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We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major brain cell types from 

hippocampus and dorsolateral prefrontal cortex (dlPFC) of subjects with and without Alzheimer’s Disease 

(AD). We confirm that single nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD) 

prefer to reside in the microglial histone acetylome, which varies most strongly with age. We observe 

acetylation differences associated with AD pathology at 3,598 peaks, predominantly in an 

oligodendrocyte-enriched population. Strikingly, these differences occur at the promoters of known early 

onset AD (EOAD) risk genes (APP, PSEN1, PSEN2, BACE1), late onset AD (LOAD) risk genes (BIN1, 

PICALM, CLU, ADAM10, ADAMTS4, SORL1 and FERMT2), and putative enhancers annotated to other 

genes associated with AD pathology (MAPT). More broadly, acetylation differences in the 

oligodendrocyte-enriched population occur near genes in pathways for central nervous system 

myelination and oxidative phosphorylation. In most cases, these promoter acetylation differences are 

associated with differences in transcription in oligodendrocytes. Overall, we reveal deregulation of known 

and novel pathways in AD and highlight genomic regions as therapeutic targets in oligodendrocytes of 

hippocampus and dlPFC. 

INTRODUCTION: 

Alzheimer’s Disease (AD) is the most common age-related neurodegenerative disorder1. The hallmarks of 

AD pathology are numerous and include neuronal loss, synaptic dysfunction, gliosis, and the 

accumulation of intercellular plaques of amyloid-β (Aβ) protein and intracellular neurofibrillary tangles 

(NFT) of phosphorylated tau protein (MAPT) 2. 

Aβ plaques are formed by differential proteolytic cleavage of the amyloid β precursor protein (APP)3–6 by 

the α-secretase, β-secretase and γ-secretase enzymes7. Studies of individuals affected by early onset (<60 

yrs.) familial AD (EOAD) have identified causal autosomal dominant mutations primarily in Aβ 

processing proteins presenilin-1 (PSEN1) and presenilin-2 (PSEN2), which are part of the γ-secretase 

complex8–10, but also causal mutations or duplications in APP itself11–13. However, EOAD only accounts 

for a small minority of AD cases. Late onset sporadic AD (LOAD) is more frequent and accounts for up 

to 99% or more of AD cases. While increased age is the strongest risk factor and several environmental 

factors also confer risk for LOAD, its heritability has been estimated to be as high as 79%14. 

In contrast to EOAD, genetic risk for LOAD is less well understood. The ε4 allele comprising mutations 

in two codons in Apolipoprotein E (APOE) has been identified as the strongest genetic risk factor for 

LOAD15–19. More recently, genome wide association studies (GWAS)20–27 have reproduced the APOE 

association and also identified 28 other unique loci harboring genetic variants which increase risk for 

developing LOAD26–28. Strikingly, from the set of most significant (or “sentinel”) single nucleotide 

polymorphisms (SNPs) derived from GWAS and SNPs in strong linkage disequilibrium (LD) with them, 

only 2% localize in known exons. Since these SNPs do not alter protein sequence, it is difficult to trace 

their functional importance in disease onset and progression. 
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To this end, epigenomic studies are revealing that these SNPs likely alter the function of gene regulatory 

elements in AD. 26% of these SNPs localize in regions containing promoter histone marks, 69% lie in 

enhancer states and 46% lie in DNase I accessible sites26,29. Further, previous research shows that the 

human orthologues of enhancers with increased activity in the CK-p25 mouse model of 

neurodegeneration overlap with non-coding AD associated SNPs30. Recently, these SNPs were also found 

to be primarily contained within microglial enhancers31. Furthermore, deregulation of histone 3 lysine 27 

acetylation (H3K27ac) and histone 4 lysine 16 acetylation (H4K16ac) was found at loci harboring non-

coding AD associated SNPs in the human postmortem AD brain32,33. Beyond AD risk loci, changes in 

histone 3 lysine 9 acetylation (H3K9ac) driven by tau pathology have also been observed in the aging and 

AD brain34.  

Gene regulatory elements, especially enhancers, are highly context-specific with differing activities 

across tissues, cell types and environments35. Therefore, it is likely that different cell types in the brain 

orchestrate different regulatory programs during AD progression. Indeed, many LOAD risk loci are 

primarily implicated in immune function, suggesting differential AD-associated epigenomic mechanisms 

in immune cell types such as microglia versus neuronal cell types30,36–38. Notably, many of the above-

mentioned studies were performed utilizing whole brain tissue, and not all were performed with tissue 

from AD patients. Therefore, these epigenomic experiments obscure changes that occur within specific 

cellular populations. 

 

We address these issues by profiling individual cell types deregulated during AD. We utilize 

fluorescence-activated nuclei sorting (FANS)39 to purify neuronal, microglial and other glial populations 

in the dorsolateral prefrontal cortex (dlPFC) and hippocampus of subjects with and without AD 

pathology. Then, we perform chromatin immunoprecipitation and sequencing (ChIP-seq) for H3K27ac, 

which is associated with active promoters and enhancers40, to mark putative regulatory elements (peaks) 

in these populations. 

 

In addition to establishing the first genome-wide H3K27ac profiles in neuronal, microglial, and 

oligodendrocyte-enriched glial populations from persons with and without AD, our cell type-specific 

approach confirms enriched H3K27ac signatures at GWAS derived LOAD risk loci primarily in 

microglia. Further, in both the hippocampus and dlPFC, we find strong Aβ-associated deregulation of 

H3K27ac in the oligodendrocyte-enriched glial population near AD risk loci and myelin-associated genes. 

These findings suggest distinct gene-regulatory mechanisms of AD onset and progression in different 

brain cell types and highlight specific cell types, loci and pathways for future study. 

RESULTS: 

Fluorescence-activated nuclei sorting and H3K27ac ChIP-seq of dlPFC and hippocampus 

We obtained 10 dlPFC and 16 hippocampus samples from participants in either the Religious Orders 

Study or Rush Memory and Aging Project (ROSMAP)41–43 (mean age = 87.84, s.d.=7.75, range=74.77-

101.94). 5 of 10 dlPFC samples and 10 of 16 hippocampus samples displayed high Aβ load across the 

brain, indicative of LOAD (mean percentage area occupied by Aβ across 8 brain regions = 7.30, s.d = 

4.14, range = 2.31-15.40) (Supplementary Table 1, Supplementary Figure 1). The brains with Aβ load 

also displayed high overall neurofibrillary tangle density (mean density of NFT across 8 brain regions = 

22.81, s.d. = 13.73, range = 1.80-61.01). The self-reported sex of 6 of the 10 dlPFC samples was male, 

and the remaining 4 were female. Of the 16 hippocampus samples, the self-reported sex of 6 was male, 

and the remaining 10 were female. 
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For each sample, we used FANS to collect NeuN+, Pu.1+, and NeuN-/Pu.1- nuclei to obtain putative 

neuronal, microglial, and other glial populations, respectively (Figure 1a, Supplementary Figure 2)39. 

On each collected population, we performed ChIP-Seq for H3K27ac, which is associated with 

transcriptionally active promoters and enhancers40. We assessed sample quality by calling regions of 

H3K27ac enrichment (peaks) for each individual sequencing sample and computing quality metrics based 

on standard ENCODE guidelines44. We detected an average of 91,614 (s.d = 21,197, range=50,662-

149,681) peaks per sample. These peaks overlapped with a large fraction of the sequencing reads (mean 

FRiP = 0.256, s.d. = 0.136, range=0.047-0.567), comparable to previous high quality H3K27ac profiles35. 

We curated samples further based on normalized strand cross correlation (NSC) and relative strand cross 

correlation (RSC) measures to ensure that we retained the highest quality sequencing samples for all 

downstream analysis (Methods, Supplementary Figure 1). 

Then, for each brain region and each cell population, we used ENCODE recommended approaches44 to 

call H3K27ac peaks that are reproducible across subjects with Aβ load, and separately, peaks that are 

reproducible across subjects without Aβ load. We created a union of all these peak sets representing the 

combined histone acetylome of the three profiled cell populations in the dlPFC and hippocampus of 

subjects with and without Aβ load (Supplementary Table 2). We then used DESeq245 to obtain peaks 

that are significantly hyperacetylated in (i) the NeuN+ population relative to the Pu.1+ and NeuN-/Pu.1- 

populations, (ii) the Pu.1+ population relative to the NeuN+ and NeuN-/Pu.1- populations, and (iii) the 

NeuN-/Pu.1- population relative to NeuN+ and Pu.1+ populations (FDR q<0.05). We performed principal 

component analysis (PCA) of all samples and observed groupings primarily based on FANS population, 

with 53% of the variance explaining the difference between NeuN+ samples and other samples 

(Supplementary Figure 3). 

Active promoters and enhancers in neurons, microglia and oligodendrocyte enriched glia 

As a first step to assess the efficacy of FANS sorting, we generated genome browser tracks of H3K27ac 

signal for each population by averaging signal across control subjects displaying no Aβ. We visualized 

these genome browser tracks near genes encoding the cell type-specific proteins used to sort out neurons 

and microglia – RBFOX3 which encodes NeuN, and SPI1 which encodes Pu.1 (Figure 1b). As expected, 

we observed average hyperacetylation at the locus containing RBFOX3 in the NeuN+ samples and 

average hyperacetylation in the Pu.1+ samples at the locus containing SPI1, suggesting successful sorting. 

Interestingly, we observed hyperacetylation in the NeuN-/Pu.1- samples near genes that are highly 

expressed in oligodendrocytes, such as OLIG2, suggesting oligodendrocyte enrichment. 

To confirm these initial qualitative assessments of sorting efficacy, and to identify the cell types captured 

in the NeuN-/Pu.1- population, we performed a more rigorous comparison of our H3K27ac ChIP-seq data 

with an independent higher-resolution single nucleus gene expression (snRNA-seq) dataset from human 

prefrontal cortex and hippocampus described in Habib et al.46. As expected, the NeuN+ samples displayed 

significant hyperacetylation on average at peaks annotated to nearby genes significantly upregulated in 

excitatory neuron clusters from prefrontal cortex (adjusted p=1.8e-204, 1.25e-92), hippocampus (adjusted 

p=3.37e-173, 1.20e-80), and dentate gyrus (adjusted p=2.23e-35), and also GABAergic neuron clusters 

(adjusted p=5.4e-28, 1.4e-31) (Supplementary Figure 4b). Similarly, the Pu.1+ samples displayed 

significant hyperacetylation on average at peaks annotated to genes significantly upregulated in microglia 

(adjusted p = 3.18e-22). Strikingly, the NeuN-/Pu.1- samples displayed significant hyperacetylation on 

average at peaks annotated to genes significantly upregulated in oligodendrocyte clusters (adjusted p= 1e-

58, 1.46e-25), but not any of the other cell types queried, confirming oligodendrocyte enrichment. 
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Since AD pathology, brain region, and sex could potentially influence sample quality and sorting 

efficacy, we repeated this analysis separately for (i) samples with and without Aβ, (ii) samples from 

dlPFC and hippocampus, (iii) male and female samples, and (iv) each sample individually. In each of 

these analyses, we observed neuronal enrichment in NeuN+ samples, microglial enrichment in Pu.1+ 

samples, and oligodendrocyte enrichment in NeuN-/Pu.1- samples (Figure 1c, Supplementary Figure 

4c). Since enhancers are known to have long range effects and may not necessarily regulate their nearest 

genes, we also restricted the analysis to peaks proximal to gene transcription start sites (TSS) (<5 

kilobases) and observed the same results (Figure 1c, Supplementary Figure 4a). Therefore, we conclude 

that the NeuN+ population successfully captures neurons, the Pu.1+ population successfully captures 

microglia, and the NeuN-/Pu.1- population is highly enriched for oligodendrocytes. 

Together, our peak annotations represent the first genome-wide maps of H3K27ac in microglia, neurons, 

and oligodendrocyte-enriched glial (OEG) populations in the human hippocampus and dlPFC of subjects 

with and without Aβ. These annotations enable a better understanding of the gene regulatory roles of the 

profiled cell types in many different contexts, not limited to AD. Nevertheless, in the next sections, we 

utilize these annotations to understand cell type-specific epigenomic mechanisms in AD. First, we 

compare these annotations with GWAS data to annotate LOAD associated SNPs to the cell types and 

regulatory elements they may potentially disrupt. Second, we perform multiple histone acetylome-wide 

association studies in each sex, brain region, and cell type to identify AD-associated variations in 

acetylation. Third, we perform a histone acetylome-wide association study to identify acetylation 

differences associated with age in each cell type. 

GWAS derived common SNPs associated with LOAD risk preferentially colocalize with the 

microglial histone acetylome 

We performed partitioned heritability analysis by stratified LD score regression47–49 (S-LDSC) to estimate 

the strength of colocalization between H3K27ac peaks that are significantly hyperacetylated on average 

across subjects in the 3 populations and AD SNP heritability derived from two large AD GWAS meta 

analyses (Jansen et al. and Kunkle et al.)26,27. Strikingly, microglial hyperacetylated peaks displayed a 

statistically significant preference for colocalization with AD SNP heritability (Figure 2a and b; Jansen 

et al. GWAS coefficient = 1.6e-08, p = 5.28e-5, Kunkle et al. GWAS coefficient = 1.94e-08, p = 3.74e-3) 

relative to neuronal and OEG hyperacetylated peaks. Since choice of computational method can influence 

these assessments, we repeated the analysis with an independent method that utilizes a permutation 

test35,50. We again observed that AD SNP heritability has a strong preference for colocalization with 

microglial hyperacetylated peaks (Supplementary Figure 5; Kunkle log2FC= +0.39, adjusted p=1e-06, 

Jansen log2FC=+0.33, adjusted p=1e-06). Further, conducting these analyses with reproducible peaks for 

each cell type, as opposed to hyperacetylated peaks led to similar results. These findings agree with 

previous analyses conducted on myeloid cells50–52, reinforcing the hypothesis that myeloid cell gene 

regulation strongly influences predisposition towards AD. 

We note that neuronal hyperacetylated peaks overlap with a lower number of GWAS derived AD 

associated SNPs compared to microglial and OEG hyperacetylated peaks (Supplementary Figure 5; 

Figure 2c). This finding is consistent with previous analyses conducted on bulk brain tissue maps of 

histone modifications35,50 and open chromatin37,38, where signal from neuronal regulatory elements is 

dominant. Since biases in GWAS sampling and neuronal sample quality could potentially influence the 

results of these analyses, we used S-LDSC to partition Schizophrenia SNP heritability53 across the 

hyperacetylated peaks in the 3 populations. Only neuronal hyperacetylated peaks displayed significant 

colocalization (Supplementary Figure 6; coefficient = 1.5e-07, p=1.4e-8). This agrees with previous 
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findings about Schizophrenia54,55, and therefore, confirms that the analysis is robust to biases in GWAS 

sampling and neuronal sample quality. 

Interpreting cell-type specificity and potential disruptions of non-coding AD associated variants 

We annotate non-coding sentinel SNPs identified in Jansen et al. and Kunkle et al. to nearby peaks (<1kb 

cutoff), enabling assessment of their potential cell type-specific functional effects (Figure 2c, Table 1). 

As expected, at a majority of GWAS derived risk loci, the sentinel SNPs directly overlap with peaks that 

are most strongly hyperacetylated in microglia. However, many sentinel SNPs including SNPs at loci 

containing BIN1, CLU, ADAM10, and CR1 directly overlap peaks that are most strongly hyperacetylated 

in OEG. Only 2 sentinel SNPs overlap with peaks that are most strongly acetylated in neurons. Further, 

the peaks closest to the TSS of APP and PSEN1 display the strongest acetylation in OEG, whereas the 

peak closest to the TSS of PSEN2 display the strongest acetylation in microglia. 

Overall, these annotations improve the interpretation of the functional effects of non-coding LOAD-

associated SNPs. We point out specific examples such as the locus containing the INPP5D gene, where 

the sentinel SNP rs10933431 (GWAS p-values = 8.9e-10, 2.5e-07) overlaps a peak that is acetylated only 

in microglia but not neurons and OEG ((Figure 2d). Previously, rs10933431 has been shown to overlap 

with DNase I hypersensitive sites in peripheral blood cells and tissues, including natural killer cells and 

CD14+ monocytes29. Further, rs10933431 disrupts a binding motif for the paired box transcription factor 

Pax-529,56, which is important for immune cell maturation. Combined, this suggests that rs10933431 is 

likely altering regulatory function in immune cell types and microglia, and future studies on the functional 

effect of this SNP should include culture or model systems that can capture phenotypes of these cell 

types. 

Secondly, at the locus containing the BIN1 gene, which displays the second largest genome wide AD 

association behind the APOE containing locus, two sentinel SNPs overlap a peak which is acetylated in 

both microglia and OEG (Figure 2e), but not neurons. One of the SNPs, rs4663105 (GWAS p-values = 

3.37e-44, 2.16e-26) has known expression quantitative loci (eQTL) associations with BIN1 gene 

expression in whole blood and lymphoblastoid cells57,58. Similarly, the other SNP, rs6733839 (GWAS p-

values = 1.28e-29, 4.02e-28) is a BIN1 eQTL in artery and lymphoblastoid cells57,58.  Previously, 

rs6733839 has been shown to overlap with DNase I hypersensitive sites in natural killer cells and CD14+ 

monocytes29. Recently, another study has found that the enhancer overlapping rs6733839 interacts with 

the BIN1 promoter in microglia31. Further, deletion of this enhancer using CRISPR-Cas9 editing altered 

BIN1 expression in inducible pluripotent stem cell (iPSC) derived microglia, but not neurons and 

astrocytes. This points towards a role for rs6733839 in disrupting BIN1 expression in cells of the myeloid 

lineage. However, effects of rs6733839 on BIN1 expression in oligodendrocytes have not been previously 

studied and therefore, cannot be excluded since the peak is also strongly acetylated in OEG. Further, the 

other sentinel SNP, rs4663105, could also potentially exert effects on BIN1 expression in microglia or 

oligodendrocytes, and future studies can help clarify this. 

Similarly, at the locus containing PICALM, one sentinel SNP, rs10792832 (GWAS p-values = 7.36e-18, 

7.55e-16) and another SNP in tight linkage, rs3851179 (GWAS p-values = 2.02e-17, 5.81e-16) overlap 

non-neuronal peaks (Figure 2f). This suggests that these SNPs are potentially exerting effects on 

expression of PICALM in microglia and/or oligodendrocytes, and models of these cell types should be 

included in future studies to assess their functional effects. 

These examples highlight the utility of our data resource in informing future studies of non-coding SNPs 

associated with traits that include, but are not limited to AD. 
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OEG display strongest AD associated acetylation differences 

In each brain region, sex, and cell type, we used a histone acetylome-wide association study to identify 

acetylation differences between subjects with and without Aβ load using DESeq245. Overall, we 

discovered 3598 amyloid-associated differentially acetylated regions (DARs) across all experiments 

(Supplementary Table 3, Figure 3a). 

 

Unexpectedly, we observed minimal differences in acetylation associated with Aβ load in microglia. In 

contrast, the OEG population is associated with the largest acetylation differences and contributes to a 

majority of identified DARs. We discovered two DAR sets, the largest in female hippocampus OEG 

samples (1962 hypoacetylated; q<0.05) and the second largest in dlPFC OEG samples (1029 

hyperacetylated; q<0.05) that make up 80.3% (2,890) of the full set of 3,598 DARs. We confirmed that 

both DAR sets display progressive trends of differential acetylation when treating Aβ load as a 

continuous variable. Further, in a post-hoc analysis, we controlled for covariates such as age at death and 

years of education which display no correlation with acetylation levels at these DARs in the 

corresponding OEG populations (Supplementary Figure 7). 

 
Hypoacetylation in OEG of the hippocampus 

We discovered 1962 hypoacetylated DARs in female hippocampus OEG samples, 81.7% of which are 

peaks proximal to TSS (<5kb) (hypergeometric test p-value=0, Figure 3d), suggesting strong links with 

promoter activity and gene transcription. Strikingly, this hypoacetylated DAR set includes peaks at the 

promoters of APP, PSEN1, and PSEN2, the three genes associated with EOAD risk, as well as promoters 

at several LOAD risk loci identified by GWAS, including BIN1, PICALM, ADAMTS4, ADAM10, and 

FERMT2 (Supplementary Table 4, Figure 3b, Figure 4a-i, Supplementary Figure 8). Notably, 

promoters of genes involved in all three secretase complexes including α-secretase (ADAM10), β-

secretase (BACE1), and γ-secretase (PSEN1, PSEN2 and PSENEN) are hypoacetylated, suggesting Aβ 

processing is directly disrupted in oligodendrocytes.  

We performed gene ontology analysis of these DARs using GREAT59 which revealed an enrichment for 

central nervous system myelination, oligodendrocyte development, and oligodendrocyte differentiation 

(Supplementary Table 5, Figure 3e). We also observed hypoacetylation near genes encoding the five 

mitochondrial complexes that regulate oxidative phosphorylation (Supplementary Figure 9). Since 

acetylation differences associated with myelination, oligodendrocyte differentiation and oxidative 

phosphorylation occurs in tandem with acetylation differences at AD risk genes and amyloid processing, 

these pathways may directly contribute to AD onset and progression. 

To assess whether these acetylation differences are associated with differences in transcription in 

oligodendrocytes, we performed quantitative RT-PCR (qRT-PCR) for multiple genes annotated to peaks 

in this DAR set in oligodendrocyte (Olig2+) nuclei collected from hippocampus samples of a larger set of 

subjects with and without Aβ from the same cohort (Figure 4j, Supplementary Figure 10). ADAMTS4, 

PICALM, and FERMT2 displayed significant decreases in transcript levels when comparing low and mid- 

Aβ load subjects against high Aβ load subjects. APP (p=0.083), BIN1 (p=0.157), and PSEN1 (p=0.077) 

displayed similar fold decreases that did not meet the p-value cutoff. Transcriptional differences did not 

display sex-specificity. Combined, this strongly suggests that EOAD and LOAD may share common 

pathogenic mechanisms in the oligodendrocytes of the human hippocampus. 

We discovered the strongest hypoacetylation in this DAR set at a peak annotated to the STMN4 gene 

(log2FC=-1.12, FDR q=1e-6) which is preferentially expressed in brain tissue60 and has known functions 

in neuron projection development and microtubule polymerization61. Notably, several other peaks near 
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the STMN4 gene, including a peak at the STMN4 promoter, displayed significant hypoacetylation. MYRF, 

a transcription factor which directly activates myelination62 and has been previously linked to LOAD 

risk63, also displayed strong promoter hypoacetylation (log2FC=-0.48, FDR q=0.03). STMN4 and MYRF 

also display significantly reduced transcription in qRT-PCR analysis of oligodendrocyte in subjects with 

AD. We highlight these myelination-associated genes as high-confidence targets for further investigation 

in neurodegenerative disorders. 

While peaks in this DAR set are annotated to loci associated with AD risk, we did not observe significant 

colocalization of this DAR set with GWAS derived AD-associated SNPs relative to the full set of peaks 

active in the profiled cell types and brain regions of AD and non-AD subjects (Jansen coefficient =3.9e-

08, p=0.198, Kunkle coefficient=1.11e-07, p=0.29). Therefore, SNPs associated with AD from GWAS 

are unlikely to directly alter the regulatory function of these DARs directly. 

Hyperacetylation in OEG of the dlPFC 

We discovered the second largest histone acetylome variation comprising 1029 hyperacetylated DARs in 

dlPFC oligodendrocyte-enriched glia (OEG) samples. While this DAR set is distinct from the DARs 

discovered in female hippocampus OEG samples, and contains a lower proportion (60.9%) of TSS 

proximal peaks (<5kb), we again observed significant hyperacetylation at both EOAD and LOAD risk 

loci (Supplementary Table 4, Figure 3c, Figure 4a-i, Supplementary Figure 8). This includes four 

distal intergenic peaks annotated to PSEN2, one distal peak annotated to BIN1, and peaks overlapping the 

promoters of CLU, ADAMTS4, and SORL1. Furthermore, we observed significant hyperacetylation at 

three distal peaks annotated to the MAPT gene, which encodes for the tau protein, involved in formation 

of NFTs. 

We performed gene ontology enrichment analysis of this DAR set which again revealed a strong 

enrichment for central nervous system myelination and oligodendrocyte differentiation (Figure 3e, 

Supplementary Table 5). In addition, we discovered enrichment for mitochondrion organization, 

macroautophagy and viral transcription. 

We tested whether these acetylation differences are associated with differences in transcription in dlPFC 

oligodendrocytes by comparing with a previously published snRNA-seq study of dlPFC in AD64. On 

average, genes annotated to these DARs display higher transcription levels in oligodendrocytes of 

subjects with AD (Figure 4k) compared to subjects without AD. Genes associated with LOAD risk 

including CLU and BIN1 displayed statistically significant upregulation, while SORL1 (FDR q no vs 

path.=0.26, FDR q no vs early path.=0.70) displayed upregulation that did not meet the q-value cutoff. 

We note that PSEN2 (FDR q no vs path.=0.18, FDR q no vs early path.=0.21) and MAPT (FDR q no vs 

path.=0.1, FDR q no vs early path.=0.09) display a downregulation in transcription with AD pathology, 

which did not meet the q-value cutoff. Hyperacetylated peaks near PSEN2 and MAPT are distal to the 

TSS, and therefore, are probably enhancer peaks. Enhancers have been known to regulate target gene 

expression over long distances and hence, effects on distal transcripts cannot be excluded. 

We observed the strongest hyperacetylation at a peak near the promoter of the ADAMTS18 gene 

(log2FC=3.4, FDR q=5.1e-81), which is a member of the ADAMTS family of metalloproteinases with 

thrombospondin motifs. This family of proteins is known to play a role in neuroplasticity and has been 

widely studied for its role in AD65. Overall, 38 different peaks annotated to the ADAMTS18 gene 

displayed significant hyperacetylation across DAR sets specific to dlPFC microglia and oligodendrocyte-

enriched glia, but not neurons. ADAMTS18 also displayed statistically significant increase in transcription 

in dlPFC oligodendrocytes of AD subjects. These results suggest that ADAMTS18 gene regulation is 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.26.010330doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010330
http://creativecommons.org/licenses/by/4.0/


8 
 

heavily altered in AD in the dlPFC and resides in an important oligodendrocyte and microglia-specific 

locus that requires further study. 

Similar to the female hippocampus OEG hypoacetylated DAR set, we did not observe significant 

colocalization between GWAS derived AD-associated SNPs and peaks in this DAR set using S-LDSC 

(Jansen GWAS coefficient =-2.57e-08, p=0.70, Kunkle GWAS coefficient=-1.26e-07, p=0.74). 

Therefore, SNPs associated with AD from GWAS are unlikely to alter the regulatory function of these 

DARs directly. 

Overall, we reveal that common pathways associated with both early and late onset AD are likely 

perturbed at the epigenomic level in oligodendrocyte-enriched glia. We show that amyloid processing, 

central nervous system myelination and oligodendrocyte processes are significantly altered in dlPFC and 

hippocampus of subjects with amyloid pathology and display acetylation differences in tandem with AD 

risk genes. We also highlight novel genomic loci that display large changes in acetylation in glia in AD 

including ADAMTS18, STMN4 and MYRF. Taken together, the sets of DARs we have described are 

strong candidate targets for AD therapeutics in oligodendrocytes that utilize technologies such as 

CRISPR-Cas9 genome editing66.  

We also performed unsupervised clustering of the full set of 3,598 DARs to identify modules that display 

correlated acetylation across the profiled cell type populations and brain regions. We separately clustered 

TSS proximal and TSS distal DARs to identify putative promoter and putative enhancer modules, 

respectively. Modules of both proximal and distal peaks tended to separate based on cell type-specificity. 

We note that majority of peaks display microglia or OEG specificity (Supplementary Figure 11) with 

little or no acetylation in neuronal samples. This highlights the utility of our data resource in identifying 

novel gene regulatory modules that are cell type-specific and associated with disease. 

Age associated acetylation differences are enriched in the microglial population 

While microglial H3K27ac displays strong colocalization with GWAS derived AD associated SNPs, 

unexpectedly, the microglial population displays very few acetylation differences associated with Aβ 

load. Contrastingly, the microglial population displays the strongest age-associated acetylation differences 

encompassing both dlPFC and hippocampus, in an analysis that controlled for Aβ load, sex, and brain 

region differences (Supplementary Figure 12). We identified 391 peaks that are significantly 

hypoacetylated with increasing age and 53 peaks that are significantly hyperacetylated with increasing 

age (FDR q < 0.05) (Supplementary Table 6). We mapped these peaks using GREAT59 and discovered 2 

hypoacetylated peaks annotated to the amyloid precursor protein (APP) gene, and 6 hypoacetylated peaks 

near the LRRTM3 gene, which is involved in positive regulation of Aβ formation (Supplementary Table 

7). This suggests that Aβ processing may be altered in microglia with increasing age. We also observed 

hyperacetylation at 3 distal peaks annotated to the FKBP4 gene, which is involved in tau protein binding 

and influences neurofibrillary tangle formation. Although further investigation is required, these findings 

point towards a role for age-associated epigenomic changes in microglia influencing the onset and 

progression of LOAD. 

DISCUSSION: 

We report the first H3K27ac maps for sorted neurons, microglia, and oligodendrocyte-enriched glia from 

both the hippocampus and dlPFC of postmortem human brain tissue. We find microglial H3K27ac peaks 

have a stronger preference for colocalization with common SNPs associated with LOAD risk relative to 

the other neural cell types profiled, supporting previous findings30,31,37,38. While this suggests a significant 

causal role for LOAD risk loci influencing AD predisposition and progression through microglial 
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processes, perhaps unexpectedly, comparison of H3K27ac peaks by AD diagnosis in microglia revealed 

few differences. Instead, we report H3K27ac is altered significantly with age in microglia, leading us to 

conclude that amongst the individuals analyzed, microglial H3K27ac is more responsive to advances in 

age than to Aβ load. We note that heterogeneity within the microglial population in disease has been 

previously reported52,67 and therefore, the possibility of AD associated gene regulatory differences in 

microglia cannot be excluded based on our study which profiles the microglial population in bulk, and 

hence, represents average microglial signal. However, recent single cell transcriptome profiling of 

microglia in AD subjects revealed no differences in both the composition of microglial subpopulations as 

well as gene expression, supporting the findings from our study68. 

Beyond microglia, we also find a subset of AD risk loci have significant H3K27ac signal in 

oligodendrocyte-enriched glia relative to other cell types. These include risk loci associated with genes 

CLU, BIN1, and PICALM. Additionally, the transcriptional start sites of EOAD genes APP and PSEN1 

also show significant H3K27ac enrichment in oligodendrocytes relative to other cell types. Previous 

multi-scale network analyses have found oligodendrocyte transcript and protein modules are enriched for 

genes associated with AD risk loci, particularly BIN1 and PICALM69,70. Indeed, BIN1 is highly expressed 

in oligodendrocytes, and is associated with white matter tracts in the human brain71. Combined, these data 

suggest epigenomic mechanisms in oligodendrocytes play a significant role in the functionality of certain 

AD risk loci and their associated risk genes72.  

In parallel, we also find oligodendrocyte-enriched glia show by far the largest acetylation differences 

associated with Aβ load. In the hippocampus, the promoters of genes associated with early and late-onset 

AD risk displayed hypoacetylation. This includes EOAD risk genes APP, PSEN1, and PSEN2, and 

several genes associated with LOAD risk, including BIN1, PICALM, ADAM10, ADAMTS4, FERMT2, 

and SORL125–27,73. Sorted hippocampal oligodendrocyte nuclei from an independent cohort of ROSMAP 

individuals were used to assess transcript levels of these genes, which revealed a corresponding 

downregulation of transcripts in individuals with high Aβ load. This suggests that EOAD and LOAD may 

share common pathogenic mechanisms in oligodendrocytes. In addition to risk genes, H3K27ac peaks 

associated with core oligodendrocyte processes such as myelination were significantly hypoacetylated in 

the hippocampus of AD subjects. Myelin-associated genes STMN4 and MYRF were confirmed to have 

corresponding transcriptional downregulation in the same independent cohort of ROSMAP individuals. 

The hippocampus is one of the earliest brain regions affected by AD pathology74. Here, we describe the 

first cell type-specific H3K27ac dataset from the hippocampus of postmortem AD patients. This provides 

a resource by which we can understand the epigenomic signatures of distinct cell types at a crucial 

anatomical locus of neurodegeneration. Specifically, it is evident that the H3K27ac changes in 

oligodendrocyte-enriched glia provide insight as to how the epigenomic state of the hippocampus is 

altered in AD. White matter lesions are positively correlated with hippocampal atrophy, and white matter 

hyperintensities are thought to be a core feature of AD75,76. Thus, the marked hypoacetylation observed 

near genes associated with Aβ processing and myelination in hippocampal oligodendrocytes suggest these 

biological processes are defective and may directly contribute to AD progression. Importantly, previous 

AD studies demonstrate similar pathways are deregulated at the transcriptomic and proteomic levels in 

oligodendrocyte-enriched modules, as does a recent single-cell gene expression study64,69,70. Combined 

with our current findings, this strongly suggests oligodendrocytes play an active role in AD progression 

and merit further attention. Although we identified these hypoacetylated peaks from female AD patients, 

the lack of sex-specificity observed in supporting publications and in our RT-qPCR validation lead us to 

conclude these DARs most strongly reflect epigenomic changes associated with Aβ load.  
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Interestingly, our dataset reveals dlPFC and hippocampus oligodendrocyte-enriched populations mount 

distinct epigenomic signatures in response to AD. Similar to our findings in the hippocampus, we 

observed an Aβ-correlated deregulation of myelin-associated promoters and enhancers in dlPFC 

oligodendrocytes. However, these dlPFC DARs become hyperacetylated in AD individuals, as do peaks 

annotated to PSEN2, CLU, ADAMTS4, BIN1, and SORL1. The DARs in the hippocampus are largely 

distinct from the DARs in the dlPFC, indicating brain region-specific epigenomic alterations. This 

disparity between brain regions may reflect oligodendrocyte heterogeneity in response to pathological 

insults, as well as region-specific differences in cell composition and pathologic severity. Alternatively, it 

may be associated with compensatory signaling in the prefrontal cortex that has been previously reported 

in neurodegenerative disorders77. However, in total, it is apparent oligodendrocyte H3K27ac represents a 

core feature of epigenomic dysregulation in both hippocampus and dlPFC. 

Many lines of evidence have revealed roles for oligodendrocyte-driven myelination processes in both 

multiple sclerosis and major depression78–80, and studies are ongoing to advance the understanding of glial 

cells in neurological disorders81. The connection between AD and oligodendrocyte epigenomic 

dysregulation is not well-understood, and our data highlight this topic as a priority for future research. We 

propose further investigation into the role of myelination and demyelination is warranted in AD. 

Our full set of DARs constitutes a larger list of novel genomic targets related to oligodendrocyte function, 

Aβ processing and oxidative phosphorylation that may be targeted using genome editing technologies 

such as CRISPR-Cas966. For example, the promoter of the disintegrin and metalloprotease ADAMTS18 

displays the strongest hyperacetylation in the dlPFC of AD subjects, revealing it as a strong candidate for 

future therapeutics. 

Lastly, we foresee that single nucleus level epigenomic assays for transposase accessible chromatin 

(snATAC-seq) can enable understanding of disease associated epigenomic deregulation and cell type 

heterogeneity in disease at a resolution that supersedes our study and previous studies. However, while 

active enhancers and promoters commonly lie in accessible chromatin regions, H3K27ac is a more robust 

indicator of active gene regulation, and therefore, our data resource can augment such future studies. 

Taken together, our study shows the power of cell type-specific epigenomic profiling in identifying 

pathways and genomic loci that are differentially regulated in AD. We reveal new cell type-specific 

processes involved in AD which opens opportunities to ameliorate its harmful effects by targeting 

therapeutics to oligodendrocytes.  
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METHODS: 

Source of Brain Tissue and Pathologic Data 

Biospecimens and data came from autopsied participants in one of two prospective clinical-pathologic 

cohort studies, the Religious Orders Study or Rush Memory and Aging Project (ROSMAP). Both studies 

were approved by an Institutional Review Board of Rush University Medical Center. All participants 

signed an informed consent, an Anatomical Gift Act, and a repository consent to all their data and 

biospecimens to be repurposed. Details of the studies have been previously reported43.  

Fluorescence-Activated Nuclei Sorting 

Frozen dorsolateral prefrontal cortex and hippocampus samples were retrieved from -80°C storage and 

thawed on ice, then disrupted with a handheld homogenizer. Samples were fixed with 1% 

paraformaldehyde for 10 minutes at room temperature. Fixation was quenched with glycine for 5 minutes. 

Nuclei were isolated by dounce-homogenization followed by filtration through a 70uM cell strainer (cat 

no. 21008-952, VWR, Radnor PA). To immunotag cell type specific nuclei, anti-NeuN antibody 

conjugated to Alexa Fluor 488 (cat no. MAB377X, EMD Millipore, Burlington MA), and anti-PU.1 

antibody conjugated to Alexa 647 (cat no. 2240S, Cell Signaling Technology, Danvers MA) were 

incubated with nuclei at 4°C for one hour and overnight, respectively. Samples were strained through a 

40um filter (21008-949, VWR) and stained with DAPI (D9542, Sigma Aldrich, St. Louis MO) before 

flow cytometry. Fluorescence activated nuclei sorting was performed until at least 400,000 nuclei were 

collected for each cell type (NeuN+, Pu.1+, and NeuN-/Pu.1-) using the FACSAria (BD Biosciences, 

US). 

Chromatin Immunoprecipitation 

Following sorting, chromatin was fragmented into 200-600 bp fragments using the Diagenode bioruptor. 

Fragmented samples were split equally into two tubes such that each tube contained an equivalent of 

chromatin from 200,000 nuclei. All ChIPs were carried out in duplicate. Samples were pre-cleared with 

BSA-blocked Protein A sepharose beads (cat no. GE17-0780-01, Sigma Aldrich) for four hours at 4°C. 

At this point, 1% input was collected and stored at -20°C. Chromatin was incubated with 2ug of Histone 

H3 (acetyl K27) antibody (cat no. ab4729, abcam, Cambridge UK) overnight at 4°C. Chromatin 

fragments bound to the antibody were pulled down with BSA-blocked Protein A sepharose beads for four 

hours at 4°C. To reduce non-specific binding, the bead-chromatin complex was washed four times with 

ice-cold RIPA buffer. Immunotagged chromatin was eluted from beads through shaking at 65°C for 15 

minutes. Both 1% input and ChIP were de-crosslinked overnight in T50E10S1 buffer at 65°C. Reverse 

crosslinked chromatin was treated with RNase A and Proteinase K. DNA was purified using phenol-

chloroform extraction. Following ethanol precipitation, samples were resuspended in 10 mM Tris-HCl 

buffer and stored at -20°C. 

ChIP-seq high-throughput sequencing 

A portion of the sample was used to assess enrichment for cell-type specific H3K27ac peaks via qPCR. If 

the sample passed qPCR quality control, libraries were generated from the remaining sample. Library 

generation was performed using the KAPA Hyper Prep Kit (KK8504, Kapa Biosystems). After 

amplification and quantification, a portion of the library was used for a second qPCR to ensure 

enrichment of cell-type specific H3K27ac peaks. If the sample passed the second qPCR quality control, it 

was submitted to the MIT BioMicro Center for fragment analysis, followed by sequencing. The 40-bp 
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single-end sequencing was performed using the Illumina HiSeq2000 platform according to standard 

operating procedures. 

Peak Calling, Quality Control and Read Counting 

For peak calling, the AQUAS ChIP-Seq workflow (https://github.com/kundajelab/chipseq_pipeline) was 

used. To perform quality control, the two technical replicates for each sample were individually input to 

the AQUAS workflow to compute standard ENCODE quality metrics44 such as NSC, RSC, NRF, PBC1, 

PBC2, FRiP, replicate consistency etc. All samples that did not meet quality standards of (NSC>1.01, 

RSC>0.4, PBC1>0.4) were discarded at this point. The workflow uses Burrows-Wheeler alignment82, 

Samtools83 for processing alignments, MACS284 for peak calling, and PICARD 

(http://broadinstitute.github.io/picard/) for removing PCR duplicates. Peak reproducibility is assessed by 

overlapping peaks across groups of sample replicates and pseudoreplicates using a method similar to 

irreproducible discovery rate (IDR)85 analysis. All analysis was performed on the hg19 reference genome. 

Reproducible peaks were called on samples pooled by each separate group of samples defined by brain 

region, cell type population and presence or absence of Aβ load. The mergeBed86 utility was then used to 

merge the set of peaks across these pools. At this step, peaks that were less than 200 bp apart were 

merged together to account for local depletions in chromatin intensity profiles (“dips”)87. We propose this 

merged peak set as a reference set for peaks active in different brain cell types in the dlPFC of AD and 

non-AD subjects and use it in downstream analyses. The featureCounts88 package was used to count the 

read signal at these peaks for every ChIP-Seq experiment. This read count matrix was then used in 

downstream analysis for validation of sorting and for identifying differentially acetylated regions using 

DESeq245. ROSMAP subject metadata were used as post-hoc covariates in the analysis. 

Cell type peak sets 

We also generated reproducible peak sets for each cell type by assessing reproducibility across the two 

brain regions for subjects without Aβ load. This peak set was used to generate the browser visualization 

tracks at the loci containing the INPP5D, BIN1 and PICALM genes (Figure 2d, e and f). Browser tracks 

for INPP5D, BIN1 and PICALM were generated using the integrative genomics viewer (IGV)89 and 

pygenometracks90, and edited later. 

Further, for each of the three cell type populations, we used the negative binomial model of DESeq245 to 

identify subsets of differentially hyperacetylated peaks in the focal cell type population against the two 

non-focal populations from the full set of brain peaks (see Peak Calling, QC and Read Counting). 

Peaks were defined as differentially hyperacetylated if they displayed a positive log fold change and 

passed an adjusted p-value threshold of 0.05. A cell type background peak set was then created from these 

three sets of peaks using the mergeBed utility. This set of peaks was used in heritability enrichment 

analyses using permutation testing35,50 and stratified LD-score regression47–49. 

Sorting validation and identification of cell types by comparison to single nucleus RNA-seq clusters 

The full set of merged peaks were annotated to their nearest genes using the annotatePeaks tool in 

HOMER91. Marker gene sets for 15 single nucleus RNA-Seq cell type clusters were downloaded from 

Habib et al46. For each single nucleus RNA-seq cluster, the set of H3K27ac peaks for which the closest 

gene was present in the marker gene set was obtained. Then, DESeq245 was used to compute log2FC at 

these peaks between ChIP-Seq samples corresponding to a focal foreground cell type population against 

ChIP-seq samples corresponding to the other two background cell type populations. A one-sided t-test 

was used to test whether the distribution of log2FC was significantly greater than 0.5 (~1.4 fold change). 
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A significant result from this test indicated the enrichment of a cell type in the focal ChIP-Seq population. 

The test was conducted for every pair of focal ChIP-Seq population and single nucleus RNA-Seq cluster. 

p-values were adjusted for multiple hypothesis testing using Bonferroni’s correction. 

In addition, a similar approach was used to verify these results at the individual sample level as well as 

groups of samples defined by Aβ load, sex and brain region. Variance stabilized counts were used and 

mean log2FC for each focal population was computed against the other two non-focal populations. For 

each of the 15 cell type clusters, the mean log2FC was then computed for peaks annotated to that cluster 

and the resulting values were plotted in a heatmap. 

To test whether distant peaks confound these results, the above analyses were also conducted on peaks 

that are near promoters of the marker genes by only considering the peaks that are less than 5 kilobases 

away from transcription start sites of the 15 gene sets.  

Enrichment test for colocalization of AD-associated variants with cell type-specific peaks 

GWAS summary statistics from two studies, Kunkle et al26 and Jansen et al27 were downloaded. and 

stratified LD-score regression (S-LDSC)47–49 was used to compute AD SNP heritability in enrichment in 

differential peaks for each cell type against the merged background set. The standard workflow described 

by the authors was used and LD scores were computed based on custom annotations derived from 

hyperacetylated peaks called on each cell type and compared against custom annotations derived from the 

merged background set constructed from the three cell type hyperacetylated peak sets. The regression 

coefficients for each population were extracted and plotted. A significant result from this test indicates an 

enrichment of genetic risk for LOAD in regions that are actively regulating gene expression in the cell 

type, suggesting a role for that cell type in influencing predisposition towards LOAD. 

To test whether choice of computational method may confound these results, we used another approach 

that utilizes a permutation test35,50. LD-pruning was applied (LD > 0.5) on both GWAS datasets based on 

the 1000 genomes reference92. SNPs overlapping protein coding sequence93 were filtered out along with 

SNPs in tight linkage disequilibrium (LD > 0.5). SNPs with p-values less than 1e-3 were selected and 

overlap annotations were created for each set of differential cell type-specific peaks (see Cell type peak 

sets). A permutation test was used to compute heritability enrichment of AD-associated SNPs in a focal 

foreground set of differential peaks for a cell type against the merged background set. SNPs were 

permuted 1,000,000 times preserving distance to gene, minor allele frequency and the number of variants 

that are in LD. 

DARs associated with Aβ load 

Differentially acetylated regions were identified using the negative binomial model of DESeq2 on the 

previously generated count matrix (see Peak Calling, QC and Read Counting) selecting peaks 

associated with a binary Aβ load indicator. An adjusted p-value cutoff of 0.05 was used for selecting 

differentially acetylated peaks. For each differential acetylation model setting (Supplementary Table 3), 

a reduced count matrix was generated that includes only the subset of samples corresponding to the 

variables described. Variance stabilized (vst) read counts45 across all peaks were used for heatmap 

visualization and principal components analysis (PCA). Box plots of read counts against covariate 

variables such as Aβ, age, years of education and sample quality metrics were produced using peak-wise 

Z-scores of vst normalized counts. DAR sets were annotated to their nearest genes using the 

annotatePeaks tool in HOMER91 and the distribution of distance to TSS was plotted for the two biggest 

DAR sets as well as the remaining DARs. 
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Genome browser visualizations were created for the two biggest DAR sets at known EOAD and LOAD 

risk loci, as well as highly differentially acetylated loci using pygenometracks90. Custom UNIX 

commands and the UCSC bigWigMerge94 tool were used to create average H3K27ac signal tracks in 

oligodendrocyte enriched glia samples of subjects with and without Aβ load. Tracks for DESeq2 log2FC 

and UCSC known gene annotations95 were included. Generated visualizations were edited later. 

The Genomic Region Enrichment and Annotation Tool (GREAT)59 web tool was used for computing 

enrichments for ontological annotations associated with genes proximal to DAR sets. GREAT analysis 

was performed separately on the two biggest DAR sets as well as the remaining DARs not in those sets. 

In addition, we used GREAT to annotate neuron, microglia and oligodendrocyte enriched glial 

hyperacetylated peaks for enriched functions. The merged brain peak set (see Peak Calling, QC and 

Read Counting) was used as the background for each GREAT analysis. A heatmap of the fold 

enrichment returned by GREAT was plotted for any GO Biological Process that passed a q-value cutoff 

of 0.05 and was associated with a minimum of 5 genes in any of the 6 GREAT analyses. In addition, fold 

enrichment for the KEGG Alzheimer’s Disease Pathway was plotted in the heatmap. 

S-LDSC was used to test for AD SNP heritability enrichment from both AD GWAS studies in the two 

biggest DAR sets. The full brain peak set was used as background. 

Correlation based clustering of DARs 

Variance stabilized (vst) counts for all Aβ associated DARs were obtained. All samples passing quality 

control were included. Clustering was performed separately for TSS proximal (<5kb) DARs and TSS 

distal (>5kb) DARs. A distance matrix based on Pearson correlation was computed between every pair of 

peaks. More specifically, the distance between peak x and peak y was calculated as 1-abs(cor(x,y)), where 

abs represents absolute value and cor represents Pearson correlation. The absolute value was used 

because it gives equal weightage to negatively correlated peaks and positively correlated peaks. Then, 

average linkage hierarchical clustering using the hclust R function was performed using this distance 

matrix to construct a dendrogram. To identify stable clusters from the resulting dendrogram, the a 

dynamic tree cutting approach96 was used. The resulting cluster identities were plotted alongside a 

heatmap of variance stabilized counts. 

RNA extraction, reverse transcription and quantitative PCR in postmortem hippocampus (qPCR) 

An independent set of hippocampal samples from the ROSMAP cohort were used for rt-qPCR validation. 

Samples were prepped for FANS as described previously. To isolate oligodendrocyte, microglia, astrocyte, 

and neuronal nuclei, samples were stained overnight at 4°C with anti-Olig2 antibody conjugated to Alexa 

Fluor 488 (cat no. MABN50A4, EMD Millipore, Burlington MA), anti-PU.1 antibody conjugated to Alexa 

Fluor 647 (cat no. 2240S, Cell Signaling Technology, Danvers MA), anti-GFAP conjugated to Alexa Fluor 

555 (cat no. 3656, Cell Signaling Technology, Danvers MA), and stained for one hour with anti-NeuN 

conjugated to biotin (cat no. MAB377B, EMD Millipore, Burlington MA), and for one hour with Brilliant 

Violet 711 Streptavadin (cat no. 405241, BioLegend, San Diego, CA). Fluorescence activated nuclei was 

performed until at least 100,000 Olig2-positive nuclei, NeuN-positive nuclei, GFAP-positive nuclei, and 

PU.1-positive nuclei were collected for each sample.  

Following sorting, nuclei were treated for 15 minutes with Proteinase K at 50°C and then for 13 minutes at 

80°C. RNA was extracted using Direct-zol RNA MicroPrep kit (Zymo Research) according to 

manufacturer’s instructions. Reverse transcription of RNA was carried out using Invitrogen SuperScript IV 

First Strand Synthesis System (Oligo dT) according to manufacturer’s protocol. qPCR was performed using 

a Bio-Rad CFX-96 quantitative thermocycler and SsoFast EvaGreen Supermix (Bio-Rad). Relative changes 

in gene expression were determined using the 2−ΔΔCt method. The geometric mean of cycle numbers from 
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RPL13, CYC1, and GADPH were used for housekeeping Ct values. Primer sequences used for qPCR can 

be found in Supplementary Table 6. 

Comparison with snRNA-seq from postmortem dlPFC 

Hyperacetylated DARs in oligodendrocyte enriched glia of the dlPFC were assessed for nearby 

transcriptional differences identified in the snRNA-seq study from Mathys, Valderrain et al64. The nearest 

genes of the hyperacetylated DARs were obtained using annotatePeaks in HOMER. The oligodendrocyte 

cluster specific log2FC of these genes was obtained from the snRNA-seq study. Then, a one-sample one-

sided t-test was used to test whether there is an average increase in transcription at these genes (null 

hypothesis log2FC = 0, alternative hypothesis log2FC > 0). Transcriptional fold-change of specific AD 

risk genes and genes near highly hyperacetylated peaks was also plotted. 

DARs associated with Age 

Age associated changes in H3K27ac levels were identified using DESeq2. To control for potential 

confounds, sex, the binary Aβ load status, and brain region were added as covariates in the linear model 

along with age. An adjusted p-value cutoff of 0.05 was then used to screen for peaks differentially 

acetylated with every unit increase in age. The peaks were grouped as having increased or decreased 

acetylation with age, and ontological annotation enrichments were computed using GREAT (see DARs 

associated with Aβ load) using a full brain background peak set. For heatmap visualization, variance 

stabilizing transformation (vst) was applied on the full matrix and differential peaks were extracted.  
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DATA AVAILABILITY: 

The ChIP-seq data will be made available on The Rush Alzheimer’s Disease Center (RADC) Research 

Resource Sharing Hub at https://www.radc.rush.edu/docs/omics.htm or at Synapse (link to be provided) 

under a doi. The ROSMAP metadata will be accessible at (link to be provided). The data will be available 

under controlled use conditions set by human privacy regulations. To access the data, a data use 

agreement will be needed. This registration is in place solely to ensure anonymity of the ROSMAP study 

participants. A data use agreement will be agreed with either Rush University Medical Center (RUMC) or 

with SAGE, who maintains Synapse, and will be downloadable from their websites. Bed, narrowPeak and 

bigwig files that do not contain private information will be made available at the appropriate resource in 

accordance with privacy considerations. 

CODE AVAILABILITY: 

Code for processing and analyzing the data will be made available at: 

https://github.com/pfenninglab/ad_h3k27ac_3ct  
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FIGURES: 

 

Figure 1: FANS sorting captures neurons, microglia and oligodendrocyte enriched populations from 

postmortem brain tissue a. Workflow for sorting nuclei and performing H3K27ac ChIP-seq from 

postmortem human brain tissue b. H3K27ac signal over background (Input) averaged across subjects 

without Aβ load for each of the three populations near RBFOX3 (NeuN), SPI1 (Pu.1) and OLIG2 (an 

oligodendrocyte marker) c. Top. for every individual hippocampus and dlPFC tissue sample, fold-change 

(log2 transformed) of H3K27ac signal in each focal cell population over the other two non-focal cell 

populations, averaged across peaks near the promoters (<5kb from transcription start site) of genes 

defined to be markers for 15 different cell types in Habib et al46. bottom. collapsed versions of top 

heatmap representing averages across subjects defined by different stratifications of Aβ load, sex and 

brain region. Abbreviated labels for the single nucleus analysis clusters are presented. exPFC, 

glutamatergic neurons from the PFC; GABA, GABAergic interneurons; exCA1/3, pyramidal neurons 

from the hippocampus CA region; exDG, granule neurons from the hippocampus dentate gyrus region; 

ASC, astrocytes; MICROGLIA, microglia; OLIGO, oligodendrocytes; OPC, oligodendrocyte precursor 

cells; NSC, neuronal stem cells; END, endothelial cells. 
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Figure 2: AD associated SNPs derived from GWAS prefer to colocalize with peaks enriched in the 

microglial population relative to peaks enriched in the OEG and neuronal population a and b. 

Results of stratified LD score regression on two large AD GWAS studies (Jansen et al and Kunkle et 

al)26,27 on hyperacetylated peaks in each population. Plot shows the estimated LD score regression 

coefficient for the three peak sets. p-values are indicated above each bar. c. Cell type-specificity of peaks 

annotated to known sentinel non-synonymous SNPs at AD risk loci identified by Jansen and Kunkle et al. 

Plot shows fold change (log2-transformed) in H3K27ac signal for each population against the other two 

populations for (i) in black: peaks closest to the sentinel SNP at each locus associated with AD from 

GWAS, and (ii) in red: promoter peaks of early onset AD risk genes (APP, PSEN1, PSEN2). *indicates 

DeSeq2 FDR q<0.05. Sentinel SNPs where the closest SNP is >1kb away are not included d,e and f. 

Genome browser tracks of (i) reproducible peaks in each cell type, (ii) average H3K27ac signal in 

subjects without Aβ load for each cell type, and (iii) Manhattan plots of Jansen et al and Kunkle et al. 

GWAS studies at loci where sentinel non-coding SNPs overlap peaks enriched in non-neuronal cell types; 

at the INPP5D containing locus, the sentinel SNP rs10933431 overlaps a peak that is active only in 

microglial population but not OEG and neuronal populations; at the locus containing BIN1, the top two 

AD-associated SNPs based on GWAS p-value, rs4663105 and rs6733839 overlap peaks active in the 

microglial and OEG populations but not in the neuronal population; at the locus containing PICALM, the 

top two SNPs, rs10792832 and rs3851179 also overlap non-neuronal enhancers. Region of overlap 

highlighted by yellow box.  
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Figure 3: OEG display the strongest acetylation differences associated with Aβ load which includes 

peaks annotated to known genes associated with EOAD and LOAD risk a. heatmap displaying 

number of significantly hyperacetylated (log2fc>0, FDR q<0.05) and significantly hypoacetyled peaks 

(log2fc<0, FDR q<0.05) in each stratification of brain region, sex and cell type that was tested b. 

Heatmap showing normalized acetylation levels at 1962 AD hypoacetylated DARs discovered in female 

hippocampus OEG samples, rows represent the 1962 DARs and columns represent OEG samples from 

the hippocampus. Measured Aβ load for each sample is indicated at the bottom of the heatmap, a heatmap 

for male hippocampal glia samples is also included for comparison, peaks annotated to known EOAD and 

LOAD risk are labeled in red, peaks near STMN4 (highest hypoacetylation) and MYRF are annotated in 

black c. heatmap of 1029 DARs displaying hyperacetylation in OEG in dlPFC samples. Peaks annotated 

to known EOAD and LOAD risk genes are labeled in red, the promoter peak at ADAMTS18 (highest 

hyperacetylation) is annotated in black d. distance to TSS distribution of i) 1962 OEG female 

hippocampus hypoacetylated, ii) 1029 OEG dlPFC hyperacetylated DARs and iii) the full set of peaks  e. 

heatmap showing enrichment of top gene ontology terms for 6 peak sets 1) 1962 OEG female 

hippocampus hypoacetylated 2) 1029 OEG dlPFC hyperacetylated 3) all other Aβ associated DARs 4),5), 

and 6) neuron, microglia and OEG cell type-specific hyperacetylated peaks. Color intensity represents 

hypergeometric fold enrichment in number of peaks, * indicates FDR q<0.05, ** indicates FDR q<0.01   
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Figure 4: EOAD and LOAD may share common epigenomic perturbations and pathogenic 

mechanisms in oligodendrocytes a-i. genome browser tracks displaying average signal in OEG samples 

of subjects with (yellow) and without Aβ load (blue) corresponding to two biggest DAR sets at known 

EOAD and LOAD risk loci, as well as strongly differentially acetylated regions near ADAMTS18 and 

MYRF j. qRT-PCR in hippocampal Olig2+ nuclei from a larger cohort of subjects reveals an associated 

decrease in transcription near hypoacetylated regions included in the female hippocampal OEG DAR set 

k. comparison with existing snRNA-seq from dlPFC of subjects from the same cohort reveals an average 

increase in gene expression near hyperacetylated regions in OEG dlPFC. Further, specific genes 

associated with AD risk and displaying high hyperacetylation nearby (ADAMTS18) display an increase in 

transcription in AD. 
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SUPPLEMENTARY FIGURES: 

 

Supplementary Figure 1: Heatmap of collected subject information and standard ENCODE quality 

metrics for all ChIP-Seq samples 

 

 

Supplementary Figure 2: Sorting of neuronal and microglial nuclei from prefrontal cortex and 

hippocampus of subjects with and without AD 
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Supplementary Figure 3: Plots showing all sequencing samples projected into principal components 

space using PCA colored by a. brain region b. sex c. cell type population d. Aβ load PC1 separates 

NeuN+ samples from Pu.1+ and NeuN-/Pu.1- samples and PC2 separates Pu.1+ samples from NeuN-

/Pu.1- samples 
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Supplementary Figure 4: Analysis of cell type compositions of FANS populations using H3K27ac 

signal at peaks near 15 cell type-specific gene lists annotated in Habib et al46 a. t-statistic showing 

enrichment of a given cell type cluster in a FANS population over the other two non-focal FANS 

populations. Mean log2FC of signal was computed at H3K27ac peaks near the promoters (<5kb distance 

to transcription start site) of the 15 cell type-specific marker gene sets and a t-test was used to compute 

whether the mean log2FC is greater than 0.5 (~1.4-fold change). Value inside box represent p-value (-

log10-transformed) for the t-test b. same as panel a but using no distance to tss filter for defining the cell 

type-specific peaks c. mean log2fc (focal population/non-focal populations) for peaks near 15 cluster 

markers at the individual sample level and for sample aggregates using no distance to tss filter for 

defining the cell type-specific peaks. Abbreviated labels for the single nucleus analysis clusters are 

presented. exPFC, glutamatergic neurons from the PFC; GABA, GABAergic interneurons; exCA1/3, 

pyramidal neurons from the hippocampus CA region; exDG, granule neurons from the hippocampus 

dentate gyrus region; ASC, astrocytes; MICROGLIA, microglia; OLIGO, oligodendrocytes; OPC, 

oligodendrocyte precursor cells; NSC, neuronal stem cells; END, endothelial cells. 
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Supplementary Figure 5: Independent permutation test method confirms that AD associated variants 

from the two large GWAS studies26,27 colocalize with peaks enriched in the microglial population 

relative to peaks enriched in the oligodendrocyte and neuronal population suggesting that 

microglial gene regulation may influence predisposition towards LOAD a. plot of fold change (log2 

transformed) in the number of AD associated SNPs (Kunkle et al. GWAS p-value < 1e-3) overlapping 

focal foreground cell type specific peaks versus the number of AD associated SNPs overlapping 

background set of peaks in all three cell types; permutation test controls for LD and minor allele 

frequency, p-value for colocalization test is indicated above each bar b. same as a.  but using the Jansen et 

al GWAS. 
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Supplementary Figure 6: SNPs associated with Schizophrenia from a large GWAS53 colocalize with 

peaks enriched in the neuronal population relative to peaks enriched in the OEG and microglial 

population suggesting that neuronal gene regulation may influence predisposition towards 

Schizophrenia Plot shows the estimated stratified LD score regression coefficient for the three peak sets. 

p-values are indicated above each bar. 
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Supplementary Figure 7: Two largest DAR sets of 1962 hypoacetylated peaks in female hippocampus 

OEG and 1029 hyperacetylated peaks in dlPFC OEG do not show correlations with other 

covariates such as age at death and years of education. a and b. Read counts at 1962 hypoacetylated 

DARs show consistent decrease with an increase in overall Aβ c and d. No relation can be observed 

between mean read count and variables such as age at death and years of education d,e,f and g. same as 

a,b,c and d but for 1029 hyperacetylated DARs in dlPFC OEG 
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Supplementary Figure 8: Genome browser tracks displaying average H3K27ac signal in OEG samples of 

subjects with (yellow) and without Aβ load (blue) corresponding to the two biggest DAR sets at known 

LOAD risk loci, as well as strongly differentially acetylated regions near STMN4 
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Supplementary Figure 9: Peaks associated with genes in multiple modules in the KEGG Alzheimer’s 

Disease Pathway are part of the two largest OEG specific DAR sets and include peaks near all three 

of the secretase complexes, MAPT and all 5 modules involved in oxidative phosphorylation Boxes 

colored in orange represent genes which contain an annotation to the 1962 hypoacetylated peaks 

discovered in female hippocampus OEG, boxes colored in maroon represent genes which contain an 

annotation to the 1029 hyperacetylated peaks in dlPFC OEG, an average of orange and maroon is used to 

color boxes which represent genes present in both sets 
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Supplementary Figure 10:  mRNA from cell type specific nuclei are enriched for cell type specific 

markers. Olig2+ nuclei are enriched for oligodendrocyte-specific mRNA MBP, NeuN+ nuclei are 

enriched for neuron-specific mRNA Reln, GFAP+ nuclei are enriched for astrocyte-specific mRNA 

GFAP, and Pu.1+ nuclei are enriched for microglia-specific mRNA C1qa. S.E.M. displayed. 

 

 

Supplementary Figure 11: a. correlation-based clustering of all TSS proximal DARs identified across 

different sex, brain region and cell type populations. Heatmap displays normalized acetylation levels at 

each of the DARs across all samples for every cell type and brain region. Cell type-specificity and cluster 

membership are indicated for each peak on the left of the heatmap b. same as a but for TSS distal DARs.  
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Supplementary Figure 12: Summary of peaks displaying differential H3K27ac with age in microglia 

a. distribution of age associated log2 fold changes for the entire peak set shows that age associated 

changes in H3K27ac levels are enriched in the microglial population - as indicated by the wider 

distribution of  log2 fold changes relative to total, neuronal, and OEG populations , b. heatmap of 

variance stabilized read counts representing acetylation levels for the 444 peaks that display age 

associated differential H3K27ac levels in the microglial population, c. Genome browser tracks displaying 

age hyperacetylated peaks near APP and LRRTM3 which are both involved in Aβ processing d. 

distribution of fold change (log2 transformed) in transcription identified in Olah et al97 for genes 

annotated to 391 age hypoacetylated peaks and 53 age hyperacetylated peaks. Two dashed black vertical 

lines represent mean transcription log2FC for genes near age hypoacetylated and age hyperacetylated 

peaks, respectively. Red vertical dashed line represents log2FC=0, representing no difference in 

transcription. T-test p-values are indicated for three comparisons, from left to right (i) hypoacetylated 

mean vs. 0, (ii) hyperacetylated vs hypoacetylated means, and (iii) hyperacetylated mean vs. 0  
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