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ABSTRACT 

Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused 

by rod photoreceptor degeneration, necessitating therapeutics promoting rod 

photoreceptor survival. To address this, we tested compounds for neuroprotective 

effects in zebrafish and mouse RP models, reasoning drugs effective across species 

may translate better clinically. We first performed a large-scale phenotypic drug screen 

using a larval zebrafish model of inducible RP. 2,934 compounds, mostly human-

approved drugs, were tested across six concentrations. Statistically, 113 compounds 

achieved “hit” status. Secondary tests of 42 high-priority hits confirmed eleven lead 

compounds. Nine leads were then evaluated in mouse RP models, with six exhibiting 

neuroprotective effects. An analysis of potential mechanisms of action suggested 

complementary activities. Paired lead compound assays in zebrafish showed additive 

neuroprotective effects for the majority. These results highlight the value of cross-

species phenotypic drug discovery and suggest combinatorial drug therapies may 

provide enhanced therapeutic benefits for patients with RP and IRDs. 

 

Keywords: 

Neuroprotection, Photoreceptor, Inherited Retinal Degeneration, PARP     

 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.26.010009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010009
http://creativecommons.org/licenses/by/4.0/


3 
 

INTRODUCTION 

Inherited retinal diseases (IRDs) encompass a group of genetically-linked retinopathies 

characterized by progressive photoreceptor death (Duncan et al., 2018). IRDs lead to 

irreversible vision loss, for which treatment strategies are limited. Retinitis pigmentosa 

(RP), the most common IRD, is characterized by early onset night blindness, gradual 

loss of visual field, and eventual loss of central vision  (Ferrari et al., 2011; Hamel, 

2006). Approximately 1.5 to 2.5  million RP patients are affected worldwide (Dias et al., 

2017; Hartong et al., 2006; Verbakel et al., 2018). The initial pathological feature is 

selective rod photoreceptor cell death, which is generally followed by loss of cone 

photoreceptors (Léveillard et al., 2014). Mutations in more than 70 genes have been  

linked to RP (Dias et al., 2017; https://sph.uth.edu/retnet/). How these mutations affect 

gene function or initiate aberrant photoreceptor cell loss is largely unknown. 

As RP/IRD progression is relatively protracted, pharmacological interventions 

aimed at slowing photoreceptor death are sought (Duncan et al., 2018; Wubben et al., 

2019). However, currently there are no effective therapies for promoting photoreceptor 

survival. As a means of discovering new pharmacological treatments, target-directed 

high-throughput screening (HTS) approaches have been highly successful in identifying 

compounds that bind to and/or modulate disease-implicated molecules. However, many 

promising leads fail during late-stage animal model testing or clinical trials (Munos, 

2009; Sams-Dodd, 2013; Scannell et al., 2012). This trend has renewed interest in 

phenotypic drug discovery (PDD), a complementary approach where drug effects are 

evaluated in cells or living disease models (Bickle, 2010; Lee et al., 2012; Swinney, 

2013). A number of first-in-class drugs were recently discovered using PDD (Eder et al., 

2014; Swinney and Anthony, 2011; Swinney, 2014). To expand opportunity on this front, 

we developed a PDD platform enabling quantitative HTS (qHTS; Inglese et al., 2006) in 

zebrafish (Walker et al., 2012; G. Wang et al., 2015; White et al., 2016). 

Zebrafish offer several distinct advantages as a retinal disease modeling system 

(Angueyra and Kindt, 2018; Richardson et al., 2017). First, the structure of the zebrafish 

retina is similar to the other vertebrates (Angueyra and Kindt, 2018; Richardson et al., 

2017; Schmitt and Dowling, 1999). In particular, the zebrafish retina is “cone rich” like 

the human retina. Second, about 70% of human genes have at least one ortholog in 

zebrafish (Howe et al., 2013). Moreover, all RP-associated genes listed in RetNet 

(https://sph.uth.edu/retnet/) have conserved zebrafish orthologs. Third, the zebrafish 

retinal system develops quickly being fairly mature by day five of development 

(Brockerhoff et al., 1995; Moyano et al., 2013; Schmitt and Dowling, 1999). Fourth, 

zebrafish are amendable to large-scale chemical screening due to their high fecundity 

rate, small size, and ease of visualizing and quantifying a variety of phenotypes 

(Mathias et al., 2012; Zon and Peterson, 2005). To streamline such screens, we 

developed a high-throughput plate reader-based method for quantifying reporter gene 

expression in vivo ("ARQiv"; Walker et al., 2012). Recently, we adapted the ARQiv 

system to human stem cell-derived retinal organoids (Vergara et al., 2017) to enable 

cross-species PDD. To realize full throughput potential, ARQiv was combined with 
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robotics-based automation to create “ARQiv-HTS” (G. Wang et al., 2015; White et al., 

2016). 

Here, to identify neuroprotective compounds promoting rod photoreceptor 

survival, ARQiv-HTS was used to perform a large-scale chemical screen in an inducible 

zebrafish model of RP (Walker et al., 2012; White et al., 2017). Close to 3,000 largely 

human-approved drugs were tested across six concentrations (i.e., using qHTS 

principles, Inglese et al., 2006) in more than 350,000 zebrafish larvae. Statistically, 113 

hits were identified as hits and 42 of the top performing compounds advanced through 

validation and orthogonal assays. Eleven compounds passed all secondary tests and 

moved forward as lead compounds. Subsequently, a subset of leads was tested in 

primary mouse retinal cell cultures and retinal explants from retinal degeneration 1 

mutant mice (Pde6brd1, hereafter rd1), an RP model. Six leads showed neuroprotective 

effects in at least one mouse assay, and two showed activity in all retinal culture 

assays. One of these, dihydroartemisinin (DHA), was formulated for long-term release 

and evaluated in vivo using a second RP model, retinal degeneration 10 (Pde6b rd10, 

hereafter rd10), but failed to show neuroprotection. Lastly, an analysis of potential 

mechanisms of action (MOA) of the eleven lead compounds suggested possible 

complementation. We therefore tested pairs of lead compounds for additive 

neuroprotective effects in zebrafish. Intriguingly, additive effects were evident for the 

majority of pairs tested. This result suggests combinatorial therapeutics developed with 

these reagents may provide enhanced neuroprotective effects. We posit that drugs able 

to function as neuroprotectants across diverse model species, and/or through 

complementary mechanisms, provide promising new therapeutic opportunities for 

RP/IRD patients. 

 

 

RESULTS 

Establishing a large-scale neuroprotectant screen using an inducible zebrafish 

RP model 

The ARQiv-HTS platform was used to screen compounds for neuroprotective effects in 

a transgenic zebrafish model of RP, Tg(rho:YFP-Eco.NfsB)gmc500, hereafter, rho:YFP-

NTR (Walker et al., 2012; White et al., 2017).  In this line, a 3.7 kb rhodopsin (rho) 

promoter fragment (Hamaoka et al., 2002) drives transgene expression exclusively in 

rod photoreceptor cells. The transgene is a fusion protein linking a yellow fluorescent 

protein (YFP) reporter to a nitroreductase prodrug converting enzyme (NTR, encoded 

by the E. Coli nfsB gene). NTR expression enables pro-drug inducible targeted cell 

ablation (Curado et al., 2007). Exposing rho:YFP-NTR fish to the prodrug metronidazole 

(Mtz) leads to the selective death of rod photoreceptors and concomitant loss of YFP 

(Supplementary Fig. 1), modeling the onset of RP (Arango-Gonzalez et al., 2014; 

Chaitanya et al., 2010; Ripps, 2002; Sancho-Pelluz et al., 2008). To identify 

neuroprotective compounds that promote rod photoreceptor survival (i.e., sustain YFP 

expression after Mtz exposure) our plate reader-based ARQiv assay was used. 
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We first determined optimal conditions for inducing rod cell loss while maintaining 

larval health in a 96-well plate format. Major aspects of retinal cytogenesis are largely 

complete by 5 days post-fertilization (dpf)  in zebrafish (Schmitt and Dowling, 1999; 

Stenkamp, 2011). Reporter expression in rho:YFP-NTR larvae has also stabilized by 

this time point (Unal Eroglu et al., 2018), consistent with rho expression (Raymond et 

al., 1995). We therefore chose 5 dpf to initiate Mtz-induced rod cell ablation. We 

previously determined that rod cell loss reached a nadir at 7 dpf following a 24 hr pulse 

of 10 mM Mtz at 5 dpf (Walker et al., 2012). We reasoned that a 48 hr Mtz exposure 

initiating at 5 dpf would maximize the signal window to test for neuroprotective effects. 

Concluding the experiment by 7 dpf also avoids challenges associated with feeding, as 

zebrafish can subsist on their yolk sac up to that time point (Hernandez et al., 2018; 

Jardine and Litvak, 2003). However, 10 mM Mtz treatments extending beyond 24 hrs 

become increasingly toxic (Mathias et al., 2014) and removing Mtz from microtiter plates 

after a 24 hr pulse could not be easily automated. We therefore sought a 48 hr Mtz 

treatment regimen sufficient for inducing maximal rod cell loss by 7 dpf that showed no 

evidence of toxicity. 

Five concentrations of Mtz were tested across a 2-fold dilution series from 10 mM 

to 625 μM. YFP reporter signals were quantified daily from 5-8 dpf using ARQiv.  

Changes in YFP levels were calculated as percentages normalized to non-ablated YFP 

controls. The data showed concentration-dependent reductions in YFP with maximal 

loss observed at 7 dpf for 10, 5, 2.5, 1.25 and 0.625 mM Mtz exposures; effect sizes of 

55, 79, 87, 87, and 83 percent cell loss, respectively (Figure 1A; Supplemental Table 1). 

Although no lethality was observed for any condition, signs of distress were evident for 

10 Mtz exposures (i.e., reduced motility). At ≤5 mM, however, no signs of stress were 

observed. As 2.5 mM Mtz was the lowest concentration producing maximal cell loss, 

this condition was selected as the treatment regimen for our large-scale screen.  

Previously established power analysis methods using ablated and non-ablated 

controls (White et al., 2016) determined that a sample size of nine larvae was sufficient 

to detect a 50% neuroprotective effect. For ease of dispensing, microtiter plate 

formatting, and to account for larval dispensing errors, we increased the sample size to 

16 larvae per condition for the primary screen. Fortuitously, this also allowed us to 

detect subtler neuroprotective effects. The strictly standardized mean difference quality 

control (SSMD QC) score was 1.67, indicating the assay was of sufficient quality to 

justify a large-scale screening effort (Zhang, 2011).  

To establish a positive control, we tested 17 compounds and one compound 

“cocktail” previously implicated as retinal neuroprotectants (Supplementary Table 2). 

Unfortunately, none of these were able to sustain YFP expression at the concentrations 

tested (4 μM to 125 nM). However, a compound identified as a retinal cell 

neuroprotectant by the Zack lab (manuscript in preparation) did show-dose-dependent 

effects on YFP levels. This compound was therefore used as a positive control (POS) 

for assay performance. 
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Primary Screen  

For the large-scale PDD screen, the Johns Hopkins Drug Library (JHDL) was used. The 

JHDL is comprised of nearly 3,000 compounds, most being human-approved drugs 

(Shim and Liu, 2014). To minimize false discovery rates, all compounds were tested 

using qHTS principles (Inglese et al., 2006) – i.e., across six concentrations (4 μM - 125 

nM) using a two-fold dilution series. The screen largely followed published ARQiv-HTS 

methodologies (G. Wang et al., 2015; White et al., 2016), with assay-specific details 

provided in Figure 1C (steps 1-8). In all, 2,934 compounds were screened and more 

than 350,000 transgenic zebrafish larvae evaluated. Real-time data analysis was 

performed as previously detailed (White et al., 2016) to generate: 1) a plot of YFP signal 

levels, 2) a plot of SSMD scores across all tested concentrations,  3) a signal intensity 

heat map of each plate, and 4) an SSMD score table (Figure 1C, step 7). Compounds 

producing SSMD scores of ≥1 were considered potential hits and flagged for visual 

inspection to assess fluorescence and general morphology using a stereo fluorescence 

microscope. This step facilitated elimination of false-positive compounds producing 

autofluorescence due to larval toxicity (5 drugs) or compound fluorescence (32 drugs) 

(Figure 1C, step 8). Additionally, this allowed visual confirmation of sustained YFP 

expression within the retina. At the conclusion of the primary screen, 113 compounds 

were identified as potential hits (Supplementary Table 3). Hits were classified according 

to the highest SSMD score achieved across all concentrations, and whether 

concentration-dependent effects were observed. SSMD scores suggested one drug 

produced a strong effect (SSMD of 2-3); four had semi-strong effects (1.645-2), 20 

showed moderate effects (1.28-1.645), and 89 had semi-moderate effects (1-1.28) 

(Supplementary Table 3). Forty-two drugs showed concentration-dependent effects, 

while 72 exhibited discontinuous or singular concentration effects.  

 

Validation Assay I: Confirmation 

We next performed a series of confirmatory and orthogonal assays to evaluate a subset 

of 42 hit compounds prioritized by SSMD score, dose-response profile, and/or 

implicated mechanism of action (MOA; Supplementary Table 4). Having extensive MOA 

data is a key advantage afforded by testing human-approved compounds which we 

leveraged in a previous large-scale zebrafish PDD screen (G. Wang et al., 2015). 

Similarly here, as studies have suggested inflammation plays a key role in retinal 

degeneration and regeneration (Hollyfield et al., 2008; Mitchell et al., 2018; White et al., 

2017; Yoshida et al., 2013), hits implicated as modulators of inflammatory signaling 

were included. In addition, several compounds that did not produce concentration-

dependent effects were selected to test whether this criterion was useful in predicting 

reproducibility. All compounds were obtained from new sources to ensure reagent 

authenticity. To confirm activity, three biological repeats were conducted but using a 

wider concentration range (from 100 μM to 1.28 nM using a 5-fold dilution series) to 

account for differences in reagent quality. If toxicity was observed at higher 

concentrations, dilution series were initiated at 10 µM or 1 µM. Using this strategy, 11 of 

the original 42 prioritized hit compounds were confirmed as lead compounds (26%; 
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Figure 2). Effect sizes ranged from a 9 to 38 percent increase in YFP signal relative to 

+Mtz/0.1% DMSO controls (Fig. 2; drug abbreviations in Table 1).  

We next asked whether there was a correlation between SSMD scores and/or 

concentration-dependent effects and confirmation rates. Among 19 selected 

compounds with higher SSMD scores (≥1.3), seven (37%) were confirmed; among 23 

with lower SSMD scores (1-1.28), four (17%) were confirmed. Of 27 compounds with a 

concentration-dependent trend, eight (30%) were confirmed. Conversely, of 15 

compounds that did not show a concentration-dependent trend, 3 (20%) were 

confirmed. Among the eleven confirmed leads, eight (73%) showed dose-dependent 

effects and seven (64%) had higher SSMD scores (>1.28). These results suggest that 

prioritizing hit compounds by both relative SSMD score and dose-dependent trends 

provides predictive value for confirming activity, consistent with qHTS principles (Inglese 

et al., 2006). 

Validation Assay II: Confocal intravital microscopy 

To ensure lead compounds promoted rod photoreceptor cell survival rather than simply 

increased YFP signal intensity, intravital time series confocal microscopy was used to 

image lead-treated, +Mtz and -Mtz control retinas. Mtz-ablated retinas exhibited 

dramatically reduced YFP signal (Figure 3, +Mtz). Conversely, rod photoreceptor cells 

in non-ablated -Mtz control retinas displayed robust YFP signal throughout the retina 

and elongated morphologies suggesting healthy outer segments (Figure 3, -Mtz). In 

retinas exposed to Mtz and lead compounds, YFP signal loss was attenuated and rods 

typically displayed healthy elongated morphologies (Figure 3, e.g., CLO). However, 

some cells appeared rounded, suggesting that the process of degeneration was not fully 

inhibited, e.g., miconazole (MIC; Figure 3). To confirm increased rod cell survival in lead 

drug treated groups (versus increased YFP intensity), confocal images of YFP-

expressing cells were 3D-rendered and fluorescence volumetrically quantified using 

Imaris software-based automated image analysis (White et al., 2017).  The data showed 

YFP volumes were elevated in all drug treated groups relative to Mtz-ablated controls 

(Supplementary Figure 2), confirming that lead compounds promoted increased rod cell 

numbers and/or preserved outer segment morphology. 

 

Validation Assay III: NTR inhibition 

As rod cell death is induced by NTR reduction of the prodrug Mtz in our model, it is 

possible that some lead compounds simply suppressed NTR enzymatic activity. To test 

this, NTR activity was evaluated in the presence of each lead compound by assaying 

the reduction kinetics of the prodrug CB1954 in vitro (Prosser et al., 2010). To ensure 

any potential for NTR inhibition was accounted for, all compounds were tested at 300 

μM (~100-fold greater than neuroprotective concentrations). Compounds were deemed 

potential inhibitors if NTR activity was less than 75% of the control. Seven compounds 

showed no evidence of NTR inhibition by this criterion, but four did: warfarin (WAR), 

ciclopirox olamine (CPO), calcimycin (CAL) and sulindac (SUL) (Supplementary Figure 

3). However, IC50 measures ranged from 150 µM (for CPO) to 350 µM (for SUL), 

substantially higher than neuroprotective concentrations (i.e., 0.4-20 µM, see Figure 2). 
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When NTR reduction of Mtz was tested, similarly weak inhibitory effects were observed 

(Supplementary Figure 3B). The differences in concentrations between neuroprotective 

and NTR inhibitory activities diminish the possibility that leads act directly on NTR. To 

test of this further, lead compounds were assayed for neuroprotective effects in NTR-

independent mouse RP models assays (see below). 

 

Validation Assay IV: Rod photoreceptor development 

To control for the possibility that confirmed compounds promoted rod photoreceptor 

development, rather than provided neuroprotection, YFP levels were quantified in 

rho:YFP-NTR larvae exposed solely to lead drugs from 5-7 dpf. Retinoic acid (RA, 1.25 

μM) was used as a positive control as it promotes rod fates during development in 

zebrafish (Hyatt et al., 1996). RA treated fish displayed significantly increased YFP 

signals compared to untreated controls (Supplementary Figure 4). In contrast, none of 

the retinas treated with lead compounds exhibited increased YFP expression, 

suggesting they do not promote rod photoreceptor cell fate. Interestingly, three lead 

compounds cloxyquin (CLO), cortexolone (COR) and CPO produced lower YFP signals 

than controls, suggesting negative effects on rod cell development.  

 

Validation Assay V: Regeneration 

It is well known that the zebrafish retina regenerates (Gorsuch and Hyde, 2014; 

Lenkowski and Raymond, 2014; Wan and Goldman, 2016). Therefore, to determine 

whether lead compounds acted by stimulating regeneration, we used a previously 

described ARQiv assay designed to detect changes in rod cell replacement kinetics 

(Walker et al., 2012; White et al., 2017). Briefly, rho:YFP-NTR larvae were first treated 

with 10 mM Mtz at 5 dpf for 24 hrs to induce rod cell loss. At 6 dpf, Mtz was washed out 

and larvae were treated with lead compounds at concentrations corresponding to 

maximal neuroprotective effects and YFP levels quantified at 9 dpf. Dexamethasone, 

which accelerates rod cell regeneration kinetics (White et al., 2017), was used as a 

positive control. The results showed that none of the compounds increased rod cell 

regeneration rates (Supplementary Figure 5). Interestingly, four compounds, 

dihydroartemisinin (DHA), CLO, CPO and MIC inhibited regeneration. These data 

suggest that lead compounds do not increase YFP levels by promoting rod cell 

regeneration. 

 

Molecular Mechanism of Action  

Previously, we used only “on label” information to explore MOA of hit compounds (G. 

Wang et al., 2015); e.g., Supplementary Table 4). Recently, we have become interested 

in additional advantages afforded by whole-organism PDD, such as polypharmacology 

(Dar et al., 2012; Rennekamp and Peterson, 2015; Rihel et al., 2010). Accordingly, here 

we also applied a target-agnostic MOA analysis process by evaluating lead compound 

performance in HTS/uHTS studies archived on PubChem 

(https://pubchem.ncbi.nlm.nih.gov/). Many lead compounds exhibited shared target 

activities, suggesting common MOA (Supplementary Table 5). The most common target 
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implicated was Tyrosyl-DNA Phosphodiesterase 1 (TDP1), a DNA repair enzyme. To 

test whether TDP1 inhibition was a viable means of promoting rod photoreceptor 

survival, we tested three TDP1 inhibitors in our zebrafish RP model: paromycin (PAR), 

thiostepton (THI) and methyl-3,4-ephostain (MET) (Huang et al., 2011; Liao et al., 

2006). Both PAR and THI showed neuroprotective effects (Table 2, Figure 4). 

This result is surprising given that NTR reduction of Mtz is thought to cause DNA 

damage-induced cell death (Curado et al., 2007). Thus, inhibition of a DNA repair 

enzyme would be expected to enhance NTR/Mtz-mediated cell death not inhibit it. 

However, an alternative means of disrupting TDP1 activity, is by inhibiting Poly (ADP-

ribose) Polymerases (PARPs; Murai et al., 2014). PARPs also mediate DNA repair but, 

interestingly, hyperactivation of PARP1 leads to a specific form of cell death, termed 

parthanatos (Fatokun et al., 2014; Wang et al., 2016). We therefore assayed PARP 

inhibitors for the capacity to promote rod cell survival. All eight PARP inhibitors tested 

had neuroprotective activity, ranging from 9 to 20% (Figure 4). To account for other cell 

death mechanisms implicated in neurodegeneration, we tested inhibitors of necroptosis 

(necrostatin-1; NEC), and apoptosis (belnacasan; BEL). Surprisingly, NEC promoted 

rod cell survival, while BEL did not (Figure 4, Table 2).   

     

Mouse Model Validation I: primary retinal cells treated with stressor compounds 

Our ultimate goal is to identify potential new therapeutics for RP patients. We reasoned 

compounds that show similar effects in fish and mammalian models would be more 

likely to translate to human RP patients. Therefore, we tested the efficacy of lead 

compounds in mouse models of retinal degeneration. 

First, we tested compounds for the capacity to protect primary mouse retinal cells 

from stress-induced cell death in culture. Retinal cells were isolated from postnatal day 

four (P4) wildtype mice and grown as previously described (Fuller et al., 2014). To 

induce retinal cell death, tunicamycin (0.6 µg/mL) or thapsigargin (0.25µM) were added 

to the cultures. These “stressor” compounds inhibit protein glycosylation (Fliesler et al., 

1984) and endoplasmic reticulum (ER) calcium levels (Thastrup et al., 1990), 

respectively (E. Lai et al., 2007). In turn, they induce an unfolded protein response 

(UPR) (H. Wang et al., 2015) and related ER stress (Oslowski and Urano, 2011; Zhang 

et al., 2014) which  have been implicated in the etiology of RP (Griciuc et al., 

2011)(Rana et al., 2014). For pan-retinal cell survival assays, compounds were tested 

at 5 concentrations across a 2-fold dilution series (from 4 µM to 250 nM) in sextuplicate.  

After two days in culture, relative viability was quantified using a luminescent cell 

viability assay (CellTiter-Glo).  A second assay, for photoreceptor survival effects was 

performed using cells isolated from QRX mice (Wang et al., 2004), a transgenic line in 

which GFP expression is restricted to photoreceptors. For these assays, compounds 

were tested at 7 concentrations across a 3-fold dilution series (from 30 µM to 40 nM) in 

sextuplicate. After 48 hrs, cells were imaged and analyzed using a high-content 

screening system (Cellomics VTI). The photoreceptor survival was assessed by 

quantifying the number of GFP-expressing cells. For both assays, compounds were 

considered effective if the mean number of surviving total retinal cells or photoreceptor 
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cells was two standard deviations greater than the mean of the non-drug treated control. 

Six hit compounds, CAL, CPO, DHA, WAR, chloroxine (CHL) and pyrithione zinc (ZPT) 

showed protective effects in at least one of the two assays (Table 3). CPO and ZPT 

protected photoreceptors from both tunicamycin and thapsigargin-induced stress (Table 

3). 

 

Mouse Validation II: rd1 mutant retinal explants 

We next examined the effects of lead compounds in mouse retinal explants isolated 

from rd1 mice. The rd1 mouse model of RP exhibits early onset rod cell degeneration 

caused by a mutation in the Pde6b gene (Chang et al., 2002), an ortholog of human 

RP-associated gene PDE6B (Bayés et al., 1995; Gal et al., 1994; Hmani-Aifa et al., 

2009; McLaughlin et al., 1993). In these mice, photoreceptor degeneration begins 

around P10 and progresses rapidly. By P21, only a few rows of photoreceptor cells 

remain in the outer nuclear layer (ONL; LaVail and Sidman, 1974). Here, retinal 

explants from P10 rd1 mice were isolated and cultured ex vivo (Bandyopadhyay and 

Rohrer, 2010). Eight lead compounds were evaluated at three concentrations across a 

five-fold dilution series centered on the most effective concentration determined in fish 

RP models. After eleven days in culture, explants were fixed, the retinal cells stained 

and the number of photoreceptor rows counted. Neuroprotective effects were defined as 

exhibiting 1) a concentration-dependent increase in the number of photoreceptor rows 

remaining in the ONL relative to untreated controls and 2) a p-value of ≤0.05. An 

average of 1.2 +0.19 rows of photoreceptors remained in the ONL of non-treated control 

explants cultured for eleven days. Three of eight tested drugs, CPO, DHA and 

artemisinin (ART), increased the number of surviving photoreceptor layers, suggesting 

cross-species conservation of neuroprotective effects (Figure 5). However, high 

concentration CPO treatments (15 µM) led to disruption of retinal histology due to 

induction of proliferation in the inner nuclear layer (INL) and ONL. 

 

Mouse Validation III: rd10 mutant model of RP 

Finally, we examined the effects of the lead drug candidate DHA for neuroprotective 

effects in the rd10 mouse model of RP (Pde6brd10). The rd10 line was selected for in 

vivo experiments due to its slower rate of photoreceptor degeneration relative to other 

rd mutants, thus allowing for a longer duration of time for pharmacological intervention. 

DHA was selected based on its superior performance in rd1 retinal explant assays 

(Figure 6) and because it is the active metabolite of a second lead drug candidate, ART, 

an antimalarial compound. Prior to testing, DHA was encapsulated in PLGA polymers. 

Release kinetics assays in PBS/0.1% DMSO in vitro suggested DHA would reach 

maximal concentrations after 30 days, and remain stable for at least 20 days thereafter 

(Supplementary Figure 6). PLGA-DHA was injected into the vitreous of one eye of rd10 

mice at P14, with the contralateral eye serving as a vehicle injection control. At P32, 

eighteen days after injection, and when DHA levels were predicted to reach 80% of 

maximal concentration, rd10 mouse eyes were processed for immunohistochemistry to 
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quantify ONL thickness. Despite initial promising results in pilot assays, no reproducible 

neuroprotective effects were observed in these assays (Supplementary Figure. 7). 

   

Combinatorial Assay 

PubChem searches also suggested potential complementary MOA, i.e., multiple 

independent targets across compounds (Supplementary Table 5). We therefore 

hypothesized that combining lead compounds may produce additive effects. To test this 

idea, seven lead compounds were tested in pairs using optimal effective concentrations 

(a total of 19 pairs; two being lethal). Pairs producing an effect equal to (±10%) or 

greater than the sum of their individual values were considered additive. By this 

criterion, 10 of 19 pairs exhibited additive effects (Figure 7, Supplementary Table 6). 

Moreover, three pairs produced supra-additive effects (i.e., ≥25% greater than the sum) 

suggesting possible synergy (Figure 6, denoted by *). The maximum paired effect 

reached 58% rod cell survival. Several compounds showed broadly additive effects, 

e.g., WAR was additive with all six drugs and COR with four of five pairs (one pair 

proving lethal). Additive effects suggest multiple signaling pathways are involved in 

NTR/Mtz-induced photoreceptor degeneration. A schematic of the entire screening 

cascade is provided in Figure 7.      

 

 

DISCUSSION 

Identifying effective neuroprotective therapies for RP and other IRDs stands as a critical 

unmet need for the field (Duncan et al., 2018; Wubben et al., 2019). Although, 

neurotrophic factors, anti-apoptotic agents, nutritional supplements and antioxidants 

have shown neuroprotective effects in animal models of RP (Dias et al., 2017). 

Unfortunately, these reagents have produced, at best, only limited benefits for patients 

to date and, for some, mild improvements are offset by adverse side effects associated 

with long-term use (Dias et al., 2017). For example, ciliary neurotrophic factor (CNTF) 

was shown to be effective in protecting photoreceptors in mouse (Cayouette et al., 

1998), dog (Tao et al., 2002) and chicken (Fuhrmann et al., 2003) models of retinal 

degeneration. However, CNTF failed to improve either visual acuity or field sensitivity in 

short- and long-term RP clinical trials (Birch et al., 2016, 2013; Ho et al., 2015). Clinical 

trials of Vitamin A in combination with Vitamin E (Berson et al., 1993), docosahexaenoic 

acid (Berson et al., 2004), lutein (Berson et al., 2010) or valproic acid (Birch et al., 2018) 

were reported to produce some benefits for RP patients, but only in subpopulations, and 

some of these studies have been controversial (Massof and Finkelstein, 1993).  

Our strategy for addressing this challenge has two key elements: 1) scaling up 

the number of compounds tested directly in complex living disease models, and 2) a 

cross-species screening cascade that starts with small models amenable to HTS and 

proceeds to mammalian models. We hypothesize that compounds producing beneficial 

outcomes across evolutionarily diverse species will target conserved MOA and thus 

stand a higher chance of successfully translating clinically. As a generalized strategy, 

large-scale drug discovery screens using small animal models are showing increasing 
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promise across multiple disease paradigms (Cagan et al., 2019; Cully, 2019; Kitcher et 

al., 2019; MacRae and Peterson, 2015).  

Here, using a large-scale in vivo drug screening platform (Figure 1), we tested 

2,934 largely human-approved compounds for neuroprotective effects across six 

concentrations in >350,000 larval zebrafish models of RP. The primary screen 

implicated 113 compounds as neuroprotectants (Supplementary Table 3). Confirmatory 

repeats and a series of four orthogonal assays validated 11 of 42 prioritized hit 

compounds in protecting zebrafish rod photoreceptors from cell death (Figure 2, 3, 

supplementary Figures 3, 4, 5 and Table 1). Importantly, investigations of lead 

compound MOA, led to the discovery that NTR/Mtz-mediated rod cell death appears to 

proceed through alternative cell death pathways recently linked to photoreceptor 

degeneration (Figure 4).  

 To further test relevance to disease mechanisms, and conservation of 

neuroprotective effects across species, lead compounds were evaluated in three mouse 

IRD/RP models. Six of nine leads were confirmed as neuroprotectants in primary retinal 

cell cultures (Table 3). Three of eight leads assayed using rd1 retinal explant cultures 

(Figure 5); two being active in both paradigms, dihydroartemisinin (DHA) and ciclopirox 

olamine. We chose the rd10 RP model for in vivo testing because it undergoes a slower 

rate of rod cell loss than rd1; spanning from approximately P16 to P35 (Chang et al., 

2007; Gargini et al., 2007). DHA was the most promising compound for these tests as it 

had shown strong effects across assays and was amenable to a long-term release 

formulation designed to sustain drug action over weeks to months (Supplementary 

Figure 6). In addition, DHA is the active metabolite of artemisinin, another of our cross-

species confirmed leads that was shown to have neuroprotective activity in rat models 

of stress-induced neuronal damage and light-induced photoreceptor degeneration (Yan 

et al., 2017). Unfortunately, we did not observe increased photoreceptor survival in rd10 

retinas injected with PLGA encapsulated DHA. One possible explanation is that rd1 and 

rd10 models have differential responses to DHA. This has been reported for the 

histone-deacetylase inhibitor valproic acid, which shows opposing effects in rd1 

(neuroprotective) rd10 (deleterious) mice (Mitton et al., 2014) and across four different 

frog models of RP (Vent-Schmidt et al., 2017). In addition valproic acid has produced 

inconsistent results in clinical trials with RP patients (Chen et al., 2019; Todd and 

Zelinka, 2017; Totan et al., 2017). These results emphasize the need for a more 

thorough understanding of IRD and RP disease mechanisms and downstream cell 

pathways to support the development of both personalized and pan-disease 

therapeutics. 

Numerous IRD/RP-linked mutations have been identified (Dias et al., 2017; 

https://sph.uth.edu/retnet/) implicating an array of disease mechanisms (Dharmat et al., 

2020). However, cell death pathways common across different IRD/RP patient 

subpopulations may provide pan-disease targets for neuroprotective therapies. 

Apoptosis has long been thought to be the mechanism by which rod photoreceptors die 

in IRD/RP (Chang et al., 1993; Doonan et al., 2003; Portera-Cailliau et al., 1994; Zeiss 

et al., 2004). However, these reports relied on terminal deoxynucleotidyl transferase 
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dUTP nick end labeling (TUNEL), which does not distinguish apoptosis from other types 

of cell death (Ansari et al., 1993; Charriaut-Marlangue and Ben-Ari, 1995; Grasl-Kraupp 

et al., 1995; Dmitrieva and Burg, 2007; Kanoh et al., 1999; Nishiyama et al., 1996). 

More recent evaluations of multiple apoptosis-related markers (e.g., BAX, cytochrome c, 

caspase-9, cleaved caspase-3) suggest apoptosis occurs in only a minority of RP 

models (Arango-Gonzalez et al., 2014; Sancho-Pelluz et al., 2008). Moreover, inhibition 

of apoptosis does not block cell death in many mouse photoreceptor degeneration 

models (Hamann et al., 2009; Yoshizawa et al., 2002), suggesting other pathways may 

mediate rod and/or cone cell death in retinal degenerative disease. 

Recently, non-apoptotic cell death mechanisms have been implicated in IRD/RP. 

In a comprehensive biochemical analysis of ten mammalian RP models—involving 

mutations in cnga3, cngb1, pde6a, pde6b, pde6c, prph2, rho, and rpe65—non-apoptotic 

cell death signatures were found to be common across all models tested (Arango-

Gonzalez et al., 2014). Conversely, definitive apoptotic markers were found only for the 

S334ter (rho) rat model. Shared features included activation of poly-ADP-ribose-

polymerase (PARP), histone deacetylase (HDAC), and calpain, and accumulation of 

cyclic guanosine monophosphate (cGMP) and poly-ADP-ribose (PAR). For PARP, 

chemical inhibitors and a knock out line provided further confirmation (Jiao et al., 2016; 

Paquet-Durand et al., 2007; Sahaboglu et al., 2017, 2016, 2010). Prior reports had 

suggested the NTR/Mtz system elicits caspase-3 activation and apoptotic cell death 

(Chen et al., 2011). Initially, we had used this as a rational for pursuing a 

neuroprotective screen with the rho:YFP-NTR line, however, the recent reports outlined 

above suggested apoptosis may have limited relevance to IRD/RP. Interestingly, when 

we tested cell death processes implicated in photoreceptor degeneration directly, an 

inhibitor of apoptosis (BEL) did not promote rod cell survival whereas inhibition of 

necroptosis (NEC) was neuroprotective in our fish RP model (Figure 4, Table 2). 

Serendipitously, an exploration of shared lead compound MOA helped to clarify cell 

death mechanism(s) mediating NTR/Mtz-induced rod cell ablation.     

To explore molecular MOA of our lead compounds, we searched bioactivity data 

from prior HTS and ultra HTS assays (PubChem). The results suggested both shared 

and independent MOA (Supplementary Table 5). The most common shared target was 

TDP1 (Supplementary Table 5, eight of eleven lead compounds). An initial test 

confirmed two of three TDP1 inhibitors (Figure 4). TDP1 is a DNA repair enzyme that 

repairs topoisomerase I-induced DNA damage (Dexheimer et al., 2008; El-Khamisy, 

2011). Interestingly, a qHTS cell-based screen of 400,000 compounds for inhibitors of 

human TDP1 found that all five confirmed compounds actually inhibited PARP activity 

not TDP1 (Murai et al., 2014). This is consistent with findings showing that TDP1 acts in 

conjunction with PARP1 (Das et al., 2014; Lebedeva et al., 2015), thus PARP inhibition 

can indirectly affect TDP1 activity. Combined with the results discussed above, we were 

motivated to test whether PARP inhibition was protective against NTR/Mtz-induced rod 

cell death. All eight PARP inhibitors tested promoted rod cell survival in our fish RP 

model (Figure 4 and Table 2). This result suggests our lead compounds may promote 

rod cell survival primarily by inhibiting a PARP-dependent cell death pathway. 
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PARP1 overactivation initiates a caspase-independent form of DNA-damage 

induced cell death pathway, termed parthanatos (Fan et al., 2017). Parthanatos has 

been strongly implicated in Parkinson’s disease (Kam et al., 2018) and is involved in a 

variety of neurodegenerative conditions as well (Fan et al., 2017). For instance, PARP 

has been identified as a common factor across a series of mammalian retinal disease 

models spanning all major forms of hereditary human blindness (Arango-Gonzalez et 

al., 2014). Importantly, PARP is also a key component of the cGMP-dependent cell 

death pathway which has been linked to photoreceptor degeneration (Iribarne and 

Masai, 2017; Tolone et al., 2019; Power et al., 2019). As noted above, we found that 

inhibiting necroptosis but not apoptosis promoted rod cell survival in fish (Figure 4 and 

Table 2). Necroptosis is primarily associated with secondary cone cell death in RP 

models (Murakami et al., 2015, 2012; Yang et al., 2017) but has also been implicated in 

rod cell death in IRBP mutant RP models (Sato et al., 2013) and/or may damage 

photoreceptors indirectly via necroptotic microglia signaling (Huang et al., 2018). 

Combined, these results suggest that necroptosis, PARP1-dependent parthanatos, 

and/or c-GMP-dependent cell death mediate NTR/Mtz-induced rod cell ablation. The 

potential relevance of these alternative cell death pathways to heritable photoreceptor 

degeneration may explain the relatively high rate of validation we observed in cross-

species tests of lead compounds. PARP1 has also been shown to have a role in stem 

cell reprogramming (Chiou et al., 2013; Doege et al., 2012; Weber et al., 2013). PARP 

inhibition might therefore block Müller glia dedifferentiation, diverting injury-induced 

activity from a regenerative to neuroprotective program (Bringmann et al., 2009). That 

all four compounds which inhibited rod cell regeneration (MIC, CLO, CPO and DHA) 

were also implicated as PARP inhibitors is consistent with this possibility.       

Finally, MOA analyses also revealed numerous independent lead compound 

targets (Supplementary Table 5). Compounds acting through independent 

targets/pathways have the potential to produce additive or even synergistic effects. This 

possibility was confirmed for 10 of 19 viable paired lead compound assays (Figure 7, 

Supplementary Figure. 9).  This result exemplifies a key advantage of phenotypic 

screening: the potential to identify multiple signaling pathways providing inroads to the 

desired therapeutic endpoint. That combinatorial assays could be performed efficiently 

and rapidly also exemplifies key advantages the zebrafish system affords phenotypic 

drug discovery, e.g., versatility and low cost.  

In summary, we identified eleven lead compounds promoting rod cell survival in 

an inducible zebrafish RP model using a large-scale in vivo phenotypic drug discovery 

platform. Seven lead compounds were also effective as neuroprotectants in either 

primary mouse retinal cell cultures or in rd1 mouse retinal explants. MOA studies 

indicated lead compounds may protect rod cell from death by inhibiting PARP-

dependent cell death pathways and/or necroptosis. Combinatorial assays in fish 

showed additive effects, suggesting lead compounds also target independent 

neuroprotective pathways (summarized in Figure 7). We hypothesize that compounds 

producing beneficial outcomes across diverse animal disease models likely target highly 

conserved MOA and may therefore stand an increased likelihood of successfully 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.26.010009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010009
http://creativecommons.org/licenses/by/4.0/


15 
 

translating to the clinic. Further, our data suggest polypharmacological targeting of 

complementary neuroprotective mechanisms has the potential to maximize therapeutic 

benefits for IRD/RP patients. 

 

 

MATERIALS and METHODS: 

All animal studies described herein were performed in accordance with both the 

Association for Research in Vision and Ophthalmology (ARVO) statement on the “Use 

of Animals in Ophthalmic and Vision Research” and the National Institutes of Health 

(NIH) Office of Laboratory Animal Welfare (OLAW) policies regarding studies conducted 

in vertebrate species. Animal protocols were approved by the Animal Care and Use 

Committees of the Johns Hopkins University School of Medicine and Medical University 

of South Carolina. 

 

Fish maintenance and husbandry 

Zebrafish were maintained using established temperature and light cycle conditions 

(28.5°C, 14 hr of light/10 hr of dark). A previously generated zebrafish transgenic line, 

Tg(rho:YFP-Eco.NfsB)gmc500 (hereafter, rho:YFP-NTR) expresses a fusion protein of 

enhanced yellow fluorescent protein (YFP) and a bacterial nitroreductase (NTR) 

enzyme (encoded by the E. coli nfsB gene) selectively in rod photoreceptors (Walker et 

al., 2012). When rho:YFP-NTR fish are exposed to the prodrug metronidazole (Mtz), 

NTR reduces Mtz to a DNA damage-inducing cytotoxic derivative, resulting in the death 

of NTR-expressing cells (Curado et al., 2007; White and Mumm, 2013). This line was 

propagated in a pigmentation mutant with reduced iridophore numbers, roya9 (roy), to 

facilitate YFP reporter signal detection in vivo. Non-transgenic roy fish were used to 

define reporter signal cutoff values for fluorescent microplate reader assays. For each 

drug assay, 6,000-12,000 eggs were collected by group breeding ~300 adult rho:YFP-

NTR fish (White et al., 2016).  

 

Immunostaining 

Zebrafish Tg(rho:YFP-NTR) larvae were treated with 2.5 mM Mtz or 0.1% DMSO at 5 

dpf for 2 days, and collected at 7 dpf for immunostaining using previously reported 

methods (Unal Eroglu et al., 2018). Briefly, larvae were fixed in 4% PFA at 4˚C 

overnight, infiltrated with 30% sucrose, and embedded in OCT. Cryosections of 10 µm 

thickness were made for immunofluorescence staining. Each section was blocked with 

1x PBS containing 0.5% Triton X-100 and 5% goat serum for one hour followed by 

primary antibody staining overnight. The next day, each section was washed and 

stained with the secondary antibody for 2 hours. All slides were mounted and underwent 

confocal imaging. The primary antibodies used in this study were zpr1 (anti-arrestin3a; 

1:200; from ZIRC), 1d1 (anti-Rho; 1:50; gift from Dr. James M. Fadool) and anti-4c12 

(1:100; gift from Dr. James M. Fadool). The secondary antibody used was goat anti-

mouse Alexa 647 (1:1000; Invitrogen). 
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Optimization of Mtz concentration to establish an inducible RP model 

 rho:YFP-NTR larvae were separated into six groups of 56 larvae per group. Each group 

was treated with varying Mtz concentrations (10, 5, 2.5, 1.25, 0.625, 0 mM), from 5-8 

days post-fertilization (dpf). YFP signals were quantified daily by fluorescence 

microplate reader (TECAN Infinite M1000 PRO; excitation 514 nm, bandwidth 5 nm; 

emission 538 nm, bandwidth 10 nm) to track changes in rod photoreceptor cell numbers 

relative to Mtz concentration (Walker et al., 2012; White et al., 2016).  

 

Sample size estimation 

To calculate sample size (n) and evaluate assay quality, two 96-well plates of larvae 

were treated with 2.5 mM Mtz/0.1% DMSO (ablated “+Mtz” control) or 0.1% DMSO only 

(non-ablated “-Mtz” control) from 5-7 dpf. YFP signals were then quantified at 7 dpf. 

Power calculations were used to determine sample sizes across a range of error rates 

and effect sizes (White et al., 2016). This analysis suggested a sample size of nine per 

condition tested would sufficiently minimize false-discoveries (i.e., type I and type II 

error rates of 0.05 and 0.05, respectively) and account for drug effects reaching 50% of 

signal window of the positive (non-ablated) control. However, to account for plating 

errors and other confounding variables, we chose to increase the sample size to 16.  

 

Primary drug screening using ARQiv platform  

A schematic of the primary screening process is presented in Fig. 1C. For the primary 

screen, 2,934 compounds from John Hopkins Drug Library (JHDL) were screened 

across six concentrations (4 μM-125 nM using a 2-fold dilution series). The JHDL 

consists of ~2,200 drugs approved for use in humans (e.g., FDA approved) with the 

remainder approved for clinical trials (Chong et al., 2006). The ARQiv screening 

process has been detailed previously (White et al., 2016) and was adapted here for 

large-scale quantification of YFP-expressing rod photoreceptors (Walker et al., 2012; 

White et al., 2016). rho:YFP-NTR  embryos were collected and raised in zebrafish E3 

embryo media (5 mM NaCl; 0.17 mM KCl; 0.33 mM CaCl; 0.33 mM MgSO4). At 16 

hours post fertilization (hpf), N-phenylthiourea (PTU) was added to E3 media (E3/PTU) 

at a final concentration of 0.2 mM to promote ocular transparency by inhibiting 

melanosome maturation in the retinal pigment epithelium. At 4 dpf, visual screens were 

performed to remove larvae with abnormal morphology or low YFP expression levels. 

Stock drug and DMSO (negative control) solutions were automatically dispensed and 

diluted across a 96-well plate containing E3/PTU using a robotic liquid handling system 

(Hudson Robotics). At 5 dpf, a COPAS-XL (Complex Object Parametric Analyzer and 

Sorter, Union Biometrica) was used to dispense single larvae into individual wells 

containing either drug or DMSO; the final DMSO concentration was 0.1% across all 

conditions. After a four hr pre-exposure to test drugs or DMSO alone, larvae were 

treated with 2.5 mM Mtz to induce rod photoreceptor death. Larvae were maintained 

under these conditions for two days until 7 dpf and then anesthetized with clove oil (50 

ppm final concentration); YFP signals were measured as described above. Larvae 

exposed to 2.5 mM Mtz/0.1% DMSO without any tested drug served as controls 
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(“+Mtz”) for maximal rod cell ablation. Larvae treated solely with 0.1% DMSO served as 

non-ablated controls (“-Mtz”) to calculate maximal YFP signal levels. Non-transgenic 

larvae were used to establish a signal cutoff value, as previously described (White et al., 

2016). A customized R program was applied for real-time data analysis of compound 

performance relative to controls, including dose-response curves and strictly 

standardized mean difference (SSMD) scores. Compound concentrations producing a 

SSMD score ≥1 were considered potential ‘hits’ and evaluated visually using 

fluorescence microscopy to eliminate non-specific fluorescence; e.g., dead larvae or 

autofluorescent compounds.  

 

Secondary validation tests of potential hits 

After the initial screen, 42 top-performing ‘hit’ compounds were selected for confirmatory 

and orthogonal assays.  Hit drugs were obtained from new sources and tested across a 

wider range of concentrations (five-fold dilution series, eight total concentrations, n=30 

fish/condition). Based on the toxicity profile of each drug, the starting concentration was 

either 100, 10 or 1 mM. For validation assays, YFP signals were measured by 

fluorescence microplate reader with three biological replicates conducted and SSMD 

scores calculated. All experimental results were normalized and pooled to calculate 

effect sizes, confidence intervals, and p-values using Student’s t-test followed by a 

Bonferroni corrected p-value criterion of 0.005 (α/n). 

 

Confocal imaging 

For in vivo confocal imaging assays, 5 dpf rho:YFP-NTR larvae were treated with drug 

plus 2.5 mM Mtz/0.1% DMSO (ablated +Mtz controls), or 0.1% DMSO (non-ablated -

Mtz controls) for 48 hrs and processed for intravital imaging at 7 dpf. All compounds 

were tested at the maximal effective concentration in 0.1% DMSO. Larvae from each 

group were anesthetized in 0.016% tricaine and embedded on their sides in 1% low 

melt agarose gel. An Olympus Fluoview FV1000 confocal microscope with a 20x water 

immersion objective (0.95 NA) was used to collect 30-40 images of YFP-expressing rod 

cells across the whole retina at 4 μm intervals. These image slices were stacked into a 

single maximal intensity projection image using Image J. A region in the dorsal-nasal 

quadrant was imaged using a 60× water immersion objective (1.10 NA) at 4.18 μm 

intervals to provide greater detail of rod photoreceptor morphology. Three contiguous 

image slices were stacked into a single maximal intensity projection image using Image 

J. As a means of assessing rod photoreceptor survival, intravital confocal retinal images 

were collected of YFP-expressing rod cells per condition and processed for volumetric 

quantification of YFP signal volume using automated image analysis software (Imaris 

3.9.1, see White et al., 2017). Briefly, YFP-expressing rod cells volumes were 

automatically rendered using the same parameters across all treatment groups with the 

sum of all volumes used to estimate rod photoreceptor numbers per each retina. 

Sample sizes for rod cell quantification assays ranged from 6 to 13 per condition. 
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Nitroreductase inhibitory assay 

The eleven lead compounds were tested to eliminate false-positives that directly 

inhibited Escherichia coli NTR enzymatic activity (from the nfsB_Ec gene) using an 

established anticancer prodrug (CB1954) reduction assay (Prosser et al., 2010). The 

highest soluble concentration of the test drug (up to 300 M maximum) or 0.1% DMSO 

(rate control) was added to a master mix of 250 μM CB1954/1 μM NTR/250 μM 

NADPH/10 mM Tris (pH 7.0) to determine any inhibitory effect of the compounds on 

NTR-mediated reduction of CB1954. Reactions were conducted in 100 μl volume in a 

96-well plate format. CB1954 reduction kinetics were assayed at 420 nm unless the test 

compound exhibited confounding absorbance at 420 nm, in which case NADPH 

depletion was monitored at 340 nm. The reaction rates for CB1954 reduction in the 

presence of tested compounds were compared to the DMSO control. Compounds with 

NTR activity <75% of controls were deemed potentially inhibitory and IC50 values (the 

concentration required to restrict NTR activity to 50% of the DMSO control) determined.  

Compounds were also evaluated for the ability to inhibit NTR-mediated reduction 

of Mtz. For this assay, the highest soluble concentration of the test drug (up to 300 M 

maximum) or DMSO (rate control) was added to a master mix of 500 μM Mtz/17 μM 

NTR/100 μM NADPH/0.55 μM glucose dehydrogenase/5 mM glucose/50 mM sodium 

phosphate buffer (pH 7.0; the glucose dehydrogenase used for cofactor regeneration, 

maintaining a steady-state of NADPH to allow Mtz reduction to be monitored directly at 

340 nm without interference from NADPH oxidation). Reactions were conducted in 100 

μl volume and assayed at 340 nm using 1 mm quartz cuvettes (Rich et al., 2018). IC50 

values for potentially inhibitory compounds were measured as with CB1954. 

 

Rod photoreceptor neogenesis assay 

To evaluate whether compounds promoted rod photoreceptor development, rho:YFP-

NTR larvae were handled as described for the primary screen with the following 

exceptions: at 5 dpf, larvae were exposed solely to test compounds; larvae were not 

treated with Mtz. YFP reporter signals were quantified by fluorescence microplate 

reader at 7 dpf and compared to non-ablated “-Mtz” controls treated only with 0.1% 

DMSO. Sample sizes ranged from 58 to 88 for lead compounds.  

 

Rod photoreceptor regeneration assay 

To determine whether compounds stimulated retinal regeneration, rho:YFP-NTR larvae 

were handled as described for the primary screen with the following exceptions: at 5 

dpf, larvae were incubated with either 10 mM Mtz or 0.1% DMSO for 24 hrs. At 6 dpf, 

larvae were then placed in new 0.1% DMSO/E3/PTU media containing test compounds 

(or DMSO alone) for three days. YFP signal intensity was measured at 9 dpf. Sample 

sizes ranged from 31 to 83 for lead compounds.  

 

Inhibitor assays for assessing mechanism of cell death 

To evaluate potential shared MOA, and other cell death pathways implicated in 

photoreceptor degeneration, nine PARP inhibitors, one necroptosis inhibitor and one 
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apoptosis inhibitor were selected for testing using the primary neuroprotectant screen 

protocol. Based on the toxicity profile of each drug, upper concentrations were adjusted 

to 64, 32, or 8 µM. A two-fold dilution series across a total of ten concentrations was 

then tested, at a sample size of 16 fish per condition. YFP signal levels were measured 

by fluorescence microplate reader (i.e., ARQiv assay). Results across conditions were 

normalized to non-ablated controls and pooled across experimental repeats to calculate 

effect sizes, confidence intervals, and p-values using Student’s t-test followed by a 

Bonferroni corrected p-value criterion of 0.005 (α/n). Note: assessments of TDP1 

inhibitors followed the five-fold dilution series protocol used for secondary confirmation 

assays described above. 

 

In vitro assay for the protection of mouse retinal cells from exogenous stressors   

Mice were housed with 12 hr light/12 hr dark cycles, at 22°C, 30–70% relative humidity 

and food/water ad libitum. Primary mouse retinal cells were isolated and prepared for 

culture as previously described (Fuller et al., 2014). Briefly, murine retinas were isolated 

at postnatal day four (P4).  Retinal tissue was dissociated into a single cell suspension 

by incubating whole tissue in activated papain in Hibernate-E without Calcium 

(BrainBits) for 15 min at 37˚C. Cells were resuspended in culture media (Neurobasal, 

2% B-27, 0.5 mM L-Glutamine and 1x final Penicillin/streptomycin; all Life 

Technologies) and seeded onto poly-D-lysine coated 384 well tissue culture plates. 

Tunicamycin and thapsigargin were used as stressor compounds (Sigma). Stressors as 

well as test compounds were added at the time of seeding. After 48 hours, cell viability 

was assessed using CellTiterGlo, a single step chemiluminescent reagent that 

measures ATP as a proxy for relative cell survival. To assess protection specifically of 

photoreceptors, cells harvested from transgenic mice that contain the human QRX locus 

with an IRES-GFP cassette, in which GFP expression is restricted to the photoreceptor 

cell population, were cultured as described above.  For these assays to assess 

photoreceptor survival, cells are stained with Hoescht and ethidium homodimer; nine 

field images were acquired via an automated imager (Cellomics Vti; ThermoFisher) 

using a 20x objective and images analyzed.  Photoreceptor number and percent of 

retinal cell population per well were determined by quantifying the number of live 

Hoechst-stained, GFP-expressing cells using a custom algorithm (Neuronal Profiling 

software package; ThermoFisher). 

 

Retinal explant assay using Pde6brd1 (rd1) mouse 

Mice were generated from retinal degeneration 1 (Pde6brd1, hereafter rd1) breeding 

pairs (Dr. Debora Farber; UCLA) and housed under a 12:12 light:dark cycle with access 

to food and water ad libitum. All chemicals used for organ cultures were tissue culture 

grade and purchased from Invitrogen unless otherwise noted. Cultures of retina with 

attached retinal pigment epithelium (RPE) were grown according to published protocols 

(Ogilvie et al., 1999; Pinzón-Duarte et al., 2000; Rohrer and Ogilvie, 2003) with 

modifications (Bandyopadhyay and Rohrer, 2010). P10 pups were decapitated and 

heads were rinsed in 70% ethanol; whole eyes were dissected and placed in ice-cold 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.26.010009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010009
http://creativecommons.org/licenses/by/4.0/


20 
 

Hanks balanced salt solution plus glucose (6.5 g/L). Eyes were first incubated in 1 mL of 

high glucose Hanks balanced salt solution/0.5 mg/ml proteinase K (37°C, 7 min) and 

then in Neurobasal medium (Life Technologies) plus 10% fetal calf serum to stop 

enzymatic activity. The retina with attached RPE was dissected free from the choroid 

and sclera after removing the anterior chamber, lens and vitreous. Relaxing cuts were 

made to flatten the tissue prior to transfer to the upper compartment of a Costar 

Transwell chamber (RPE layer faced-down) using a drop of Neurobasal medium. 

Neurobasal media with B-27 supplement (Life Technologies) was placed in the lower 

compartment. For each of the cohorts, 3-4 individual P10 retina/RPE explants were 

placed in culture. The cultures were kept in an incubator (5% CO2, balanced air, 100% 

humidity, 37°C) and the lower compartment media changed every two days (neither 

antimitotics nor antibiotics were required). Test compounds were added to the culture 

media and refreshed every two days for 11 days. At completion, explants were fixed in 

4% PFA, sectioned 14 µm thick, and stained with HE (Bandyopadhyay and Rohrer, 

2010). For each culture, ten rows of photoreceptors along the length of each culture 

were counted; ten values were averaged to give a value for each retina, while the 

average of all retinas provided the mean ± SEM of each culture condition. ANOVA test 

was performed across all groups followed by Bonferroni/Dunn t-test with significance 

level cutoff of p≤0.05. 

 

DHA long-release formulation 

PLGA-DHA microparticles were prepared using a single emulsion solvent evaporation 

method. Briefly, 200 mg PLGA (2A, 50:50 LA:GA) (Evonik Corporation, Piscataway, NJ) 

was dissolved  in 1 mL of dichloromethane (DCM, Sigma-Aldrich), and mixing with 40 

mg DHA (TCI, Tokyo, Japan) dissolved in 0.125 ml dimethyl sulfoxide (DMSO, Sigma-

Aldrich). The mixture was homogenized (L4RT, Silverson Machines) at 7000 RPM for 1 

minute. The homogenized mixture was then poured into a solution containing 1% 

polyvinyl alcohol (25 kDa, 88% hydrolys, Polysciences, Warrington, PA) in water under 

continuous stirring. Particles were hardened by allowing solvent to evaporate while 

stirring at room temperature for 2 h. Particles were collected via centrifugation 

(International Equipment Co) at 1,000 x g  for 5 min, and washed three times with 

HyPure cell culture grade water (endotoxin-free, HyClone™, Logan, UT) and re-

collected by centrifugation three times. The washed particles were then lyophilized and 

stored frozen until use. Microparticles were resuspended at the desired concentration 

prior to injection in a sodium hyaluronate solution (Healon®) diluted 5-fold with 

endotoxin-free HyPure water at the desired concentration prior to injection. 

 

Characterization of PLGA-DHA microparticles 

Particle size distribution was determined using a Coulter Multisizer 4 (Beckman Coulter, 

Inc., Miami, FL). Particles were resuspended in double distilled water and added 

dropwise to 100 ml of ISOTON II solution until the coincidence of the particles was 

between 8% and 10%. At least 100,000 particles were sized for each batch of particles 

to determine the mean particle size and size distribution. To determine the drug loading, 
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microparticles were dissolved in DMSO and the total drug content was calculated by 

measuring the UV absorbance at 289 nm after react with NaOH in triplicate (C.-S. Lai et 

al., 2007).  The average microparticle size was 14.2 ± 1.9 µm and the DHA loading was 

20.3% (w/w). 

 

DHA release  

Release kinetics were obtained by resuspending microparticles in 1 ml phosphate 

buffered saline (PBS containing 0.1% DMSO, pH 7.4) and incubating at 37°C on a 

platform shaker (140 RPM). Supernatant was collected at predetermined intervals by 

centrifugation at 2,000 x g for 5 min. Drug-containing supernatant was collected and 

particles were resuspended in 1 ml of fresh 1xPBS containing  0.1% DMSO. DHA 

concentration in the collected supernatant was assayed via absorbance at 289 nm in 

triplicate for each sample (n=3) (Supplementary Figure 7). 

 

Retina injection assay using Pde6brd10 (rd10) mouse 

B6.CXB1-Pde6brd10/J animals (Jackson Laboratories stock #004297) were maintained 

as homozygotes. On P14, animals were anesthetized with ketamine/xylazine (115 

mg/kg and 5 mg/kg, respectively), and placed on a heating pad to maintain body 

temperature throughout injection and recovery. Glass needles were pulled and a bore 

size of approximately 75 µm was made to allow for the movement of the microspheres 

into and out of the needle. A PLI-100 picospritzer (Harvard Apparatus) was used for 

intravitreal injections with settings of 350 ms injection time at 30 psi, which yielded the 

injection of approximately 500 nL. One eye was randomly selected for injection with 

vehicle and the other was used for microsphere injections. Following injection, GenTeal 

gel (Novartis) was applied to the eyes to prevent corneal drying. Animals were 

monitored until they were awake and moving normally.  

 Eighteen days post-injection, animals were anesthetized with isoflurane and 

decapitated; the eyes were removed and placed in 4% PFA for 30 minutes. After 

removing the cornea and lens, the eye cups were placed back into fixative for 2 hrs on 

ice. After thorough washing with 1× PBS, eyecups were soaked in 15% sucrose (w/v) in 

1× PBS for three hrs, then incubated in 30% sucrose (w/v)/1× PBS overnight. Samples 

were embedded in OCT compound (TissueTek) and frozen on dry ice. Cryosections of 

12-14 µm thickness were cut on a Leica CM3050S cryostat and were mounted on 

Superfrost Plus slides (Fisher Scientific). Slides were rehydrated with 1× PBS and then 

incubated in blocking buffer (10% Normal donkey serum/ 0.3% Triton X-100/1× PBS) for 

2 hrs, and were then incubated for 30 hrs at 4°C with primary antibodies diluted in 

blocking buffer. Sections were washed in 1× PBS and incubated for two hrs at room 

temperature with secondary antibodies diluted in blocking buffer. Following additional 

washes, sections were incubated with DAPI and mounted with FluoroGel (Electron 

Microscopy Sciences). The following antibodies were used for immunohistochemistry: 

Mouse mAb, anti-S-antigen S128 (Abcam 190315; 1:1000); Rabbit anti-Cone Arrestin 

(Millipore AB15282; 1:1000). Fluorophore-conjugated secondary antibodies were 

obtained from Jackson Immunoresearch, and used at a dilution of 1:1000. 
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 Sections were examined using a Zeiss Axioplan 2 epifluorescence microscope 

fitted with an Axioscope camera. Following acquisition with a 40× air objective, images 

were analyzed in ImageJ using the measure tool to examine Outer Nuclear Layer (ONL) 

thickness. 4-5 measurements were taken at 75 µm intervals for 200-500 µm both 

superior and inferior from the optic nerve head. The measured values from multiple 

sections were averaged for each eye. Data were analyzed and statistical tests were 

performed in GraphPad Prism 7. An Olympus FV1000 confocal microscope was also 

used to image sections stained with multiple dyes. 

 

Combinatorial assay 

To test for additive effects, seven lead compounds were tested at their optimal 

concentrations either individually or in pairs using the primary screen protocol. All 

experimental results were normalized to controls and pooled per compound tested to 

calculate effect sizes, confidence intervals, and p-values using Student’s t-

test.Bonferroni correction for multiple comparisons resulted in an adjusted p-value 

criterion of 0.002 (α/n = 0.05/21 pairs tested). 

 

Data analysis and statistics  

For the primary screening, under the R environment, a customized ARQiv data analysis 

package was used to calculate sample size (n), quality control strictly standardized 

mean difference (SSMD) and SSMD scores as previously described (White et al., 

2016). The following results of each drug were derived: 1) a plot of signal to background 

ratio at all tested concentrations, 2) a plot and a table of SSMD scores, and 3) a signal 

intensity heat map of each drug plate (96-well plate view).  

To combine and analyze the data from different experiments, data normalization was 

conducted by (Si -𝑋̅neg)/( 𝑋̅Pos -𝑋̅neg). Si is the signal of ith reading, 𝑋̅Pos is mean of 

positive controls, and 𝑋̅Neg is mean of negative controls. To compare between the 

experimental condition and controls, Student’s t test was performed followed by 

Bonferroni correction for multiple comparisons (α/n). Effect sizes, 95% confidence 

intervals and p-values were calculated.  
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Figures 

 

Figure 1. Zebrafish RP model and the schematic diagram of large-scale JHDL screening. 

(A) Optimization of Mtz treatment regimen for the inducible rod photoreceptor degeneration 

model of RP. Transgenic zebrafish larvae expressing a YFP-NTR fusion protein exclusively in 

rod photoreceptor cells were exposed to one of five concentrations of Mtz, from 10 mM to 0.625 

mM, from 5 to 8 dpf (sample size: 56 larvae per group). YFP signal intensity for each larva was 

quantified daily using a microplate reader assay. The average YFP signal (±sem) of each Mtz 

treatment group is plotted as the percentage of non-ablated 0 mM Mtz controls per day. The 10, 

5, and 2.5 mM Mtz-treated groups produced minimal YFP signal intensities (<20%) at 7 dpf 

(Supplementary Table 1).  The 2.5 mM Mtz treatment condition was chosen for the primary 

screen. (B) Time series intravital confocal images of representative non-ablated (-Mtz control, 

upper panel) and 2.5 mM Mtz-treated (+Mtz control, lower panel) retinas from 5-7 dpf. By 7 dpf, 

only a limited number of YFP-positive cells are detectable in the +Mtz retina, mainly 
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concentrated in a ventral band of high rod cell density. (C) Schematic of primary drug screening 

process: 1) At 0 dpf, large numbers of embryos were collected. 2) At 16 hpf, PTU was added to 

suppress melanization. 3) At 4 dpf, individual drugs were dispensed and titrated in 96-well 

plates using robotic liquid handlers; 16 wells (2 columns) per concentration and 6 

concentrations total per drug.  4) At 5 dpf, COPAS was used to dispense individual larvae into 

single wells of 96-well plates. 5) After a 4 hr pre-exposure to drugs, larvae were treated with 2.5 

mM Mtz. 6) At 7 dpf, YFP signals were quantified by microplate reader. 7) Same day data 

analysis using a custom R code to create a signal to background ratio plot, a SSMD score plot, 

a heat map of signal to background ratio, and a SSMD score table. 8) Drug plates producing a 

SSMD score ≥1 were visually inspected using fluorescence stereomicroscopy to exclude 

autofluorescent and lethal compounds. 
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Figure 2. Neuroprotective effects of validated lead compounds.  Box plots of eleven 

confirmed lead compounds and the positive control compound arrayed by neuroprotective effect 

size. YFP signal intensities ranged from a 9 to 38 percent increase over +Mtz controls. All 

experimental YFP values were normalized to the signal window calculated from the +Mtz 

controls (ablated, set at 0 percent) and -Mtz controls (non-ablated, set at 100 percent) to 

account for: 1) individual variation, 2) fluctuations in signal window per assay, and 3) to allow 

data from identical conditions to be pooled across assays; effect sizes, 95% confidence 

intervals, p values, and sample sizes (N) for each condition are shown below. P values were 

calculated by comparing drug-treated conditions to +Mtz controls using Student’s t test followed 

by Bonferroni correction for multiple comparisons (α=0.004 adjusted significance level). No 

statistical differences in larval survival were observed for lead compounds relative to their 

respective +Mtz controls, except for DHA (86%) and CHL (87%; Fisher’s exact test, p<0.05).  
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Figure 3. Confocal images of neuroprotective effects of confirmed lead drug compounds. 
Representative intravital whole retina confocal image stacks of +Mtz (ablated control), -Mtz 
(non-ablated control), and lead compound-treated retinas taken with a 20× (upper panels) and 
60× objective (lower panels) at 7 dpf. The 20× objective images show loss or preservation of 
YFP signals throughout the retina, while the 60× objective images provide morphological detail 
of YFP-expressing rod cells. The +Mtz control shows extensive YFP signal loss, with remaining 
cells restricted largely to the ventral region. The -Mtz control shows unperturbed YFP signal 
throughout the retina. Drug-treated retinas exhibit sustained YFP signals and preservation of 
rod photoreceptor morphology to varying extents.  
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Figure 4. Analysis of potential mechanisms of action (MOA). Box plots of PARP inhibitors 

(green), necroptosis inhibitor (blue), apoptosis inhibitor (magenta), and TDP1 inhibitors (orange) 

tested for neuroprotective effects in the zebrafish RP model as per the primary screen. All 

PARP inhibitors, two of three TDP1 inhibitors, and the necroptosis inhibitor promoted rod cell 

survival. The individual effect sizes, 95% confidence intervals, p-values, and sample sizes (N) 

for each group are shown below. P values were calculated by comparing drug-treated 

conditions to +Mtz controls using Student’s t test followed by Bonferroni correction for multiple 

comparisons (α=0.003 adjusted significance level). AG: AG-14361; NMS: NMS-P118; BMN: 

Talazoparib; ABT: Veliparib; OLA: Olaparib; MK: Niraparib; RUC: Rucaparib; NEC:Necrostatin-

1; BEL: Belnacasan; PAR: Paromomycin; THI: Thiostrepton; MET:Methyl-3,4-ephostatin. No 

statistical differences in larval survival were observed for tested compounds relative to their 

respective +Mtz controls, except for PAR (67%; Fisher’s exact test, p<0.05).  
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Figure 5. Tests of neuroprotective effects in mouse rd1 retinal explants.  Mouse rd1 retinal 

explants were cultured for eleven days in the presence of lead drugs or DMSO, then fixed, 

sectioned, nuclear stained and the number of rows photoreceptors quantified. All compounds 

were screened at three different concentrations to test for dose-dependent effects (sample size 

of 3 to 4 explants per condition). Among 6 tested compounds, artemisinin (ART), 

dihydroartemisinin (DHA), and ciclopirox olamine (CPO) showed dose-dependent photoreceptor 

layer preservation. ANOVA followed by Bonferroni/Dunn test was performed to calculate p 

values comparing drug-treated samples to DMSO controls (p<0.005).  
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Figure 6. Additive effects of paired lead compounds. Seven lead compounds were screened 

in pairs for additive neuroprotective effects (i.e., combining individual maximal effective dosages 

and testing for enhanced survival effects). An additive effect was defined as any combinatorial 

treatment equal to or greater than the sum of the corresponding individual compound effects 

±10%. Of twenty-one pairs tested, ten produced additive effects on rod cell survival 

(underscored). Maximal neuroprotective effects reached ~58% survival, and three pairs 

produced better than additive effects (denoted by *). Note: two pairs, DHA+CAL and DHA+COR 

resulted in lethality and are therefore not plotted. Effect %: effect size of each paired treatment; 

Sum %: mathematically summed effect of the two individual treatments. Note, 95% confidence 

intervals, p-values, and sample sizes are provided in Supplementary Table 6. No statistical 

differences in larval survival were observed for lead compounds or compound pairs relative to 

their respective +Mtz controls, except for DHA (73%), WAR+DHA (73%), CIC+DHA (89%), 

ZPT+DHA (91%), ZPT+COR (90%) and CAL+COR (79%; Fisher’s exact test, p<0.05). 
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Figure 7. Summary. (A) Flow chart of PDD process: primary drug screen, secondary 

confirmations, orthogonal assays, MOA assays, cross-species testing and combinatorial paired 

drug tests. The primary screen implicated 113 “hit” compounds as neuroprotectants out of 2,934 

tested; 11 out of 42 prioritized hits were confirmed as leads; 6 of 9 leads tested were validated 

in mouse primary retinal cell cultures, 3 of 8 were validated using rd1 retinal explants, and two 

leads were effective in both culture systems (B); one lead failed when tested in rd10 mouse 

retinas. Shared MOA analyses implicated PARP1-dependent cell death pathways, i.e., 

parthanatos and/or cGMP-dependent, as a common target. Combinatorial assays demonstrated 

additive effects (C), suggesting complementary neuroprotective MOA as well. Yes: effective; 

No: fail; ND: not determined.   
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Tables 

 

Table 1. Eleven lead compounds. Abbreviations, PubChem CID, and chemical structures of 

the validated neuroprotective compounds.  
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Drug Name Target and Relative Inhibitory Activity (+) 
Optimal 

Conc.(µM) 

Highest 

Effect 

AG-14361 (AG) PARP1++ 64 0.09 

NMS-P118 (NMS) PARP1++ 8 0.16 

Talazoparib (BMN) PARP1 ++++ 0.5 0.14 

Veliparib (ABT) PARP1++, 2+++ 64 0.09 

Olaparib (OLA) PARP1++, 2++++, TNKS1 32 0.09 

E7449 PARP1++++, 2++++ , TNKS1/2 1 0.20 

Niraparib (MK) PARP1+++, 2+++, PARP3, VPARP, TNKS1 32 0.11 

Rucaparib (RUC) pan-PARP +++ 32 0.17 

Necrostatin-1 (NEC) necroptosis inhibitor 64 0.17 

Belnacasan (BEL) 

Apoptosis inhibitor: caspase 1 and 4 

inhibitor 0.25 0.04 

Paromomycin (PAR) TDP1 inhibitor 20 0.10 

Thiostrepton (THI) TDP1 inhibitor 100 0.10 

Methyl-3,4-ephostatin (MET)  TDP1 inhibitor 0.16 0.03 

Table 2. HTS-implicated targets and cell death pathway inhibitors tested. Eight PARP 

inhibitors, one necroptosis inhibitor, one apoptosis inhibitor and three TDP1 inhibitors were 

tested for neuroprotective effects in zebrafish. Target specificity and relative inhibitory activity of 

PARP inhibitors are as reported by Selleckchem (https://www.selleckchem.com/PARP.html). 

The concentration producing the highest effect size and the maximal rod cell survival rate 

achieved are listed for each compound. Abbreviations: TDP1 (Tyrosyl-DNA phosphodiesterase 

1), PARP (Poly (ADP)-ribose Polymerase), TNKS (Tankyrase), VPARP (vault PARP, aka 

PARP4). Note: TNKS1 and TNKS2 are also known as PARP5 and PARP6, respectively.     
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Table 3. Mouse primary retinal cell culture tests. Isolated primary retinal cells were cultured 

for 2 days in the presence of tunicamycin (0.6 µg/ml) or thapsigargin (0.25 µM) to induce ER 

stress, after which cell survival was measured. (A) Three compounds promoted retinal neuron 

survival in non-sorted cultures (denoted by *). (B) Four compounds promoted the survival of 

GFP-labeled photoreceptor cell specifcally (denoted by *).  WAR: warfarin, CPO: ciclopirox 

olamine, ZPT: pyrithione zinc, DHA: dihydroartemisinin, CHL: chloroxine, CAL: calcimycin, ART: 

artemisinin, COR: cortexolone, SUL: sulindiac. (++: >2SD; +++: >3SD)  
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Supplement Data 

 

Supplementary Figure 1. Immunolabeling of rod and cone photoreceptors. 

Immunohistological assays for rod and cone photoreceptor markers were performed on 
Mtz-ablated and control rho:YFP-NTR larval retinas at 7 dpf. (A) In non-ablated controls, 
rod photoreceptor antibody 1d1 (anti-rhodopsin) labeled rod outer segments and was 
well correlated with YFP expression (arrows). In Mtz-ablated retinas, both 1d1 and YFP 
labeling was diminished. (B) Another rod photoreceptor antibody, 4c12, showed a 
similar result. Both rod cell antibodies showed some residual labeling in peripheral 
regions in +Mtz controls. (C) Cone photoreceptors labeled with the zpr1antibody 
showed no overlap with YFP expression. Both Mtz-ablated and non-ablated retinas 
showed similar zpr1 labeling suggesting cone cells were not affected by rod cell loss. 
Scale bars: 50 and 100 µm.     

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.26.010009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010009
http://creativecommons.org/licenses/by/4.0/


50 
 

 

Supplementary Figure 2. High-content imaging quantification of rod photoreceptor 

survival. Larvae were treated with Mtz alone (+MTZ, ablated control), Mtz plus one of seven 

lead compounds, or 0.1% DMSO alone (-MTZ, non-ablated control), as per the primary screen. 

At 7 dpf, representative retinas from drug treated and control groups were imaged using 

intravital confocal microscopy using identical acquisition settings and Z-scans that spanned the 

entire retina. Using Imaris software, YFP-expressing cells were 3D-rendered and volumetrically 

quantified to assess rod photoreceptor survival across all groups. The effect size, 95% 

confidence intervals, p value and sample size (N) are listed below the graph for each condition. 

A student’s t test followed by Bonferroni correction for multiple comparisons (α=0.006 adjusted 

significance level) was performed. All drug treated retinas showed a larger YFP volume, 

suggesting increased rod cell survival compared to the ablated group (+Mtz).  
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Supplementary Figure 3. Orthogonal assay for NTR inhibition. The possibility of direct 

inhibition of NTR enzymatic activity by lead compounds was tested using a CB1954 kinetics 

assay with all leads initially tested at 300 µM with the exception of MIC and CHL which were 

tested at 50 µM as both precipitated at higher concentrations (indicated by *). (A) NTR inhibition 

was plotted as the ratio of NTR activity detected in drug treated samples to no-drug treated 

controls. Compounds producing a ratio of ≤0.75: WAR, CPO, CAL and SUL, were considered 

potential inhibitors. (B) Table showing IC50 of potential inhibitors for the CB1954 kinetics assay, 

as well as Mtz inhibition detected in a kinetics assay at 300 µM. 
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Supplementary Figure 4. Orthogonal assay for developmental effects. Larvae were treated 

with individual lead compounds from 5 to 7 dpf to test for effects on rod photoreceptor 

development; retinoic acid (RA) served as the positive control. YFP signals were quantified by 

plate reader assay and normalized to DMSO-treated controls (CTL). Effect sizes, 95% 

confidence intervals, p values, and sample sizes (N) for each group are shown below. P values 

were calculated by comparing drug-treated conditions to DMSO controls using Student’s t test 

followed by Bonferroni correction for multiple comparisons (α=0.004 adjusted significance level). 

No statistical differences in larval survival were observed for lead compounds relative to their 

respective +Mtz controls, except for CIC (74%; Fisher’s exact test, p<0.05). 
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Supplementary Figure 5. Orthogonal assay for regenerative effects. To test lead 

compounds for effects on rod cell regeneration kinetics, larvae were exposed to 10 mM Mtz 

from 5 to 6 dpf, then treated with individual lead compounds from 6 to 9 dpf; dexamethasone 

served as the positive control (DEX). YFP signals were quantified by plate reader assay and 

normalized to the signal window established by ablated (+MTZ, 0%) and non-ablated (-MTZ, 

100%) controls. The effect size, 95% of confidence intervals, p value, and sample size (N) for 

each condition is shown below. P values were calculated by comparing drug-treated conditions 

to +MTZ controls using Student’s t test followed by Bonferroni correction for multiple 

comparisons α=0.004 adjusted significance level). Red * denotes the compounds with 

significant improvement effect, while black * denotes the compounds with significant reduced 

effect compared to DMSO-treated control.  No statistical differences in larval survival were 

observed for lead compounds relative to their respective +Mtz controls, except for CIC (76%), 

DHA (72%), CHL (56%) and COR (48%; Fisher’s exact test, p<0.05). 
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Supplementary Figure 6. In vitro release kinetics of DHA from PLGA(2A) microparticles 

in phosphate buffered saline containing 0.1% DMSO (pH 7.4) at 37°C.  
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Supplementary Figure 7. Long-release DHA evaluation in rd10 mouse of RP. Long-release 

formulation of PLGA-DHA was injected into the vitreous of one eye of rd10 mice at P14. 

The contralateral eye was used as a vehicle injection control. Eighteen days after 

injection, both eyes of each rd10 mouse were processed for immunohistochemistry. The 

ONL thickness was measured. No increase in ONL thickness was observed in the DHA 

treated group. Sample size was 17 mice.   
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7dpf 0mM 0.625mM 1.25mM 2.5mM 5mM 10mM 

Effect size NA -0.55 -0.79 -0.87 -0.87 -0.83 

95%CI 

lower NA -0.72 -0.95 -1.02 -1.02 -0.98 

95%CI 

upper NA -0.38 -0.63 -0.71 -0.72 -0.67 

p value NA 9E-09 5E-15 1E-16 1E-16 1E-15 

N 56 55 56 56 56 55 

  

Supplementary Table 1. Statistical results of Mtz titration assay using rho:YFP-NTR fish at 7 

dpf (Figure 1A). The effect size, 95% confidence intervals, p value, and sample size (N) for each 

condition is listed. P values were calculated by comparing each condition to non-ablated 

controls (0mM) using Student’s t test followed by Bonferroni correction for multiple comparisons 

(α=0.01 adjusted significance level).  
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Possible Function Tested Compounds Reference 

Antioxidant N-acetyl cysteine (NAC) (Lee et al., 2011; Schimel et 

al., 2011) 

N-tert-butyl--(2-sulfophenyl) 

nitrone 

(Mandal et al., 2011) 

Hormones and analogs 17-beta estradiol (E2) (Nonaka et al., 2000) 

Norgestrel (Doonan et al., 2011) 

PPAR agonist Rosiglitazone (Doonan et al., 2009) 

Inhibition Hsp90 17-allylamino-17-

demethoxygeldanamycin (17-

AAG) 

(Tam et al., 2010) 

Inhibition ceramide 

synthesis 

Myriocin (Strettoi et al., 2010) 

α2-adrenergic agonist Clonidine (Chao and Osborne, 2001) 

RTK inhibitor Sunitinib (Latham et al., 2015) 

Inhibitor of necrosis Necrostatin-1 (Dong et al., 2012) 

β-adrenoceptor antagonist Levobetaxolol (S-betaxolol) (Agarwal et al., 2002) 

Calpain inhibitor Calpastatin peptide (Paquet-Durand et al., 2010) 

Calpeptin (Das et al., 2006) 

HDAC inhibitor Vorinostat (SAHA) (Berner and Kleinman, 2016; 

Zhang et al., 2015) 

Romidepsin (FK228) (Zhang et al., 2015) 

Panobinostat (LBH589)  (Zhang et al., 2015) 

Entinostat (SNDX-275) (Zhang et al., 2015) 

Antioxidant cocktail Alpha-tocopherol (Komeima et al., 2007, 

2006) Ascorbic acid  

Alpha-lipoic acid 

MnTBAP  

Supplementary Table 2. List of 17 compounds previously reported as neuroprotectants in RP 

models that were tested using our primary screening protocol.  
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Leads Drug Name SSMD Conc. 
Effect 

subtype 

Dose-

dependent 

trend 

 Aluminum chloride 

hexahydrate 
2.05;1.16 4;2 Strong 

Yes 
 Myrrh oil 1.85 4 Fairly strong No 
 Danthron 1.81 0.25 Fairly strong Yes 

● Miconazole 1.71; 1.77 2; 1 Fairly strong No 
 Digoxin 1;1.67 4;0.25 Fairly strong No 

● Dihydroartemisinin 1.59 4 Moderate Yes 

● Ciclopirox olamine 1.56;1.28;1.05 4;2;0.5 Moderate Yes 
 Isopropamide Iodide 1.54;1.27 2;0.125 Moderate No 
 Lactulose 1.52 0.25 Moderate Yes 

● Warfarin 1.51;1.05 4;2 Moderate Yes 
 Ethohexadiol 1.5 4 Moderate No 
 6,7-Dihydroxyflavone 1.12;1.04;1.48 1;0.25;0.125 Moderate No 
 Thiostrepton 1.48 4 Moderate Yes 

● Cloxyquin  1.47 4 Moderate Yes 
 Peruvian balsam 1.46 0.5 Moderate No 
 Almond oil from prunus dulcis 1.41 0.25 Moderate No 

 2-Amino-5-(4-nitro-

phenylsulfonyl)thiazole 
1; 1.4; 1.06 2; 0.5; 0.25 Moderate 

No 
 Indomethacin 1.38 0.125 Moderate Yes 
 Escitalopram oxalate 1.34 0.125 Moderate No 
 Naproxen sodium 1.34 0.25 Moderate No 
 Isoxsuprine hydrochloride 1.31 0.25 Moderate No 

● Pyrithione zinc  1.31 2 Moderate Yes 
 Diazepam 1.3 0.125 Moderate Yes 

● Calcimycin 1.3 1 Moderate Yes 
 Amantadine Hydrochloride 1.28 0.25 Moderate No 
 Nipecotic acid 1.27 0.125 Fairly moderate No 
 Butoconazole nitrate 1.27 2 Fairly moderate No 
 Pilocarpine hydrochloride 1.26 2 Fairly moderate No 
 Hydroquinone 1.24;1.02 2;0.5 Fairly moderate No 
 Acacetin 1.12;1.24 4;0.25 Fairly moderate No 
 Eupatorin 1.24 4 Fairly moderate Yes 

 Neohesperidin 

dihydrochalcone 
1.24 0.125 Fairly moderate 

No 

 Pseudoephedrine, (1S,2S)-

(+)- 
1.24 0.25 Fairly moderate 

Yes 
 5-fluoro-5'-deoxyuridine 1.22 0.25 Fairly moderate No 

 
2-[N-(3-

Phenylpropyl)thiocarbamoyl]-

L-cysteine 

1.22 4 Fairly moderate 

Yes 
 Rathyronine 1.21 0.25 Fairly moderate No 
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 Chlorquinaldol  1.21 4 Fairly moderate No 
 Streptomycin sulfate 1.03;1.2 4;1 Fairly moderate No 
 Orthothymotinic acid 1.19 1 Fairly moderate No 
 Compactin  1.19 2 Fairly moderate Yes 
 Quinoline 1.19 0.25 Fairly moderate No 
 Ampicillin sodium salt 1.19 0.25 Fairly moderate Yes 
 Cyclocreatine 1.17 1 Fairly moderate No 
 Succimer  1.17 0.5 Fairly moderate No 
 Rose oil 1.17 0.25 Fairly moderate Yes 
 Bopindolol maleate 1.16 0.25 Fairly moderate No 
 Pentolinium 1.16 0.25 Fairly moderate Yes 

 Oxytetracycline hemicalcium 

salt 
1.16 4 Fairly moderate 

Yes 
 Dantrolene sodium 1.14 0.125 Fairly moderate No 
 Methylatropine nitrate  1.14;1 4;0.5 Fairly moderate No 
 Magnesium gluconate 1.14 4 Fairly moderate Yes 
 Leucovorin Calcium 1.1;1;1.13 4;0.5;0.125 Fairly moderate No 
 Lobeline sulfate 1.13;1.1 0.25;0.125 Fairly moderate Yes 
 Mercaptamine hydrochloride  1.12;1.05 1;0.5 Fairly moderate No 
 Chlordiazepoxide 1.07;1.12;1.11 4;1;0.125 Fairly moderate No 
 Panthenol  1.12 4 Fairly moderate No 

 1,2-

bis(trimethylsilyloxy)ethane 
1.11 0.25 Fairly moderate 

No 
 Methyl orange 1.11 4 Fairly moderate Yes 
 Dyclonine hydrochloride 1.1 0.5 Fairly moderate No 

 3-Hydroxybenzylhydrazine 

dihydrochloride 
1.1;1.07 0.25;0.125 Fairly moderate 

Yes 
 NCS-382 1.1;1.04 2;0.5 Fairly moderate No 

 1,3 Diethyl 2 thiobarbituric 

acid 
1.1 4 Fairly moderate 

No 

● Cortexolone  1.1 0.125 Fairly moderate Yes 

 3-Amino-4-methoxybenzoic 

acid 
1.1 0.125 Fairly moderate 

No 
 Hydroxyquinoline benzoate  1.1 2 Fairly moderate No 
 Iodoquinol 1.09 0.25 Fairly moderate No 
 Rofecoxib 1.09 0.125 Fairly moderate Yes 

● Sulindac 1.09 0.25 Fairly moderate Yes 
 Terephthalic acid 1.09 4 Fairly moderate No 

 4-Hydroxy-6-Methylpyran-2-

One  
1.08 0.125 Fairly moderate 

No 

 D-Galactosamine 

hydrochloride 
1.08 0.25 Fairly moderate 

Yes 
 Strophanthin K 1.08 0.125 Fairly moderate No 
 Lincomycin hydrochloride 1.07 4 Fairly moderate No 
 Ethaverine hydrochloride 1.07 4 Fairly moderate No 
 Hydroxypropyl cellulose  1.07 1 Fairly moderate No 
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 Strychnine 1.06 0.25 Fairly moderate Yes 
 Pyrantel 1.06 0.5 Fairly moderate No 
 Bamethan sulfate  1.06 1 Fairly moderate No 
 Deoxycytidylic acid  1.06 0.25 Fairly moderate No 
 Belladonna tincture 1.06 0.125 Fairly moderate Yes 

● Artemisinin 1.06 0.5 Fairly moderate No 
 Frequentin 1.05 0.25 Fairly moderate No 
 O-Phenanthroline 1.05 0.5 Fairly moderate No 
 Hexamethylene glycol 1.05 1 Fairly moderate No 
 Dichlorisone acetate 1.05 0.25 Fairly moderate No 
 β-Estradiol 3-benzoate 1.05 0.25 Fairly moderate No 
 Ellman's reagent 1.05 4 Fairly moderate No 
 Clopidogrel sulfate 1.04 2 Fairly moderate Yes 
 Lovastatin 1.04;1.01 0.5;0.25 Fairly moderate Yes 
 Harmine 1.04 0.25 Fairly moderate Yes 
 Xanthurenic acid 1.03 0.25 Fairly moderate Yes 
 Aclarubicin 1.03 4 Fairly moderate No 
 Menadione 1.03 1 Fairly moderate Yes 

 Methylphedrine ((1R,2S)-(-)-

N-Methylephedrine) 
1.03 1 Fairly moderate 

No 
 Aluminum lactate 1.03 2 Fairly moderate No 
 Hexamethonium Chloride 1.03 0.25 Fairly moderate No 
 Vitamin B4 1.03 0.25 Fairly moderate Yes 
 Triethylene glycol 1.03 0.5 Fairly moderate No 
 Deltaline 1.02 0.25 Fairly moderate Yes 
 Sennoside A 1.02 0.125 Fairly moderate Yes 

● Chloroxine  1.01 4 Fairly moderate No 

 Tetrabromophenolphthalein 

ethyl ester, Potassium salt 
1.01 0.25 Fairly moderate 

Yes 
 Methyl ethyl ketone  1.01 0.125 Fairly moderate No 
 3,3,5-Triiodo L-thyronine 1.01 0.5 Fairly moderate No 
 Nalidixic acid 1 2 Fairly moderate Yes 
 Putrescine dihydrochloride 1 0.5 Fairly moderate No 
 Acetazolamide 1 0.25 Fairly moderate No 
 Betaine 1 4 Fairly moderate No 
 Maleic acid 1 0.5 Fairly moderate No 
 Norfenefrine  1 0.5 Fairly moderate No 
 Azure A 1 0.25 Fairly moderate Yes 
 Chlorpheniramine 1 0.5 Fairly moderate No 
 Mustard oil 1 4 Fairly moderate Yes 

 

Supplementary Table 3. The 113 hit compounds from the primary screen ordered according to 

SSMD score. Compounds producing a SSMD of ≥1 were considered hits. Drug names, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.26.010009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010009
http://creativecommons.org/licenses/by/4.0/


61 
 

concentrations producing SSMD ≥1, SSMD scores, effect subtypes, and dose-dependent trend 

results are shown. Yellow highlighted drugs were selected for the confirmation tests. “●” 

denotes validated lead compounds. 
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MOA Category Subcategory Compound Name 

Neurotransmitter 

modulator (17) 

GABA signaling (4) 
3-Hydroxybenzylhydrazine dihydrochloride; 

Chlordiazepoxide; Diazepam; Nipecotic acid 

Cholinergic signaling 

(3)  

Isopropamide Iodide; Methylatropine nitrate; 

Pilocarpine hydrochloride 

Nicotinic receptor 

modulator (3) 
Hexamethonium chloride; Pentolinium; Pyrantel 

Dopamine release (2) Lobeline sulfate; Amantadine hydrochloride 

Srotonin reuptake 

inhibitor (2) 
Chlorpheniramine; Escitalopram oxalate 

glycine and 

acetylcholine receptor 

antagonist (1) 

Strychnine 

Glutamate singaling 

(1) 
Xanthurenic acid 

GHB receptor 

antagonist (1) 
NCS-382 

Ion transport 

modulator (9) 

Sodium channel 

blocker (2) 
Dyclonine hydrochloride; Deltaline 

Na+/K+ ATPase 

inhibitor (2) 
Digoxin; Strophanthin K 

Calcium modulator (2) Ethaverine hydrochloride; Dantrolene sodium 

Multiple ions carrier 

(2) 
Calcimycin; Succimer 

Proton (1) Pyrithione zinc 

Adrenergic 

receptor 

modulator (6) 

Beta-adrenergic 

modulator (3)  

Isoxsuprine hydrochloride; Bopindolol maleate; 

Bamethan sulfate 

α and β receptors 

modulator (3) 

Norfenefrine; Methylphedrine ((1R,2S)-(-)-N-

Methylephedrine); Pseudoephedrine, (1S,2S)-(+)- 

Antibacterial 

agent (6) 

Protein synthesis 

inhibitor (4) 

Lincomycin hydrochloride; Thiostrepton; Streptomycin 

sulfate; Oxytetracycline hemicalcium salt 

Peptidoglycan 

synthesis inhibitor (1) 
Ampicillin sodium salt 

Unknown (1) Aluminum lactate 

Hormone related 

(5) 

Thyroid hormone (2) Rathyronine; 3,3,5-Triiodo L-thyronine 

Cortecosteroid (2) Cortexolone; Dichlorisone acetate 

Estrogen (1) β-Estradiol 3-benzoate 

Chelating agent (5) 
Quinoline; Hydroxyquinoline benzoate; O-

Phenanthroline; Iodoquinol; Cloxyquin 

Therapeutic plant extract (5) 
Belladonna tincture; Almond oil from prunus dulcis; 

Mustard oil; Myrrh oil; Rose oil 

NSAID (4) 

COX1 inhibitor (2) Indomethacin; Sulindac 

COX2 inhibitor (1) Rofecoxib 

Nonselective COX 

inhibitor (1) 
Naproxen sodium 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.26.010009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010009
http://creativecommons.org/licenses/by/4.0/


63 
 

Antioxidant (4) 

Flavonoid (3) 6,7-Dihydroxyflavone; Acacetin; Eupatorin 

Glutathione S-

transferase inducer (1) 
2-[N-(3-Phenylpropyl)thiocarbamoyl]-L-cysteine 

Vitamin (4) Vitamin B4; Panthenol; Menadione; Leucovorin calcium 

DNA synthesis inhibitor and cleavage 

(3) 
Nalidixic acid; 5-Fluoro-5'-Deoxyuridine; Aclarubicin 

Antifungal agent 

(3) 

Ergosterol inhibition(2) Miconazole; Butoconazole nitrate 

Catalase and 

endoperoxide enzyme 

inhibition (1) 

Ciclopirox olamine 

Antimalarial (2) Dihydroartemisinin; Artemesinin 

Antimicrobial agent (2) Chlorquinaldol; Chloroxine 

Anticoagulant (2) Warfarin; Clopidogrel sulfate 

HMG-CoA reductase inhibitor (2) Compactin; Lovastatin 

MAO-A inhibitor (2) Harmine; Sennoside A 

Others (19) 

Acetazolamide; Cyclocreatine; Danthron; 

Mercaptamine Hydrochloride; Hydroquinone; 

Lactulose; 1,3 Diethyl 2 thiobarbituric acid; Betaine; 

Hexamethylene glycol (1,6 hexane diol); Maleic acid; 

Azure A; D-Galactosamine hydrochloride; Aluminum 

chloride hexahydrate; Ellman's reagent; Hydroxypropyl 

cellulose; Deoxycytidylic acid; Ethohexadiol; 

Magnesium gluconate; Methyl orange 

Unknown (13) 

Frequentin; 4-Hydroxy-6-Methylpyran-2-One; 

Neohesperidin dihydrochalcone; Orthothymotinic acid; 

Putrescine dihydrochloride; 2-Amino-5-(4-nitro-

phenylsulfonyl)thiazole; 3-Amino-4-methoxybenzoic 

acid; 1,2-bis(trimethylsilyloxy)ethane; 

Tetrabromophenolphthalein ethyl ester, Potassium salt; 

Terephthalic acid; Peruvian balsam; Triethylene glycol; 

Methyl ethyl ketone (2-Butanone) 

  

Supplementary Table 4. Clinical “on label” MOA of the 113 hit compounds from the primary 

screen. MOA are listed in order from most common to least common. The names and number 

of compounds in each category and subcategory are listed. 
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Drug\Path Tdp1 Rorc AR TR VDR ER AhR GR P53 Dopa HIF1 SHH COX 

WAR         +     
MIC + +  + +  +       
CLO + + + + + +    +    
CPO + + + + + +  + + +    
ZPT + + + + + + + + +  +   
DHA +  + +  +        
CHL + + + + + + + + +     
CAL  +     +     +  
SUL +      +      + 

ART +         +    
COR   +     +      

 

Supplementary Table 5. Summary of PubChem bioassay analysis. Results of thirteen target-

based screens, with “+” indicating inhibitory activity. Targets: TDP1: Tyrosyl-DNA 

phosphodiesterase 1; Rorc: RAR-related orphan receptor gamma; AR: androgen receptor 

signaling pathway; TR: thyroid receptor signaling pathway; VDR: vitamin D receptor; ER: 

estrogen receptor alpha signaling; AhR: aryl hydrocarbon receptor signaling; GR: glucocorticoid 

receptor; Dopa: dopamine related; HIF1: Hypoxia-inducible factor 1-alpha; SHH: Sonic 

hedgehog; COX: cyclooxygenase. 
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Supplementary Table 6.  Statistical results of combinatorial assays (Figure 7). The effect size, 

95% confidence intervals, p value, and sample size (N) for each condition is shown. P values 

were calculated by comparing each condition to +Mtz controls using Student’s t test followed by 

Bonferroni correction for multiple comparisons (α=0.0019 adjusted significance level). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2020. ; https://doi.org/10.1101/2020.03.26.010009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010009
http://creativecommons.org/licenses/by/4.0/

