrimination thresholds, or metrics such as sensitivity and
170 specificity derived from the confusion matrix at a single, specified threshold. We argue that
171 these measures should be tailored to the specific application at hand. In particular, it is
172 necessary to consider the relative cost of decisions based on the Type I and Type II errors in
173 any specific application, as different contexts may favour the control of Type I error (limiting
174 false positive assertions) or Type II error (limiting false negative assertions). For example,
175 when classifying a variant for predictive genetic testing, control of the Type I error is usually
176 prioritised: familial cascade testing on a variant falsely reported as pathogenic can be
177 extremely harmful¹². Conversely, if considering whether to offer a patient a therapy proven to
178 be effective in a subgroup of patients with a particular molecular aetiology (e.g., Sulfonylureas
179 in some types of monogenic diabetes¹³), one might prioritise the control of Type II error, since
180 it is important to identify all who might benefit from targeted treatment when its benefits
181 outweigh the side-effects. Most current variant classifier tools favour sensitivity over control of
182 the Type I error with over-prediction of pathogenic variants¹. The inappropriate use of
183 performance measures not only affects the construction of the best classifier, but also the
184 evaluation of its utility in clinical applications.

185

186 To address the disadvantages of using genome-wide classification tools, we sought to develop
187 an accurate variant classifier considering gene-disease relations by taking inherited cardiac
188 conditions (ICCs) as examples. The resulting disease-specific variant classification tool,
189 CardioBoost, includes two disease-specific variant classifiers for two groups of closely related
190 syndromes: one classifier for familial cardiomyopathies (CM) that include hypertrophic
191 cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and the other for inherited
192 arrhythmia syndromes (IAS) that include long QT syndrome (LQTS) and Brugada syndrome.

193

194 While optimally it may be desirable to train a specific model for every gene-disease pair, this
195 is not feasible due to current limitations in the number of variants with well-characterised

196 disease consequences for training (and testing). Moreover we have previously demonstrated
197 benefit from jointly-fitting some parameters across closely-related genes or diseases¹¹. We
198 therefore constructed models that aggregate related genes as described above, hypothesising
199 that these disease-specific models are biologically plausible since the relevance of
200 computational evidence types to interpret variant effect is more likely transferable within
201 closely related syndromes.

202

203 Trained on well-curated disease-specific data, CardioBoost integrates multiple variant
204 annotations and pathogenicity scores obtained from previously published computational tools,
205 and predicts the probability that rare missense variants are pathogenic for monogenic
206 inherited cardiac conditions, based on the Adaptive Boosting (AdaBoost) algorithm¹³. Our tool
207 has improved performances over state-of-the-art genome-wide tools in a variety of tasks
208 including separation of pathogenic from benign variants and prioritisation of variants highly
209 associated with disease and adverse clinical outcomes.

210

211 **Methods**

212 **Building CardioBoost**

213 A full description of data collection, model development and validation is given in the
214 **Supplementary Methods**. In brief, we constructed two classifiers, one for inherited
215 cardiomyopathies, and one for inherited arrhythmia syndromes, to output the estimated
216 probability of pathogenicity for rare missense variants in genes robustly associated with these
217 diseases. The CM classifier is applicable for 16 genes associated with hypertrophic and
218 dilated cardiomyopathies. To obtain training and test sets, we collected 356 unique rare
219 (gnomAD minor allele frequency < 0.1%) missense variants in established cardiomyopathy-
220 associated genes (**Supplementary Table 1**) identified in 9,007 individuals either with a
221 confirmed clinical diagnosis of CM, or referred for genetic testing with a diagnosis of CM, and
222 interpreted as Pathogenic or Likely Pathogenic. For the inherited arrhythmia classifier, we
223 consider genes associated with long QT syndrome and Brugada syndrome. 252 unique rare

224 missense variants reported to be Pathogenic or Likely Pathogenic with no conflicting
225 interpretations (Benign or Likely benign) in established arrhythmia-associated genes
226 (**Supplementary Table 2**) were collected from NCBI ClinVar Database¹⁴. As a benign variant
227 set, 302 unique rare missense variants in cardiomyopathy genes, and 237 unique rare
228 missense variants in arrhythmia genes were collected from the targeted sequencing of 2,090
229 healthy volunteers. Since these volunteers have no family history of ICCs and confirmed
230 without ICCs on ECG or cardiac MRI, this cohort provides a lower disease prevalence than a
231 general population thus the rare missense variants carried by them shall be considered as
232 highly likely benign to inherited cardiac conditions. To avoid over-fitting, for each condition the
233 data set were randomly split, with two-thirds used for training and one-third reserved as a hold-
234 out test set (**Supplementary Table 3-5**).

235
236 For each variant, we collected 76 functional annotations (**Supplementary Table 6** and
237 **Supplementary Methods**) as features in our disease-specific variant classification tool,
238 including intra- and inter-species conservation scores, amino acid substitution scores, and
239 pathogenicity predictions from published genome-wide variant classifiers. We selected nine
240 classification algorithms including best-in-class representatives of all of the major families of
241 machine learning algorithms, and applied a nested cross-validation¹⁵ to select the optimal
242 algorithm for our tool. In the inner 5-fold cross-validation loop, a candidate classification
243 algorithm was trained in order to optimise its hyper-parameters. In the outer 10-fold cross-
244 validation loop, the optimised candidate algorithms were compared and the best-performing
245 one was selected (see **Figure 1** and **Supplementary Methods**).

246
247 For both conditions, AdaBoost¹³ was selected with the best cross-validated out-of-sample
248 performance (see **Supplementary Methods** and **Supplementary Table 7-8**). AdaBoost is a
249 boosting tree classification algorithm combining many decision trees. Each decision tree is
250 learned sequentially to assign more weight to samples misclassified by the previous decision
251 tree, and weighted by its classification accuracy. Having selected AdaBoost as the basis for

252 our disease-specific classifier, a predictive model was constructed by training AdaBoost on
253 the whole training set, to produce a final variant classification model for each disease, named
254 CardioBoost.

255

256 CardioBoost was benchmarked against genome-wide classification tools using an unseen
257 hold-out test set. We applied conventional global classification performance measures, as well
258 as specific measures focusing on high-confidence thresholds. To ensure robustness, we
259 further assessed for prioritisation of variants associated with disease in independent cohorts
260 and associated with patients' survival measures. These two approaches are relatively
261 independent of the gold-standard classification from human experts' interpretation, and
262 directly assess the relationship between the clinical phenotype and the prioritised variants (for
263 the descriptions of the benchmarking methods see **Supplementary Methods**).

264

265 **Results**

266 **CardioBoost outperforms state-of-the-art genome-wide prediction tools based on 267 conventional classification performance measures**

268 The hold-out test sets were used to evaluate the classifiers' performance on unseen data.
269 CardioBoost was compared against two recently developed genome-wide variant
270 classification algorithms, M-CAP and REVEL, reported to have leading performance in
271 pathogenicity prediction of rare missense variants. Classification performance was first
272 summarised using the area under the Precision-Recall Curve¹⁶ (PR-AUC), the area under the
273 Receiver Operating Characteristic Curve (ROC-AUC) and Brier Score¹⁷, without relying on a
274 single pre-defined classification threshold to discriminate pathogenic and benign variants.

275

276 In both inherited cardiac conditions, CardioBoost achieved the best values in all the three
277 measures (**Figure 2**). The difference in performance was statistically significant for
278 cardiomyopathies, with significantly increased PR-AUC (maximum *P*-value = 0.005 between
279 the pairwise statistical comparisons of CardioBoost vs. M-CAP and CardioBoost vs. REVEL

280 via permutation test), ROC-AUC (maximum P -value = 5×10^{-6} between the pairwise statistical
281 comparisons using Delong test¹⁸), and Brier Score (maximum P -value = 0.005 between the
282 pairwise comparisons via permutation test). CardioBoost also has significantly improved the
283 Brier Score for arrhythmia syndromes (maximum P -value = 0.02 between the pairwise
284 comparisons via permutation test).

285

286 While CardioBoost was trained and tested on independent datasets, some variants had been
287 used previously in the training of M-CAP and REVEL, whose pathogenicity scores were used
288 as input features for CardioBoost (**Supplementary Table 6**). Thus, CardioBoost has been
289 indirectly exposed to these variants. This may worsen classification performance if the variants
290 were erroneously labelled during upstream training, or lead to artificially inflated performance
291 estimates through concealed overfitting. To estimate the extent to which these potential
292 limitations affect the prediction performance, we performed a stratification analysis to compare
293 the performance of CardioBoost on variants used to train upstream genome-wide learners
294 (indirectly “seen”), and variants that were completely novel (“unseen”) in the hold-out test data
295 set. CardioBoost improved on cardiomyopathy- and arrhythmia-specific prediction over
296 existing genome-wide classification tools both on indirectly “seen” (used in the training of M-
297 CAP and REVEL) and “unseen” data. The overall accuracy of CardioBoost between the
298 unseen and seen data sets is not significantly different for either CM or IAS. (**Supplementary**
299 **Table 9-10 and Supplementary Methods**).

300

301 **CardioBoost outperforms existing genome-wide prediction tools on high-confidence**
302 **classification measures**

303 In addition to estimating conventional classification performance, we evaluated performance
304 at thresholds corresponding to accepted levels of certainty required for clinical decision
305 making¹ (90%; see definitions on **Figure 1b**, **Figure 1c** and **Supplementary Methods**). Using
306 these thresholds (Pathogenic/Likely Pathogenic: probability of pathogenicity (Pr) ≥ 0.9 ;
307 Benign/Likely Benign: $Pr \leq 0.1$; Indeterminate: $0.1 < Pr < 0.9$), CardioBoost again outperforms

308 existing genome-wide machine learning variant classification tools when assessed using hold-
309 out test data (**Table 1**).

310

311 CardioBoost also maximises the identification of both pathogenic and benign variants. In both
312 conditions, the proposed variant classification model had the highest true positive rate (TPR)
313 (CM 69.5%; IAS 83.3%) and true negative rate (TNR) (CM 56%; IAS 78.6%) (P -value < 0.001).

314 In total, CardioBoost correctly classified 63.3% of cardiomyopathy test variants and 81.2% of
315 arrhythmia test variants with 90% or greater confidence-level. Such proportions of correctly
316 classified variants are significantly higher (P -value < 0.001) than those obtained with M-CAP
317 (CM 28.4%; IAS 30.5%) and REVEL (CM 17.4%; IAS 37%). In addition, CardioBoost
318 minimises the number of indeterminate variants. Only 29.8% of cardiomyopathy test variants
319 and 11.7% of arrhythmia test variants achieved indeterminate scores between 0.1 and 0.9,
320 which were significantly fewer (P -value < 0.001) than those obtained with M-CAP (CM 66.1%;
321 IAS 66.2%) or REVEL (CM 78%; IAS 59.7%) (**Table 1**).

322

323 Overall, using these thresholds CardioBoost assigned high-confidence classifications to 70.2%
324 of cardiomyopathy test variants, among which 90.2% were correct. For arrhythmias,
325 CardioBoost reported 88.3% of test variants with high confidence, with 91.9% prediction
326 accuracy. The reported results are robust to the choice of classification thresholds. While
327 guidelines propose 90% confidence as appropriate thresholds for likely pathogenic or likely
328 benign classifications, some may advocate a higher confidence threshold. When assessed at
329 a 95%-certainty classification threshold, CardioBoost continues to consistently outperform
330 genome-wide tools with significantly (P -value < 0.001) higher accuracies (**Supplementary**
331 **Table 11**).

332

333 CardioBoost is not intended to replace a full expert variant assessment in clinical practice, but
334 for comparative purposes it is informative to consider how classification performance changes
335 under application in different contexts. PPV and NPV are both dependent on the proportion of

336 pathogenic variants in the variant set being tested, and so it is important to consider how our
337 benchmarking translates to real-world application. Here we used the TPR and TNR calculated
338 on our hold-out benchmarking test set to derive estimates of PPV and NPV for CardioBoost
339 applied in different contexts where the true proportion of pathogenic variants might differ. Our
340 estimation provides a lower bound of PPV and NPV under the assumption that pathogenic
341 variants are fully penetrant. In the context of predictive genetic testing, the limitation of false
342 positive prediction is prioritised, necessitating conservative estimates of PPV. Here we
343 estimate reasonably conservative PPVs and corresponding NPVs of CardioBoost applied in
344 two scenarios: in a diagnostic referral series and in samples from a general population. In a
345 diagnostic laboratory cardiomyopathy referral series, where we estimate approximately 60%
346 rare missense variants found in cardiomyopathy-associated genes to be pathogenic, the PPV
347 and NPV of CardioBoost were estimated at 89% and 96% respectively. By contrast, if applied
348 to variants in the same genes in a general population, where we estimate the proportion of
349 rare variants that are pathogenic as ~ 1%, the PPV and NPV reach 5% and 99.9%. Similarly,
350 we estimated the performance of CardioBoost in an arrhythmia cohort (PPV: 95%; NPV: 87%)
351 and a general population (PPV: 3%; NPV: 99.9%). This suggests that the predictions of
352 pathogenicity by CardioBoost are calibrated for high confidence only when applied in a
353 diagnostic context, as would be expected. Classifications are appropriate for variants found in
354 individuals with disease, with a reasonable prior probability of pathogenicity (the estimation
355 details are described in **Supplementary Methods**).

356

357 Finally, as novel pathogenic variants are more likely to be ultra-rare (Minor allele frequency <
358 0.01%), we also tested CardioBoost performance on a hold-out set of only ultra-rare variants
359 and confirmed that it consistently outperforms existing genome-wide tools (**Supplementary**
360 **Table 12**). Its performance on ultra-rare variants is comparable with that on rare variants.

361

362 **Replication on additional independent test data confirms that CardioBoost improves**
363 **prediction of pathogenic and benign variants**

364 We collected four additional sets of independent test data to further assess the CardioBoost
365 performance, using variants reported as pathogenic in ClinVar and HGMD¹⁹ (both databases
366 of aggregated classified variants), a diagnostic laboratory referral series from the Oxford
367 Molecular Genetics Laboratory (OMGL), and a large registry of HCM patients, SHaRe²⁰.
368 CardioBoost consistently achieved the highest TPRs: predicting the most pathogenic variants
369 with over 90% certainty (**Table 2**). On a set of rare variants found in the gnomAD reference
370 dataset, which is not enriched for inherited cardiac conditions and hence where the prevalence
371 of disease should be equivalent to the general population, CardioBoost consistently predicts
372 the most variants as benign (**Table 2**). CardioBoost also performed best when assessed at a
373 higher 95%-certainty classification threshold (**Supplementary Table 13**) and on sets of ultra-
374 rare variants (**Supplementary Table 14**).

375

376 **CardioBoost discriminates variants that are highly disease associated**

377 Since benchmarking against a gold-standard test set may be susceptible to errors present in
378 the benchmark data set, we employed two additional approaches to evaluate CardioBoost
379 predictions directly against patient characteristics, to confirm biological and clinical relevance.

380

381 First, we directly assessed the strength of the association between the specified disease and
382 rare variants stratified by the different tools. We compared the proportions of rare missense
383 variants in a cohort of 6,327 genetically-characterised patients with HCM, from the SHaRe
384 registry²⁰, with 138,632 reference samples from gnomAD v2.0 (**Table 3**). We calculated the
385 Odds Ratio (OR) of each sarcomere gene for all rare variants observed, and for variants
386 stratified by CardioBoost, M-CAP, and REVEL after excluding variants seen in our training
387 data.

388

389 For six out of eight CM-associated genes encoding sarcomere components (*TNNI3*, *TPM1*,
390 *ACTC1*, *TNNT2*, *MYBPC3* and *MYL3*), the OR for variants prioritised by CardioBoost (i.e.
391 predicted pathogenic with $Pr \geq 0.9$) was significantly greater (P -value < 0.05) than the baseline

392 OR (including all observed variants without discriminating pathogenic and benign variants),
393 indicating that the tool is discriminating a set of pathogenic variants more strongly associated
394 with the disease. Concordantly, variants in all the eight sarcomere genes predicted as benign
395 have significantly decreased association with disease compared with the baseline OR (P -
396 value < 0.05). By contrast, M-CAP or REVEL did not show any demonstrable difference in
397 disease ORs between predicted pathogenic and predicted benign variants (**Table 3**).

398

399 **CardioBoost variant classification significantly associates with adverse clinical**
400 **outcome**

401 As a further assessment independent of gold-standard classification, we tested the
402 association of variants stratified by CardioBoost with clinical outcomes in the same cohort of
403 patients. Patients with HCM who carry known pathogenic variants in genes encoding
404 sarcomeric proteins have been shown to follow an adverse clinical course compared with
405 “genotype-negative” individuals (no rare pathogenic variant or VUS in a sarcomere-encoding
406 gene, and no other pathogenic variant identified)^{20–22}, with a higher burden of adverse events.
407 Patients carrying benign variants in HCM-associated genes would be expected to follow a
408 similar trajectory to those genotype-negative patients.

409

410 We evaluated clinical outcomes in a subset of the SHaRe cohort comprising of 803 HCM
411 patients each with a rare missense pathogenic variant or missense VUS in a sarcomere-
412 encoding gene, and 1,927 genotype-negative HCM patients, after excluding all patients
413 carrying variants that were seen in the CardioBoost training set. We compared event-free
414 survival (i.e. age until the first occurrence of a composite adverse clinical outcome including
415 heart failure events, arrhythmic events, stroke and death) of these patients, stratified by
416 CardioBoost-predicted pathogenicity (the full definition of a composite adverse clinical
417 outcome is described in **Supplementary Methods**).

418

419 CardioBoost classification stratifies novel variants with significantly different patient-survival

420 curves (**Figure 3**). Patients carrying variants predicted as pathogenic (CardioBoost
421 Pathogenic) were likely to have earlier onset and a higher adverse event rate than those
422 without identified rare variants (CardioBoost Pathogenic vs Genotype negative: *P*-value <
423 2×10^{-16} ; Hazard Ratio (HR) = 1.9), or those with variants predicted to be benign (CardioBoost
424 Pathogenic vs CardioBoost Benign: *P*-value = 0.03; HR = 1.7). The probability of developing
425 the overall composite outcome by age 60 is 84% for CardioBoost Pathogenic patients, versus
426 60% for Genotype-negative patients. By contrast, groups stratified by M-CAP or REVEL
427 variant classification did not show significantly different event-free survival time (M-CAP
428 Pathogenic vs M-CAP Benign: *P*-value = 0.31; REVEL Pathogenic vs REVEL Benign: *P*-value
429 = 0.30).

430

431 **Discussion**

432 Our results show that *in silico* prediction of variant pathogenicity for inherited cardiac
433 conditions is improved within a disease-specific framework trained using expert-curated
434 interpreted variants. This is demonstrated through improved classification performance,
435 stronger disease-association, and significantly improved stratification of patient outcomes
436 over published genome-wide variant classification tools.

437

438 There are several factors that may contribute to improved performance for a gene- and
439 disease-specific classifier like CardioBoost over genome-wide tools. First, the use of disease-
440 specific labels could decrease the false prediction of benign variants as pathogenic. A variant
441 causative of one Mendelian dominant disorder may be benign with respect to a different
442 disorder (associated with the same gene), if the conditions result from distinct molecular
443 pathways. Since genome-wide tools are trained on universal labels (i.e. whether a variant ever
444 causes any diseases), they would be expected to yield some false positive predictions in the
445 context of specific diseases. Second, while the representative genome-wide tools M-CAP and
446 REVEL are trained on variants from HGMD curated from literature, CardioBoost is trained on
447 high-quality expert-curated variants, thus reducing label bias and increasing the prediction

448 performances. Thirdly, as the genome-wide tools are trained across the genome, the learning
449 function that maps the input features into the pathogenicity score is fitted using the training
450 samples from all genes in the genome. However, different genes may have different mapping
451 functions, for example related to different molecular mechanisms or the relevance of different
452 features. Restricting to a set of well-defined disease-related genes may exclude influences
453 from other unrelated genes.

454

455 We might expect a gene-disease-specific model would most accurately represent the
456 genotype-phenotype relationship. However, there is a trade-off between the size of available
457 training data and the specialization of prediction tasks. Here, CardioBoost groups together
458 genes for two sets of closely related disorders, including three genes in which variants with
459 different functional consequences lead to distinct phenotypes in our training set (i.e. *SCN5A*,
460 *TNNI3*, *MYH7*). This is a potential limitation, since we hypothesise that distinct functional
461 consequences might optimally be modelled separately. We explored alternative models for
462 cardiomyopathy classifiers, for which our training data set is larger than for arrhythmias. Two
463 disease-specific models (HCM-specific and DCM-specific) and three gene-syndrome-specific
464 models (*MYH7*-HCM-specific, *MYH7*-DCM-specific, and *MYBPC3*-HCM-specific) with the
465 largest training data size were built and compared (see **Supplementary Table 15**). None of
466 the alternative models had comparable performance to the combined-cardiomyopathy model.
467 We therefore conclude that given the current availability of training data, a cardiomyopathy-
468 specific predictive model provides the best empirical balance between grouping variants with
469 similar molecular or phenotypic effects and making use of relatively large training data set. It
470 improves prediction both over genome-wide models that entirely ignore variants' phenotypic
471 effects, and over gene-disease-specific models for which there is insufficient training data. We
472 therefore adopted the broadly disease-specific models as our final classifier, but anticipate
473 that complete separation of distinct phenotypes may be advantageous when more training
474 data becomes available in the future.

475

476 CardioBoost natively outputs a continuous probability of pathogenicity that is directly and
477 intuitively interpretable. Users may therefore define their own confidence thresholds according
478 to intended application. The posterior probability can also be updated by incorporating further
479 evidence, such as linkage scores calculated from the evaluation of segregation in a family, to
480 generate an updated posterior probability.

481
482 There are several further potential limitations and avenues for future refinement. First, we have
483 only considered the prediction of pathogenicity for missense variants thus far. The inclusion
484 of different classes of variants in disease-specific model is challenging since the available
485 computational features or evidences for other types of variant are limited, and there is limited
486 high-confidence training data for non-missense variants.

487
488 A second key limitation of CardioBoost is that it does not consider all relevant lines of evidence,
489 and therefore it is not intended to serve as a tool for comprehensive assessment of variant
490 pathogenicity. Some evidence types are limited by availability such as population allele
491 frequency data and segregation data. Others could not be systematically included into a
492 machine learning framework either because they are not well structured as in the case of
493 functional data, de novo data and allelic data, or they are too sparse. For example, many
494 variants lack experimental data, and the precise population allele frequency of many variants
495 is unknown, though this implies significant rarity. In our training data, 45% of variants in
496 cardiomyopathies and 44% of variants in arrhythmias were not seen in the gnomAD control
497 population. Here, we do not model the imputation of absent allele frequencies in gnomAD for
498 rare variants since the relation between variant pathogenicity and allele frequency scale
499 beyond current observation is not clearly known.

500
501 For these reasons, while we show benefits of the proposed model for variant classification in
502 known disease genes, and its superiority over existing genome-wide machine learning tools,
503 we emphasize that CardioBoost is not intended for use as a standalone clinical decision tool,

504 or as a replacement for the existing ACMG/AMP guidelines for clinical variant interpretation.
505 Rather, in its current form it could provide a numerical value for evidence PP3 (“Multiple lines
506 of computational evidence support a deleterious effect on the gene/gene product”) and BP4
507 (“Multiple lines of computational evidence suggest no impact on gene /gene product”) that is
508 more reliable and accurate than existing genome-wide variant classifiers in the context of
509 inherited cardiac conditions. We suggest that CardioBoost high-confidence classifications
510 might appropriately activate PP3 ($Pr>0.9$) and BP4 ($Pr<0.1$). It is interpreted as the supporting
511 evidence being activated with at least 90% confidence.

512

513 The widely-adopted ACMG/AMP framework is semi-quantitative, and the framework is largely
514 internally consistent with a quantitative Bayesian framework²³, but one limitation is that the
515 weightings applied to different rules are not all evidence-based or proven to be mathematically
516 well-calibrated. We do anticipate that, with more training data and robust validation,
517 quantitative tools like CardioBoost will prove informative for variant interpretation, and will
518 carry more weight in a quantitative decision framework than the current ACMG/AMP PP3 and
519 BP4 rule affords.

520

521 As exemplified in two inherited cardiac conditions, we have substantiated that a disease-
522 specific variant classifier improves the *in silico* prediction of variant pathogenicity over the
523 best-performing genome-wide tools. We also demonstrate that development of a bioinformatic
524 variant classifier represents a trade-off between biological specificity (i.e. a gene-disease-
525 specific model) and practical availability of training data (i.e. a genome-wide model). For
526 specific Mendelian disorders, it is important to understand the limitations of current genome-
527 wide tools, and consider that a targeted gene-specific or disease-specific model may be
528 advantageous given sufficient training data.

529

530 **Conclusions**

531 We developed a machine-learning based variant classifier, CardioBoost, that is trained
532 particularly on disease-specific variants to interpret rare missense variant pathogenicity on
533 familial cardiomyopathies and inherited arrhythmias. In benchmarking with the existing
534 genome-wide variant classification tools, CardioBoost significantly distinguishes more
535 pathogenic and benign variants accurately with high confidence. Variants prioritised by
536 CardioBoost with high confidence are also validated to be significantly associated disease
537 state and predictive of patient survival in independent cohorts of cardiomyopathies. Our study
538 also emphasizes the pitfalls of relying on genome-wide variant classification tools and the
539 necessity to develop disease-specific variant classification tools to accurately interpret variant
540 pathogenicity on specific phenotypes and diseases. We also highlight the need to evaluate
541 variant classification tools in clinical settings including accuracies on high confidence
542 classification thresholds equivalent to accepted certainty required for clinical decision making,
543 variant association with disease and patients' clinical outcomes. To support accurate variant
544 interpretation in inherited cardiac conditions, we provide pre-computed pathogenicity scores
545 for all possible rare missense variants in genes associated with inherited cardiomyopathies
546 and arrhythmias (<https://www.cardiobase.org/cardioboost/>). The demonstrated development
547 and evaluation framework could be applicable to develop accurate disease-specific variant
548 classifiers and improve variant interpretation in a wide range of Mendelian disorders.

549

550

551

552

553

554

555

556

557

558

559 **List of Abbreviations**

560 CM: (Inherited) Cardiomyopathy

561 FNR: False Negative Rate

562 FPR: False Positive Rate

563 gnomAD: Genome Aggregation Database release 2.0

564 HGMD: Human Genetics Mutation Database Pro version 201712

565 HR: Hazard Ratio

566 IAS: Inherited Arrhythmia Syndrome

567 ICC: Inherited Cardiac Condition

568 NPV: Negative Predictive Value

569 OMGL: Oxford Medical Genetics Laboratory

570 OR: Odds Ratio

571 PPV: Positive Predictive Value

572 PR-AUC: Area under the Precision-Recall Curve

573 Pr: Probability of pathogenicity

574 ROC-AUC: Area under the Receiver Operating Characteristic Curve

575 SHaRe: Sarcomeric Human Cardiomyopathy Registry version 2019Q3

576 TNR: True Negative Rate

577 TPR: True Positive Rate

578 VUS: Variant of Uncertain Significance

579 DM: Disease Mutation

580 ExAC: Exome Aggregation Consortium release 0.3

581 LMM: Laboratory of Molecular Medicine

582 MCC: Matthews Correlation Coefficient

583 RBH: Royal Brompton & Harefield Hospitals NHS Trust

584

585 **Ethics approval and consent to participate**

586 Training and test data used in the development of the tool were either already in the
587 public domain, or do not constitute personal data, or were obtained with patient consent
588 and/or approval of the relevant research ethics committee or institutional review board.

589

590 **Availability of data and materials**

591 The source code and data to reproduce our model development and validation analyses can
592 be found on github at https://github.com/ImperialCardioGenetics/CardioBoost_manuscript.
593 The pre-computed pathogenicity scores for all possible rare missense variants in genes
594 associated with inherited cardiomyopathies and arrhythmias can be found at:
595 <https://www.cardiobase.org/cardioboost/>.

596

597 **Authors' contributions**

598 XZ, LB and JSW designed the study and interpreted results. XZ developed the study and
599 performed the analyses. RW, NW, RB, WM, AW, RG, NL, M.Ahmad, FM, AR, PT, EM, AdM,
600 CJP, DPO'R, SAC, PJRB curated RBH data and provided feedback. M.Allouba, YA and
601 MHY provided healthy volunteers data from Egypt Aswan Heart Centre and feedback. SMD,
602 EA, SDC, MM, ACP, DJ, CYH, IO, GTG, JJ, CS and JI contributed the patient data from
603 SHaRe cardiomyopathy registry. XZ, LB and JSW prepared the manuscript with input from
604 co-authors. All authors reviewed and approved the final manuscript.

605

606 **Funding**

607 The research was supported by the Wellcome Trust [107469/Z/15/Z; 200990/A/16/Z], British
608 Heart Foundation [NH/17/1/32725; RE/18/4/34215], Medical Research Council (UK),
609 National Institute for Health Research (NIHR) Royal Brompton Biomedical Research Unit,
610 NIHR Imperial College Biomedical Research Centre, Science and Technology Development
611 Fund (Egypt), Al-Alfi Foundation, Magdi Yacoub Heart Foundation, and the Alan Turing
612 Institute under the Engineering and Physical Sciences Research Council grant

613 [EP/N510129/1 to LB]. N.W. is supported by a Rosetrees and Stoneygate Imperial College
614 Research Fellowship. JI is the recipient of a National Health and Medical Research Council
615 (Australia) Career Development Fellowship (#1162929). C.S. is the recipient of a National
616 Health and Medical Research Council (Australia) Practitioner Fellowship (#1154992).

617

618 **Competing interests**

619 Professor Stuart Cook is a co-founder and director of Enleofen Bio PTE LTD, a company
620 that develops anti-IL-11 therapeutics. Enleofen Bio had no involvement in this study. James
621 Ware and Iacopo Olivotto have consulted for Myokardia, Inc. The ShaRe registry receives
622 research support from MyoKardia. Myokardia had no involvement in this study.

623 **Acknowledgements**

624 We thank Hugh Watkins and Kate Thomson (University of Oxford and Oxford Medical
625 Genetics Laboratory) for making data available and for constructive discussion, and Mark
626 Hazeboek (Maastricht University) for helpful feedback.

627 **References**

- 628 1. Richards, S. *et al.* Standards and guidelines for the interpretation of sequence
629 variants: a joint consensus recommendation of the American College of Medical
630 Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* **17**,
631 405–423 (2015).
- 632 2. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous
633 variants on protein function using the SIFT algorithm. *Nat. Protoc.* **4**, 1073–1082
634 (2009).
- 635 3. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human
636 missense mutations using PolyPhen-2. *Curr. Protoc. Hum. Genet.* **76**, 7.20.1-7.20.41
637 (2013).
- 638 4. Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. Mutationtaster2: Mutation

639 prediction for the deep-sequencing age. *Nature Methods* **11**, 361–362 (2014).

640 5. Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of
641 human genetic variants. *Nat. Genet.* **46**, 310–315 (2014).

642 6. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the Functional
643 Effect of Amino Acid Substitutions and Indels. *PLoS One* **7**, (2012).

644 7. Jagadeesh, K. A. *et al.* M-CAP eliminates a majority of variants of uncertain
645 significance in clinical exomes at high sensitivity. *Nat Genet* **48**, 1581–1586 (2016).

646 8. Ioannidis, N. M. *et al.* REVEL: An Ensemble Method for Predicting the Pathogenicity
647 of Rare Missense Variants. *Am. J. Hum. Genet.* **99**, 877–885 (2016).

648 9. Sundaram, L. *et al.* Predicting the clinical impact of human mutation with deep neural
649 networks. *Nat. Genet.* **50**, 1161–1170 (2018).

650 10. Anderson, D. & Lassmann, T. A phenotype centric benchmark of variant prioritisation
651 tools. *npj Genomic Med.* **3**, (2018).

652 11. Ruklisa, D., Ware, J. S., Walsh, R., Balding, D. J. & Cook, S. A. Bayesian models for
653 syndrome- and gene-specific probabilities of novel variant pathogenicity. *Genome
654 Med.* **7**, 5 (2015).

655 12. Ackerman, J. P. *et al.* The Promise and Peril of Precision Medicine: Phenotyping Still
656 Matters Most. *Mayo Clin. Proc.* **91**, 1606–1616 (2016).

657 13. Hastie, T., Tibshirani, R. & Friedman, J. *The elements of statistical learning: data
658 mining, inference and prediction.* (Springer, 2009).

659 14. Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and
660 supporting evidence. *Nucleic Acids Res.* **46**, D1062–D1067 (2018).

661 15. Cawley, G. C. & Talbot, N. L. C. On Over-fitting in Model Selection and Subsequent
662 Selection Bias in Performance Evaluation. *J. Mach. Learn. Res.* (2010).

663 16. Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the
664 ROC plot when evaluating binary classifiers on imbalanced datasets. *PLoS One* **10**,
665 (2015).

666 17. BRIER, G. W. VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF

667 PROBABILITY. *Mon. Weather Rev.* **78**, 1–3 (1950).

668 18. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the Areas under
669 Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric
670 Approach. *Biometrics* **44**, 837–845 (1988).

671 19. Stenson, P. D. *et al.* Human Gene Mutation Database (HGMD®): 2003 Update. *Hum.*
672 *Mutat.* **21**, 577–581 (2003).

673 20. Ho, C. Y. *et al.* Genotype and lifetime burden of disease in hypertrophic
674 cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry
675 (SHaRe). *Circulation* **138**, 1387–1398 (2018).

676 21. Lopes, L. R., Rahman, M. S. & Elliott, P. M. A systematic review and meta-analysis of
677 genotype-phenotype associations in patients with hypertrophic cardiomyopathy
678 caused by sarcomeric protein mutations. *Heart* **99**, 1800–1811 (2013).

679 22. Ingles, J. *et al.* Nonfamilial Hypertrophic Cardiomyopathy. *Circ. Cardiovasc. Genet.*
680 **10**, (2017).

681 23. Tavtigian, S. V. *et al.* Modeling the ACMG/AMP variant classification guidelines as a
682 Bayesian classification framework. *Genet. Med.* (2018). doi:10.1038/gim.2017.210

683 24. Ingles, J. *et al.* Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy
684 Genes. *Circ. Genomic Precis. Med.* **12**, (2019).

686 List of Figures with Legends

687 **Figure 1.** Training, and testing of CardioBoost, and definition of high-confidence variant
688 classification thresholds for performance assessment. (a) Construction of CardioBoost: (1)
689 After defining gold-standard data, (2) the dataset was split with a 2:1 proportion into training
690 and test tests. The training set was used for two rounds of cross-validation: first to optimise
691 individually a number of possible machine learning algorithms, and second to select the best
692 performing tool. (3) AdaBoost was the best performing algorithm, and forms the basis of
693 CardioBoost. (4) CardioBoost was benchmarked against existing best-in-class tools using the
694 hold-out test data, (5) a number of additional independent test sets, and (6) approaches based

695 on association with clinical characteristics of variant carriers that do not rely on a gold-standard
696 classification. **(b)** Illustrative distributions of predicted pathogenicity scores for a set of
697 pathogenic and benign variants obtained by a hypothetical binary classifier. In a clinical
698 context (based on ACMG/AMP guidelines), variants are classified into the following categories
699 according to the probability of pathogenicity: Pathogenic/Likely Pathogenic (Probability of
700 pathogenicity (Pr) ≥ 0.9), Benign/Likely Benign ($Pr \leq 0.1$) and a clinically indeterminate group
701 of Variants of Uncertain Significance with low interpretative confidence ($0.1 < Pr < 0.9$). **(c)** The
702 corresponding confusion matrix with the defined double classification thresholds $Pr \geq 0.9$ and
703 $Pr \leq 0.1$.

704

705 **Figure 2.** CardioBoost outperforms genome-wide prediction tools on hold-out test data. **(a-c)**
706 Precision-Recall Curves, ROC Curves and Brier Scores for cardiomyopathy variant
707 pathogenicity prediction. **(d-f)** Precision-Recall Curves, ROC Curves and Brier Score for
708 inherited arrhythmia variant pathogenicity prediction. In **(a)** and **(d)**, the marked point (●)
709 indicates the precision (positive predictive value) and recall (true positive rate) at the 90%
710 confidence level defined as clinically reportable in international guidelines. The dashed lines
711 demonstrate the performance of a random classifier.

712

713 **Figure 3.** CardioBoost variant classification stratifies key clinical outcomes in patients with
714 HCM. Clinical outcomes provide an opportunity to assess classifier performance independent
715 of the labels used in the gold-standard training data. **(a)** Kaplan-Meier event-free survival
716 curves are shown for patients in the SHaRe cardiomyopathy registry, stratified by genotype
717 as interpreted by CardioBoost. The patients carrying variants seen in the CardioBoost training
718 set were excluded in this analysis. Patients with pathogenic variants in sarcomere-encoding
719 genes have more adverse clinical events compared with patients without sarcomere-encoding
720 variants (“genotype-negative”), and compared with patients with sarcomere-encoding variants
721 classified as benign. Survival curves stratified by variants as adjudicated by experts (marked
722 in figure with prefix “SHaRe”) are shown for comparison. The composite endpoint comprised

723 the first incidence of any component of the ventricular arrhythmic or heart failure composite
724 endpoint, atrial fibrillation, stroke or death. **(b)** *P*-values of the log-rank test in the pairwise
725 comparisons of Kaplan-Meier survival curves. **(c)** Forest plot displays the hazard ratio (with
726 confidence interval) and *P*-value of tests comparing patients' survival stratified by CardioBoost
727 classification and SHaRe experts' classification based on Cox proportional hazards models.
728 **(d)** Kaplan-Meier event-free survival curves for patients in the SHaRe cardiomyopathy registry,
729 stratified by genotype as interpreted by M-CAP. The patients with variants predicted
730 pathogenic by M-CAP did not have significantly different survival time compared to those with
731 predicted benign variants (log-rank test *P*-value = 0.31). **(e)** Kaplan-Meier event-free survival
732 curves for patients in the SHaRe cardiomyopathy registry, stratified by genotype as interpreted
733 by REVEL. Patients with predicted pathogenic variants by REVEL did not have significantly
734 different survival time compared to those with predicted benign variants (log-rank test *P*-value
735 = 0.30).

736

737 **List of Tables**

738 **Table 1.** CardioBoost outperforms existing genome-wide machine learning tools for the
739 classification of hold-out test variants.

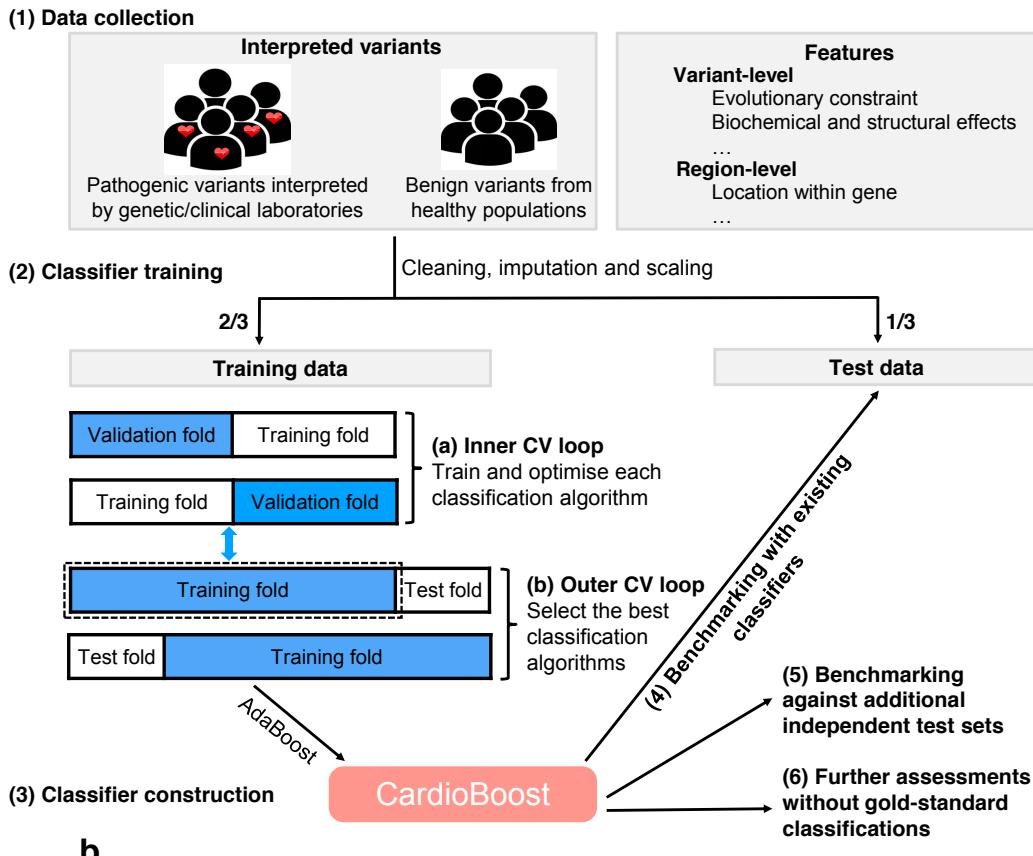
740 **Table 2.** Evaluation of performance on additional test sets.

741 **Table 3.** CardioBoost variant classification stratifies variants with increased disease Odds
742 Ratio for sarcomere-encoding genes.

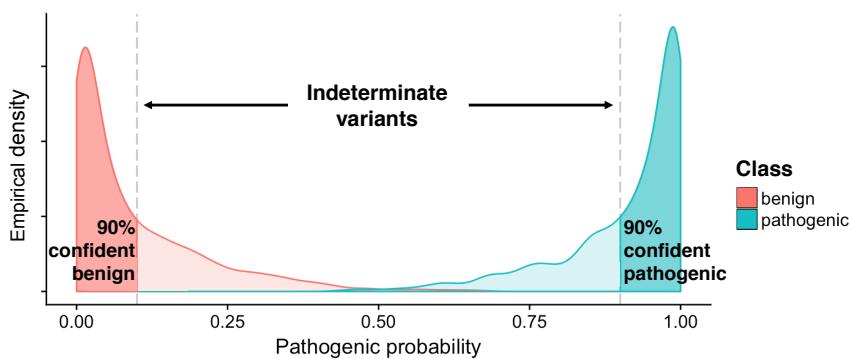
743

Disease-specific Variant Pathogenicity Classification

a



b



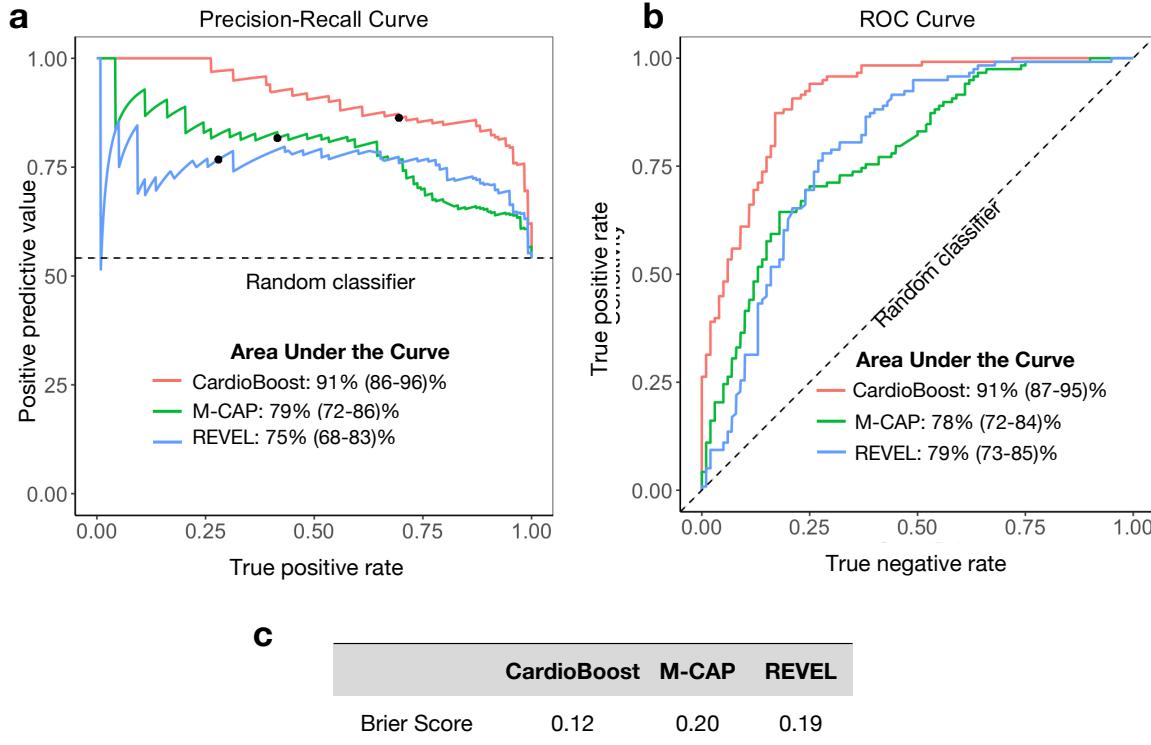
c

	Predicted pathogenic	Predicted benign	Indeterminate	
Actual pathogenic	TP	FN	T	
Actual benign	FP	TN	F	
	P	N		

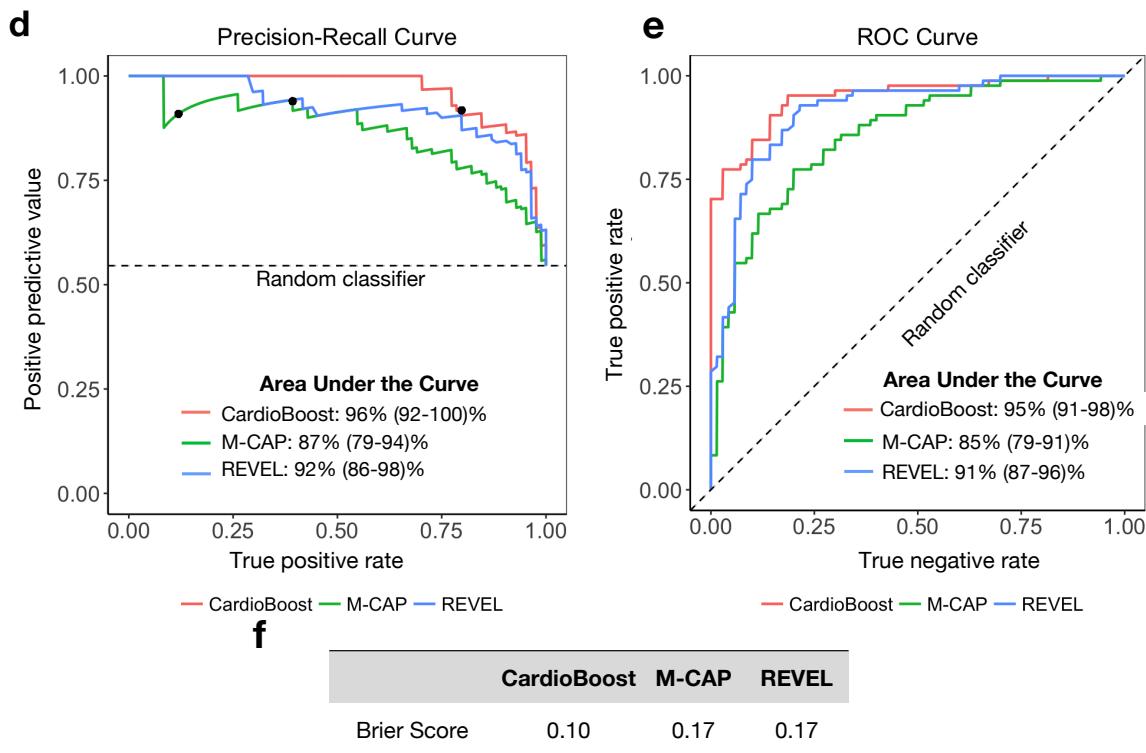
744

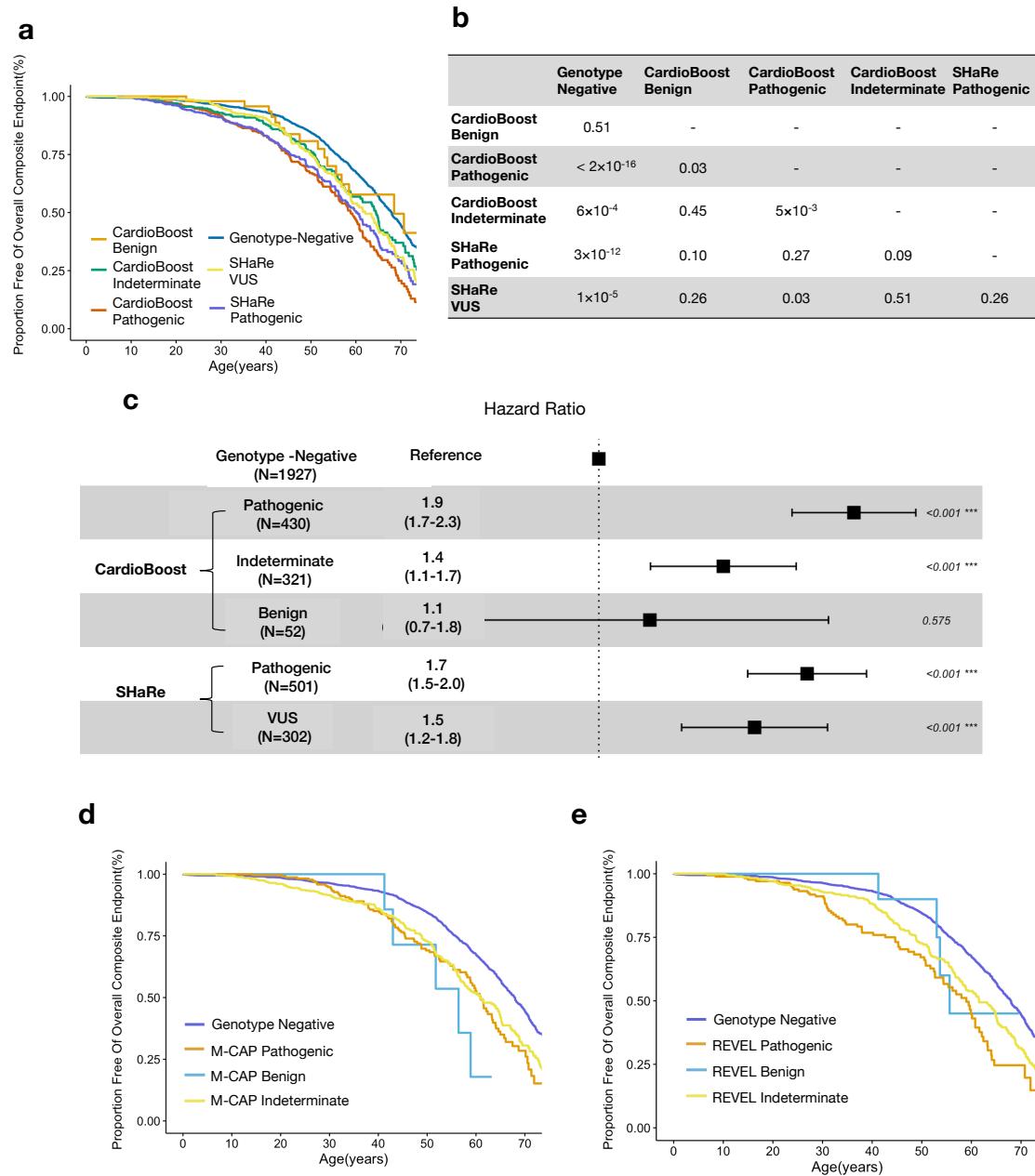
745 **Figure 1. Training, and testing of CardioBoost, and definition of high-confidence variant**
 746 **classification thresholds for performance assessment.**

Cardiomyopathies



Inherited Arrhythmias Syndromes





749

750 **Figure 3. CardioBoost variant classification stratifies key clinical outcomes in patients**
751 **with HCM.**

752

753

754

755

756

757

758 **Table 1 CardioBoost outperforms existing genome-wide tools for the classification of**
759 **hold-out test variants.** The performance of each tool is reported using the clinically relevant
760 variant classification thresholds: high-confidence pathogenic ($Pr \geq 0.9$), high-confidence
761 benign ($Pr \leq 0.1$), and indeterminate. For each predictive performance measure (see
762 **Supplementary Methods** for details) the best algorithm is highlighted in bold. Permutation
763 tests were performed to evaluate whether the performance of CardioBoost was significantly
764 different from the best value obtained by M-CAP or REVEL (significance levels: *** P -value \leq
765 0.001, ** P -value ≤ 0.01 , * P -value ≤ 0.05).

(%)	Cardiomyopathies			Arrhythmias		
	CardioBoost	M-CAP	REVEL	CardioBoost	M-CAP	REVEL
Overall accuracy	63.3***	28.4	17.4	81.2***	30.5	37
Proportion of variants classified with high confidence	70.2***	33.9	22	88.3***	33.8	40.3
Accuracy of high-confidence classifications	90.2	83.8	79.2	91.9	90.4	91.9
Proportion of variants with indeterminate classification	29.8***	66.1	78	11.7***	66.2	59.7
TPR	69.5***	41.5	28	83.3***	48.8	65.5
PPV	86.3	81.7	76.7	90.9	91.1	91.7
TNR	56***	13	5	78.6***	8.6	2.9
NPV	96.6	92.9	100	93.2	85.7	100

766
767
768
769

770 **Table 2 Evaluation of performances on additional test sets.** CardioBoost performance
771 was evaluated against additional variant sets. Four resources provided known pathogenic
772 variants (SHaRe cardiomyopathy registry, ClinVar (two-star submissions), a UK regional
773 genetic laboratory (Oxford Medical Genetics Laboratory – OMGL) and the Human Gene
774 Mutation Database – HGMD). Variants found in gnomAD population controls were expected
775 to be predominantly benign. Since gnomAD includes variants seen in the previous ExAC
776 dataset that was partially used to train M-CAP and REVEL, we tested against the subset of
777 variants in gnomAD that were not in ExAC. The number of variants in each set is shown in
778 brackets. The TPR is reported for pathogenic variant test sets (with threshold $Pr \geq 0.9$), and
779 the TNR for benign variant test sets (with threshold $Pr \leq 0.1$). For each performance
780 measure the best algorithm is highlighted in bold. Permutation tests were carried out to
781 evaluate whether the performance of CardioBoost was significantly different from the best
782 value obtained by M-CAP or REVEL (significance levels: *** P -value ≤ 0.001 , ** P -value \leq
783 0.01, * P -value ≤ 0.05)

784

785

786

787

788

789

790

791

792

793

794

795

796

797

Cardiomyopathies				
	Pathogenic test variants (TPR)			Benign/population test variants (TNR)
	SHaRe (N = 129)	ClinVar (N = 15)	HGMD (N = 145)	gnomAD (N = 2,003)
CardioBoost	62.0***	66.7	41.4***	51.5***
M-CAP	37.2	40.0	22.1	20.3
REVEL	24.0	53.3	22.8	5.6
Arrhythmias				
	Pathogenic test variants (TPR)			Benign test variants (TNR)
	OMGL (N = 77)		HGMD (N = 138)	gnomAD (N = 1,237)
CardioBoost	88.3***		72.5***	64.3***
M-CAP	59.7		39.9	9.8
REVEL	68.8		52.9	2.8

798

799

800

801

802

803

804

805

806

807

808

809 **Table 3. CardioBoost variant classification stratifies variants with increased disease Odds Ratio for sarcomere-encoding genes.** Odd
810 Ratios (ORs) and their confidence intervals were calculated for rare variants observed in sarcomere-encoding genes using SHaRe HCM cohorts
811 and gnomAD. We compared the ORs for three groups of variants: (i) all rare variants, (ii) rare variants predicted pathogenic by CardioBoost (Pr
812 ≥ 0.9 , and excluding those seen in our training data), and (iii) rare variants predicted as benign by CardioBoost ($Pr \leq 0.1$, and excluding those
813 seen in our training data). The ORs of variants classified by M-CAP and REVEL were also calculated. For most of the sarcomere-encoding genes,
814 variants classified as pathogenic by CardioBoost are enriched for disease-association, and those classified as benign are depleted, compared
815 with unstratified rare missense variants.

816

817

818

819

820

821

822

823

824

Gene symbol	all observed rare variants (95% CI)	CardioBoost pathogenic variants (95% CI)	CardioBoost benign variants (95% CI)	M-CAP pathogenic variants (95% CI)	M-CAP benign variants (95% CI)	REVEL pathogenic variants (95% CI)	REVEL benign variants (95% CI)
<i>MYH7</i>	14.5 (14.4-14.6)	14.7 (14.5-14.8)	1.2 (0.7-1.7)	14.8 (14.7-14.9)	-*	15.9 (15.7-16.1)	-*
<i>TNNI3</i>	12.6 (12.4-12.9)	14.0 (13.1-14.8)	3.3 (2.6-4.0)	1.0 (1 -1.1)	4.7 (3.7 – 5.8)	12.1 (11-13.2)	1.0 (0.9-1.1)
<i>TPM1</i>	11.2 (10.7-11.7)	33.7 (33.1 – 34.3)	1.4 (0.4-2.4)	1.0 (0.9 - 1.1)	0.5 (0 - 2.5)	38.9 (37-40.8)	-*
<i>ACTC1</i>	11.2 (10.9-11.5)	15.2 (14.6-15.8)	1.0 (0.9-1.1)	1.0 (0.9 - 1.1)	1.0 (0.9 - 1.1)	19.8 (19.1-20.6)	-*
<i>TNNT2</i>	6.0 (5.8-6.2)	17.7 (17.2-18.3)	2.8 (2.2-3.4)	1.0 (0.9 - 1.1)	1.0 (0 - 3)	25.8 (23.7-27.8)	28.9 (27.1-30.6)
<i>MYBPC3</i>	5.6 (5.5-5.6)	55.1 (54.8-55.4)	1.2 (0.9-1.4)	1.0 (0.9-1.1)	0.7 (0.2-1.2)	12.8 (12.3-13.4)	1.2 (0.8-1.6)
<i>MYL2</i>	5.2 (5.0-5.5)	3.8 (3.2-4.5)	1.0 (0.9-1.0)	1.0 (0.9-1.1)	0.2 (0-2.2)	1.7 (0.2-3.1)	1.0 (0.9-1.1)
<i>MYL3</i>	2.7 (2.3-3.0)	7.9 (7.1-8.8)	0.8 (0-1.7)	1.0 (0.9-1.1)	0.3 (0-2.3)	19.4 (18.5-20.2)	-*

825

*OR not calculated since the number of missense variants predicted as benign is zero in the gnomAD population.