

1 **TITLE: *Medicago truncatula* Yellow Stripe-Like7 encodes a peptide transporter**
2 **required for symbiotic nitrogen fixation**

3

4 **AUTHORS:** Rosario Castro-Rodríguez¹, María Reguera¹, Viviana Escudero¹, Patricia
5 Gil-Díez¹, Julia Quintana², Rosa Isabel Prieto¹, Rakesh K. Kumar³, Ella Brear⁴, Louis
6 Grillet⁵, Jiangqi Wen⁶, Kirunkamar S. Mysore⁶, Elsbeth L. Walker³, Penelope M. C.
7 Smith⁴, Juan Imperial⁷, Manuel González-Guerrero^{1,8*}

8 ¹Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica
9 de Madrid. Campus de Montegancedo. Ctra. M-40 km 38. 28223 Pozuelo de Alarcón
10 (Madrid), Spain.

11 ²Department of Chemistry and Biochemistry. Worcester Polytechnic Institute. 100
12 Institute Road. Worcester, MA01609. USA.

13 ³Department of Biology, University of Massachusetts, Amherst, MA01003. USA

14 ⁴Department of Animal, Plant, and Soil Sciences. La Trobe University, Victoria 3083.
15 Australia.

16 ⁵Institute of Plant and Molecular Biology, Academia Sinica, Taipei 11529. Taiwan

17 ⁶Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401.

18 ⁷Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas. Serrano,
19 115 bis, 28006 Madrid. Spain.

20 ⁸Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas,
21 Universidad Politécnica de Madrid, 28040 Madrid, Spain.

22

23 **SHORT TITLE:** Peptide transporter MtYSL7 participates in SNF

24

25 **ONE SENTENCE SUMMARY:** *Medicago truncatula* YSL7 is a peptide transporter
26 required for symbiotic nitrogen fixation in legume nodules, likely controlling transition
27 metal allocation to these organs.

28

29

30 **FOOTNOTES:**

31 **Author contributions:** RC-R carried out most of the experimental work. MR was
32 responsible for the genetic complementation of the *ysl7* phenotype, together with RIP.
33 MR, RKK, EB, LG, ELW, and PMCS participated in the yeast complementation assays.
34 PG-D determined the effect of changing metal concentrations in the *ysl7* phenotype.
35 VEW characterized the expression of iron homeostasis genes in *ysl7* plants, as well as
36 iron distribution. JQ was in charge of metal determinations. RC-R, ELW, PMCS, JI, and
37 MG-G analysed and interpreted the data. MG-G supervised the work and wrote the
38 manuscript with input from all other authors.

39 **Funding information:** This research was funded by a Ministerio de Economía y
40 Competitividad grant (AGL2015-65866-P), and a European Research Council Starting
41 Grant (ERC-2013-StG-335284), to MGG. RC-R was supported by a Formación del
42 Personal Investigador Fellowship (BES-2013-062674). VE was partially funded by the
43 Severo Ochoa Programme for Centres of Excellence in R&D from Agencia Estatal de
44 Investigación of Spain (grant SEV-2016-0672) to CBGP. Development of *M. truncatula*
45 *Tnt1* mutant population was, in part, funded by the National Science Foundation, USA
46 (DBI-0703285) to KSM.

47 **E-mail address of Author for Contact:** manuel.gonzalez@upm.es

48

49

50

51

52

53

54

55

56

57

58

59 **ABSTRACT**

60 Yellow Stripe-Like (YSL) proteins are a family of plant transporters typically
61 involved in transition metal homeostasis. The substrate of three of the four YSL clades
62 (clades I, II, and IV) are metal complexes with non-proteinogenic amino acid
63 nicotianamine or its derivatives. No such transport capabilities have been shown for any
64 member of the remaining clade (clade III), which is able to translocate short peptides
65 across the membranes instead. The connection between clade III YSL members and metal
66 homeostasis might have been masked by the functional redundancy characteristic of this
67 family. This might have been circumvented in legumes through neofunctionalization of
68 YSLs to ensure a steady supply of transition metals for symbiotic nitrogen fixation in root
69 nodules. To test this possibility, *Medicago truncatula* clade III transporter MtYSL7 has
70 been studied both when the plant was fertilized with ammonium nitrate or when nitrogen
71 had to be provided by endosymbiotic rhizobia within the root nodules. MtYSL7 is a
72 plasma membrane protein expressed in the vasculature and in the nodule cortex. This
73 protein is able to transport short peptides into the cytosol, although none with known
74 metal homeostasis roles. Reducing *MtYSL7* expression levels resulted in diminished
75 nitrogen fixation rates. In addition, nodules of mutant lines lacking *YSL7* accumulated
76 more copper and iron, the later the likely result of increased expression in roots of iron
77 uptake and delivery genes. The available data is indicative of a role of MtYSL7, and
78 likely other clade III YSLs, in transition metal homeostasis.

79

80

81

82

83

84

85

86

87

88

89 INTRODUCTION

90 Iron, copper, zinc, and other transition metals are essential nutrients for plants
91 (Marschner, 2011). These elements are structural components or cofactors of proteins
92 involved in almost every physiological process. Therefore, obtaining transition metal
93 nutrients from soil and delivering them to hundreds of metalloproteins in different
94 organelles and tissues is essential for plant development. Several metal transport families
95 participate in transition metal allocation (Pilon, 2011; Kobayashi and Nishizawa, 2012;
96 Olsen and Palmgren, 2014). While most of them are evolutionary conserved in all
97 domains of life, a few, such as the Yellow Stripe-Like (YSL) proteins, are exclusively
98 present in plants (Curie et al., 2008; Kumar et al., 2017), suggesting selective pressures
99 for specialized metal transport systems. YSLs are evolutionarily related to the
100 Oligopeptide Transporter (OPT) family, sharing the capability of transporting amino acid
101 substrates into the cell cytosol (Lubkowitz, 2011). The amino acid substrates of the
102 biochemically characterized YSLs are typically the non-proteinogenic amino acid
103 nicotianamine or nicotianamine-derived molecules (mugineic acids) in complex with
104 transition elements (Schaaf et al., 2004; Aoyama et al., 2009).

105 The founding member of the family is *Zea mays* *YS1*. Mutants of this gene
106 presented interveinal chlorosis in leaves (yellow stripes), caused by a deficiency in iron
107 uptake (Beadle, 1929; Curie et al., 2001). *ZmYS1* and its orthologues like *OsYSL15* are
108 the main iron uptake system from soil in grasses, participating in what has been named
109 as Strategy II (in contrast to the Strategy I in non-grasses) (Kobayashi and Nishizawa,
110 2012). Monocots secrete nicotianamine-derived phytosiderophores to the rhizosphere,
111 where they sequester iron and other transition elements (Roberts et al., 2004; Schaaf et
112 al., 2004; Nozoye et al., 2011). Subsequently, YSL proteins mediate the uptake of these
113 complexes into the root epidermal cells (Curie et al., 2001). However, this is not the only
114 role of YSLs. Both in monocots and dicots, YSLs facilitate the transport of metal-
115 nicotianamine complexes as part of a more general role in long-distance metal transport
116 and intracellular transport (DiDonato et al., 2004; Waters et al., 2006). For instance,
117 *Arabidopsis thaliana* YSL1 and YSL3 are responsible for iron uptake from the vascular
118 tissues, redistribution from senescent leaves, and delivery to the seed (Waters et al., 2006;
119 Chu et al., 2010). More recently, it has been proposed that YSL proteins also participate
120 in the systemic control of iron homeostasis in plants (Kumar et al., 2017).

121 Based on their amino acid sequence, YSL transporters can be classified into four
122 different groups (Yordem et al., 2011). Group I includes ZmYS1, AtYSL1, and AtYSL3.
123 Group II is integrated by a number of YSL proteins that have intracellular localization.
124 Best characterized AtYSL4 and AtYSL6 are located in the vacuoles and/or in chloroplast
125 membranes, and are involved in the mobilization of metal stores (Conte et al., 2013; Divol
126 et al., 2013). YSL Group IV is formed only by monocot proteins, including metal
127 transporting OsYSL8 (Aoyama et al., 2009). While members from these three groups
128 have been linked to transition metal homeostasis, no physiological function has been
129 attributed to YSLs belonging to Group III.

130 Group III YSLs AtYSL7 and AtYSL8 are able to transport peptides into the cell
131 (Hofstetter et al., 2013). This is used by plant pathogen *Pseudomonas syringae* pv
132 *syringae* to introduce in the plant cell the virulence factor SylA, a tripeptide involved in
133 proteasome inhibition that dysregulates the plant immune response (Groll et al., 2008).
134 However, it is unlikely that this is the physiological role of Group III YSLs. Considering
135 that all the other three YSL groups are involved in transition metal homeostasis (Curie et
136 al., 2001; Conte et al., 2013), we hypothesize that Group III members would also be
137 participating in the same physiological process. However, no metal-related phenotype of
138 any mutant of these family members have been reported in *Arabidopsis*, perhaps as a
139 consequence of the frequent functional redundancy of the YSL family (Waters et al.,
140 2006; Divol et al., 2013). As an alternative, we have considered the model legume
141 *Medicago truncatula* due to its ability to carry out symbiotic nitrogen fixation, a process
142 that heavily relies on metal transport (González-Guerrero et al., 2016). This symbiotic
143 process required the neofunctionalization of many genes (De Mita et al., 2014), and could
144 have caused the loss of some of the functional redundancy that characterizes the YSL
145 family.

146 Transition elements are essential for symbiotic nitrogen fixation as cofactors of
147 many of the enzymes participating in this process, including the enzyme central to the
148 conversion of N₂ into NH₄⁺, nitrogenase (Brear et al., 2013; González-Guerrero et al.,
149 2014). Considering the high expression levels of many of the genes encoding these
150 metalloenzymes, a substantial part of the metal incorporated into the plant is directed to
151 the root nodules, oftentimes eliciting metal deficiency responses (Terry et al., 1991).
152 Consequently, it is expected that dedicated metal transport systems have been adapted
153 from pre-existing ones to ensure proper metal supply to the newly developed organs. In

154 those cases where functional redundancy might exist, it could imply that only one of the
155 redundant genes acquire a novel role. Here, we take advantage of this possibility to study
156 *M. truncatula* YSL7 (*Medtr3g063490*), a Group III YSL family member with high
157 expression in nodules important for plant growth in general and nitrogen fixation in
158 particular.

159

160 RESULTS

161 ***MtYSL7* is expressed in roots and in nodules**

162 The *M. truncatula* genome contains nine *YSL* genes (*MtYSL1-MtYSL9*). Sequence
163 comparison of the encoded proteins with known YSL proteins from monocots and dicots,
164 showed that *M. truncatula* YSLs are distributed in the same groups as any other dicot
165 (Fig. 1A). Four of them (*MtYSL1-4*) belong to Group I, one (*MtYSL6*) is clustered in
166 group II, and four (*MtYSL5, 7, 8, and 9*) are in Group III. *MtYSL7* is very similar to
167 *AtYSL7* and *GmYSL7*, and likely resulted from a duplication event with *MtYSL8* o
168 *MtYSL9*. Over 89% identity is shared among *MtYSL7*, *MtYSL8*, and *MtYSL9*.

169 *MtYSL7* was the only gene among the four members of the Group III *M. truncatula*
170 *YSLs* to have a maximum of expression in nodules (Fig. 1B, Suppl. Fig. 1). Transcripts
171 of these genes were specifically detected in roots and nodules, with no significant
172 transcription in shoots. In spite of the high degree of similarity to *MtYSL7*, *MtYSL8* and
173 *MtYSL9* were not expressed in nodules. In fact, no *MtYSL8* or *MtYSL9* transcripts were
174 found in the organs at the time points analysed (Suppl. Fig. 1). In contrast, *MtYSL5* was
175 expressed in all the organs tested, with the lowest relative expression being detected in
176 nodules.

177

178 ***MtYSL7* is a peptide transporter**

179 YSL transporters have been typically associated with the transport of transition
180 metal complexes with non-proteogenic amino acid nicotianamine or its derivates (Schaaf
181 et al., 2004). To test whether *MtYSL7* was able to transport transition elements free or
182 complexed to nicotianamine, complementation assays of *S. cerevisiae* metal transport
183 mutants were carried out. For this, the strains *ctr1* (deficient in copper uptake), *zrt1zrt2*
184 (deficient in zinc uptake), and *fet3fet4* (deficient in iron uptake) were used (Askwith et

185 al., 1994; Dancis et al., 1994; Dix et al., 1994; Zhao and Eide, 1996). These strains were
186 co-transformed with a plasmid expressing a β -estradiol-dependent transactivator of *Gal*
187 promoters, and a plasmid containing *MtYSL7* coding sequence regulated by a *Gal*
188 promoter. Drop tests were carried out using serial dilutions of the cultures. In the case of
189 iron, both the Fe^{2+} and the Fe^{3+} forms were tested. As shown in Suppl. Fig. 2, there was
190 no restoration of the wild type growth in any of the conditions tested, unlike what has
191 been reported for other metal-nicotianamine transporting YSLs in similar assays (Chu et
192 al., 2010).

193 Alternatively, it can be hypothesized that the substrate of *MtYSL7* is a peptide
194 and not a metal-NA complex. YSL and OPT proteins are closely related (Lubkowitz,
195 2011), and the *Arabidopsis* AtYSL7 protein transports a peptide (Hofstetter et al., 2013).
196 To test this possibility, different peptides were provided as the sole nitrogen source to an
197 *S. cerevisiae* strain lacking an oligopeptide transporter (*opt1*) (Osawa et al., 2006)
198 transformed with a plasmid containing *MtYSL7* (Fig. 2). *MtYSL7*-expressing yeasts were
199 able to grow when four to six amino acid peptides were provided. Some limited growth
200 was also observed when a 12 amino acid peptide was used as substrate, but not when one
201 of 10 was provided. *MtYSL7* did not appear to transport the tripeptide glutathione when
202 expressed in the yeast glutathione transport mutant *hgt* (Suppl. Fig. 3). In addition, no
203 evidence for transport of iron-regulatory peptide IMA (Grillet et al., 2018) was observed
204 (Suppl. Fig. 4).

205

206 **MtYSL7 is located in the plasma membrane of root pericycle and nodule cortical
207 cells**

208 To determine the tissue localization of the expression of *MtYSL7*, *M. truncatula*
209 seedlings were transformed with a construct fusing the 2 kb region upstream of *MtYSL7*
210 to the β -glucuronidase gene (*gus*). GUS activity was localized in 28 dpi plants based on
211 the blue stain resulting from using X-Gluc as a substrate (Fig. 3). As indicated by the RT-
212 PCR studies, *MtYSL7* was expressed in roots and nodules, with the signal being more
213 intense in nodules (Fig. 3A). In nodules, *MtYSL7* expression was located in the cortical
214 region of the nodule throughout its length (Fig. 3B, C), with no expression observed in
215 the nodule core, regardless of the developmental zone of the nodule. In roots, GUS

216 activity was detected in the perivascular region, in a zone that contains the endodermis or
217 pericycle surrounding the vessels (Fig. 3D).

218 Immunolocalization of a C-terminal (HA)₃-tagged MtYSL7 regulated by its own
219 promoter supported the reporter gene studies (Fig. 4). The signal from the Alexa 594-
220 conjugated antibody used to localize MtYSL7-HA was observed in the periphery of the
221 nodule, in the cortical area, both in the perivascular and intervacular areas (Fig. 4A, B).
222 At a higher magnification, the perivascular distribution of MtYSL7-HA seemed to be
223 confined to the endodermal layer (Fig. 4C), mostly to the periphery of the cell. In roots
224 MtYSL7-HA was observed in the pericycle (Fig. 4D). The intracellular distribution of
225 MtYSL7-HA was indicative of a plasma membrane association, as also evidenced by its
226 co-localization with a plasma membrane marker when co-transfected into tobacco leaves
227 (Fig. 4E). Controls in which no Alexa 594-conjugated antibody was used showed no
228 signal in the measured channels (Suppl. Fig. 5).

229

230 ***MtYSL7* mutation affects plant growth and symbiotic nitrogen fixation**

231 To determine the function of MtYSL7, two *M. truncatula* *Tnt1* insertional mutants
232 were obtained from the Noble Research Institute (Tadege et al., 2008). NF11536 (*ysl7-1*)
233 is a knock-down line with the transposon inserted in its first intron (nucleotide +1118)
234 (Fig. 5A). The *Tnt1* insertion in NF9504 (*ysl7-2*) is in the first exon in nucleotide +315,
235 what reduces *MtYSL7* expression below our detection limit. Regardless the extent to
236 which expression is reduced, when uninoculated and grown with ammonium nitrate in
237 the medium, both *MtYSL7* mutant alleles had reduced growth compared to wild type
238 plants (Fig. 5B, C). The growth phenotype, particularly in roots, was restored in the
239 knock-out *ysl7-2* mutant allele when a wild type copy of *MtYSL7* expressed under the
240 control of its own promoter was reintroduced (Suppl. Fig. 6). In addition, although it was
241 not evident from *in visu* examination of the plants, both mutant alleles had a slight but
242 significant decrease in chlorophyll content (Fig 5D). In general, no significant differences
243 in iron, copper, or zinc concentrations were observed, the one exception being copper
244 levels in shoots of knock down *ysl7-1* (Fig. E-G).

245 Similar growth differences were observed when all the nitrogen was provided by
246 symbiosis with *S. meliloti* (Fig. 6). Plant growth was reduced in *MtYSL7* mutants, at a
247 higher degree in the knock-out line than the knock-down line (Fig. 6A, B). These plants

248 developed nodules that had no evident morphological differences from wild type (Fig.
249 6C). Nitrogenase activity was affected in both *Tnt1* lines, with around 40% of the activity
250 of controls (Fig. 6D). These phenotypes were restored in *ysl7-2* when a wild type copy of
251 *MtYSL7* expressed by its native promoter was reintroduced (Suppl. Fig. 7). In addition,
252 *ysl7-2* nodules had a significantly higher iron and copper content in nodules than wild
253 type (Fig. 6E, F), while no differences were observed for zinc (Fig. 6 G). Increased iron
254 level might be the result of the increased expression in roots of iron uptake and delivery
255 systems, such as ferroreductase FRO1 and iron transporter MtNramp1 (Suppl. Fig. 8).
256 Moreover, the increased iron content in *ysl7-2* nodules did not result in altered iron
257 distribution in nodules (Supp. Fig. 9). Knock-down *ysl7-1* showed a similar, although
258 non-significant metal accumulation trend, the likely consequence of the remaining
259 *MtYSL7* expression (Fig 6E-G). In spite of the altered iron and copper homeostasis in
260 nodules, reducing or increasing iron or copper content in the nutrient solution did not
261 have any significant effect on plant growth or nitrogenase activity (Suppl. Fig. 10, Suppl.
262 Fig. 11).

263

264 **DISCUSSION**

265 YSLs play a role in transition metal uptake from soil, its distribution from source
266 to sink tissues, as well as in intracellular metal remobilization (Curie et al., 2001; Waters
267 et al., 2006; Conte et al., 2013). More recently, there is evidence of YSL proteins
268 participating in long-distance signalling of the nutritional status of iron (Kumar et al.,
269 2017). These functions are carried out by members of three of the four known YSL groups
270 (Yordem et al., 2011). The remaining one, Group III, has been associated with the
271 transport of the *Pseudomonas syringae* pv. *syringae* virulence factor SylA (Hofstetter et
272 al., 2013). Although it is unlikely that this is its physiological role, it showcases the ability
273 of proteins from this family to use peptides instead of non-proteogenic amino acids as
274 their substrate. Further reinforcing this role as peptide transporter, expression of *MtYSL7*
275 in yeast restores the uptake capacity of short peptides. Similar transport capabilities were
276 observed in GmYSL7 (accompanying manuscript). However, there seems to be some
277 specificity to transport by MtYSL7, since a decapeptide was not transported, as neither
278 were tripeptide glutathione or IMA-related peptides consisting of four, five, or seventeen
279 amino acids.

280 *MtYSL7* is expressed in roots and nodules, with the highest levels in the nodules.
281 Inmunolocalization of HA-tagged *MtYSL7* indicates that it is associated to the plasma
282 membrane of cells in the vasculature and in the nodule cortex and vasculature, similar to
283 the subcellular localization of *AtYSL7* (Hofstetter et al., 2013). In spite of being
284 expressed in two different organs, it is in the nodules where *MtYSL7* would be playing a
285 primary role. In contrast to the mild reduction of growth and even milder lower
286 chlorophyll content of *MtYSL7* mutants when plants do not need to develop nodules,
287 reducing the expression levels of this gene leads to a diminished nitrogenase activity and
288 a reduced plant growth in nodulating plants. This degree of neofunctionalization of
289 *MtYSL7* has allowed us to study the physiological role of Group III YSLs while avoiding
290 possible functional redundancies common to this family (Waters et al., 2006; Divol et al.,
291 2013). This trend is further developed in *G. max*, where orthologue *GmYSL7* is
292 specifically expressed in nodules and located in the symbiosome membrane
293 (accompanying manuscript), suggesting a higher degree of specialization. However,
294 *GmYSL7* seems to be functionally equivalent to *MtYSL7*, since it is also able to
295 complement the *ysl7-2* phenotype when its expression is driven by the *MtYSL7* promoter
296 (accompanying manuscript). Based on *MtYSL7* expression in the nodule cortex, it could
297 be hypothesized that *MtYSL7* is introducing a yet-to-be determined metal complex into
298 a cell layer with a specific need for metals and a role in preventing oxygen diffusion into
299 the nodule. This would create a separate iron pool from those elements directed for
300 nitrogen-fixing cells, which very likely is in the form of iron-citrate (Tejada-Jiménez et
301 al., 2015; Kryvoruchko et al., 2018). However, if this were the case, we should expect
302 that metal fortification of the nutrient solution would partially complement the phenotype,
303 as reported for other nodule metal transport mutants (Tejada-Jiménez et al., 2015; Tejada-
304 Jiménez et al., 2017; Gil-Díez et al., 2019). Moreover, we should also observe metal
305 accumulation in the apoplast around these cells. The fact that this did not happen could
306 be explained either as the absence of an additional low affinity metal uptake system in
307 those cells or that *MtYSL7* could be playing a differential physiological function.

308 An alternative hypothesis to the role of *MtYSL7* is that its substrate would serve
309 as a signal of the metal status. In the case of soybean symbiosomes, it could reflect the
310 metal condition of bacteroids within, while in *M. truncatula* nodule cortex, it would be
311 an indicator of the available metal within the nodule. Supporting this theory is the
312 observed increased iron and copper content of *ysl7-2* nodules, perhaps the consequence

313 of lacking a feedback signal of metal sufficiency in nodules. Since no change in iron
314 distribution was observed, it could be speculated that no defects in overall metal transport
315 would result from *MtYSL7* loss-of-function. Consistent with this hypothesis is the
316 upregulation of iron uptake systems in roots of *ysl7-2*. *MtFRO1* is a ferroreductase
317 involved in the iron deficiency response in roots, responsible for the conversion of Fe³⁺
318 to Fe²⁺ prior to its assimilation (Andaluz et al., 2009). *MtFRO1* upregulation in roots
319 should be the result of iron deficiency in the plant. However, we have not observed any
320 significant reduction on iron concentration in the plant, but the contrary, with higher iron
321 concentrations in *ysl7-2* nodules. Similarly, *MtNramp1* expression levels were higher in
322 the roots of *ysl7-2* plants than in the controls, while no statistical differences were
323 observed in nodules. This transporter is responsible for iron uptake by the root
324 endodermis and by rhizobia-infected nodule cells (Tejada-Jiménez et al., 2015). The fact
325 that it is upregulated exclusively in roots would be indicative of a signal controlling whole
326 plant metal iron allocation instead of specifically being targeted to nitrogen-fixing cells.
327 Furthermore, a more thorough transcriptomic approach in mutant orthologue *GmYSL7*,
328 also indicate a large dysregulation of iron homeostasis (accompanying manuscript).
329 Regardless of the specific cause of the induction of Fe deficiency responses in the root,
330 these results link Group III YSL function to metal homeostasis, a physiological role
331 shared by all the other three YSL groups (Curie et al., 2001; Aoyama et al., 2009; Conte
332 et al., 2013), that could be suggested but had not been demonstrated previous to the
333 research presented here. However, to conclusively prove any of these alternative theories,
334 future work should focus on the identification of the specific substrate of Group III YSLs,
335 for which a new set of metal-chelator peptides need to be identified.

336

337 MATERIALS AND METHODS

338 Plant growth conditions

339 *Medicago truncatula* R108 (Wild Type) and *Tnt1*-insertion mutants *ysl7-1*
340 (NF11536) and *ysl7-2* (NF9504) seeds were scarified, sterilized and germinated as
341 indicated by Tejada-Jiménez et al. (Tejada-Jiménez et al., 2015). Seedlings were planted
342 on sterile perlite pots, and inoculated with *Sinorhizobium meliloti* 2011 or the same
343 bacterial strain transformed pHC60-GFP (Cheng and Walker, 1998). Plants were grown
344 in a greenhouse under 16 h light / 8 h dark at 25 °C / 20 °C conditions, and watered every
345 two days alternating Jenner's solution with water (Brito et al., 1994). Nodules were

346 collected at 28 days-post-inoculation (dpi). Non-nodulated plants were grown under the
347 same conditions of light and temperature but were watered every two weeks with
348 solutions supplemented with 2 mM NH₄NO₃.

349 Hairy-root transformations of *M. truncatula* seedlings with *Agrobacterium*
350 *rhizogenes* ARqua1 carrying the appropriate binary vector, were performed following the
351 methodology described by (Boisson-Dernier et al., 2001).

352 **Yeast complementation assays**

353 To analyse MtYSL7 peptide uptake capabilities, *MtYSL7* was amplified using the
354 primers listed in Suppl. Table 1 and cloned in the *PstI* and *XhoI* sites of pDR196. Yeast
355 strains YJL212C (OPT1) (Euroscarf) (BY4741; *MATA*; *ura3Δ0*; *leu2Δ0*; *his3Δ1*;
356 *met15Δ0*; *YJL212c::kanMX4*) and BY4741 (Winston et al., 1995) were used. Growth
357 experiments were performed using SD media without nitrogen (N) using the different
358 peptides indicated as a nitrogen source. SD media supplemented with 5 g/l (NH₄)₂SO₄
359 was used as a growth control media. Ten-fold serial dilutions were spotted (5 µl) onto SD
360 or YPD plates and incubated at 28 °C for 2-3 days.

361

362 **Quantitative real-time RT-PCR**

363 Gene expression studies were carried out by real-time RT-PCR (StepOne plus,
364 Applied Biosystems) using the Power SyBR Green master mix (Applied Biosystems).
365 Primers used are indicated in Suppl. Table 1. RNA levels were normalized by using the
366 *ubiquitin carboxy-terminal hydrolase* gene as internal standard for *M. truncatula* genes
367 (Kakar et al., 2008). RNA isolation and cDNA synthesis were carried out as previously
368 described (Tejada-Jiménez et al., 2015).

369

370 **GUS staining**

371 Two kilobases upstream of *MtYSL7* start codon were amplified using the primers
372 indicated in Suppl. Table 1, then cloned in pDONR207 (Invitrogen) and transferred to
373 pGWB3 (Nakagawa et al., 2007) using Gateway Cloning technology (Invitrogen). This
374 led to the fusion of the promoter region of *MtYSL7* with the *gus* gene in pGWB3. An *A.*
375 *rhizogenes* ARqua1 derived strain containing pGWB3::*MtYSL7*_{prom} vector was used for
376 root transformation of *M. truncatula*. Transformed plants were transferred to sterilized

377 perlite pots and inoculated with *S. meliloti* 2011. GUS activity was determined in 28 dpi
378 plants as described (Vernoud *et al.*, 1999).

379

380 **Immunohistochemistry and confocal microscopy**

381 A DNA fragment of the full length *MtYSL7* genomic region and the 2 kb upstream
382 of its start codon was amplified using the primers indicated in Suppl. Table 1 and cloned
383 into the plasmid pGWB13 (Nakagawa *et al.*, 2007) using the Gateway technology
384 (Invitrogen). This plasmid fuses three C-terminal hemagglutinin (HA) epitopes in-frame.
385 Hairy-root transformation was performed as previously described (Vernoud *et al.*, 1999).
386 Transformed plants were transferred to sterilized perlite pots and inoculated with *S.*
387 *meliloti* 2011 containing a pHC60 plasmid that constitutively expresses GFP. Roots and
388 nodules collected from 28 dpi plants were fixed by overnight incubation in 4 %
389 paraformaldehyde, 2.5 % sucrose in PBS at 4 °C. After washing in PBS, nodules were
390 included in 6 % agarose and cut in 100 µm sections with a Vibratome 1000 plus
391 (Vibratome). Sections were dehydrated using methanol series (30, 50, 70, 100 % in PBS)
392 for 5 min and then rehydrated. Cell walls were permeabilized with 4 % cellulase in PBS
393 for 1 h at room temperature and with 0.1 % Tween 20 in PBS for 15 min. Sections were
394 blocked with 5 % bovine serum albumin (BSA) in PBS before their incubation with an
395 anti-HA mouse monoclonal antibody (Sigma) for 2 hours at room temperature. After
396 washing, an Alexa594-conjugated anti-mouse rabbit monoclonal antibody (Sigma) was
397 added to the sections for 1 h at room temperature. DNA was stained with DAPI after
398 washing. Images were acquired with a confocal laser-scanning microscope (Leica SP8)
399 using excitation lights at 488 nm for GFP and at 561 nm for Alexa 594.

400

401 **Acetylene reduction assay**

402 Nitrogenase activity was measured by the acetylene reduction assay (Hardy *et al.*,
403 1968). Nitrogen fixation was assayed in mutants and control plants at 28 dpi in 30 ml
404 vials fitted with rubber stoppers. Each vial contained four or five pooled transformed
405 plants. Three ml of air inside of the vial was replaced with 3 ml of acetylene. Tubes were
406 incubated at room temperature for 30 min. Gas samples (0.5 ml) were analyzed in a
407 Shimadzu GC-8A gas chromatograph fitted with a Porapak N column. The amount of
408 ethylene produced was determined by measuring the height of the ethylene peak relative

409 to background. Each point consists of two vials each. After measurements, nodules were
410 recovered from roots to measure their weight.

411

412 **Metal content determination**

413 Iron content was determined in shoots, roots, and nodules 28 dpi. Plant tissues
414 were weighted and mineralized in 15.6 M HNO₃ (trace metal grade) for 1 h at 80 °C and
415 overnight at 20 °C. Digestions were completed with 2 M H₂O₂. Samples were diluted in
416 300 mM HNO₃ prior to measurements. Element analyses were performed with Atomic
417 Absorption Spectroscopy (AAS) in an AAnalyst 800 (Perkin Elmer), equipped with a
418 graphite furnace. All samples were measured in duplicate.

419

420 **Bioinformatics**

421 To identify *M. truncatula* YSL family members, BLASTN and BLASTX searches
422 were carried out in the *M. truncatula* Genome Project site
423 (<http://www.jcvi.org/medicago/index.php>). Protein sequences for tree construction were
424 obtained from Phytozome (<https://phytozome.jgi.doe.gov/pz/portal.html>), Uniprot
425 (<http://www.uniprot.org/blast>) and NCBI
426 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins>): *M. truncatula* MtYSL1
427 (Medtr1g077840); MtYSL2 (Medtr1g007540); MtYSL3 (Medtr3g092090); MtYSL4
428 (Medtr1g007580); MtYSL5 (Medtr6g077870); MtYSL6 (Medtr7g028250); MtYSL7
429 (Medtr3g063490), MtYSL8 (Medtr5g091600) y MtYSL9 (Medtr3g063520);
430 *Arabidopsis thaliana* AtYSL1 (At4g24120), AtYSL2 (At5g24380), AtYSL3
431 (At5g53550), AtYSL4 (At5g41000), AtYSL5 (At3g17650), AtYSL6 (At3g27020),
432 AtYSL7 (At1g65730), AtYSL8 (At1g48370); *Oryza sativa* OsYSL1 (Os01g0238700),
433 OsYSL3 (Os05g0251900), OsYSL4 (Os05g0252000); OsYSL5 (Os04g0390600),
434 OsYSL6 (Os04g0390500); OsYSL7 (Os02g0116300), OsYSL8 (Os02g0116400),
435 OsYSL10 (Os04g0674600), OsYSL12 (Os04g0524600), OsYSL13 (Os04g0524500),
436 OsYSL14 (Os02g0633300); OsYSL15 (Os02g0650300), OsYSL16 (Os04g0542800);
437 OsYSL17 (Os08g0280300), OsYSL18 (Os01g0829900); *Zea mays* ZmYSL1
438 (Zm00001d017429), ZmYSL2 (Zm00001d025977), ZmYSL6 (Zm00001d003941),
439 ZmYSL11 (Zm00001d025888), ZmYSL12 (Zm00001d025887), ZmYSL14A
440 (Zm00001d051193), ZmYSL17 (Zm00001d054042); *Brachypodium*

441 *distachyon* BdYS1A (BRADI_3g50267), BdYS1B (BRADI_3g50263), BdYSL2
442 (BRADI_3g50260), BdYSL3 (BRADI_5g17230), BdYSL9 (BRADI_5g17210);
443 BdYSL10 (BRADI_2g5395), BdYSL11 (BRADI_5g16190), BdSYL12
444 (BRADI_5g16170), BdYSL13 (BRADI_5g16160) and *Glycine max* GmYSL7
445 (GLYMA_11G203400), GLYMA_09G164500; GLYMA_16G212900 .

446 Trees were constructed from a ClustalW multiple alignment of the sequences
447 (<http://www.ebi.ac.uk/Tools/msa/clustalw2>), then analyzed by MEGA7 (Kumar et al.,
448 2016) using a Neighbour-Joining algorithm with bootstrapping (1,000 iterations).
449 Unrooted trees were visualized with FigTree (<http://tree.bio.ed.ac.uk/software/figtree>).

450

451 **Statistical tests**

452 Data were analyzed with Student's unpaired *t* test to calculate statistical
453 significance of observed differences. Test results with *p*-values lower than 0.05 were
454 considered as statistically significant.

455

456 **ACKNOWLEDGEMENTS**

457 We would also like to acknowledge the other members of laboratory 281 at Centro
458 de Biotecnología y Genómica de Plantas (UPM-INIA) for their support and feedback in
459 preparing this manuscript.

460

461

462

463

464

465

466

467

468

469

470 **FIGURE LEGENDS**

471 **Fig. 1.** *Medicago truncatula* *YSL7* is a Group III YSL highly expressed in nodules. A)
472 Unrooted tree of the *M. truncatula* YSL transporters, MtYSL1-MtYSL9
473 (*Medtr1g077840*, *Medtr1g007540*, *Medtr3g092090*, *Medtr1g007580*, *Medtr6g077870*,
474 *Medtr7g028250*, *Medtr3g063490*, *Medtr5g01600*, and *Medtr3g063520*, respectively),
475 and representative plant homologues. B) *MtYSL7* expression relative to internal standard
476 gene *ubiquitin carboxyl-terminal hydrolase*. Data are the mean ± SE of five independent
477 experiments.

478 **Fig. 2.** MtYSL7 transports peptides. The yeast strain *opt1*, mutant in the oligopeptide
479 transporter ScOPT1, was transformed with either the empty pDR196 vector, or with
480 pDR196 containing the coding sequence of *MtYSL7* or *AtOPT4*. Serial dilutions (10x)
481 were grown on SD media supplemented with the nitrogen sources indicated.

482 **Fig. 3.** *MtYSL7* is expressed in the root and nodule vasculature and in the nodule cortex.
483 A) Histochemical staining of the GUS activity in 28 dpi root and nodules expressing the
484 *gus* gene under the regulation of the *MtYSL7* promoter. Bar = 1 mm. B) Longitudinal
485 section of a GUS-stained 28 dpi nodule expressing *gus* under the *MtYSL7* promoter. Bar
486 = 200 µm. C) Cross section of a GUS-stained 28 dpi nodule expressing *gus* under the
487 *MtYSL7* promoter. Bar = 200 µm. D) Cross section of a GUS-stained 28 dpi root
488 expressing *gus* under the *MtYSL7* promoter. Bar = 100 µm.

489 **Fig. 4.** MtYSL7 is located in the periphery of nodule cortical cells, in the nodule
490 endodermis and in the root pericycle. A) Longitudinal section of a 28 dpi *M. truncatula*
491 nodule expressing *MtYSL7* under its own promoter and fused to three HA epitopes. The
492 HA-tag was detected with the help of a secondary Alexa594-conjugated antibody (red).
493 Transformed plants were inoculated with a GFP-expressing *S. meliloti* (green) and DNA
494 was stained with DAPI (blue). Right panel shows the overlay of all these channels
495 together with the bright field image. Bars = 200 µm. B) Cross section of a 28 dpi *M.*
496 *truncatula* nodule expressing *MtYSL7* under its own promoter and fused to three HA
497 epitopes. The HA-tag was detected with the help of a secondary Alexa594-conjugated
498 antibody (red). Transformed plants were inoculated with a GFP-expressing *S. meliloti*
499 (green) and DNA was stained with DAPI (blue). Right panel shows the overlay of all
500 these channels together with the bright field image. Bars = 200 µm. C) Detail of a
501 longitudinal section of a vessel from a 28 dpi *M. truncatula* nodule expressing *MtYSL7*

502 under its own promoter and fused to three HA epitopes. The HA-tag was detected with
503 the help of a secondary Alexa594-conjugated antibody (red). Transformed plants were
504 inoculated with a GFP-expressing *S. meliloti* (green) and DNA was stained with DAPI
505 (blue). Right panel shows the overlay of all these channels. The arrowheads indicate the
506 position of the Casparyan strip. Bars = 50 μ m. D) Cross section of a 28 dpi root expressing
507 *MtYSL7* under its own promoter and fused to three HA epitopes. The HA-tag was detected
508 with the help of a secondary Alexa594-conjugated antibody (red). Lignin
509 autofluorescence was used to identify xylem and Casparyan strip lignin (green). Right
510 panel shows the overlay of all these channels together with the bright field image. Bars =
511 50 μ m. E) Colocalization of *MtYSL7*-GFP and AtPIP2-CFP in tobacco leaves. Left panel
512 shows the localization of *MtYSL7* fused to GFP (green) transiently expressed in tobacco
513 leaf cells. Middle panel shows the localization of plasma membrane marker AtPIP2 fused
514 to CFP, transiently expressed in the same cells. Right panel is the overlay of the two
515 previous channels together with the bright field image. Bars = 50 μ m.

516 **Fig. 5.** *MtYSL7* mutation affects plant growth under non-symbiotic conditions. A)
517 Position of the *Tnt1* insertions in *ysl7-1* and *ysl7-2* lines. Lower half, RT-PCR of *MtYSL7*
518 in 28 dpi nodules of wild type, *ysl7-1*, and *ysl7-2* lines. *Ubiquitin carboxyl-terminal*
519 *hydrolase* (*MtUb1*) was used as a positive control. B). Growth of representative plants.
520 Bar = 3 cm. C) Dry weight of shoots and roots of wild type, *ysl7-1*, and *ysl7-2* plants.
521 Data are the mean \pm SE (n = 5 plants). C) Chlorophyll content of wild type, *ysl7-1*, and
522 *ysl7-2* shoots. Data are the mean \pm SE of three sets of five pooled plants. E) Iron content
523 in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of three
524 sets of five pooled plants. F) Copper content in roots and shoots of wild type, *ysl7-1*, and
525 *ysl7-2* plants. Data are the mean \pm SE of three sets of five pooled plants. G) Zinc content
526 in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of three
527 sets of five pooled plants. * indicates statistical significance (p < 0.05).

528 **Fig. 6.** *MtYSL7* participates in symbiotic nitrogen fixation. A) Growth of representative
529 wild type, *ysl7-1*, and *ysl7-2* plants. Bar = 3 cm. B) Dry weight of shoots and roots of 28
530 dpi plants. Data are the mean \pm SE (n = 10-15 plants). C) Detail of representative nodules
531 of 28 dpi wild type, *ysl7-1*, and *ysl7-2* plants. Bars = 1 mm. D) Nitrogenase activity in 28
532 dpi nodules from wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE measured
533 in duplicate from two sets of five pooled plants. 100 % = 0.28 nmol ethylene h^{-1} plant $^{-1}$.

534 E) Iron content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the
535 mean \pm SE of two sets of five pooled plants. F) Copper content in roots and shoots of
536 wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of two sets of five pooled
537 plants. G) Zinc content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data
538 are the mean \pm SE of two sets of five pooled plants. * indicates statistical significance (p
539 < 0.05).

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561 **REFERENCES**

562 **Abreu I, Saez A, Castro-Rodríguez R, Escudero V, Rodríguez-Haas B, Senovilla M,**
563 **Larue C, Grolimund D, Tejada-Jiménez M, Imperial J, Gonzalez-Guerrero**
564 **M (2017) *Medicago truncatula* Zinc-Iron Permease6 provides zinc to rhizobia-**
565 **infected nodule cells. Plant Cell Environ. 40:** 2706-2719

566 **Andaluz S, Rodríguez-Celma J, Abadía A, Abadía J, López-Millán A-F (2009) Time**
567 **course induction of several key enzymes in *Medicago truncatula* roots in response**
568 **to Fe deficiency. Plant Physiol. Biochem. 47:** 1082-1088

569 **Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru**
570 **Y, Nakanishi H, Mori S, Nishizawa NK (2009) OsYSL18 is a rice iron(III)-**
571 **deoxymugineic acid transporter specifically expressed in reproductive organs and**
572 **phloem of lamina joints. Plant Mol. Biol. 70:** 681-692

573 **Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan**
574 **J (1994) The *FET3* gene of *S. cerevisiae* encodes a multicopper oxidase required**
575 **for ferrous iron uptake. Cell 76:** 403-410

576 **Beadle GW (1929) Yellow Stripe-a Factor for Chlorophyll Deficiency in Maize Located**
577 **in the Pr pr Chromosome. The American Naturalist 63:** 189-192

578 **Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG**
579 **(2001) Agrobacterium rhizogenes-transformed roots of *Medicago truncatula* for**
580 **the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol.**
581 **Plant Microbe Interact. 14:** 695-700

582 **Brear EM, Day DA, Smith PMC (2013) Iron: an essential micronutrient for the legume-**
583 **rhizobium symbiosis. Front. Plant Sci. 4:** 359

584 **Brito B, Palacios JM, Hidalgo E, Imperial J, Ruíz-Argüeso T (1994) Nickel**
585 **availability to pea (*Pisum sativum* L.) plants limits hydrogenase activity of**
586 ***Rhizobium leguminosarum* bv. *viciae* bacteroids by affecting the processing of the**
587 **hydrogenase structural subunits. J. Bacteriol. 176:** 5297-5303

588 **Cheng HP, Walker GC (1998) Succinoglycan is required for initiation and elongation**
589 **of infection threads during nodulation of alfalfa by *Rhizobium meliloti*. J.**
590 **Bacteriol. 180:** 5183-5191

591 **Chu HH, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE, Walker EL** (2010)
592 Succesful reproduction requires the function of *Arabidopsis* Yellow Stripe-Like1
593 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and
594 reproductive structures. *Plant Physiol.* **154**: 197-210

595 **Conte SS, Chu HH, Rodríguez DC, Punshon T, Vasques KA, Salt DE, Walker EL**
596 (2013) *Arabidopsis thaliana* Yellow Stripe1-Like4 and Yellow Stripe1-Like6
597 localize to internal cellular membranes and are involved in metal ion homeostasis.
598 Front. Plant Sci. **4**: 283

599 **Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A,**
600 **Czernic P, Mari S** (2008) Metal movement within the plant: contribution of
601 nicotianamine and yellow stripe 1-like transporters. *Ann. Bot.* **103**: 1-11

602 **Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL** (2001)
603 Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III)
604 uptake. *Nature* **409**: 346-349

605 **Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD**
606 (1994) Molecular characterization of a copper transport protein in *S. cerevisiae*:
607 An unexpected role for copper in iron transport. *Cell* **76**: 393-402

608 **De Mita S, Streng A, Bisseling T, Geurts R** (2014) Evolution of a symbiotic receptor
609 through gene duplications in the legume–rhizobium mutualism. *New Phytol.* **201**:
610 961-972

611 **DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL** (2004) *Arabidopsis*
612 *Yellow Stripe-Like2 (YSL2)* a metal-regulated gene encoding a plasma membrane
613 transporter of nicotianamine-metal complexes. *Plant J.* **39**: 403-414

614 **Divol F, Couch D, Conéjero G, Roschzttardtz H, Mari S, Curie C** (2013) The
615 *Arabidopsis* YELLOW STRIPE LIKE4 and 6 transporters control iron release
616 from the chloroplast. *Plant Cell* **25**: 1040

617 **Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ** (1994) The *FET4*
618 gene encodes the low affinity Fe(II) transport protein of *Saccharomyces*
619 *cerevisiae*. *J. Biol. Chem.* **269**: 26092-26099

620 **Gil-Díez P, Tejada-Jiménez M, León-Mediavilla J, Wen J, Mysore KS, Imperial J,**
621 **González-Guerrero M** (2019) MtMOT1.2 is responsible for molybdate supply
622 to *Medicago truncatula* nodules. *Plant Cell Environ.* **42:** 310-320

623 **González-Guerrero M, Matthiadis A, Sáez Á, Long TA** (2014) Fixating on metals:
624 new insights into the role of metals in nodulation and symbiotic nitrogen fixation.
625 *Front. Plant Sci.* **5:** 45

626 **González-Guerrero M, V. E, Sáez Á, Tejada-Jiménez M** (2016) Transition metal
627 transport in plants and associated endosymbionts. *Arbuscular mycorrhizal fungi*
628 and rhizobia. *Front. Plant Sci.* **7:** 1088

629 **Grillet L, Lan P, Li W, Mokkapati G, Schmidt W** (2018) IRON MAN is a ubiquitous
630 family of peptides that control iron transport in plants. *Nature Plants* **4:** 953-963

631 **Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow**
632 **S, Kaiser M, Dudler R** (2008) A plant pathogen virulence factor inhibits the
633 eukaryotic proteasome by a novel mechanism. *Nature* **452:** 755

634 **Hardy RW, Holsten RD, Jackson EK, Burns RC** (1968) The acetylene-ethylene assay
635 for n(2) fixation: laboratory and field evaluation. *Plant Physiol.* **43:** 1185-1207

636 **Hofstetter SS, Dudnik A, Widmer H, Dudler R** (2013) *Arabidopsis* Yellow Stripe-
637 Like7 (YSL7) and YSL8 transporters mediate uptake of *Pseudomonas* virulence
638 factor Syringolin A into plant cells. *Mol. Plant Microbe Interact.* **26:** 1302-1311

639 **Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible WR, Stitt M, Torres-**
640 **Jerez I, Xiao Y, Redman JC, Wu HC, Cheung F, Town CD, Udvardi MK**
641 (2008) A community resource for high-throughput quantitative RT-PCR analysis
642 of transcription factor gene expression in *Medicago truncatula*. *Plant Methods* **4:**
643 18

644 **Kobayashi T, Nishizawa NK** (2012) Iron uptake, translocation, and regulation in higher
645 plants. *Annu. Rev. Plant Biol.* **63:** 131-152

646 **Kryvoruchko IS, Routray P, Sinharoy S, Torres-Jerez I, Tejada-Jiménez M, Finney**
647 **LA, Nakashima J, Pislaru CI, Benedito VA, González-Guerrero M, Roberts**
648 **DM, Udvardi MK** (2018) An iron-activated citrate transporter, MtMATE67, is
649 required for symbiotic nitrogen fixation. *Plant Physiol.* **176:** 2315-2329

650 **Kumar RK, Chu H-H, Abundis C, Vasques K, Rodriguez DC, Chia J-C, Huang R,**
651 **Vatamaniuk OK, Walker EL** (2017) Iron-nicotianamine transporters are
652 required for proper long distance iron signaling. *Plant Physiol.* **175:** 1254

653 **Kumar S, Stecher G, Tamura K** (2016) MEGA7: Molecular Evolutionary Genetics
654 Analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* **33:** 1870-1874

655 **Lubkowitz M** (2011) The Oligopeptide Transporters: A small gene family with a diverse
656 group of substrates and functions? *Mol. Plant* **4:** 407-415

657 **Marschner P** (2011) Mineral Nutrition of Higher Plants 3rd Edition. Academic Press

658 **Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K,**
659 **Matsuoka K, Jinbo T, Kimura T** (2007) Development of series of gateway
660 binary vectors, pGWBs, for realizing efficient construction of fusion genes for
661 plant transformation. *J. Biosci. Bioeng.* **104:** 34-41

662 **Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N,**
663 **Nakanishi H, Nishizawa NK** (2011) Phytosiderophore efflux transporters are
664 crucial for iron acquisition in graminaceous plants. *J. Biol. Chem.* **286:** 5446-5454

665 **Olsen LI, Palmgren MG** (2014) Many rivers to cross: the journey of zinc from soil to
666 seed. *Front. Plant Sci.* **5:** 30.

667 **Osawa H, Stacey G, Gassmann W** (2006) ScOPT1 and AtOPT4 function as proton-
668 coupled oligopeptide transporters with broad but distinct substrate specificities.
669 *Biochem. J.* **393:** 267

670 **Pilon M** (2011) Moving copper in plants. *New Phytol.* **192:** 305-307

671 **Roberts LA, Pierson AJ, Panaviene Z, Walker EL** (2004) Yellow Stripe1. Expanded
672 roles for the maize iron-phytosiderophore transporter. *Plant Physiol.* **135:** 112

673 **Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wieren N** (2004) ZmYS1
674 Functions as a proton-coupled symporter for phytosiderophore- and
675 nicotianamine-chelated metals. *J. Biol. Chem.* **279:** 9091-9096

676 **Senovilla M, Castro-Rodríguez R, Abreu I, Escudero V, Kryvoruchko I, Udvardi**
677 **MK, Imperial J, González-Guerrero M** (2018) *Medicago truncatula* Copper
678 Transporter1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation. *New*
679 *Phytol.* **218:** 696-709

680 **Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao**
681 **PX, Chabaud M, Ratet P, Mysore KS** (2008) Large-scale insertional
682 mutagenesis using the Tnt1 retrotransposon in the model legume *Medicago*
683 *truncatula*. *Plant J.* **54:** 335-347

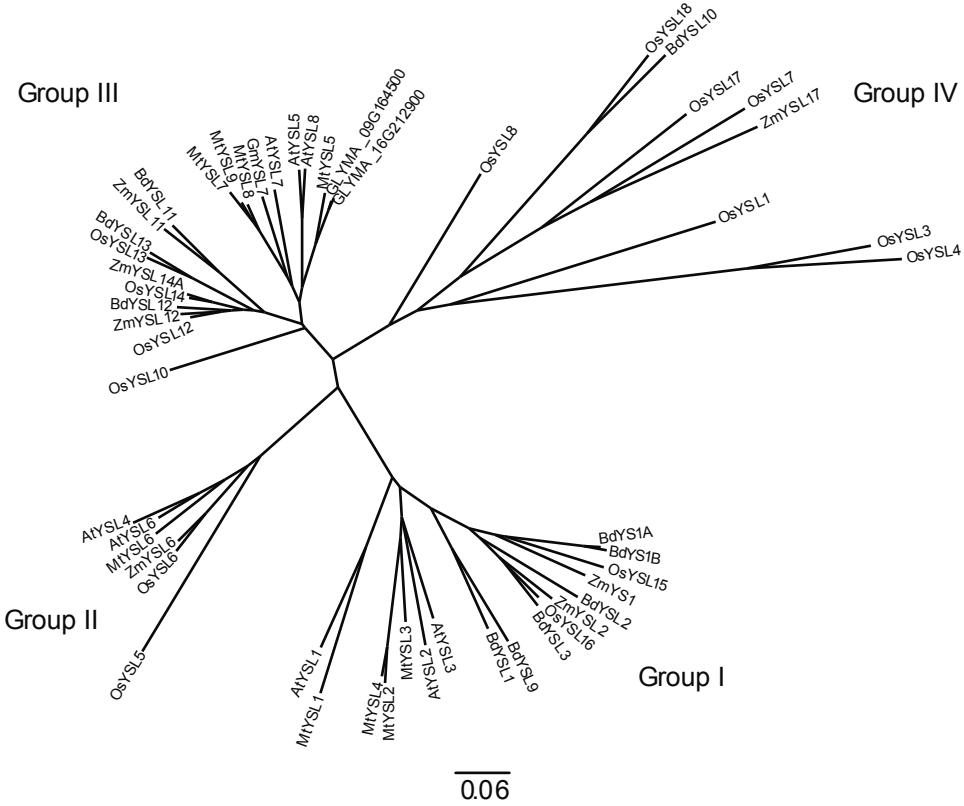
684 **Tejada-Jiménez M, Castro-Rodríguez R, Kryvoruchko I, Lucas MM, Udvardi M,**
685 **Imperial J, González-Guerrero M** (2015) *Medicago truncatula* Natural
686 Resistance-Associated Macrophage Protein1 is required for iron uptake by
687 rhizobia-infected nodule cells. *Plant Physiol.* **168:** 258-272

688 **Tejada-Jiménez M, Gil-Diez P, Leon-Mediavilla J, Wen J, Mysore KS, Imperial J,**
689 **Gonzalez-Guerrero M** (2017) *Medicago truncatula* molybdate transporter type
690 1 (MOT1.3) is a plasma membrane molybdenum transporter required for
691 nitrogenase activity in root nodules under molybdenum deficiency. *New Phytol.*
692 **216:** 1223-1235

693 **Terry RE, Soerensen KU, Jolley VD, Brown JC** (1991) The role of active
694 *Bradyrhizobium japonicum* in iron stress response of soy-beans. *Plant Soil* **130:**
695 225-230

696 **Vernoud V, Journet EP, Barker DG** (1999) *MtENOD20*, a Nod factor-inducible
697 molecular marker for root cortical cell activation. *Mol. Plant Microbe Interact.*
698 **12:** 604-614

699 **Waters BM, Chu H-H, DiDonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE,**
700 **Walker EL** (2006) Mutations in *Arabidopsis Yellow Stripe-Like1* and *Yellow*
701 *Stripe-Like3* reveal their roles in metal ion homeostasis and loading of metal ions
702 in seeds. *Plant Physiol.* **141:** 1446-1458


703 **Winston F, Dollard C, Ricupero-Hovasse SL** (1995) Construction of a set of
704 convenient *Saccharomyces cerevisiae* strains that are isogenic to S288C. *Yeast*
705 **11:** 53-55

706 **Yordem BK, Conte SS, Ma JF, Yokosho K, Vasques KA, Gopalsamy SN, Walker**
707 **EL** (2011) *Brachypodium distachyon* as a new model system for understanding
708 iron homeostasis in grasses: phylogenetic and expression analysis of Yellow
709 Stripe-Like (YSL) transporters. *Ann. Bot.* **108:** 821-833

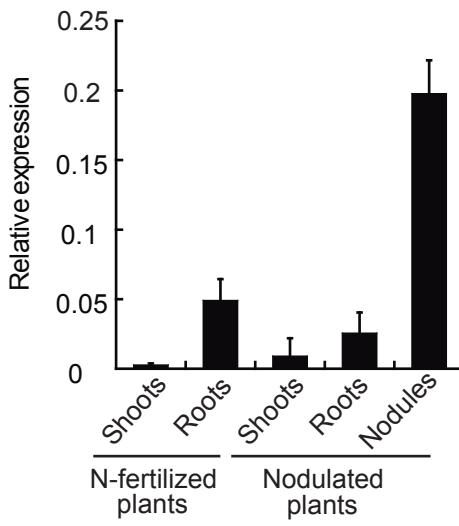
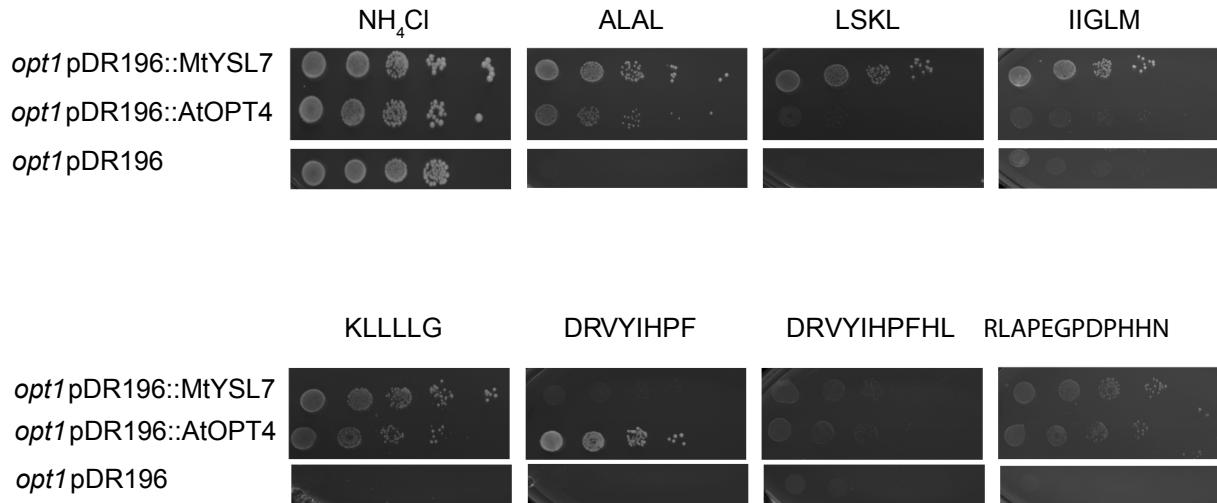

710 **Zhao H, Eide D** (1996) The ZRT2 gene encodes the low affinity zinc transporter in
711 *Saccharomyces cerevisiae*. *J. Biol. Chem.* **271**: 23203-23210

FIGURE 1

A



B

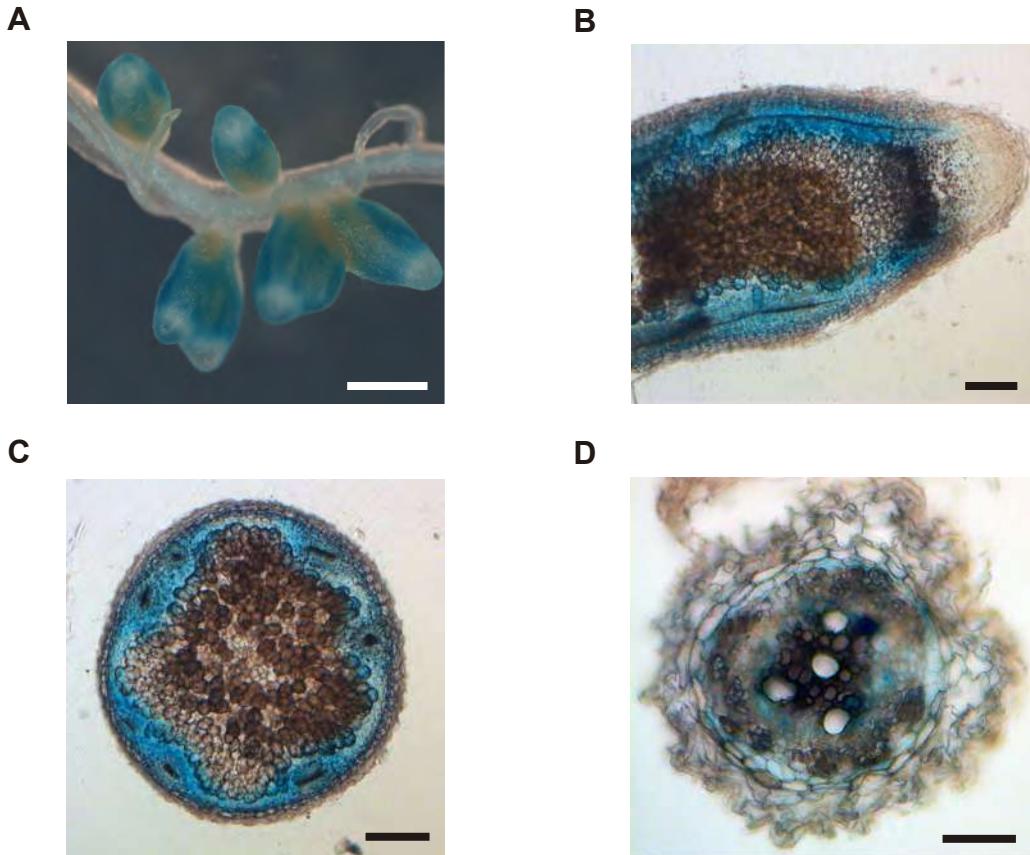
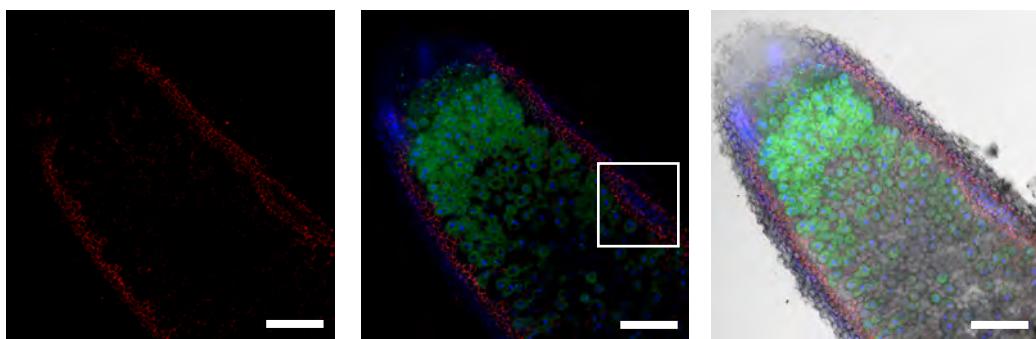

Fig. 1. *Medicago truncatula* YSL7 is a Group III YSL highly expressed in nodules. A) Unrooted tree of the *M. truncatula* YSL transporters, MtYSL1-MtYSL9 (*Medtr1g077840*, *Medtr1g007540*, *Medtr3g092090*, *Medtr1g007580*, *Medtr6g077870*, *Medtr7g028250*, *Medtr3g063490*, *Medtr5g01600*, and *Medtr3g063520*, respectively), and representative plant homologues. B) MtYSL7 expression relative to internal standard gene *ubiquitin carboxyl-terminal hydrolase*. Data are de mean \pm SE of five independent experiments.

FIGURE 2

Fig. 2. MtYSL7 transports peptides. The yeast strain *opt1*, mutant in the oligopeptide transporter ScOPT1, was transformed with either the empty pDR196 vector, or with pDR196 containing the coding sequence of *MtYSL7*, *AtOPT4*, or *AtYSL7*. Serial dilutions (10x) were grown on SD media supplemented with the nitrogen sources indicated.


FIGURE 3

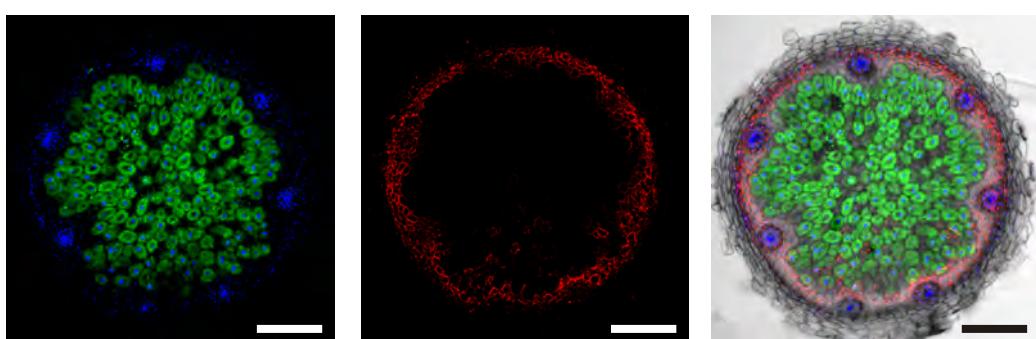
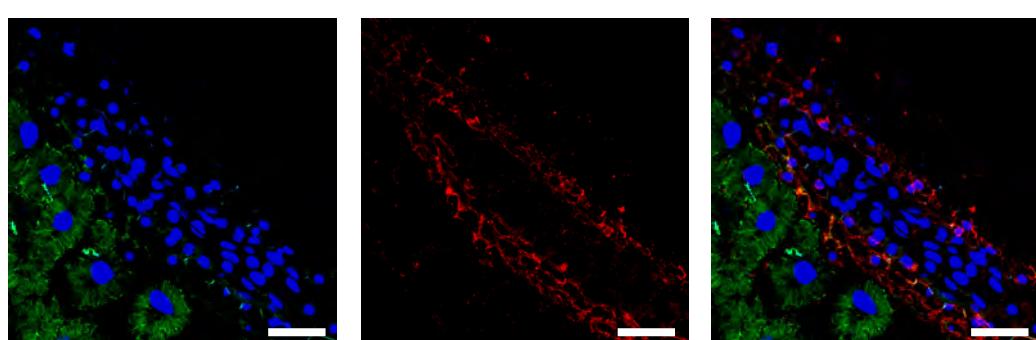
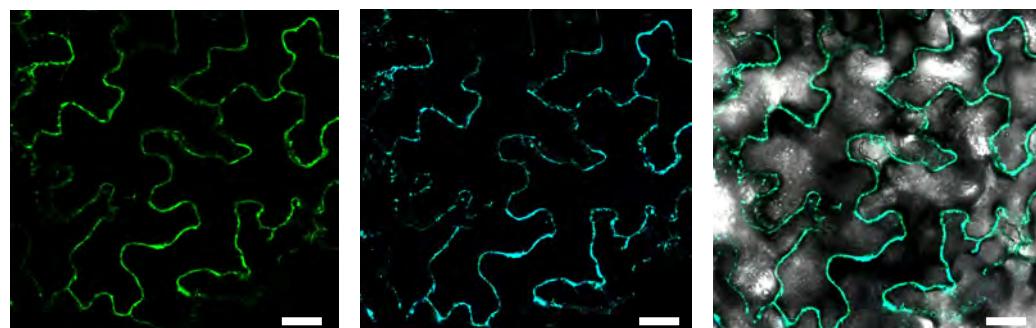

Fig. 3. *MtYSL7* is expressed in the root and nodule vasculature and in the nodule cortex. A) Histochemical staining of the GUS activity in 28 dpi root and nodules expressing the *gus* gene under the regulation of the *MtYSL7* promoter. Bar = 1 mm. B) Longitudinal section of a GUS-stained 28 dpi nodule expressing *gus* under the *MtYSL7* promoter. Bar = 200 μ m. C) Cross section of a GUS-stained 28 dpi nodule expressing *gus* under the *MtYSL7* promoter. Bar = 200 μ m. D) Cross section of a GUS-stained 28 dpi root expressing *gus* under the *MtYSL7* promoter. Bar = 100 μ m.

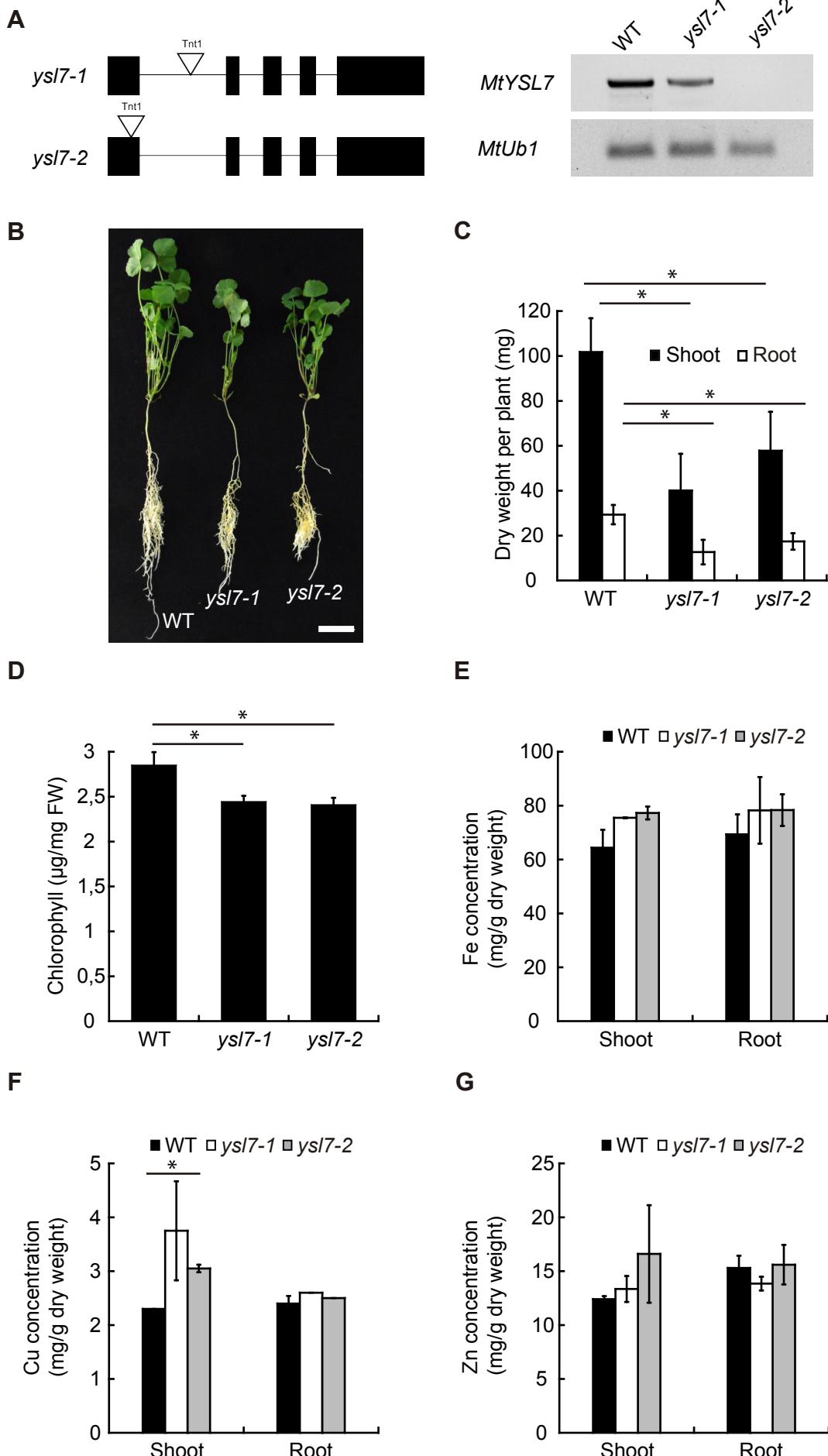
FIGURE 4


A

B


C

D



E

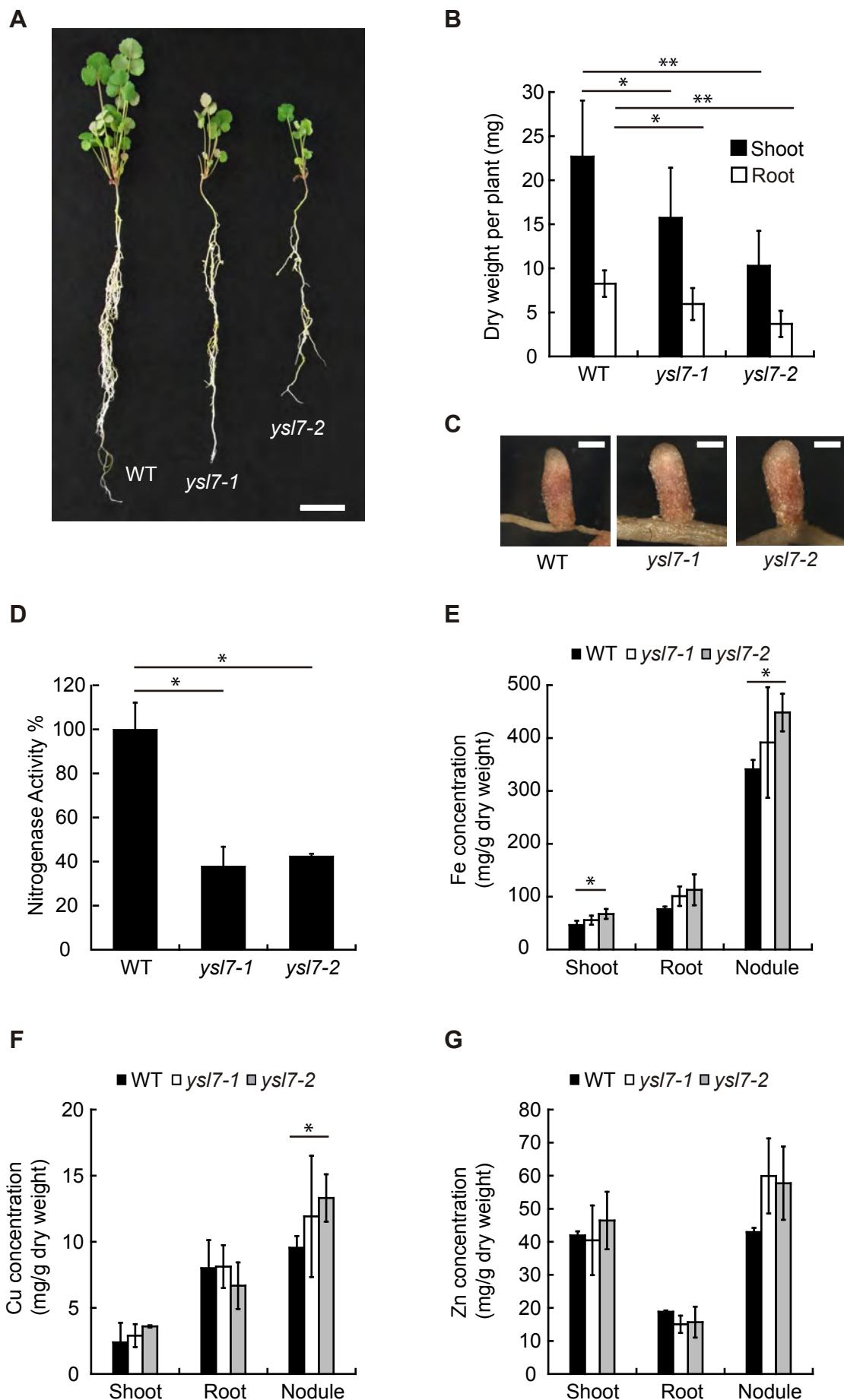

Fig. 4. MtYSL7 is located in the periphery of nodule cortical cells, in the nodule endodermis and in the root pericycle. A) Longitudinal section of a 28 dpi *M. truncatula* nodule expressing *MtYSL7* under its own promoter and fused to three HA epitopes. The HA-tag was detected with the help of a secondary Alexa594-conjugated antibody (red). Transformed plants were inoculated with a GFP-expressing *S. meliloti* (green) and DNA was stained with DAPI (blue). Right panel shows the overlay of all these channels together with the bright field image. Bars = 200 μ m. B) Cross section of a 28 dpi *M. truncatula* nodule expressing *MtYSL7* under its own promoter and fused to three HA epitopes. The HA-tag was detected with the help of a secondary Alexa594-conjugated antibody (red). Transformed plants were inoculated with a GFP-expressing *S. meliloti* (green) and DNA was stained with DAPI (blue). Right panel shows the overlay of all these channels together with the bright field image. Bars = 200 μ m. C) Detail of a longitudinal section of a vessel from a 28 dpi *M. truncatula* nodule expressing *MtYSL7* under its own promoter and fused to three HA epitopes. The HA-tag was detected with the help of a secondary Alexa594-conjugated antibody (red). Transformed plants were inoculated with a GFP-expressing *S. meliloti* (green) and DNA was stained with DAPI (blue). Right panel shows the overlay of all these channels. The arrowheads indicate the position of the Caspary strip. Bars = 50 μ m. D) Cross section of a 28 dpi root expressing *MtYSL7* under its own promoter and fused to three HA epitopes. The HA-tag was detected with the help of a secondary Alexa594-conjugated antibody (red). Lignin autofluorescence was used to identify xylem and Caspary strip lignin (green). Right panel shows the overlay of all these channels together with the bright field image. Bars = 50 μ m. E) Colocalization of MtYSL7-GFP and AtPIP2-CFP in tobacco leaves. Left panel shows the localization of MtYSL7 fused to GFP (green) transiently expressed in tobacco leaf cells. Middle panel shows the localization of plasma membrane marker AtPIP2 fused to CFP, transiently expressed in the same cells. Right panel is the overlay of the two previous channels together with the bright field image. Bars = 50 μ m.

FIGURE 5

Fig. 5. *MtYSL7* mutation affects plant growth under non-symbiotic conditions. A) Position of the *Tnt1* insertions in *ysl7-1* and *ysl7-2* lines. Lower half, RT-PCR of *MtYSL7* in 28 dpi nodules of wild type, *ysl7-1*, and *ysl7-2* lines. *Ubiquitin carboxyl-terminal hydrolase (MtUb1)* was used as a positive control. B) Growth of representative plants. Bar = 3 cm. C) Dry weight of shoots and roots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE (n = 5 plants). C) Chlorophyll content of wild type, *ysl7-1*, and *ysl7-2* shoots. Data are the mean \pm SE of three sets of five pooled plants. E) Iron content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of three sets of five pooled plants. F) Copper content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of three sets of five pooled plants. G) Zinc content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of three sets of five pooled plants. * indicates statistical significance (p < 0.05).

FIGURE 6

Fig. 6. MtYSL7 participates in symbiotic nitrogen fixation. A) Growth of representative wild type, *ysl7-1*, and *ysl7-2* plants. Bar = 3 cm. B) Dry weight of shoots and roots of 28 dpi plants. Data are the mean \pm SE (n = 10-15 plants). C) Detail of representative nodules of 28 dpi wild type, *ysl7-1*, and *ysl7-2* plants. Bars = 1 mm. D) Nitrogenase activity in 28 dpi nodules from wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE measured in duplicate from two sets of five pooled plants. 100 % = 0.28 nmol ethylene h⁻¹ plant⁻¹. E) Iron content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of two sets of five pooled plants. F) Copper content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of two sets of five pooled plants. G) Zinc content in roots and shoots of wild type, *ysl7-1*, and *ysl7-2* plants. Data are the mean \pm SE of two sets of five pooled plants. * indicates statistical significance (p < 0.05).