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We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major brain cell types from
hippocampus and dorsolateral prefrontal cortex (dIPFC) of subjects with and without Alzheimer’s Disease
(AD). We confirm that single nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD)
prefer to reside in the microglial histone acetylome, which varies most strongly with age. We observe
acetylation differences associated with AD pathology at 3,598 peaks, predominantly in an
oligodendrocyte-enriched population. Strikingly, these differences occur at the promoters of known early
onset AD (EOAD) risk genes (APP, PSEN1, PSEN2, BACE1), late onset AD (LOAD) risk genes (BIN1,
PICALM, CLU, ADAM10, ADAMTS4, SORL1 and FERMT2), and putative enhancers annotated to other
genes associated with AD pathology (MAPT). More broadly, acetylation differences in the
oligodendrocyte-enriched population occur near genes in pathways for central nervous system
myelination and oxidative phosphorylation. In most cases, these promoter acetylation differences are
associated with differences in transcription in oligodendrocytes. Overall, we reveal deregulation of known
and novel pathways in AD and highlight genomic regions as therapeutic targets in oligodendrocytes of
hippocampus and dIPFC.

INTRODUCTION:

Alzheimer’s Disease (AD) is the most common age-related neurodegenerative disorder. The hallmarks of
AD pathology are numerous and include neuronal loss, synaptic dysfunction, gliosis, and the
accumulation of intercellular plaques of amyloid-f (AB) protein and intracellular neurofibrillary tangles
(NFT) of phosphorylated tau protein (MAPT) 2,

AP plaques are formed by differential proteolytic cleavage of the amyloid B precursor protein (APP)3® by
the a-secretase, B-secretase and y-secretase enzymes’. Studies of individuals affected by early onset (<60
yrs.) familial AD (EOAD) have identified causal autosomal dominant mutations primarily in Ap
processing proteins presenilin-1 (PSEN1) and presenilin-2 (PSENZ2), which are part of the y-secretase
complex®19, but also causal mutations or duplications in APP itself'*2, However, EOAD only accounts
for a small minority of AD cases. Late onset sporadic AD (LOAD) is more frequent and accounts for up
to 99% or more of AD cases. While increased age is the strongest risk factor and several environmental
factors also confer risk for LOAD, its heritability has been estimated to be as high as 79%?.

In contrast to EOAD, genetic risk for LOAD is less well understood. The €4 allele comprising mutations
in two codons in Apolipoprotein E (APOE) has been identified as the strongest genetic risk factor for
LOAD®°, More recently, genome wide association studies (GWAS)?*-?" have reproduced the APOE
association and also identified 28 other unique loci harboring genetic variants which increase risk for
developing LOAD?-%8, Strikingly, from the set of most significant (or “sentinel™) single nucleotide
polymorphisms (SNPs) derived from GWAS and SNPs in strong linkage disequilibrium (LD) with them,
only 2% localize in known exons. Since these SNPs do not alter protein sequence, it is difficult to trace
their functional importance in disease onset and progression.
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To this end, epigenomic studies are revealing that these SNPs likely alter the function of gene regulatory
elements in AD. 26% of these SNPs localize in regions containing promoter histone marks, 69% lie in
enhancer states and 46% lie in DNase | accessible sites?®?°. Further, previous research shows that the
human orthologues of enhancers with increased activity in the CK-p25 mouse model of
neurodegeneration overlap with non-coding AD associated SNPs®. Recently, these SNPs were also found
to be primarily contained within microglial enhancers®. Furthermore, deregulation of histone 3 lysine 27
acetylation (H3K27ac) and histone 4 lysine 16 acetylation (H4K16ac) was found at loci harboring non-
coding AD associated SNPs in the human postmortem AD brain®2%, Beyond AD risk loci, changes in
histone 3 lysine 9 acetylation (H3K9ac) driven by tau pathology have also been observed in the aging and
AD brain®*.

Gene regulatory elements, especially enhancers, are highly context-specific with differing activities
across tissues, cell types and environments®. Therefore, it is likely that different cell types in the brain
orchestrate different regulatory programs during AD progression. Indeed, many LOAD risk loci are
primarily implicated in immune function, suggesting differential AD-associated epigenomic mechanisms
in immune cell types such as microglia versus neuronal cell types®®*¢-38, Notably, many of the above-
mentioned studies were performed utilizing whole brain tissue, and not all were performed with tissue
from AD patients. Therefore, these epigenomic experiments obscure changes that occur within specific
cellular populations.

We address these issues by profiling individual cell types deregulated during AD. We utilize
fluorescence-activated nuclei sorting (FANS)* to purify neuronal, microglial and other glial populations
in the dorsolateral prefrontal cortex (dIPFC) and hippocampus of subjects with and without AD
pathology. Then, we perform chromatin immunoprecipitation and sequencing (ChlP-seq) for H3K27ac,
which is associated with active promoters and enhancers*’, to mark putative regulatory elements (peaks)
in these populations.

In addition to establishing the first genome-wide H3K27ac profiles in neuronal, microglial, and
oligodendrocyte-enriched glial populations from persons with and without AD, our cell type-specific
approach confirms enriched H3K27ac signatures at GWAS derived LOAD risk loci primarily in
microglia. Further, in both the hippocampus and dIPFC, we find strong AB-associated deregulation of
H3K27ac in the oligodendrocyte-enriched glial population near AD risk loci and myelin-associated genes.
These findings suggest distinct gene-regulatory mechanisms of AD onset and progression in different
brain cell types and highlight specific cell types, loci and pathways for future study.

RESULTS:
Fluorescence-activated nuclei sorting and H3K27ac ChlP-seq of dIPFC and hippocampus

We obtained 10 dIPFC and 16 hippocampus samples from participants in either the Religious Orders
Study or Rush Memory and Aging Project (ROSMAP)*#3 (mean age = 87.84, s.d.=7.75, range=74.77-
101.94). 5 of 10 dIPFC samples and 10 of 16 hippocampus samples displayed high AB load across the
brain, indicative of LOAD (mean percentage area occupied by Ap across 8 brain regions = 7.30, s.d =
4.14, range = 2.31-15.40) (Supplementary Table 1, Supplementary Figure 1). The brains with AP load
also displayed high overall neurofibrillary tangle density (mean density of NFT across 8 brain regions =
22.81, s.d. =13.73, range = 1.80-61.01). The self-reported sex of 6 of the 10 dIPFC samples was male,
and the remaining 4 were female. Of the 16 hippocampus samples, the self-reported sex of 6 was male,
and the remaining 10 were female.
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For each sample, we used FANS to collect NeuN+, Pu.1+, and NeuN-/Pu.1- nuclei to obtain putative
neuronal, microglial, and other glial populations, respectively (Figure 1a, Supplementary Figure 2)*°.
On each collected population, we performed ChlIP-Seq for H3K27ac, which is associated with
transcriptionally active promoters and enhancers*. We assessed sample quality by calling regions of
H3K27ac enrichment (peaks) for each individual sequencing sample and computing quality metrics based
on standard ENCODE guidelines*. We detected an average of 91,614 (s.d = 21,197, range=50,662-
149,681) peaks per sample. These peaks overlapped with a large fraction of the sequencing reads (mean
FRiP = 0.256, s.d. = 0.136, range=0.047-0.567), comparable to previous high quality H3K27ac profiles®.
We curated samples further based on normalized strand cross correlation (NSC) and relative strand cross
correlation (RSC) measures to ensure that we retained the highest quality sequencing samples for all
downstream analysis (Methods, Supplementary Figure 1).

Then, for each brain region and each cell population, we used ENCODE recommended approaches* to
call H3K27ac peaks that are reproducible across subjects with AP load, and separately, peaks that are
reproducible across subjects without A load. We created a union of all these peak sets representing the
combined histone acetylome of the three profiled cell populations in the dIPFC and hippocampus of
subjects with and without AP load (Supplementary Table 2). We then used DESeq2* to obtain peaks
that are significantly hyperacetylated in (i) the NeuN+ population relative to the Pu.1+ and NeuN-/Pu.1-
populations, (ii) the Pu.1+ population relative to the NeuN+ and NeuN-/Pu.1- populations, and (iii) the
NeuN-/Pu.1- population relative to NeuN+ and Pu.1+ populations (FDR g<0.05). We performed principal
component analysis (PCA) of all samples and observed groupings primarily based on FANS population,
with 53% of the variance explaining the difference between NeuN+ samples and other samples
(Supplementary Figure 3).

Active promoters and enhancers in neurons, microglia and oligodendrocyte enriched glia

As a first step to assess the efficacy of FANS sorting, we generated genome browser tracks of H3K27ac
signal for each population by averaging signal across control subjects displaying no Ap. We visualized
these genome browser tracks near genes encoding the cell type-specific proteins used to sort out neurons
and microglia — RBFOX3 which encodes NeuN, and SP11 which encodes Pu.l (Figure 1b). As expected,
we observed average hyperacetylation at the locus containing RBFOX3 in the NeuN+ samples and
average hyperacetylation in the Pu.1+ samples at the locus containing SPI1, suggesting successful sorting.
Interestingly, we observed hyperacetylation in the NeuN-/Pu.1- samples near genes that are highly
expressed in oligodendrocytes, such as OLIG2, suggesting oligodendrocyte enrichment.

To confirm these initial qualitative assessments of sorting efficacy, and to identify the cell types captured
in the NeuN-/Pu.1- population, we performed a more rigorous comparison of our H3K27ac ChiP-seq data
with an independent higher-resolution single nucleus gene expression (SNnRNA-seq) dataset from human
prefrontal cortex and hippocampus described in Habib et al.“®. As expected, the NeuN+ samples displayed
significant hyperacetylation on average at peaks annotated to nearby genes significantly upregulated in
excitatory neuron clusters from prefrontal cortex (adjusted p=1.8e-204, 1.25e-92), hippocampus (adjusted
p=3.37e-173, 1.20e-80), and dentate gyrus (adjusted p=2.23e-35), and also GABAergic neuron clusters
(adjusted p=5.4e-28, 1.4e-31) (Supplementary Figure 4b). Similarly, the Pu.1+ samples displayed
significant hyperacetylation on average at peaks annotated to genes significantly upregulated in microglia
(adjusted p = 3.18e-22). Strikingly, the NeuN-/Pu.1- samples displayed significant hyperacetylation on
average at peaks annotated to genes significantly upregulated in oligodendrocyte clusters (adjusted p= 1e-
58, 1.46e-25), but not any of the other cell types queried, confirming oligodendrocyte enrichment.
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Since AD pathology, brain region, and sex could potentially influence sample quality and sorting
efficacy, we repeated this analysis separately for (i) samples with and without A, (ii) samples from
dIPFC and hippocampus, (iii) male and female samples, and (iv) each sample individually. In each of
these analyses, we observed neuronal enrichment in NeuN+ samples, microglial enrichment in Pu.1+
samples, and oligodendrocyte enrichment in NeuN-/Pu.1- samples (Figure 1c, Supplementary Figure
4c). Since enhancers are known to have long range effects and may not necessarily regulate their nearest
genes, we also restricted the analysis to peaks proximal to gene transcription start sites (TSS) (<5
kilobases) and observed the same results (Figure 1c, Supplementary Figure 4a). Therefore, we conclude
that the NeuN+ population successfully captures neurons, the Pu.1+ population successfully captures
microglia, and the NeuN-/Pu.1- population is highly enriched for oligodendrocytes.

Together, our peak annotations represent the first genome-wide maps of H3K27ac in microglia, neurons,
and oligodendrocyte-enriched glial (OEG) populations in the human hippocampus and dIPFC of subjects
with and without AB. These annotations enable a better understanding of the gene regulatory roles of the
profiled cell types in many different contexts, not limited to AD. Nevertheless, in the next sections, we
utilize these annotations to understand cell type-specific epigenomic mechanisms in AD. First, we
compare these annotations with GWAS data to annotate LOAD associated SNPs to the cell types and
regulatory elements they may potentially disrupt. Second, we perform multiple histone acetylome-wide
association studies in each sex, brain region, and cell type to identify AD-associated variations in
acetylation. Third, we perform a histone acetylome-wide association study to identify acetylation
differences associated with age in each cell type.

GWAS derived common SNPs associated with LOAD risk preferentially colocalize with the
microglial histone acetylome

We performed partitioned heritability analysis by stratified LD score regression*’~#° (5-LDSC) to estimate
the strength of colocalization between H3K27ac peaks that are significantly hyperacetylated on average
across subjects in the 3 populations and AD SNP heritability derived from two large AD GWAS meta
analyses (Jansen et al. and Kunkle et al.)??", Strikingly, microglial hyperacetylated peaks displayed a
statistically significant preference for colocalization with AD SNP heritability (Figure 2a and b; Jansen
et al. GWAS coefficient = 1.6e-08, p = 5.28e-5, Kunkle et al. GWAS coefficient = 1.94e-08, p = 3.74e-3)
relative to neuronal and OEG hyperacetylated peaks. Since choice of computational method can influence
these assessments, we repeated the analysis with an independent method that utilizes a permutation
test®50, We again observed that AD SNP heritability has a strong preference for colocalization with
microglial hyperacetylated peaks (Supplementary Figure 5; Kunkle log2FC= +0.39, adjusted p=1e-06,
Jansen log2FC=+0.33, adjusted p=1e-06). Further, conducting these analyses with reproducible peaks for
each cell type, as opposed to hyperacetylated peaks led to similar results. These findings agree with
previous analyses conducted on myeloid cells*®-%2, reinforcing the hypothesis that myeloid cell gene
regulation strongly influences predisposition towards AD.

We note that neuronal hyperacetylated peaks overlap with a lower number of GWAS derived AD
associated SNPs compared to microglial and OEG hyperacetylated peaks (Supplementary Figure 5;
Figure 2c). This finding is consistent with previous analyses conducted on bulk brain tissue maps of
histone modifications®*° and open chromatin®"8, where signal from neuronal regulatory elements is
dominant. Since biases in GWAS sampling and neuronal sample quality could potentially influence the
results of these analyses, we used S-LDSC to partition Schizophrenia SNP heritability®® across the
hyperacetylated peaks in the 3 populations. Only neuronal hyperacetylated peaks displayed significant
colocalization (Supplementary Figure 6; coefficient = 1.5e-07, p=1.4e-8). This agrees with previous
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findings about Schizophrenia®®®, and therefore, confirms that the analysis is robust to biases in GWAS
sampling and neuronal sample quality.

Interpreting cell-type specificity and potential disruptions of non-coding AD associated variants

We annotate non-coding sentinel SNPs identified in Jansen et al. and Kunkle et al. to nearby peaks (<1kb
cutoff), enabling assessment of their potential cell type-specific functional effects (Figure 2c, Table 1).
As expected, at a majority of GWAS derived risk loci, the sentinel SNPs directly overlap with peaks that
are most strongly hyperacetylated in microglia. However, many sentinel SNPs including SNPs at loci
containing BIN1, CLU, ADAM10, and CR1 directly overlap peaks that are most strongly hyperacetylated
in OEG. Only 2 sentinel SNPs overlap with peaks that are most strongly acetylated in neurons. Further,
the peaks closest to the TSS of APP and PSENL display the strongest acetylation in OEG, whereas the
peak closest to the TSS of PSEN2 display the strongest acetylation in microglia.

Overall, these annotations improve the interpretation of the functional effects of non-coding LOAD-
associated SNPs. We point out specific examples such as the locus containing the INPP5D gene, where
the sentinel SNP rs10933431 (GWAS p-values = 8.9e-10, 2.5e-07) overlaps a peak that is acetylated only
in microglia but not neurons and OEG ((Figure 2d). Previously, rs10933431 has been shown to overlap
with DNase | hypersensitive sites in peripheral blood cells and tissues, including natural killer cells and
CD14+ monocytes?. Further, rs10933431 disrupts a binding motif for the paired box transcription factor
Pax-5%>%, which is important for immune cell maturation. Combined, this suggests that rs10933431 is
likely altering regulatory function in immune cell types and microglia, and future studies on the functional
effect of this SNP should include culture or model systems that can capture phenotypes of these cell

types.

Secondly, at the locus containing the BIN1 gene, which displays the second largest genome wide AD
association behind the APOE containing locus, two sentinel SNPs overlap a peak which is acetylated in
both microglia and OEG (Figure 2e), but not neurons. One of the SNPs, rs4663105 (GWAS p-values =
3.37e-44, 2.16e-26) has known expression quantitative loci (eQTL) associations with BIN1 gene
expression in whole blood and lymphoblastoid cells®”%8, Similarly, the other SNP, rs6733839 (GWAS p-
values = 1.28e-29, 4.02e-28) is a BIN1 eQTL in artery and lymphoblastoid cells®"*8. Previously,
rs6733839 has been shown to overlap with DNase | hypersensitive sites in natural Killer cells and CD14+
monocytes®®. Recently, another study has found that the enhancer overlapping rs6733839 interacts with
the BIN1 promoter in microglia®. Further, deletion of this enhancer using CRISPR-Cas9 editing altered
BIN1 expression in inducible pluripotent stem cell (iPSC) derived microglia, but not neurons and
astrocytes. This points towards a role for rs6733839 in disrupting BIN1 expression in cells of the myeloid
lineage. However, effects of rs6733839 on BIN1 expression in oligodendrocytes have not been previously
studied and therefore, cannot be excluded since the peak is also strongly acetylated in OEG. Further, the
other sentinel SNP, rs4663105, could also potentially exert effects on BIN1 expression in microglia or
oligodendrocytes, and future studies can help clarify this.

Similarly, at the locus containing PICALM, one sentinel SNP, rs10792832 (GWAS p-values = 7.36e-18,
7.55e-16) and another SNP in tight linkage, rs3851179 (GWAS p-values = 2.02e-17, 5.81e-16) overlap
non-neuronal peaks (Figure 2f). This suggests that these SNPs are potentially exerting effects on
expression of PICALM in microglia and/or oligodendrocytes, and models of these cell types should be
included in future studies to assess their functional effects.

These examples highlight the utility of our data resource in informing future studies of non-coding SNPs
associated with traits that include, but are not limited to AD.
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OEG display strongest AD associated acetylation differences

In each brain region, sex, and cell type, we used a histone acetylome-wide association study to identify
acetylation differences between subjects with and without AB load using DESeq2*°. Overall, we
discovered 3598 amyloid-associated differentially acetylated regions (DARS) across all experiments
(Supplementary Table 3, Figure 3a).

Unexpectedly, we observed minimal differences in acetylation associated with AP load in microglia. In
contrast, the OEG population is associated with the largest acetylation differences and contributes to a
majority of identified DARs. We discovered two DAR sets, the largest in female hippocampus OEG
samples (1962 hypoacetylated; q<0.05) and the second largest in dIPFC OEG samples (1029
hyperacetylated; g<0.05) that make up 80.3% (2,890) of the full set of 3,598 DARs. We confirmed that
both DAR sets display progressive trends of differential acetylation when treating Ap load as a
continuous variable. Further, in a post-hoc analysis, we controlled for covariates such as age at death and
years of education which display no correlation with acetylation levels at these DARs in the
corresponding OEG populations (Supplementary Figure 7).

Hypoacetylation in OEG of the hippocampus

We discovered 1962 hypoacetylated DARs in female hippocampus OEG samples, 81.7% of which are
peaks proximal to TSS (<5kb) (hypergeometric test p-value=0, Figure 3d), suggesting strong links with
promoter activity and gene transcription. Strikingly, this hypoacetylated DAR set includes peaks at the
promoters of APP, PSENL, and PSEN2, the three genes associated with EOAD risk, as well as promoters
at several LOAD risk loci identified by GWAS, including BIN1, PICALM, ADAMTS4, ADAM10, and
FERMT2 (Supplementary Table 4, Figure 3b, Figure 4a-i, Supplementary Figure 8). Notably,
promoters of genes involved in all three secretase complexes including a-secretase (ADAM10), B-
secretase (BACEL), and y-secretase (PSEN1, PSEN2 and PSENEN) are hypoacetylated, suggesting A
processing is directly disrupted in oligodendrocytes.

We performed gene ontology analysis of these DARs using GREAT®® which revealed an enrichment for
central nervous system myelination, oligodendrocyte development, and oligodendrocyte differentiation
(Supplementary Table 5, Figure 3e). We also observed hypoacetylation near genes encoding the five
mitochondrial complexes that regulate oxidative phosphorylation (Supplementary Figure 9). Since
acetylation differences associated with myelination, oligodendrocyte differentiation and oxidative
phosphorylation occurs in tandem with acetylation differences at AD risk genes and amyloid processing,
these pathways may directly contribute to AD onset and progression.

To assess whether these acetylation differences are associated with differences in transcription in
oligodendrocytes, we performed quantitative RT-PCR (gRT-PCR) for multiple genes annotated to peaks
in this DAR set in oligodendrocyte (Olig2+) nuclei collected from hippocampus samples of a larger set of
subjects with and without Ap from the same cohort (Figure 4j, Supplementary Figure 10). ADAMTS4,
PICALM, and FERMT2 displayed significant decreases in transcript levels when comparing low and mid-
AP load subjects against high AP load subjects. APP (p=0.083), BIN1 (p=0.157), and PSEN1 (p=0.077)
displayed similar fold decreases that did not meet the p-value cutoff. Transcriptional differences did not
display sex-specificity. Combined, this strongly suggests that EOAD and LOAD may share common
pathogenic mechanisms in the oligodendrocytes of the human hippocampus.

We discovered the strongest hypoacetylation in this DAR set at a peak annotated to the STMN4 gene
(log2FC=-1.12, FDR g=1e-6) which is preferentially expressed in brain tissue® and has known functions
in neuron projection development and microtubule polymerization®. Notably, several other peaks near
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the STMN4 gene, including a peak at the STMN4 promoter, displayed significant hypoacetylation. MYRF,
a transcription factor which directly activates myelination®? and has been previously linked to LOAD
risk®, also displayed strong promoter hypoacetylation (log2FC=-0.48, FDR g=0.03). STMN4 and MYRF
also display significantly reduced transcription in qRT-PCR analysis of oligodendrocyte in subjects with
AD. We highlight these myelination-associated genes as high-confidence targets for further investigation
in neurodegenerative disorders.

While peaks in this DAR set are annotated to loci associated with AD risk, we did not observe significant
colocalization of this DAR set with GWAS derived AD-associated SNPs relative to the full set of peaks
active in the profiled cell types and brain regions of AD and non-AD subjects (Jansen coefficient =3.9e-
08, p=0.198, Kunkle coefficient=1.11e-07, p=0.29). Therefore, SNPs associated with AD from GWAS
are unlikely to directly alter the regulatory function of these DARs directly.

Hyperacetylation in OEG of the dIPFC

We discovered the second largest histone acetylome variation comprising 1029 hyperacetylated DARS in
dIPFC oligodendrocyte-enriched glia (OEG) samples. While this DAR set is distinct from the DARs
discovered in female hippocampus OEG samples, and contains a lower proportion (60.9%) of TSS
proximal peaks (<5kb), we again observed significant hyperacetylation at both EOAD and LOAD risk
loci (Supplementary Table 4, Figure 3c, Figure 4a-i, Supplementary Figure 8). This includes four
distal intergenic peaks annotated to PSEN2, one distal peak annotated to BIN1, and peaks overlapping the
promoters of CLU, ADAMTS4, and SORL1. Furthermore, we observed significant hyperacetylation at
three distal peaks annotated to the MAPT gene, which encodes for the tau protein, involved in formation
of NFTs.

We performed gene ontology enrichment analysis of this DAR set which again revealed a strong
enrichment for central nervous system myelination and oligodendrocyte differentiation (Figure 3e,
Supplementary Table 5). In addition, we discovered enrichment for mitochondrion organization,
macroautophagy and viral transcription.

We tested whether these acetylation differences are associated with differences in transcription in dIPFC
oligodendrocytes by comparing with a previously published snRNA-seq study of dIPFC in AD5. On
average, genes annotated to these DARs display higher transcription levels in oligodendrocytes of
subjects with AD (Figure 4k) compared to subjects without AD. Genes associated with LOAD risk
including CLU and BIN1 displayed statistically significant upregulation, while SORL1 (FDR g no vs
path.=0.26, FDR q no vs early path.=0.70) displayed upregulation that did not meet the g-value cutoff.
We note that PSEN2 (FDR g no vs path.=0.18, FDR q no vs early path.=0.21) and MAPT (FDR g no vs
path.=0.1, FDR g no vs early path.=0.09) display a downregulation in transcription with AD pathology,
which did not meet the g-value cutoff. Hyperacetylated peaks near PSEN2 and MAPT are distal to the
TSS, and therefore, are probably enhancer peaks. Enhancers have been known to regulate target gene
expression over long distances and hence, effects on distal transcripts cannot be excluded.

We observed the strongest hyperacetylation at a peak near the promoter of the ADAMTS18 gene
(log2FC=3.4, FDR g=5.1e-81), which is a member of the ADAMTS family of metalloproteinases with
thrombospondin motifs. This family of proteins is known to play a role in neuroplasticity and has been
widely studied for its role in AD®. Overall, 38 different peaks annotated to the ADAMTS18 gene
displayed significant hyperacetylation across DAR sets specific to dIPFC microglia and oligodendrocyte-
enriched glia, but not neurons. ADAMTS18 also displayed statistically significant increase in transcription
in dIPFC oligodendrocytes of AD subjects. These results suggest that ADAMTS18 gene regulation is
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heavily altered in AD in the dIPFC and resides in an important oligodendrocyte and microglia-specific
locus that requires further study.

Similar to the female hippocampus OEG hypoacetylated DAR set, we did not observe significant
colocalization between GWAS derived AD-associated SNPs and peaks in this DAR set using S-LDSC
(Jansen GWAS coefficient =-2.57e-08, p=0.70, Kunkle GWAS coefficient=-1.26e-07, p=0.74).
Therefore, SNPs associated with AD from GWAS are unlikely to alter the regulatory function of these
DARs directly.

Overall, we reveal that common pathways associated with both early and late onset AD are likely
perturbed at the epigenomic level in oligodendrocyte-enriched glia. We show that amyloid processing,
central nervous system myelination and oligodendrocyte processes are significantly altered in dIPFC and
hippocampus of subjects with amyloid pathology and display acetylation differences in tandem with AD
risk genes. We also highlight novel genomic loci that display large changes in acetylation in glia in AD
including ADAMTS18, STMN4 and MYRF. Taken together, the sets of DARs we have described are
strong candidate targets for AD therapeutics in oligodendrocytes that utilize technologies such as
CRISPR-Cas9 genome editing®®.

We also performed unsupervised clustering of the full set of 3,598 DARs to identify modules that display
correlated acetylation across the profiled cell type populations and brain regions. We separately clustered
TSS proximal and TSS distal DARs to identify putative promoter and putative enhancer modules,
respectively. Modules of both proximal and distal peaks tended to separate based on cell type-specificity.
We note that majority of peaks display microglia or OEG specificity (Supplementary Figure 11) with
little or no acetylation in neuronal samples. This highlights the utility of our data resource in identifying
novel gene regulatory modules that are cell type-specific and associated with disease.

Age associated acetylation differences are enriched in the microglial population

While microglial H3K27ac displays strong colocalization with GWAS derived AD associated SNPs,
unexpectedly, the microglial population displays very few acetylation differences associated with Ap
load. Contrastingly, the microglial population displays the strongest age-associated acetylation differences
encompassing both dIPFC and hippocampus, in an analysis that controlled for Ap load, sex, and brain
region differences (Supplementary Figure 12). We identified 391 peaks that are significantly
hypoacetylated with increasing age and 53 peaks that are significantly hyperacetylated with increasing
age (FDR g < 0.05) (Supplementary Table 6). We mapped these peaks using GREAT®® and discovered 2
hypoacetylated peaks annotated to the amyloid precursor protein (APP) gene, and 6 hypoacetylated peaks
near the LRRTM3 gene, which is involved in positive regulation of Ap formation (Supplementary Table
7). This suggests that AB processing may be altered in microglia with increasing age. We also observed
hyperacetylation at 3 distal peaks annotated to the FKBP4 gene, which is involved in tau protein binding
and influences neurofibrillary tangle formation. Although further investigation is required, these findings
point towards a role for age-associated epigenomic changes in microglia influencing the onset and
progression of LOAD.

DISCUSSION:

We report the first H3K27ac maps for sorted neurons, microglia, and oligodendrocyte-enriched glia from
both the hippocampus and dIPFC of postmortem human brain tissue. We find microglial H3K27ac peaks
have a stronger preference for colocalization with common SNPs associated with LOAD risk relative to
the other neural cell types profiled, supporting previous findings®*313738, While this suggests a significant
causal role for LOAD risk loci influencing AD predisposition and progression through microglial
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processes, perhaps unexpectedly, comparison of H3K27ac peaks by AD diagnosis in microglia revealed
few differences. Instead, we report H3K27ac is altered significantly with age in microglia, leading us to
conclude that amongst the individuals analyzed, microglial H3K27ac is more responsive to advances in
age than to AP load. We note that heterogeneity within the microglial population in disease has been
previously reported®2%” and therefore, the possibility of AD associated gene regulatory differences in
microglia cannot be excluded based on our study which profiles the microglial population in bulk, and
hence, represents average microglial signal. However, recent single cell transcriptome profiling of
microglia in AD subjects revealed no differences in both the composition of microglial subpopulations as
well as gene expression, supporting the findings from our study®é.

Beyond microglia, we also find a subset of AD risk loci have significant H3K27ac signal in
oligodendrocyte-enriched glia relative to other cell types. These include risk loci associated with genes
CLU, BIN1, and PICALM. Additionally, the transcriptional start sites of EOAD genes APP and PSEN1
also show significant H3K27ac enrichment in oligodendrocytes relative to other cell types. Previous
multi-scale network analyses have found oligodendrocyte transcript and protein modules are enriched for
genes associated with AD risk loci, particularly BIN1 and PICALM®, Indeed, BIN1 is highly expressed
in oligodendrocytes, and is associated with white matter tracts in the human brain’. Combined, these data
suggest epigenomic mechanisms in oligodendrocytes play a significant role in the functionality of certain
AD risk loci and their associated risk genes’?.

In parallel, we also find oligodendrocyte-enriched glia show by far the largest acetylation differences
associated with AP load. In the hippocampus, the promoters of genes associated with early and late-onset
AD risk displayed hypoacetylation. This includes EOAD risk genes APP, PSEN1, and PSEN2, and
several genes associated with LOAD risk, including BIN1, PICALM, ADAM10, ADAMTS4, FERMT?2,
and SORL1%5%2"73, Sorted hippocampal oligodendrocyte nuclei from an independent cohort of ROSMAP
individuals were used to assess transcript levels of these genes, which revealed a corresponding
downregulation of transcripts in individuals with high AP load. This suggests that EOAD and LOAD may
share common pathogenic mechanisms in oligodendrocytes. In addition to risk genes, H3K27ac peaks
associated with core oligodendrocyte processes such as myelination were significantly hypoacetylated in
the hippocampus of AD subjects. Myelin-associated genes STMN4 and MYRF were confirmed to have
corresponding transcriptional downregulation in the same independent cohort of ROSMAP individuals.

The hippocampus is one of the earliest brain regions affected by AD pathology™. Here, we describe the
first cell type-specific H3K27ac dataset from the hippocampus of postmortem AD patients. This provides
a resource by which we can understand the epigenomic signatures of distinct cell types at a crucial
anatomical locus of neurodegeneration. Specifically, it is evident that the H3K27ac changes in
oligodendrocyte-enriched glia provide insight as to how the epigenomic state of the hippocampus is
altered in AD. White matter lesions are positively correlated with hippocampal atrophy, and white matter
hyperintensities are thought to be a core feature of AD”>7¢. Thus, the marked hypoacetylation observed
near genes associated with AP processing and myelination in hippocampal oligodendrocytes suggest these
biological processes are defective and may directly contribute to AD progression. Importantly, previous
AD studies demonstrate similar pathways are deregulated at the transcriptomic and proteomic levels in
oligodendrocyte-enriched modules, as does a recent single-cell gene expression study®+°7° Combined
with our current findings, this strongly suggests oligodendrocytes play an active role in AD progression
and merit further attention. Although we identified these hypoacetylated peaks from female AD patients,
the lack of sex-specificity observed in supporting publications and in our RT-gPCR validation lead us to
conclude these DARs most strongly reflect epigenomic changes associated with Ap load.
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Interestingly, our dataset reveals dIPFC and hippocampus oligodendrocyte-enriched populations mount
distinct epigenomic signatures in response to AD. Similar to our findings in the hippocampus, we
observed an AB-correlated deregulation of myelin-associated promoters and enhancers in dIPFC
oligodendrocytes. However, these dIPFC DARs become hyperacetylated in AD individuals, as do peaks
annotated to PSEN2, CLU, ADAMTS4, BIN1, and SORL1. The DARs in the hippocampus are largely
distinct from the DARs in the dIPFC, indicating brain region-specific epigenomic alterations. This
disparity between brain regions may reflect oligodendrocyte heterogeneity in response to pathological
insults, as well as region-specific differences in cell composition and pathologic severity. Alternatively, it
may be associated with compensatory signaling in the prefrontal cortex that has been previously reported
in neurodegenerative disorders’’. However, in total, it is apparent oligodendrocyte H3K27ac represents a
core feature of epigenomic dysregulation in both hippocampus and dIPFC.

Many lines of evidence have revealed roles for oligodendrocyte-driven myelination processes in both
multiple sclerosis and major depression’®#°, and studies are ongoing to advance the understanding of glial
cells in neurological disorders®. The connection between AD and oligodendrocyte epigenomic
dysregulation is not well-understood, and our data highlight this topic as a priority for future research. We
propose further investigation into the role of myelination and demyelination is warranted in AD.

Our full set of DARs constitutes a larger list of novel genomic targets related to oligodendrocyte function,
AP processing and oxidative phosphorylation that may be targeted using genome editing technologies
such as CRISPR-Cas9%. For example, the promoter of the disintegrin and metalloprotease ADAMTS18
displays the strongest hyperacetylation in the dIPFC of AD subjects, revealing it as a strong candidate for
future therapeutics.

Lastly, we foresee that single nucleus level epigenomic assays for transposase accessible chromatin
(snATAC-seq) can enable understanding of disease associated epigenomic deregulation and cell type
heterogeneity in disease at a resolution that supersedes our study and previous studies. However, while
active enhancers and promoters commonly lie in accessible chromatin regions, H3K27ac is a more robust
indicator of active gene regulation, and therefore, our data resource can augment such future studies.

Taken together, our study shows the power of cell type-specific epigenomic profiling in identifying
pathways and genomic loci that are differentially regulated in AD. We reveal new cell type-specific
processes involved in AD which opens opportunities to ameliorate its harmful effects by targeting
therapeutics to oligodendrocytes.
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METHODS:
Source of Brain Tissue and Pathologic Data

Biospecimens and data came from autopsied participants in one of two prospective clinical-pathologic
cohort studies, the Religious Orders Study or Rush Memory and Aging Project (ROSMAP). Both studies
were approved by an Institutional Review Board of Rush University Medical Center. All participants
signed an informed consent, an Anatomical Gift Act, and a repository consent to all their data and
biospecimens to be repurposed. Details of the studies have been previously reported.

Fluorescence-Activated Nuclei Sorting

Frozen dorsolateral prefrontal cortex and hippocampus samples were retrieved from -80°C storage and
thawed on ice, then disrupted with a handheld homogenizer. Samples were fixed with 1%
paraformaldehyde for 10 minutes at room temperature. Fixation was quenched with glycine for 5 minutes.
Nuclei were isolated by dounce-homogenization followed by filtration through a 70uM cell strainer (cat
no. 21008-952, VWR, Radnor PA). To immunotag cell type specific nuclei, anti-NeuN antibody
conjugated to Alexa Fluor 488 (cat no. MAB377X, EMD Millipore, Burlington MA), and anti-PU.1
antibody conjugated to Alexa 647 (cat no. 2240S, Cell Signaling Technology, Danvers MA) were
incubated with nuclei at 4°C for one hour and overnight, respectively. Samples were strained through a
40um filter (21008-949, VWR) and stained with DAPI (D9542, Sigma Aldrich, St. Louis MO) before
flow cytometry. Fluorescence activated nuclei sorting was performed until at least 400,000 nuclei were
collected for each cell type (NeuN+, Pu.1+, and NeuN-/Pu.1-) using the FACSAria (BD Biosciences,
us).

Chromatin Immunoprecipitation

Following sorting, chromatin was fragmented into 200-600 bp fragments using the Diagenode bioruptor.
Fragmented samples were split equally into two tubes such that each tube contained an equivalent of
chromatin from 200,000 nuclei. All ChlPs were carried out in duplicate. Samples were pre-cleared with
BSA-blocked Protein A sepharose beads (cat no. GE17-0780-01, Sigma Aldrich) for four hours at 4°C.
At this point, 1% input was collected and stored at -20°C. Chromatin was incubated with 2ug of Histone
H3 (acetyl K27) antibody (cat no. ab4729, abcam, Cambridge UK) overnight at 4°C. Chromatin
fragments bound to the antibody were pulled down with BSA-blocked Protein A sepharose beads for four
hours at 4°C. To reduce non-specific binding, the bead-chromatin complex was washed four times with
ice-cold RIPA buffer. Immunotagged chromatin was eluted from beads through shaking at 65°C for 15
minutes. Both 1% input and ChlP were de-crosslinked overnight in TsoE10S: buffer at 65°C. Reverse
crosslinked chromatin was treated with RNase A and Proteinase K. DNA was purified using phenol-
chloroform extraction. Following ethanol precipitation, samples were resuspended in 10 mM Tris-HCI
buffer and stored at -20°C.

ChIP-seq high-throughput sequencing

A portion of the sample was used to assess enrichment for cell-type specific H3K27ac peaks via gPCR. If
the sample passed gPCR quality control, libraries were generated from the remaining sample. Library
generation was performed using the KAPA Hyper Prep Kit (KK8504, Kapa Biosystems). After
amplification and quantification, a portion of the library was used for a second qPCR to ensure
enrichment of cell-type specific H3K27ac peaks. If the sample passed the second gPCR quality control, it
was submitted to the MIT BioMicro Center for fragment analysis, followed by sequencing. The 40-bp
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single-end sequencing was performed using the Illumina HiSeq2000 platform according to standard
operating procedures.

Peak Calling, Quality Control and Read Counting

For peak calling, the AQUAS ChlIP-Seq workflow (https://github.com/kundajelab/chipseq_pipeline) was
used. To perform quality control, the two technical replicates for each sample were individually input to
the AQUAS workflow to compute standard ENCODE quality metrics* such as NSC, RSC, NRF, PBC1,
PBC2, FRIP, replicate consistency etc. All samples that did not meet quality standards of (NSC>1.01,
RSC>0.4, PBC1>0.4) were discarded at this point. The workflow uses Burrows-Wheeler alignment®?,
Samtools® for processing alignments, MACS28 for peak calling, and PICARD
(http://broadinstitute.github.io/picard/) for removing PCR duplicates. Peak reproducibility is assessed by
overlapping peaks across groups of sample replicates and pseudoreplicates using a method similar to
irreproducible discovery rate (IDR)® analysis. All analysis was performed on the hg19 reference genome.

Reproducible peaks were called on samples pooled by each separate group of samples defined by brain
region, cell type population and presence or absence of AB load. The mergeBed® utility was then used to
merge the set of peaks across these pools. At this step, peaks that were less than 200 bp apart were
merged together to account for local depletions in chromatin intensity profiles (“dips”)’. We propose this
merged peak set as a reference set for peaks active in different brain cell types in the dIPFC of AD and
non-AD subjects and use it in downstream analyses. The featureCounts® package was used to count the
read signal at these peaks for every ChlP-Seq experiment. This read count matrix was then used in
downstream analysis for validation of sorting and for identifying differentially acetylated regions using
DESeq2*. ROSMAP subject metadata were used as post-hoc covariates in the analysis.

Cell type peak sets

We also generated reproducible peak sets for each cell type by assessing reproducibility across the two
brain regions for subjects without A load. This peak set was used to generate the browser visualization
tracks at the loci containing the INPP5D, BIN1 and PICALM genes (Figure 2d, e and f). Browser tracks
for INPP5D, BIN1 and PICALM were generated using the integrative genomics viewer (IGV)® and
pygenometracks®, and edited later.

Further, for each of the three cell type populations, we used the negative binomial model of DESeq2*° to
identify subsets of differentially hyperacetylated peaks in the focal cell type population against the two
non-focal populations from the full set of brain peaks (see Peak Calling, QC and Read Counting).
Peaks were defined as differentially hyperacetylated if they displayed a positive log fold change and
passed an adjusted p-value threshold of 0.05. A cell type background peak set was then created from these
three sets of peaks using the mergeBed utility. This set of peaks was used in heritability enrichment
analyses using permutation testing®®*° and stratified LD-score regression*’-°.

Sorting validation and identification of cell types by comparison to single nucleus RNA-seq clusters

The full set of merged peaks were annotated to their nearest genes using the annotatePeaks tool in
HOMER?®.. Marker gene sets for 15 single nucleus RNA-Seq cell type clusters were downloaded from
Habib et al“®. For each single nucleus RNA-seq cluster, the set of H3K27ac peaks for which the closest
gene was present in the marker gene set was obtained. Then, DESeq2*® was used to compute log2FC at
these peaks between ChlP-Seq samples corresponding to a focal foreground cell type population against
ChlP-seq samples corresponding to the other two background cell type populations. A one-sided t-test
was used to test whether the distribution of log2FC was significantly greater than 0.5 (~1.4 fold change).
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A significant result from this test indicated the enrichment of a cell type in the focal ChIP-Seq population.
The test was conducted for every pair of focal ChlP-Seq population and single nucleus RNA-Seq cluster.
p-values were adjusted for multiple hypothesis testing using Bonferroni’s correction.

In addition, a similar approach was used to verify these results at the individual sample level as well as
groups of samples defined by AP load, sex and brain region. Variance stabilized counts were used and
mean log2FC for each focal population was computed against the other two non-focal populations. For
each of the 15 cell type clusters, the mean log2FC was then computed for peaks annotated to that cluster
and the resulting values were plotted in a heatmap.

To test whether distant peaks confound these results, the above analyses were also conducted on peaks
that are near promoters of the marker genes by only considering the peaks that are less than 5 kilobases
away from transcription start sites of the 15 gene sets.

Enrichment test for colocalization of AD-associated variants with cell type-specific peaks

GWAS summary statistics from two studies, Kunkle et al?® and Jansen et al?” were downloaded. and
stratified LD-score regression (S-LDSC)*"~*° was used to compute AD SNP heritability in enrichment in
differential peaks for each cell type against the merged background set. The standard workflow described
by the authors was used and LD scores were computed based on custom annotations derived from
hyperacetylated peaks called on each cell type and compared against custom annotations derived from the
merged background set constructed from the three cell type hyperacetylated peak sets. The regression
coefficients for each population were extracted and plotted. A significant result from this test indicates an
enrichment of genetic risk for LOAD in regions that are actively regulating gene expression in the cell
type, suggesting a role for that cell type in influencing predisposition towards LOAD.

To test whether choice of computational method may confound these results, we used another approach
that utilizes a permutation test**%°. LD-pruning was applied (LD > 0.5) on both GWAS datasets based on
the 1000 genomes reference®. SNPs overlapping protein coding sequence® were filtered out along with
SNPs in tight linkage disequilibrium (LD > 0.5). SNPs with p-values less than 1e-3 were selected and
overlap annotations were created for each set of differential cell type-specific peaks (see Cell type peak
sets). A permutation test was used to compute heritability enrichment of AD-associated SNPs in a focal
foreground set of differential peaks for a cell type against the merged background set. SNPs were
permuted 1,000,000 times preserving distance to gene, minor allele frequency and the number of variants
that are in LD.

DARs associated with Ap load

Differentially acetylated regions were identified using the negative binomial model of DESeq2 on the
previously generated count matrix (see Peak Calling, QC and Read Counting) selecting peaks
associated with a binary AP load indicator. An adjusted p-value cutoff of 0.05 was used for selecting
differentially acetylated peaks. For each differential acetylation model setting (Supplementary Table 3),
a reduced count matrix was generated that includes only the subset of samples corresponding to the
variables described. Variance stabilized (vst) read counts* across all peaks were used for heatmap
visualization and principal components analysis (PCA). Box plots of read counts against covariate
variables such as AP, age, years of education and sample quality metrics were produced using peak-wise
Z-scores of vst normalized counts. DAR sets were annotated to their nearest genes using the
annotatePeaks tool in HOMER®! and the distribution of distance to TSS was plotted for the two biggest
DAR sets as well as the remaining DARs.
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Genome browser visualizations were created for the two biggest DAR sets at known EOAD and LOAD
risk loci, as well as highly differentially acetylated loci using pygenometracks®. Custom UNIX
commands and the UCSC bigWigMerge® tool were used to create average H3K27ac signal tracks in
oligodendrocyte enriched glia samples of subjects with and without AP load. Tracks for DESeq2 log2FC
and UCSC known gene annotations® were included. Generated visualizations were edited later.

The Genomic Region Enrichment and Annotation Tool (GREAT)®® web tool was used for computing
enrichments for ontological annotations associated with genes proximal to DAR sets. GREAT analysis
was performed separately on the two biggest DAR sets as well as the remaining DARS not in those sets.
In addition, we used GREAT to annotate neuron, microglia and oligodendrocyte enriched glial
hyperacetylated peaks for enriched functions. The merged brain peak set (see Peak Calling, QC and
Read Counting) was used as the background for each GREAT analysis. A heatmap of the fold
enrichment returned by GREAT was plotted for any GO Biological Process that passed a g-value cutoff
of 0.05 and was associated with a minimum of 5 genes in any of the 6 GREAT analyses. In addition, fold
enrichment for the KEGG Alzheimer’s Disease Pathway was plotted in the heatmap.

S-LDSC was used to test for AD SNP heritability enrichment from both AD GWAS studies in the two
biggest DAR sets. The full brain peak set was used as background.

Correlation based clustering of DARs

Variance stabilized (vst) counts for all AP associated DARs were obtained. All samples passing quality
control were included. Clustering was performed separately for TSS proximal (<5kb) DARs and TSS
distal (>5kb) DARSs. A distance matrix based on Pearson correlation was computed between every pair of
peaks. More specifically, the distance between peak x and peak y was calculated as 1-abs(cor(x,y)), where
abs represents absolute value and cor represents Pearson correlation. The absolute value was used
because it gives equal weightage to negatively correlated peaks and positively correlated peaks. Then,
average linkage hierarchical clustering using the hclust R function was performed using this distance
matrix to construct a dendrogram. To identify stable clusters from the resulting dendrogram, the a
dynamic tree cutting approach® was used. The resulting cluster identities were plotted alongside a
heatmap of variance stabilized counts.

RNA extraction, reverse transcription and quantitative PCR in postmortem hippocampus (QPCR)

An independent set of hippocampal samples from the ROSMAP cohort were used for rt-gPCR validation.
Samples were prepped for FANS as described previously. To isolate oligodendrocyte, microglia, astrocyte,
and neuronal nuclei, samples were stained overnight at 4°C with anti-Olig2 antibody conjugated to Alexa
Fluor 488 (cat no. MABN50A4, EMD Millipore, Burlington MA), anti-PU.1 antibody conjugated to Alexa
Fluor 647 (cat no. 2240S, Cell Signaling Technology, Danvers MA), anti-GFAP conjugated to Alexa Fluor
555 (cat no. 3656, Cell Signaling Technology, Danvers MA), and stained for one hour with anti-NeuN
conjugated to biotin (cat no. MAB377B, EMD Millipore, Burlington MA), and for one hour with Brilliant
Violet 711 Streptavadin (cat no. 405241, BioLegend, San Diego, CA). Fluorescence activated nuclei was
performed until at least 100,000 Olig2-positive nuclei, NeuN-positive nuclei, GFAP-positive nuclei, and
PU.1-positive nuclei were collected for each sample.

Following sorting, nuclei were treated for 15 minutes with Proteinase K at 50°C and then for 13 minutes at
80°C. RNA was extracted using Direct-zol RNA MicroPrep kit (Zymo Research) according to
manufacturer’s instructions. Reverse transcription of RNA was carried out using Invitrogen SuperScript IV
First Strand Synthesis System (Oligo dT) according to manufacturer’s protocol. qPCR was performed using
a Bio-Rad CFX-96 quantitative thermocycler and SsoFast EvaGreen Supermix (Bio-Rad). Relative changes
in gene expression were determined using the 224 method. The geometric mean of cycle numbers from

14


https://doi.org/10.1101/2020.03.26.010330
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.010330; this version posted March 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RPL13, CYCL, and GADPH were used for housekeeping Ct values. Primer sequences used for gPCR can
be found in Supplementary Table 6.

Comparison with snRNA-seq from postmortem dIPFC

Hyperacetylated DARs in oligodendrocyte enriched glia of the dIPFC were assessed for nearby
transcriptional differences identified in the sSnRNA-seq study from Mathys, Valderrain et al®. The nearest
genes of the hyperacetylated DARs were obtained using annotatePeaks in HOMER. The oligodendrocyte
cluster specific log2FC of these genes was obtained from the snRNA-seq study. Then, a one-sample one-
sided t-test was used to test whether there is an average increase in transcription at these genes (null
hypothesis log2FC = 0, alternative hypothesis log2FC > 0). Transcriptional fold-change of specific AD
risk genes and genes near highly hyperacetylated peaks was also plotted.

DARs associated with Age

Age associated changes in H3K27ac levels were identified using DESeq2. To control for potential
confounds, sex, the binary A load status, and brain region were added as covariates in the linear model
along with age. An adjusted p-value cutoff of 0.05 was then used to screen for peaks differentially
acetylated with every unit increase in age. The peaks were grouped as having increased or decreased
acetylation with age, and ontological annotation enrichments were computed using GREAT (see DARs
associated with A load) using a full brain background peak set. For heatmap visualization, variance
stabilizing transformation (vst) was applied on the full matrix and differential peaks were extracted.
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DATA AVAILABILITY:

The ChlP-seq data will be made available on The Rush Alzheimer’s Disease Center (RADC) Research
Resource Sharing Hub at https://www.radc.rush.edu/docs/omics.htm or at Synapse (link to be provided)
under a doi. The ROSMAP metadata will be accessible at (link to be provided). The data will be available
under controlled use conditions set by human privacy regulations. To access the data, a data use
agreement will be needed. This registration is in place solely to ensure anonymity of the ROSMAP study
participants. A data use agreement will be agreed with either Rush University Medical Center (RUMC) or
with SAGE, who maintains Synapse, and will be downloadable from their websites. Bed, narrowPeak and
bigwig files that do not contain private information will be made available at the appropriate resource in
accordance with privacy considerations.

CODE AVAILABILITY:

Code for processing and analyzing the data will be made available at:
https://github.com/pfenninglab/ad_h3k27ac_3ct
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Figure 1: FANS sorting captures neurons, microglia and oligodendrocyte enriched populations from
postmortem brain tissue a. Workflow for sorting nuclei and performing H3K27ac ChlP-seq from
postmortem human brain tissue b. H3K27ac signal over background (Input) averaged across subjects
without AP load for each of the three populations near RBFOX3 (NeuN), SPI1 (Pu.1) and OLIG2 (an
oligodendrocyte marker) c. Top. for every individual hippocampus and dIPFC tissue sample, fold-change
(log2 transformed) of H3K27ac signal in each focal cell population over the other two non-focal cell
populations, averaged across peaks near the promoters (<5kb from transcription start site) of genes
defined to be markers for 15 different cell types in Habib et al“®. bottom. collapsed versions of top
heatmap representing averages across subjects defined by different stratifications of A load, sex and
brain region. Abbreviated labels for the single nucleus analysis clusters are presented. exPFC,
glutamatergic neurons from the PFC; GABA, GABAergic interneurons; exCA1/3, pyramidal neurons
from the hippocampus CA region; exDG, granule neurons from the hippocampus dentate gyrus region;
ASC, astrocytes; MICROGLIA, microglia; OLIGO, oligodendrocytes; OPC, oligodendrocyte precursor
cells; NSC, neuronal stem cells; END, endothelial cells.
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Figure 2: AD associated SNPs derived from GWAS prefer to colocalize with peaks enriched in the
microglial population relative to peaks enriched in the OEG and neuronal population a and b.
Results of stratified LD score regression on two large AD GWAS studies (Jansen et al and Kunkle et
al)?®2" on hyperacetylated peaks in each population. Plot shows the estimated LD score regression
coefficient for the three peak sets. p-values are indicated above each bar. c. Cell type-specificity of peaks
annotated to known sentinel non-synonymous SNPs at AD risk loci identified by Jansen and Kunkle et al.
Plot shows fold change (log2-transformed) in H3K27ac signal for each population against the other two
populations for (i) in black: peaks closest to the sentinel SNP at each locus associated with AD from
GWAS, and (ii) in red: promoter peaks of early onset AD risk genes (APP, PSEN1, PSEN2). *indicates
DeSeq2 FDR g<0.05. Sentinel SNPs where the closest SNP is >1kb away are not included d,e and f.
Genome browser tracks of (i) reproducible peaks in each cell type, (ii) average H3K27ac signal in
subjects without AP load for each cell type, and (iii) Manhattan plots of Jansen et al and Kunkle et al.
GWAS studies at loci where sentinel non-coding SNPs overlap peaks enriched in non-neuronal cell types;
at the INPP5D containing locus, the sentinel SNP rs10933431 overlaps a peak that is active only in
microglial population but not OEG and neuronal populations; at the locus containing BIN1, the top two
AD-associated SNPs based on GWAS p-value, rs4663105 and rs6733839 overlap peaks active in the
microglial and OEG populations but not in the neuronal population; at the locus containing PICALM, the
top two SNPs, rs10792832 and rs3851179 also overlap non-neuronal enhancers. Region of overlap
highlighted by yellow box.
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Figure 3: OEG display the strongest acetylation differences associated with Ap load which includes
peaks annotated to known genes associated with EOAD and LOAD risk a. heatmap displaying
number of significantly hyperacetylated (log2fc>0, FDR g<0.05) and significantly hypoacetyled peaks
(log2fc<0, FDR g<0.05) in each stratification of brain region, sex and cell type that was tested b.
Heatmap showing normalized acetylation levels at 1962 AD hypoacetylated DARs discovered in female
hippocampus OEG samples, rows represent the 1962 DARs and columns represent OEG samples from
the hippocampus. Measured AP load for each sample is indicated at the bottom of the heatmap, a heatmap
for male hippocampal glia samples is also included for comparison, peaks annotated to known EOAD and
LOAD risk are labeled in red, peaks near STMN4 (highest hypoacetylation) and MYRF are annotated in
black c. heatmap of 1029 DARs displaying hyperacetylation in OEG in dIPFC samples. Peaks annotated
to known EOAD and LOAD risk genes are labeled in red, the promoter peak at ADAMTS18 (highest
hyperacetylation) is annotated in black d. distance to TSS distribution of i) 1962 OEG female
hippocampus hypoacetylated, ii) 1029 OEG dIPFC hyperacetylated DARs and iii) the full set of peaks e.
heatmap showing enrichment of top gene ontology terms for 6 peak sets 1) 1962 OEG female
hippocampus hypoacetylated 2) 1029 OEG dIPFC hyperacetylated 3) all other AP associated DARs 4),5),
and 6) neuron, microglia and OEG cell type-specific hyperacetylated peaks. Color intensity represents
hypergeometric fold enrichment in number of peaks, * indicates FDR <0.05, ** indicates FDR ¢<0.01
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Figure 4: EOAD and LOAD may share common epigenomic perturbations and pathogenic
mechanisms in oligodendrocytes a-i. genome browser tracks displaying average signal in OEG samples
of subjects with (yellow) and without A load (blue) corresponding to two biggest DAR sets at known
EOAD and LOAD risk loci, as well as strongly differentially acetylated regions near ADAMTS18 and
MYRF j. gRT-PCR in hippocampal Olig2+ nuclei from a larger cohort of subjects reveals an associated
decrease in transcription near hypoacetylated regions included in the female hippocampal OEG DAR set
k. comparison with existing SnRNA-seq from dIPFC of subjects from the same cohort reveals an average
increase in gene expression near hyperacetylated regions in OEG dIPFC. Further, specific genes
associated with AD risk and displaying high hyperacetylation nearby (ADAMTS18) display an increase in
transcription in AD.
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Supplementary Figure 1: Heatmap of collected subject information and standard ENCODE quality

metrics for all ChlP-Seq samples
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Supplementary Figure 2: Sorting of neuronal and microglial nuclei from prefrontal cortex and

hippocampus of subjects with and without AD
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Supplementary Figure 3: Plots showing all sequencing samples projected into principal components
space using PCA colored by a. brain region b. sex c. cell type population d. Ap load PC1 separates
NeuN+ samples from Pu.1+ and NeuN-/Pu.1- samples and PC2 separates Pu.1+ samples from NeuN-

/Pu.1- samples
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Supplementary Figure 4: Analysis of cell type compositions of FANS populations using H3K27ac
signal at peaks near 15 cell type-specific gene lists annotated in Habib et al* a. t-statistic showing
enrichment of a given cell type cluster in a FANS population over the other two non-focal FANS
populations. Mean log2FC of signal was computed at H3K27ac peaks near the promoters (<5kb distance
to transcription start site) of the 15 cell type-specific marker gene sets and a t-test was used to compute
whether the mean log2FC is greater than 0.5 (~1.4-fold change). Value inside box represent p-value (-
log10-transformed) for the t-test b. same as panel a but using no distance to tss filter for defining the cell
type-specific peaks c. mean log2fc (focal population/non-focal populations) for peaks near 15 cluster
markers at the individual sample level and for sample aggregates using no distance to tss filter for
defining the cell type-specific peaks. Abbreviated labels for the single nucleus analysis clusters are
presented. exPFC, glutamatergic neurons from the PFC; GABA, GABAergic interneurons; exCA1/3,
pyramidal neurons from the hippocampus CA region; exDG, granule neurons from the hippocampus
dentate gyrus region; ASC, astrocytes; MICROGLIA, microglia; OLIGO, oligodendrocytes; OPC,
oligodendrocyte precursor cells; NSC, neuronal stem cells; END, endothelial cells.
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Supplementary Figure 5: Independent permutation test method confirms that AD associated variants
from the two large GWAS studies®?’ colocalize with peaks enriched in the microglial population
relative to peaks enriched in the oligodendrocyte and neuronal population suggesting that
microglial gene regulation may influence predisposition towards LOAD a. plot of fold change (log2
transformed) in the number of AD associated SNPs (Kunkle et al. GWAS p-value < 1e-3) overlapping
focal foreground cell type specific peaks versus the number of AD associated SNPs overlapping
background set of peaks in all three cell types; permutation test controls for LD and minor allele
frequency, p-value for colocalization test is indicated above each bar b. same as a. but using the Jansen et
al GWAS.
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Supplementary Figure 6: SNPs associated with Schizophrenia from a large GWAS®® colocalize with
peaks enriched in the neuronal population relative to peaks enriched in the OEG and microglial
population suggesting that neuronal gene regulation may influence predisposition towards
Schizophrenia Plot shows the estimated stratified LD score regression coefficient for the three peak sets.
p-values are indicated above each bar.
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Supplementary Figure 7: Two largest DAR sets of 1962 hypoacetylated peaks in female hippocampus
OEG and 1029 hyperacetylated peaks in dIPFC OEG do not show correlations with other
covariates such as age at death and years of education. a and b. Read counts at 1962 hypoacetylated
DARs show consistent decrease with an increase in overall A ¢ and d. No relation can be observed
between mean read count and variables such as age at death and years of education d,e,f and g. same as
a,b,c and d but for 1029 hyperacetylated DARs in dIPFC OEG
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Supplementary Figure 8: Genome browser tracks displaying average H3K27ac signal in OEG samples of
subjects with (yellow) and without A load (blue) corresponding to the two biggest DAR sets at known
LOAD risk loci, as well as strongly differentially acetylated regions near STMN4
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Supplementary Figure 9: Peaks associated with genes in multiple modules in the KEGG Alzheimer’s
Disease Pathway are part of the two largest OEG specific DAR sets and include peaks near all three
of the secretase complexes, MAPT and all 5 modules involved in oxidative phosphorylation Boxes
colored in orange represent genes which contain an annotation to the 1962 hypoacetylated peaks
discovered in female hippocampus OEG, boxes colored in maroon represent genes which contain an

annotation to the 1029 hyperacetylated peaks in dIPFC OEG, an average of orange and maroon is used to
color boxes which represent genes present in both sets
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Supplementary Figure 10: mRNA from cell type specific nuclei are enriched for cell type specific
markers. Olig2+ nuclei are enriched for oligodendrocyte-specific mMRNA MBP, NeuN+ nuclei are
enriched for neuron-specific mMRNA Reln, GFAP+ nuclei are enriched for astrocyte-specific mMRNA
GFAP, and Pu.1+ nuclei are enriched for microglia-specific mMRNA Clga. S.E.M. displayed.
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Supplementary Figure 11: a. correlation-based clustering of all TSS proximal DARs identified across
different sex, brain region and cell type populations. Heatmap displays normalized acetylation levels at
each of the DARs across all samples for every cell type and brain region. Cell type-specificity and cluster
membership are indicated for each peak on the left of the heatmap b. same as a but for TSS distal DARs.
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Supplementary Figure 12: Summary of peaks displaying differential H3K27ac with age in microglia
a. distribution of age associated log2 fold changes for the entire peak set shows that age associated
changes in H3K27ac levels are enriched in the microglial population - as indicated by the wider
distribution of log2 fold changes relative to total, neuronal, and OEG populations , b. heatmap of
variance stabilized read counts representing acetylation levels for the 444 peaks that display age
associated differential H3K27ac levels in the microglial population, c. Genome browser tracks displaying
age hyperacetylated peaks near APP and LRRTM3 which are both involved in A processing d.
distribution of fold change (log2 transformed) in transcription identified in Olah et al®’ for genes
annotated to 391 age hypoacetylated peaks and 53 age hyperacetylated peaks. Two dashed black vertical
lines represent mean transcription log2FC for genes near age hypoacetylated and age hyperacetylated
peaks, respectively. Red vertical dashed line represents log2FC=0, representing no difference in
transcription. T-test p-values are indicated for three comparisons, from left to right (i) hypoacetylated
mean vs. 0, (ii) hyperacetylated vs hypoacetylated means, and (iii) hyperacetylated mean vs. 0
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