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Abstract

Improved computational modeling of protein translation rates, including better
prediction of where translational slowdowns along an mRNA sequence may occur, is
critical for understanding co-translational folding. Because codons within a synonymous
codon group are translated at different rates, many computational translation models
rely on analyzing synonymous codons. Some models rely on genome-wide codon usage
bias (CUB), believing that globally rare and common codons are the most informative
of slow and fast translation, respectively. Others use the CUB observed only in highly
expressed genes, which should be under selective pressure to be translated efficiently
(and whose CUB may therefore be more indicative of translation rates). No prior work
has analyzed these models for their ability to predict translational slowdowns. Here, we
evaluate five models for their association with slowly translated positions as denoted by
two independent ribosome footprint (RFP) count experiments from S. cerevisiae,
because RFP data is often considered as a “ground truth” for translation rates across
mRNA sequences. We show that all five considered models strongly associate with the
RFP data and therefore have potential for estimating translational slowdowns. However,
we also show that there is a weak correlation between RFP counts for the same genes
originating from independent experiments, even when their experimental conditions are
similar. This raises concerns about the efficacy of using current RFP experimental data
for estimating translation rates and highlights a potential advantage of using
computational models to understand translation rates instead.

Introduction 1

A better understanding of the dynamics of protein translation (i.e., translation rates of 2

ribosomes at specific codon positions along mRNA sequences) has many biological 3

applications, such as enabling better understanding of co-translational protein folding 4

and aiding in gene design for heterologous expression. Ribosome footprinting (RFP, also 5

called ribosome profiling) is an experimental process often used to estimate ribosome 6
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tempo, i.e., the regional protein translation rate differences across a transcript [1, 2]. 7

Briefly, cells are frozen, homogenized, and the ribosomes purified. The mRNA regions 8

not covered by ribosomes are broken down with an enzyme, and the millions of 9

remaining short fragments of ribosome-protected mRNA are then sequenced. The 10

ribosome’s A-site, where the amino acid-tRNA molecule binds to its corresponding 11

codon, can then be estimated from alignments of these sequences to a reference; 12

relatively higher estimates of ribosome occupancy suggest a slower rate of translation. 13

A well studied feature of non-uniform translation rates, and therefore of higher 14

variability in RFP-inferred ribosome occupancy, is established codon preferences within 15

most species (“codon usage bias”, or CUB). Specifically, of the 20 standard amino acids, 16

18 have multiple codons that code for them. A group of codons that all code for the 17

same amino acid are referred to as synonymous codons, and individual synonymous 18

codons within genes have been shown to be translated at different rates [3–5]. Gene 19

expression using mRNAs with only synonymous codon substitutions has been shown to 20

alter protein folding mechanisms and the final protein structure formed [6–8]. A 21

common notion in the literature is that “rare” codons (i.e., relatively infrequently used 22

codons) are translated more slowly than other codons. There is debate, however, about 23

when to consider a synonymous codon as rare and therefore slow. For example, some 24

codon usage models such as %MinMax [9, 10] rely on genome-wide (“ORFeome”) CUB. 25

Other models have claimed that codon usage observed in highly expressed genes should 26

be the best indicator of a given codon’s translation speed, as highly expressed genes are 27

likely under selective pressure for efficient translation [11,12]. 28

Codon preferences under these two categories of model bias can be drastically 29

different. Take, for example, codons that code for the amino acid histidine (‘GAC’ and 30

‘GAT’). Under ORFeome codon bias, ‘GAC’ is used to code for histidine about 65% of 31

the time in S. cerevisiae. However, under the CAI model [12], which uses a pre-defined 32

set of highly expressed genes to determine codon usage information, this preference is 33

flipped – the codon ‘GAT’ is preferentially used about 64% of the time. This example of 34

codon preference swapping based on gene expression level is just one of many examples 35

of this phenomenon in S. cerevisiae. 36

Two recent studies have shown that rare codons (using different definitions for 37

“rare”) tend to occur at similar locations in orthologous genes found in a diverse 38

collection of species ([13] used ORFeome CUB; [14] used CUB from highly expressed 39

genes). These examples of rare codon co-occurrence imply a functional role for more 40

slowly translated codons. To date, however, no prior effort has evaluated CUB models 41

with respect to their ability to estimate locally slow translation. In this study we assess 42

five different computational models for estimating translation rates (and therefore 43

translational slowdowns) relative to experimental data (i.e., RFP data) that does the 44

same. While each model is based on a distinct set of assumptions (see Methods), all 45

result in a per-codon score where lower values imply slower translation than higher 46

values. Conversely, in the experimental data, higher footprint counts at a given codon 47

imply slower translation at said codon. 48

The contributions of this work are three-fold: 49

1. Because each considered computational model uses a sliding sequence-window to 50

estimate translation tempo, we use a proof-of-concept classifier to confirm the 51

window size that yields the most predictive power relative to RFP experimental 52

data. 53

2. We evaluate how well each model’s predicted slowly translated codon positions 54

relate to experimental RFP data to determine which model is best associated with 55

the data. 56

March 26, 2020 2/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.26.010488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010488
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. We compare RFP count distributions to quantify continuity between independent 57

RFP experiments, and comment on the implications of our results. 58

Methods 59

Data processing 60

In this work we analyze five CUB models using two distinct RFP data sets from S. 61

cerevisiae. The first data set, collected from [2] (NCBI GEO accession number 62

GSE106572), contains already preprocessed mRNA reads mapped to their respective 63

positions in the transcriptome. This accession contains RFP count data for 5,894 S. 64

cerevisiae genes. Next, we map gene IDs from this prior study to a legacy S. cerevisiae 65

ORFeome file containing 5,984 coding sequences, used to maintain consistency with 66

other ongoing work (this file can be found in the Supporting Information). A sequence 67

that matched in name and in length is assumed to be the same original sequence; this 68

mapping removes six genes with no name match in our ORFeome file, and another 47 69

based on differing lengths. This data set is hereafter referred to as the Tunney data. 70

The second RFP data set is obtained from [15] (NCBI Sequence Read Archive 71

SRR1049521). Unlike the first set, this data contains only the raw mRNA-Seq reads 72

from [15]’s RFP experiment, which we downloaded as a FASTA file. Per [2], these reads 73

are first pruned to remove any prefix of the ligated 3’ linker 74

TCGTATGCCGTCTTCTGCTTG from the end of the reads. Next, reads that align to 75

ncRNA and rRNA are also removed [2]. The remaining reads are then aligned to the 76

legacy ORFeome file using Bowtie2 [16], with options --norc (no reverse-compliment 77

alignments), -a (all valid alignments were reported), and --gbar 30 (to prevent gapped 78

alignments). These alignments are further pruned to remove alignments with more than 79

2 mismatches. Additionally, only reads of length 28-30nt are considered, as these allow 80

for the most accurate assignment of A-sites per the supplement in [1]. For reads that 81

map to a single position in the ORFeome, footprint counts are assigned per [1]’s 82

supplement. FPKM values for each gene are determined using RSEM [17], which 83

calculates estimated expression levels based on RNA seq alignments. Genes containing a 84

multimapped read are assigned a footprint count equal to the FPKM for that gene 85

divided by the sum total of FPKM values for all genes mapped to by said read. This 86

data set is hereafter referred to as the Weinberg data. 87

The following processing steps are applied to all RFP data examined in this study. 88

Because footprint counts at either end of a gene can be irregular, counts from the first 89

20 and last 20 codon positions of each gene are removed from consideration. 90

Additionally, genes must have more than 200 net footprint counts (i.e., the sum total of 91

the footprint counts in a gene must be greater than 200), and the number of positions 92

with non-zero counts must be larger than 100. The data is then normalized on a per 93

gene basis, with a gene’s raw RFP counts divided by the average RFP count in that 94

gene. These last four steps are inspired by [2] to help ensure data quality and 95

comparability across genes, and remove a total of 1,779 sequences (30%) from 96

consideration for the Tunney data and 1,173 sequences (19%) from the Weinberg data. 97

We also obtained 17 additional S. cerevisiae RFP data sets from 14 different studies 98

available from GWIPS-vis [18]. Specific details of the 17 additional RFP data sets can 99

be found in the Supporting Information. These data sets are chosen as a result of their 100

high degree of similarity in library construction methods, S. cerevisiae strain used, and 101

growth media. Nine of the 17 data sets contain biological replicates. After downloading, 102

the files are converted from bigWig format to bedGraph format (which lists a position 103

in the genome and respective footprint counts) using the bigWigToBedGraph binary 104

utility available at the UCSC Genome Browser ([19], genome.ucsc.edu). The footprint 105
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counts are then mapped to their positions in annotated genes; genome files and 106

annotations for the 2011 sacCer3 assembly are also available at the UCSC Genome 107

Browser. This mapping creates a RFP count vector for each gene for each data set. 108

These RFP count vectors are then subjected to the RFP filtering applied above. 109

In RFP data sets are not very precise we do a pairwise analysis of all 17 data sets. 110

For each data set pair, a Pearson correlation coefficient is calculated for each RFP count 111

vector of genes that appear in both data sets. These per-gene correlations are then 112

averaged for each data set pair. Unlike the analysis done throughout the rest of this 113

study, the analysis in this section does not map the RFP count vectors to the legacy 114

ORFeome file, as coding sequence information is not needed, only the RFP counts 115

themselves. 116

In the section Specific codons appear to be “slow” we examine how each of the 117

different forms of codon usage bias (CUB measures) relates to RFP-implied slow codons 118

from 14 GWIPS-vis data sets that use cycloheximide (CHX) to freeze the ribosomes 119

(the remaining three data sets use a different method). Because this analysis relies on a 120

mapping of RFP counts to individual codons, the post preprocessing RFP count vectors 121

from the 14 data sets used are mapped to the legacy ORFeome sequences for 122

consistency with the rest of the study. This extra mapping step removes no more than 123

six sequences from any of the 14 data sets. Additionally, this section makes a distinction 124

between CUB measures and CUB models. In short, CUB measures are different ways to 125

quantify per-codon CUB preferences. These measures are then used as input into CUB 126

models (that use sliding windows over sets of codons to make predictions along mRNA 127

sequences about translation rates). There are only four CUB measures because both 128

High-Phi %MinMax and High-Phi CAI (two of our five considered CUB models) are 129

based on ‘High-Phi’ CUB measurements. 130

The models considered in this study (ORFeome %MinMax, High-Phi %MinMax, 131

tAI, traditional CAI, and High-Phi CAI, defined in the Methods subsection Model 132

Analysis), require a number of parameters as input. ORFeome codon usage frequencies 133

for S. cerevisiae are obtained from HIVE-CUT [20]. CAI values are from [12]. tAI 134

values are obtained from [21]. ∆η and ∆M values, necessary for calculating codon usage 135

frequencies at varied expression levels per ROC-SEMPPR [11], are from Gilchrist 136

(personal communication). To determine highly expressed codon usage frequencies 137

(“High-Phi”, for use in High-Phi %MinMax and High-Phi CAI) per [11], phi was set to 138

5.623. 139

Window determination 140

All computational models analyzed in this work (outlined in Model analysis) utilize a 141

sliding window over a set number of codons within mRNA sequences. %MinMax, and 142

consequently the hybrid models we outlined in [22], have historically used a window size 143

of 17 [13], with the A-site location being centered in the window. 17 was arbitrarily 144

chosen as a compromise between smaller windows that were relatively noisy, and larger 145

windows that could dilute an individual codon’s contribution. Another study [2], which 146

aims to predict RFP counts (and therefore local translation rates), found that a window 147

of (-5, +4) around the A-site (i.e., 5 codons to the left of the A-site, the A-site codon 148

itself, and four codons to the right of the A-site totalling 10 codons) was best correlated 149

with empirical data in their neural network framework. This window size is in line with 150

biological understanding of translational mechanisms, as the ribosome spans 151

approximately 10 codons along an mRNA strand during translation [23]. 152

We check whether another window size would be more appropriate for this analysis. 153

Specifically, logistic regression (a common binary classification algorithm) is used to 154

predict, using a variety of input sliding window sizes, whether a given sequence position 155

would have a RFP count either above or below a cutoff of: 156
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1. The median RFP count in the data. 157

2. The average RFP count in the data. 158

3. The 90th percentile RFP count, defined as the RFP count resulting in the highest 159

10% of RFP counts belonging to a distinct class. 160

This process can be thought of as classifying positions as either translationally “fast” 161

or “slow,” using the above values as the cutoff between these two groups. Because of the 162

‘exponential decay’ shape of the RFP data, using the average RFP count as the cutoff 163

for “slow” results in 32% and 37% of the data being labeled as such in the Tunney and 164

Weinberg data, respectively. Intuitively, using the median and the 90th percentile RFP 165

count results in 50% and 10% of the data labeled as slow. Each of the three versions of 166

the classifier above are hereafter referred to as instances of the classifier. 167

Scikit-learn’s logistic regression classifier [24] is used with an input feature of a one 168

hot encoded vector in which each position contains the number of times a given codon 169

occurs in the specified window. Each instance of the model takes in the one hot encoded 170

vector and makes a prediction of ‘slow’ or ‘not slow’ for each codon position, based on 171

the codons in the window around it. For each instance of the classifier, the data is 172

randomly divided into five partitions such that each partition reflects the same ratio of 173

“slow”-to-“fast” labels as the entire data set. The partitions are kept constant across all 174

tested windows for a given classifier instance. Each classifier is trained and tested using 175

5-fold cross validation, and the classes are balanced during training to avoid overfitting. 176

In our analysis: true positives are sequence positions that are predicted as slowly 177

translated by the model and are labeled slowly translated by the RFP count data; true 178

negatives are sequence positions that are both model-predicted and RFP count labeled 179

as non-slowly translated; false positives are positions that are predicted to be slowly 180

translated by the model and are not labeled slowly translated by the RFP count data; 181

and false negatives are positions that are not predicted as slowly translated by the 182

model, but are labelled slowly translated by the RFP count data. Tested window sizes 183

vary from 1 to 21 for windows with the A-site positioned at the center. This range of 184

window sizes is chosen to include a number slightly larger than the codon window 185

historically used by %MinMax. When centering the A-site for even window sizes, the 186

latter of the two possible middle positions is chosen to include the best predictive 187

window from [2] (-5,+4) as an option in our analysis. 188

Model analysis 189

In this work we analyze five computational models related to codon usage (ORFeome 190

%MinMax [9], High-Phi %MinMax [22], High-Phi CAI [22], traditional CAI [12], and 191

tAI [25]) for their association with RFP-implied translational slowdowns. These models 192

represent a number of different theories relating codon usage to translation rates in the 193

literature. ORFeome %MinMax relies on genome-wide codon usage frequencies. tAI 194

uses estimated tRNA levels to determine translationally fast and slow codons. We 195

previously reported two hybrid expression bias models, High-Phi %MinMax and 196

High-Phi CAI, based on ROC-SEMPPR high expression (“High-Phi”) codon usage 197

estimates [11]. We showed that both models correlate equally as well with empirically 198

measured protein expression in S. cerevisiae [22] as traditional CAI, a model based on 199

CUB in highly expressed genes which is also considered. While tAI and CAI have 200

historically been used as global measures (i.e., one CAI or tAI value per gene), here we 201

implement sliding windows to calculate a local per-codon score, based on the codons in 202

the sliding window around said codon. This allows for comparison with the other 203

models and with the empirical RFP data. 204
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One of our goals is to determine which of our analyzed models shows the strongest 205

signal relative to RFP-implied translational slowdowns. To achieve this goal, we 206

compare the distribution of RFP counts in two created bins (i.e., a predicted ‘slow’ bin 207

and a predicted ‘non-slow’ bin) to determine whether the predicted slow bin contains 208

higher overall RFP counts than the non-slow bin. Specifically, for each model, we 209

analyze each gene in the cleaned data (see Data processing) by binning footprint counts 210

based on whether a count’s corresponding codon position is labeled slow or not by said 211

model (a ‘slow’ prediction results from a position’s model value being in the bottom 212

10% of all model values). The resulting two bins are then examined with a one-tailed 213

Wilcoxon rank-sum test to determine if the count distribution in the slow bin is 214

statistically significantly higher than in the non-slow bin. If statistical significance is 215

found, this implies that the model predicted slowdowns are associated with translational 216

slowdowns for the analyzed gene. To ensure enough data for the statistical test, both 217

bins are required to contain at least 30 counts. Because our overall goal is to look for a 218

data-wide association between experimental RFP counts and the models–and not to 219

find individual genes that show significant differences in slow/not slow RFP count 220

distributions–we rely on Fisher’s method (also called Fisher’s combined probability test) 221

to aggregate the results of individual Wilcoxon rank-sum tests (one test per gene) and 222

compute a single p-value per model/data set pair. To best balance data quantity with 223

data quality (RFP data for ‘denser’ genes – genes that have a higher number of average 224

footprint counts per position – are assumed to be less noisy), we run these tests on 225

three groups of sequences: 226

1. All sequences that met the criteria set by [2] (see Data Processing) that also 227

contain at least 30 counts in each bin. 228

2. The most dense 500 sequences in each RFP data set, as defined by the highest 229

average RFP count per codon position, per [2]. This step should remove some 230

noise found in RFP-count sparse genes. These sequences are then pruned to only 231

include sequences that contain at least 30 counts in each bin. 232

3. The intersection of the sets of sequences used by each model in group 1, to allow 233

for a fair comparison of p-values for each model. This set consists of 1,753 234

sequences for the Tunney data, and 1,914 sequences for the Weinberg data. 235

Additionally, to test whether any statistically significant signal found by Fisher’s 236

method is an artifact of our comparison framework, we repeat this analysis on group 3 237

after randomly shuffling the RFP counts for each gene 100 times per model, and report 238

the average combined p-value for each model. Shuffling should decouple any 239

relationships between individual codons and RFP-inferred occupancy and therefore is 240

an appropriate null model for this analysis. 241

Results 242

Window determination 243

In agreement with the original analysis of [2], large increases in classifier performance 244

are seen at window size 10 (from positions -5 to +4) across all instances of the classifier 245

on the same data. Tunney et al. [2] also noted experimental artifacts in their RFP 246

method that likely resulted in the codon positions -5 and +3 to be over-weighted. 247

Precision, recall, and F1 for an alternative (-5, +3) window are plotted in Fig. 1 as free 248

standing points at window size 9 for the Tunney data. In all instances of the classifier, 249

this new window outperforms the (-5, +4) window on the Tunney data, but not on the 250

Weinberg data. Peaks in F1 score for the Weinberg data are seen at window size 10 (-5, 251
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+4) in two of the three instances of the classifier. Because the window (-5, +3) is not as 252

predictive as (-5, +4) on the Weinberg data, we provide further empirical support for 253

the artifacts noted in [2]. Precision, recall, and F1 scores for each instance of the 254

classifier are shown in Fig 1. 255

Fig 1. Comparison of precision, recall, and F1 scores for different instances of the classifier.
For the Tunney data (A) clear jumps in performance are shown at window size 10 (from positions -5 to +4) for each classifier.
Also shown are individual points for precision, recall and F1 score for the window (-5, +3). For the Weinberg data (B), the
distinction between (-5, +3) values and (-5, +4) values is not as clear, although the window (-5,+4) does have the best F1
score on the Average and Median instances.

The use of empirical RFP data to parameterize the models is important since the 256

distinction between the suggested windows and the traditional window of 17 (-8, +8) is 257

sizeable. For example, the average Pearson correlation coefficient of ORFeome 258

%MinMax values calculated for the windows (-5, +4) versus (-8, +8) for each gene is 259

only 0.729, while the distinction between window size 9 (-5, +3) and window size 10 (-5, 260

+4) is minor – the model values resulting from these windows have an average Pearson 261

correlation coefficient of 0.943. For the remainder of this analysis we use the window 262

size 10 (-5, +4) with each model. 263

Model analysis 264

On the Tunney data, ORFeome %MinMax, tAI, and High-Phi CAI show a much 265

stronger signal than High-Phi %MinMax and traditional CAI. However, the Weinberg 266

data indicates a strong signal for all of the models. Distributions of individual p-values 267

for All Sequence ORFeome %MinMax and Intersect CAI (the most and least 268

statistically significant tests for the Tunney data, respectively) are shown in Fig. 2. 269

Results from Fisher’s method, which aggregates the individual gene’s p-values for each 270

model, are shown in Table 1. 271

One notable result is that even the model that performs worst has a peak in its 272
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Fig 2. Distribution of p-values for two representative tests on the Tunney
data.
The test resulting in the most significant combined p-value (All Sequence ORFeome
%MinMax, left) and the test resulting in the least significant combined p-value
(Intersect Traditional CAI, right).

individual gene p-values on the left hand side of the graph in Fig. 2, indicating a large 273

number of individual genes that have a detectable, significant difference in translational 274

tempo in line with model predictions. Additionally, the models are generally distinct in 275

the genes that show a significant signal between predicted slow and non-slow positions, 276

shown in Fig. 3. That the various models are not finding strong associations between 277

their predictions and the empirical data implies that they are different enough to 278

warrant the analysis performed here.

Fig 3. Models are relatively distinct in the genes they determine have
significant associations with RFP data.
In the Intersect partition, genes are grouped based on the number of models that
predict each gene to have a significantly higher RFP count distribution in predicted
slow positions than in predicted fast positions (p < 0.01).

279

RFP data sets are not very precise 280

Our underlying hypothesis is that codon usage not only has a significant association 281

with slow translation–as shown above–but is also predictable and repeatable. It follows 282

that, for a given gene in a given species, the translation tempo across the mRNA strand 283

(represented by said gene’s RFP count vector in the experimental data) would be highly 284

correlated across different data sets. If this were the case, findings from studies that use 285

RFP data to predict local translation rates (e.g., [1, 2]) would be largely independent of 286
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Table 1. The combined p-values and the number of sequences that passed filtering for each data partition and model pair
(see Methods). For the “Random” test, the reported p-value is the average p-value of 100 iterations of the null model
described in the Methods. The “Intersect” partition is the intersection of the genes used for each model in “All Sequences”.

Tunney Data Weinberg Data
Test Model # of Sequences Combined p-value # of Sequences Combined p-value
All Sequences ORFeome %MinMax 2,614 p = 1 ∗ 10−233 2,889 p < 2 ∗ 10−308

All Sequences High-Phi %MinMax. 2,462 p = 4 ∗ 10−43 2,794 p < 2 ∗ 10−308

All Sequences High-Phi CAI 2,368 p = 5 ∗ 10−88 2,707 p < 2 ∗ 10−308

All Sequences Traditional CAI 2,417 p = 3 ∗ 10−25 2,745 p < 2 ∗ 10−308

All Sequences tAI 2,330 p = 6 ∗ 10−153 2,671 p < 2 ∗ 10−308

Most Dense 500 ORFeome %MinMax 102 p = 6 ∗ 10−30 101 p = 1 ∗ 10−42

Most Dense 500 High-Phi %MinMax 38 p = 2 ∗ 10−34 12 p = 4 ∗ 10−9

Most Dense 500 High-Phi CAI 37 p = 4 ∗ 10−78 7 p = 1 ∗ 10−12

Most Dense 500 Traditional CAI 36 p = 2 ∗ 10−82 9 p = 2 ∗ 10−13

Most Dense 500 tAI 38 p = 2 ∗ 10−57 10 p = 3 ∗ 10−15

Intersect ORFeome %MinMax 1,753 p = 2 ∗ 10−128 1,914 p < 2 ∗ 10−308

Intersect High-Phi %MinMax 1,753 p = 4 ∗ 10−23 1,914 p < 2 ∗ 10−308

Intersect High-Phi CAI 1,753 p = 6 ∗ 10−50 1,914 p < 2 ∗ 10−308

Intersect Traditional CAI 1,753 p = 2 ∗ 10−8 1,914 p < 2 ∗ 10−308

Intersect tAI 1,753 p = 4 ∗ 10−90 1,914 p < 2 ∗ 10−308

Random ORFeome %MinMax 1,753 p = 0.983 1,914 p = 0.732
Random High-Phi %MinMax 1,753 p = 0.970 1,914 p = 0.770
Random High-Phi CAI 1,753 p = 0.986 1,914 p = 0.757
Random Traditional CAI 1,753 p = 0.977 1,914 p = 0.818
Random tAI 1,753 p = 0.985 1,914 p = 0.780

the data set used. However, we find that RFP count vectors (post data preprocessing - 287

see Methods) from genes assayed in independent studies are not generally well 288

correlated (Fig. 4), even if their experimental conditions are similar (Fig. 5). The 289

average Pearson correlation coefficient between the same gene in our two initial data 290

sets (Tunney and Weinberg) is only 0.208 (Fig. 4). 291

Fig 4. Correlation of Weinberg and Tunney data sets.
Distribution of Pearson correlation coefficients for RFP count vectors of individual
genes that appear in the Tunney and Weinberg data sets.

To further determine whether this problem is pervasive, we analyze 17 additional 292

data sets downloaded from GWIPS-vis [18]. These 17 data sets are chosen because of 293
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Fig 5. Correlations of 17 RFP data sets.
(A) Average correlations between genes for data sets that use CHX to freeze the ribosome during translation. (B) Average
correlations between genes for data sets that do not use CHX to freeze the ribosomes during translation. (C) Average
correlation between genes between data sets that use CHX (y-axis) and data sets that do not (x-axis).

the overall similarity of their experimental conditions (see Methods). 14 of the 17 use 294

CHX to freeze the ribosomes during translation, while the other three data sets do not. 295

Using the same comparison criteria as on the Tunney and Weinberg data, the pairwise 296

correlations between each pair of the additional data sets (over all genes that appear in 297

both data sets in the given pair) are shown in Fig. 5. For the data sets that use CHX to 298

freeze the ribosome (Fig. 5A), the average Pearson correlation coefficient is only 0.1596, 299

despite these data sets sharing similar experimental conditions. For the data sets that 300

do not use CHX to freeze the ribosome (Fig. 5B), the average Pearson correlation 301

coefficient is 0.1769, despite these data sets sharing similar experimental conditions. 302

The average Pearson correlation coefficient across these two groups, whose experimental 303

conditions differ, is 0.1644 (Fig. 5C). The distributions of correlations from the three 304

groups of pairwise correlations depicted in Fig. 5 show no statistically significant 305

differences from each other (using a pair-wise Wilcoxon rank-sum test with significance 306

threshold of 0.05). That is, the different RFP data sets correlate equally poorly no 307

matter whether they have similar or dissimilar experimental conditions. 308

It should be noted that we are not the first group to observe a discrepancy between 309

independent ribosome profiling experiments (i.e., between RFP data originating from 310

different studies), although we are the first to compare RFP counts in the ORFeome 311

across independent data sets; for further analysis on the subject see [26–28]. 312

Specific codons appear to be “slow” 313

One notable result from our Window Analysis is that the highest precision scores for all 314

instances of the classifier occur when only the A-site is used (i.e., when the window size 315

is one) on the Tunney data (Fig. 1). Biochemically this makes sense – it is expected 316

that the strongest influence on translation rate is the A-site codon, as the ribosome’s 317

A-site is where tRNA binding occurs. 318

To more comprehensively examine whether specific codons are enriched at the 319

A-sites of high RFP count positions, we conducted a deeper, per-codon analysis of the 320

14 independent GWIPS-vis data sets that use CHX and have similar experimental 321

conditions. For each of these 14 data sets, each non-stop codon’s frequency in the top 322

10% of normalized RFP counts is compared to that same codon’s frequency in the 323

bottom 90% of footprint counts. These proportions are compared using Fisher’s exact 324

test with a p-value significance threshold of 8.2 ∗ 10−4 (.05/61). 325

In total, 10 codons are found to be significantly over-enriched in high RFP count 326
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positions in at least 10 of the data sets (i.e., at least 70% of the 14 data sets analyzed), 327

implying that these codons are generally translated more slowly. Additionally, another 328

13 codons are found to be significantly under -enriched in high RFP count positions in 329

at least 10 of the data sets, implying that translational slowdowns generally do not 330

occur at these codons. This large number of codons with significant frequency 331

differences in high RFP count positions further suggests that individual codons have a 332

substantial effect on translation, consistent with the belief that a ribosome’s A-site 333

should have the largest effect on translation tempo. 334

Table 2. Codons that are significantly over-enriched in high RFP count positions in at
least 10 of the 14 data sets considered (% Enriched > 70). These codons are
significantly enriched at the estimated A-site in the top 10% of normalized footprint
counts using a Bonferroni corrected p-value of 8.2 ∗ 10−4 (.05/61). These codons are
also analyzed with respect to each bias measure, such that a larger negative number
indicates a stronger correspondence with the model. Note that there are only four bias
measures listed (compared to the five codon usage models analyzed earlier) as the
High-Phi %MinMax and High-Phi CAI models use the same underlying CUB measure.

Codon Information Codon Usage Bias Measure
Codon AA % Enriched ORFeome High-Phi CAI tAI
GGA G 0.857 -0.024 -0.240 -0.248 -0.146
GAT D 0.857 0.151 0.020 -0.144 -0.195
CCT P 0.857 0.060 -0.052 -0.206 -0.130
CCG P 0.857 -0.126 -0.245 -0.248 -0.058
CCA P 0.857 0.157 0.522 0.695 0.351
GAC D 0.786 -0.151 -0.020 0.144 0.195
GGT G 0.714 0.205 0.678 0.725 -0.008
GGC G 0.714 -0.053 -0.197 -0.230 0.302
GAG E 0.714 -0.201 -0.386 -0.484 -0.184
ACG T 0.714 -0.112 -0.238 -0.247 -0.160

Total -0.093 -0.159 -0.244 -0.032

To determine how well codon enrichment in high RFP count positions align with 335

each model’s individual CUB measure, we assess each model’s underlying CUB measure 336

with respect to the codons that are over- and under-enriched in high RFP count 337

positions. Because “rare” codons are thought to be translated more slowly, a measure 338

that has low codon usage frequencies for the over-enriched (i.e., RFP-implied slow) 339

codons is likely a good predictor of individual codon’s translation rates. Conversely, for 340

under-enriched codons (i.e., RFP-implied faster codons), a measure that has high codon 341

usage frequencies is likely a good predictor of codon translation rates. To test this, we 342

subtract the frequency of each enriched codon under each CUB measure (i.e., ORFeome, 343

High-Phi, traditional CAI, and tAI) with its expected frequency if synonymous codons 344

were used at random (i.e., for a given codon, 1/(numberofsynonyms) in said codon’s 345

synonymous group). Note that High-Phi CUB is the same for both High-Phi %MinMax 346

and High-Phi CAI – the underlying math is what differentiates the two models. This 347

results in analyzing four measures of CUB, as opposed to the five different models that 348

were analyzed in previous sections. For over-enriched codons in high RFP count 349

positions, a CUB measure predicting these codons well (by having a small estimated 350

frequency for each) will result in a larger negative number than a CUB measure 351

performing less well. Conversely, for under-enriched codons, we would expect a better 352

CUB measure to result in a larger, positive value. Results for each over-enriched codon, 353

as well as the sum total for each CUB measure on over-enriched codons, can be seen in 354

Table 2. While all CUB measures have some association with the enriched codons (due 355
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to the majority of codons under each model bias measure having a negative weight), the 356

presence of a few very commonly used codons in each form of CUB prevent any of the 357

CUB measures from differentiating themselves at aligning with RFP-implied slow 358

codons. However, for significantly under-enriched codons, the high expression measures 359

of CUB (CAI and High-Phi, scoring 2.412 and 1.963 respectively) outperformed tAI 360

CUB (1.393) which in turn beat ORFeome CUB (0.317). This differentiation suggests 361

that existing CUB measures are more adept at predicting which codons are likely to be 362

translated efficiently, rather than which codons may cause translational slowdowns. 363

Discussion 364

In this study, we were able to find broad consistencies across many independent S. 365

cerevisiae RFP data sets, despite also finding an overall lack of correlation between 366

count vectors of individual genes across studies. This implies that some biological signal 367

persists through the noise contained in RFP data sets. 368

First, when determining the codon window size to consider with our computational 369

codon usage models, all instances of the classifier find that a window size between eight 370

and 10 (specifically the windows (-4, +3), (-5, +3), and (-5, +4)) are the most predictive 371

of RFP counts. While all of these windows are very similar to each other, they are very 372

distinct from the window size traditionally used to study local translation rate – 17 (-8, 373

+8). Future uses of these sliding window codon usage models should rely on a smaller 374

window than has historically been used; the window (-5, +4) is used in this analysis. 375

Using the window determined above, we proceed to examine five sliding window 376

models for local translation rate to determine how well associated they are with RFP 377

counts. Because of known effects of codon usage on overall protein folding in a cell [29], 378

we are particularly interested in very low sliding window-based estimates (i.e., values in 379

the bottom 10% for each model) and their association with high RFP counts, which 380

imply slow translation at these positions. We calculate per-gene p-values that are then 381

aggregated to determine the overall strength of signal between a model and RFP count 382

data. Although the five models tested rely on different types of CUB measures, we find 383

that all had statistically significant signal on both initial data sets. Interestingly, the 384

three models that perform the best on the Tunney data (ORFeome %MinMax, High-Phi 385

CAI, and tAI) are all based on different underlying assumptions of CUB. This supports 386

the prior findings of [13, 14], who independently uncovered co-occurrence of rare codons 387

(indicating potential functional roles for these codons) within orthologous proteins – one 388

using ORFeome CUB and one using highly expressed CUB. 389

We next obtained a more comprehensive and comparable collection of RFP data 390

consisting of a total of 17 data sets from highly similar yeast strains, growth media, and 391

experimental conditions (see Methods). Through a pairwise analysis of these data sets, 392

we show that RFP data between independent experiments are highly variable, even 393

when experimental conditions are similar. Bioinformaticans, including ourselves, assume 394

larger scale consistency versus the low actual correlations presented in Fig. 4 and Fig. 5. 395

However, these results suggest that translation tempo can differ across experiments, 396

even when experimental conditions are kept largely constant. These results further 397

emphasize the claims of previous studies [26–28] that improvement is needed in the 398

ribosome profiling method. 399

Finally, using a subset of the additional 17 data sets that were the most 400

experimentally similar (14 total), we identify 10 codons that are significantly enriched in 401

the top 10% of RFP counts in at least 70% of the analyzed data sets (Table 2). An 402

additional 13 codons are found to be significantly under enriched in the top 10% of 403

normalized RFP counts. These findings support the strong effect that A-site codon 404

usage has on translation – both slow and non-slow. We analyze how these significantly 405
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over- and under-enriched codons compare to CUB measures tested in this work. While 406

all of the measures considered show some degree of correspondence, in agreement with 407

earlier studies ([13, 14]) and our Fischer’s tests shown in Table 1, no form of CUB stood 408

out when predicting translationally slow codons. However, the same test on significantly 409

under-enriched codons showed a much stronger correspondence with CUB from highly 410

expressed genes (i.e., “High-Phi” and “CAI”). 411

In Table 2, one of the codons with the worst (most positive) scores across all models 412

is ‘CCA’, which is the most abundant proline (amino acid ‘P’) codon across all models. 413

In fact, proline is known to substantially slow translation [30,31]. This observation is 414

consistent with our results (as three of the four proline codons are over-enriched in high 415

RFP count positions in both data sets) and suggests that amino acid effects on 416

translation can overshadow individual codon effects. 417

Conclusion 418

Local translation rate is thought to have significant effects on co-translational folding. 419

One established proxy for local translation rate is biased codon usage, where rare 420

codons are assumed to be translated more slowly than common codons. There is some 421

debate, however, about how to define rare and common. ORFeome CUB defines rare 422

and common codons by usage rates across all predicted genes for a given organism. On 423

the other hand, highly expressed CUB defines rare and common codons by usage rates 424

only in highly expressed genes. Both forms of CUB have support in the literature. Here 425

we test five different computational codon usage models (in which both types of CUB 426

are represented) for their association with high RFP count positions in S. cerevisiae. 427

Because the computational models tested in this study rely on sequence sliding windows, 428

we also use a proof-of-concept classifier to determine which window is most predictive of 429

RFP count data, and therefore a better proxy for translation tempo. 430

We independently confirm that a sequence window of positions (-5, +4) around the 431

A-site is most predictive of translation rate. We also show that computational codon 432

usage models from all three tested forms of underlying CUB (ORFeome, highly 433

expressed, and predicted tRNA concentration) are globally associated with 434

experimentally inferred translational slowdowns (i.e., high RFP count positions). 435

Additionally, we show that 10 codons are significantly over-enriched in these high RFP 436

count positions, implying that they are more slowly translated than other codons. We 437

also found 13 codons that are significantly under-enriched in very high RFP count 438

positions, and that these codons are better associated with models implementing CUB 439

from highly expressed genes than genome-wide measures. All models discussed in this 440

work have been incorporated into a novel experimental approach (based on [10]) to 441

determine which model performs best at estimating local translation rates in vivo. 442

Finally, we also support prior concerns about the ability of ribosome footprinting to 443

define translation rates at a per-codon resolution. Future work in this area, which can 444

be aided by our computational approach, is needed to determine the biological factors 445

that affect translation tempo. 446
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