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Abstract

BACKGROUND: A significant gap in pancreatic ductal adenocarcinoma (PDAC) patient’s care is
the lack of molecular parameters characterizing tumors and allowing a personalized treatment.
The goal of this study was to examine whole PDAC transcriptomic profiles to define a signature
that would predict aggressiveness and treatment responsiveness better than done until now.
METHODS AND PATIENTS: Tumors were obtained from 76 consecutive resectable (n=40) or
unresectable (n=36) tumors. PDAC were transplanted in mice to produce patient-drived
xenografts (PDX). PDX were classified according to their histology into five groups, from highly
undifferentiated to well differentiated. This classification resulted strongly associated with tumors
aggressiveness. A PDAC molecular gradient (PAMG) was constructed from PDX transcriptomes
recapitulating the five histological groups along a continuous gradient. The prognostic and
predictive value for PMAG was evaluated in: i/ two independent series (n=598) of resected
tumors; i/ 60 advanced tumors obtained by diagnostic EUS-guided biopsy needle flushing and iii/
on 28 biopsies from mFOLFIRINOX treated metastatic tumors.

RESULTS: A unique transcriptomic signature (PAGM) was generated with significant and
independent prognostic value. PAMG significantly improves the characterization of PDAC
heterogeneity compared to non-overlapping classifications as validated in 4 independent series
of tumors (e.g. 308 consecutive resected PDAC, HR=0.321 95% CI [0.207;0.5] and 60 locally-
advanced or metastatic PDAC, HR=0.308 95% CI [0.113;0.836]). The PAMG signature is also
associated with progression under mFOLFIRINOX treatment (Pearson correlation to tumor
response: -0.67, p-value < 0.001).

CONCLUSION: We identified a transcriptomic signature (PAMG) that, unlike all other stratification
schemas already proposed, classifies PDAC along a continuous gradient. It can be performed on
formalin-fixed paraffin-embedded samples and EUS-guided biopsies showing a strong prognostic
value and predicting mFOLFIRINOX responsiveness. We think that PAMG could unify all PDAC
preexisting classifications inducing a shift in the actual paradigm of binary classifications towards
a better characterization in a gradient.

Trial Registration: The PaCaOmics study is registered at www.clinicaltrials.gov with registration
number NCT01692873. The validation BACAP study is registered at www.clinicaltrials.gov with
registration number NCT02818829.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive gastrointestinal tumors.
While activating mutations in KRAS are the most common genetic alterations [1], mutations in
other driver genes such as CDKN2A, TP53 or SMAD4 are randomly associated to KRAS
mutations, generating a heterogeneous genetic landscape between patients. However, these
mutations do not predict patient outcome or tumor drug sensitivity and PDAC patients with similar
clinical presentation show high variability in overall survival (OS), ranging from 3 months to >5-6
years after diagnosis. While histopathological analyses of tumors revealed OS is shorter in
patients presenting with aggressive poorly-differentiated tumors relative to patients with well-
differentiated ones [2], this analysis required large amounts of undamaged tumor tissue. Such
samples are only available from resected tumors, representing as few as 15% of PDAC cases.
For resectable PDAC, the current recommendation is upfront surgical resection followed by
systemic chemotherapy with or without radiation [3]. However, this strategy can fail in patients
with biologically aggressive disease that do not benefit from resection. Therefore, an accurate
molecular characterization of tumor phenotype will help in predicting prognosis and chemotherapy
sensitivity, as well as inform decisions regarding upfront resection and the most appropriate drug
choice for chemotherapy. Deep tumor molecular profiling constitutes an important source of
information regarding tumor phenotype and biology, with impact on the choice of available
therapeutic strategies. This information will increase the likelihood of success and also spare
patients from unnecessarily aggressive therapeutic interventions. The goal of this study was to
identify a molecular signature based on the transcriptomic profiles of PDAC patients that would
allow for prediction of tumor progression and response to therapy.

To obtain an unbiased predictor of tumor aggressiveness, we established a series of patient-
derived xenografts (PDX) from a multi-centric clinical trial that included resectable, locally
advanced and metastatic PDAC patients. From these PDX samples, a transcriptomic signature
(indicated as pancreatic adenocarcinoma molecular gradient; PAMG) was developed that
accurately predicted tumor aggressiveness and resistance to mFOLFIRINOX, and could be
applied to small amount of fine needle biopsies from EUS and formalin-fixed paraffin-embedded
obtained tissue.

Materials and Methods

PaCaOmics patient’s cohort.

Seventy-six patients with a confirmed PDAC diagnosis were included in this study. Clinical data
was collected until July, 2017 (supplementary Tables | and Il). Tumor samples were obtained
from pancreatectomy in 40 patients (52.6%), EUS-FNA in 25 patients (32.9%) and carcinomatosis
or liver metastasis during explorative laparotomy in 11 patients (14.5%). All samples were
xenografted in immunocompromised mice producing PDX samples.

BACAP patient’s cohort.
The BACAP (Base Clinico-Biologique de 'Adénocarcinome Pancréatique) cohort is a prospective
multicenter pancreatic cancer cohort (ClinicalTrials.gov Identifier: NCT02818829. Registration
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date: June 30, 2016) with a biological clinical database. Treatment naive tumor biological samples
from endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) were available for 60
patients. Survival analysis was performed on the 47 patients with locally-advanced or metastatic
diseases that subsequently received chemotherapy.

Transcriptomic profiling and analysis.

RNA was obtained from all PDX and BACAP cohort samples, for more details see supplementary
matherial and methods. Next Generation Sequencing (RNA-seq) was performed on these
samples and assessed. Details on transcriptomic profiling and analysis are available in the
supplementary information. The PAMG is available as an online application (http://cit-apps.ligue-
cancer.net//pancreatic _cancer/pdac.molgrade) and as an R package
(https://github.com/RemyNicolle/pdacmolgrad).

Results

Using PDX to define the molecular diversity of PDAC

Recent reports indicate PDAC can be classified into distinct, biologically relevant categories
based on histological and molecular analysis [4, 5]. However, relatively few patients (15%)
undergo resection that allows this analysis, and high intra-tumor heterogeneity and the limited
amount of material obtained from EUS-FNA diagnostic biopsies prevent a precise classification
of all PDAC tumors. One solution to circumvent these problems is transplantation of PDAC tumors
into immunodeficient mice to produce patient-derived xenografts (PDX). This process makes it
possible to obtain PDXs from EUS-FNA diagnostic biopsies providing adequate material to
determine PDAC histological classes for locally advanced or metastatic tumors. We observed that
PDXs are less complex and heterogeneous tumors, but faithfully recapitulate the molecular
profiles and histology of the original patient tumors. Another important point that conduct us to
choose PDX as model is that it offers the posibility to distinguish between the tumor and stromal
cells. In fact, sequencing profiles of a mix of human grafted cancerous and infiltrating mouse
stromal cells can be analyzed separately in silico by unambiguously assigning each sequence to
the human or mouse genome [6]. Therefore, we generated PDX samples for a cohort of patients
(PaCaOmics) to define histological and molecular grades for each sample.

First, we assessed the histology of PDX using the entire cohort of 76 patients. PDX were ranked
into five different histological classes by two blinded expert pathologists ranging from the less
differentiated PDX (class I), which is associated with the maost aggressive phenotype, to the most
differentiated PDX (class V; Figure S1). The here described five histological classes of PDX
strongly correlates with the expression of genes defining the already described molecular
subtypes [6-9] as higher expression of genes linked to the classical PDAC subtype is correlated
with increased differentiation of PDX samples, combined with lower expression of genes linked
to basal-like subtype (Figure 1a and Figure S1). Interestingly, the variation in the expression of
the classical genes towards the basal-like genes vary gradually from the more differentiate to the
less differentiate histological classes respectively. Therefore the precise histological analysis of
PDX suggests that molecular classification of PDAC is more complex than a two-class dichotomy
(i.e.basal-like and classical). We next employed a consensus clustering approach on whole-
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transcriptome with increased subtypes splitting. Figure 1b shows the clustering results in 2 to 4
subtypes which, similarly to histological classification, demonstrate a gradual increase and
decrease in genes of the classical and basal-like subtypes respectively.

Histological and molecular classifications of PDX suggest PDAC diversity may be better
represented by a continuum of differentiation that is as also followed at the molecular level. To
establish a robust continuous molecular description of PDAC, we applied an unsupervised
approach termed independent component analysis (ICA) previously shown to derive highly
reproducible signatures from transcriptome profiles by extracting biologically relevant
components [10, 11]. Figure S2 illustrates the procedure used to uncover an RNA signature
which, in essence, builds on the blind deconvolution of the PDX transcriptomic profiles to generate
component spaces. The component (and its associated space) that best correlated to the PDX
histological classification was selected and, in analogy to histological grading, was termed the
pancreatic adenocarcinoma molecular gradient (PAMG). The PAMG is computed from a weighted
combination of gene expression values, standardized around zero with non-outlier values
between -1 and +1. Figure 1c shows the different molecular classifications of PDAC applied to
the 76 PDX along with the summarized expression of each of the previously proposed subtypes.
To evaluate whether a continuous or dichotomous description of PDAC epithelial diversity is more
relevant, gene expression in each of these signatures was fitted with the proposed PAMG and
with the latest basal-like/classical classifier PurlST. The difference in the coefficient of
determination (R2) of the two models was compared to the background (genes not in any of the
assessed signatures, n=7,393) showing overall that a continuum is likely to be a more reliable
description of PDAC molecular diversity. We observed that PAMG produces a better description
on 11 out of 12 signatures tested by a Welch’s t test (Figure 1d).

A continuum of phenotypes would predict that extreme cases would be more homogeneous,
composed of highly specified epithelial cells from the corresponding end of the spectra (i.e. basal-
like or classical). PDAC cases in the middle of the spectrum could either be the result of a
homogeneous intermediate epithelial phenotype or a mixture of extreme phenotypes of which
bulk tumor analysis would result in an intermediary phenotype. To evaluate these non-mutually
exclusive hypotheses, we performed immunostaining for GATAG, which we previously showed to
be a major driver of the classical phenotype [12], and vimentin (VIM) in a tissue microarray
containing all 76 xenograft tumors. VIM is a marker of mesenchymal differentiation and
carcinomas with more aggressive behavior and poor histological differentiation [13]. Figure 1e
shows quantitative results and representative examples of expression. While some
GATA6+/VIM+ stained tumors exist, we generally observed a continuum of differentiation defined
by increases in the level and proportion of expression of GATAG6 along the PAMG that correlated
with increased differentiation. Conversely, we observed VIM expression increasing gradually
towards low differentiated phenotypes.

Reproducibility of the PAMG in resectable human primary PDAC

To evaluate the robustness of the PAMG, we tested whether an equivalent RNA signature could
be blindly reproduced in independent PDAC series with transcriptomic data. Two large series of
PDAC were used for this purpose 269 resected tumors from the Australian ICGC [14] profiled on
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lllumina microarrays from frozen samples, and the multi-centric cohort of 309 consecutive patients
from Puleo et al. [7], profiled on Affymetrix arrays from paraffin-embedded samples. To assess
the reproducibility of the PAMG in these series of samples, a blind deconvolution of the
transcriptomes was performed using ICA with increasing number of components resulting in ICA
spaces of up to 25 unsupervised independent components (Figure 2a). Once components were
extracted, a component matching the PAMG from the PDX was sought by correlating gene
weights of both the reference PDX ICA space and the new ICA spaces to be evaluated. This
analysis aimed at evaluating whether a component biologically similar to the PAMG could be
extracted from the human tumor datasets. A molecular component equivalent to the PDX-derived
PAMG was found in virtually all ICA component spaces in both datasets despite the difference in
measurement technologies and in tissue preservation (Figure S3). The component with the
highest gene weight correlation to the PDX-based PAMG was selected from each dataset. Figure
2b illustrates the overall consistency in the gene weights defining each of the components of three
PAMGs. Overall, three components were selected from an unsupervised gene-expression
deconvolution analysis applied to three independent datasets representing diverse technological
(microarrays and RNAseq) and tissue (FFPE, Frozen, PDX) options to profile PDAC resulting in
three biologically equivalent implementations of the PAMG.

While the three independently identified PAMGs share a similar gene expression basis, we next
sought to evaluate the extent they define the same PDAC heterogeneity. The samples from the
three different datasets were each projected on all three PAMGs. Figure 2c¢ shows a high
correlation between the three PAMGs in all three datasets, demonstrating that the signatures
measure a common biological diversity independent of the types of samples profiled and the
technologies used. To validate this high reproducibility, the same analyses were applied to a
PDAC cohort consisting of 60 RNAseq profiles from RNA obtained by rinsing EUS-FNA diagnostic
biopsies. The three versions of the PAMGs gave highly similar results on FNA-derived samples
(R>0.97).

The PAMG is associated to tumor aggressiveness

Several studies using only resectable tumors show molecular diversity of the epithelial
compartment of PDAC is associated with tumor aggressiveness and patient prognosis [7, 8, 14].
Our next goal was to determine if the PAMG could be predictive in all PDAC tumors. To assess
the prognostic value of the PAMG, association with overall survival was first evaluated on the
ICGC series [14] which consisted of 267 resected patients with follow-up, and 230 samples with
histological characterization. The continuous value of the PAMG (as extracted from the ICGC
transcriptome dataset) was strongly associated to patient’s overall survival (univariate Hazard
Ratio: uHR=0.405, [0.255-0.642]; Wald P-value: p=1.23x10%) and compared favorably to the
basal-like/classical dichotomous classification (Figure 3a and Figure S4). A virtually identical
result was obtained with the other PAMGs derived from the PDX and Puleo et al. cohorts (Figure
S4). The continuous characterization of patients in the ICGC series by the PAMG showed a
positive correlation with significant increase in OS (Figure 3b) also illustrated in a Kaplan-Meier
analysis (Figure 3c) after splitting the PAMG using three arbitrary thresholds (-0.5, 0 and 0.4;
selected on the basis of the separation of histological classes of PDX). Importantly, a weak
association was found between the PAMG and the histological differentiation of these tumors
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(Figure S4), suggesting a partial relationship between molecular classification of PDAC and
traditional histological classes [7]. In a multivariate analysis including the PAMG and the histology
of these tumors, the PAMG was an independent predictor of OS (Figure 3d).

To further assess the value of the PAMG in a more reliable cohort of patients, the multi-centric
cohort of 309 consecutive patients from Puleo et al. [7] was used. This very complete cohort
contains whole follow up for 308/309 patients (median follow-up 51.4 months) and with a majority
(298/309) also having data on extended clinical and pathological characterization. The PAMG
was associated with patients OS (UHR = 0.321, [0.207-0.5] ;p=4.97x10" ) and compares favorably
to the basal-like/classical classification (Figure 4a and Figure S5). The PAMG was correlated to
a positive outcome in Puleo cohort, with a progressive improvement of OS coinciding with higher
PAMG levels (Figures 4b and 4c). A multivariate analysis including resection margins, histological
grading and TNM Node status demonstrated the PAMG is an independent prognostic factor in
resected PDAC (Figure 4d).

PAMG predicts the clinical outcome of advanced PDAC patients

The clinical relevance of the PAMG is dependent on its applicability to work on biopsy samples
obtained prior to treatment. In the BACAP cohort, RNA was extracted from 60 samples obtained
by rinsing the echoendoscopy-guided fine needles. The original aspirate was used for diagnosis.
Figure 2c shows all three versions of the PAGM gave the same result on these small sample
biopsies. The PAGM was also associated with the OS of the 47 patients with advanced diseases
(UHR=0.308, [0.113-0.836]; p=0.0208, Figure 5a) and, similar to resectable tumors, compared
favorably to the PurlST two-subtype classification. The PAGM was also associated to survival in
a multivariate model including the tumor stage (Figure 5b).

PAMG predicts the response to mFOLFIRINOX of advanced PDAC patients

It was previously suggested that molecular subtypes of PDAC were associated with responses to
chemotherapy, in particular FOLFIRINOX [8, 15, 16]. Therefore, to evaluate the predictive value
of the PAGM to chemotherapy response, it was applied to metastatic patients in the COMPASS
trials for which transcriptomic profiles and tumor responses to mFOLFIRINOX were available [16].
The objective response was significantly associated with the PAMG (Figure 5¢, R= -0.67; p <
0.001), with more aggressive tumors (i.e. low on the PAMG) showing little to no response to
mMFOLFIRINOX.

Discussion

An important factor in determining treatment options for PDAC involves the ability to accurately
classify the tumor and predict the aggressiveness of the disease. However, resolving the diversity
of molecular tumor phenotypes in PDAC is a complex issue involving the necessary distinction of
transformed and non-transformed cells as well as a multi-scale integration in which microscopic
cellular phenotypes are considered with macroscopic phenotypes of the whole-tumor tissue.
Previous work has mainly focused on resected primary PDAC tumors, often resulting in
classifications that considers all of the cell types within the tumor (e.g. the infiltrated Immunogenic
subtype), and delineated a consensual basal-like versus classical dichotomy. However, this two-
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subtype classification system of PDAC has recently been challenged by several studies showing
the coexistence of basal-like and classical cells in the same tumors as well as to the likely
existence of intermediate cellular phenotypes [15, 17]. In this study, we have used a gradient
system that takes this into consideration to classify PDAC. The resulting PAMG signature is more
informative and clinically relevant than a binary non overlapping method.

Single cell RNA sequencing [15] and immunohistochemistry [18] of PDAC revealed intra-tumor
heterogeneity where both types of cells (basal-like and classical) frequently co-exist. RNA profiling
of multiple regions or multiple lesions from the same patient also demonstrated intra-tumor
heterogeneity of the transformed epithelial compartment [4]. Using single cell RNA-seq, Chan-
Seng-Yue et al. in 2020 [15] confirmed the presence of several subpopulations with differential
proliferative and migratory potentials in PDAC. In particular, they observed two ductal subtypes
with abnormal and malignant gene expression [15]. Our own unpublished results identified four
common cell clusters in patients with a classical PDAC. These four clusters were present in
different proportions in all tumors examined, with one of these clusters corresponding to a basal-
like phenotype, even though the tumors were classified as classical by global RNAseq analysis.

We have made similar observations in this study. VIM, which is mainly expressed in basal-like
subtype, was detected by immunohistochemistry in almost all classical tumors, with variable
levels of expression [17]. We detected few VIM+ cells in tumors presenting an intermediate
PAMG. In other words, very classical or very basal-like subtypes are mainly composed by pure
cells, but the intermediate subtype is the consequence of a mix of classical and basal-like
subtypes and/or an intermediate phenotype. These observations question the relevance of a
dichotomous model of PDAC diversity and makes the molecular description a different and
complex scenario for every tumor. Since PDAC tumors are heterogeneous, this must be taken
into consideration for classification and treatment purposes Protocols characterizing the
proportion of intermediate cell types or tumor heterogeneity are necessary.

In this work, we developed a molecular gradient that defines a continuum of PDAC phenotypes.
We developed 76 PDX, obtained from resectable and unresectable PDAC, since they offer a
platform with an incomparable discrimination of transformed and non-transformed cells RNA.
First, we applied a deconvolution algorithm (ICA) to the transformed epithelial RNA profiles to
identify in an unsupervised manner the RNA signatures that best defined the heterogeneity of
PDX and, in particular, its aggressiveness. This approach extracted a specific RNA signature
robustly identified in PDX and human primary tumors with a minor effect of tissue preservation
(FFPE vs. frozen), RNA profiling platform (microarrays or RNAseq) or of the algorithm’s parameter
(the total number of extracted components). This RNA signature, termed PAMG, provides a score
measuring the molecular level of differentiation of a given sample derived from a whole-
transcriptome profile. The approach for phenotyping is robust since several signatures extracted
from different datasets gave highly similar results.

The PAMG introduces a simple framework, based on a simple RNA signature compatible with all
previously proposed PDAC classifications. The genes previously described as defining PDAC
subtypes were in fact better explained by the PAMG than by the two-class classification itself.
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Molecular classifications of PDAC and, in particular, the basal-like/classical dichotomy, is a major
prognostic factor in most datasets and is typically shown to correlate with response to
FOLFIRINOX. Our results showed the PAMG holds superior clinical value that could be
ascertained prior to entering any curative protocols, using any current diagnostic material
including EUS-guided biopsy needle flushing. This model could have a major impact on patients
who are cleared for resection by identifying patients that will have an unfavorable disease
evolution and may benefit from initial neoadjuvant therapy prior to upfront surgery. Another kind
of patient the PAMG could impact are the 20 to 30% percent of patients diagnosed with a locally-
advanced disease. If pancreatectomy and simultaneous arterial resection has traditionally been
considered as a general contraindication to resection [19], some of these patients with good
prognosis might indeed benefit from aggressive surgical approaches [20].

In conclusion we propose a transcriptomic signature that unifies all previous molecular
classifications of PDAC under a continuous gradient of tumor aggressiveness that can be
performed on FFPE samples and EUS-guided biopsies. In addition to its strong prognostic value,
it may predict mFOLFIRINOX responsiveness.
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Legend of Figures

Figure 1.

PDAC gene signatures and classification in PDX. a. Normalized and averaged expression of
genes specific to the classical and basal-like subtypes in PDX (n=76) grouped by a five-subtype
histological classification. b. Unsupervised classifications in k classes by consensus clustering
(with k from 2 to 4) and association of each cluster to basal-like and classical gene expression.
On a. and b. boxplots are colored by the median z-score of each group. c. Heatmap
representation of the transcriptomic characterization of the PDX (n=76) with each PDX as a
column. Previously published classifications were applied to the human transcriptome profiles of
the PDX. Non-tumor driven classifications were applied (ADEX, Immunogenic, desmoplastic,
activated stroma, Immune classical), however, no PDX were assigned to any of them. The z-
score of each of the published classification gene sets is represented. The number of genes of
each signature is annotated on the right of the heatmap. PDX were ordered by their value on the
molecular gradient. d. Distribution of the differences in the coefficient of determination (R2)
between two generalized linear models associating the expression of each gene in each signature
with either the two-class classification from PurlST or the Molecular Gradient. The distribution of
R2 differences was compared to that of other genes (not found in any other subtype signatures)
using Welch’s t test. e. GATA6 and Vimentin (VIM) immunohistochemical quantification. Four
levels of staining were used to quantify the proportion of cells at each four levels of GATAG or
VIM protein expression.

Figure 2.

Reproducibility of the PAMG in PDAC. a. Schematic illustration of the identification of the PAMG
in public datasets. ICA (independent component analysis) blind deconvolution was used on three
different datasets of whole transcriptome profiling, generating spaces of independent components
of increasing sizes (2 <1 <25). The PAMG was first obtained from PDX by selecting the
component most associated with PDX histology. The gene weights of this initial PDX-based
independent component was then correlated to the gene weights of all extracted independent
components in the other datasets, with the spearman correlation represented in a grid. The
highest correlating component of each dataset was selected as the PAMG. b. Density plot of the
PAMG gene weights of common genes found in each pair of datasets. Marker genes are
highlighted. c. Scatter plots comparing the three versions of the Molecular Gradient (PDX, ICGC
and Puleo) on four datasets. Each point is a sample, colored by its PAMG score as defined by
the PDX version. Pearson correlation is shown.

Figure 3.

Prognostic value of the PAMG in the ICGC series. a. Univariate survival analysis using the overall
survival (OS) of 260 patients associated with either the PAMG or the PurlST two-subtype
classification. b. Univariate relative risk for OS associated with the PAMG. Each point is a patient’s
relative risk of disease with error bars corresponding to a 95% confidence interval. c. Kaplan-
Meier plot of survival using arbitrary cuts of the Molecular Gradient. d. Multivariate survival
analysis forest plot. Univariate: n=267. Multivariate: n=230. Wald'’s test p-values are shown.
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Figure 4.

Prognostic value of the PAMG in the Puleo cohort. a. Univariate survival analysis using the OS of
308 patients associated with either the PAMG or the PurlST two-subtype classification. b.
Univariate relative risk for OS associated with the PAMG. Each point is a patient’s relative risk of
decease with error bars corresponding to a 95% confidence interval. c. Kaplan-Meier plot of
survival using arbitrary cuts of the PAMG. d. Multivariate survival analysis forest plot. Univariate:
n=308. Multivariate: n=298. Wald'’s test p-values are shown.

Figure 5.

Evaluation of the PAMG in advanced disease. a. Univariate survival analysis using the OS of 47
patients in the BACAP cohort associated with either the PAMG or the PurlST two-subtype
classification. b. Multivariate survival analysis forest plot for the BACAP cohort. ¢. Waterfall plot
illustrating the change in tumor size induced by mFOLFIRINOX treatment evaluated by RECIST
1.1 in the COMPASS cohort (n=28). Annotated Pearson’s correlation between RECIST 1.1 and
PAMG is shown.
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Legend of Supplementary Figures

Figure S1. Histological classification of PDX. a. Representative examples for each histological
class and the associated proportions within the poor-, moderate- and well-differentiated PDX in
the PaCaOmics cohort (total n=76). HPF: High-power field. b. Distribution of the z-scores of each
subtype-specific gene sets according to the five histological classes of PDX.

Figure S2. Identification of the Molecular Gradient from the transcriptomic profiles and the
histological classes in PDX. a. lllustration of the process. ICA is applied to the 76 gene expression
profiles generating ICA system with increasing number of components |. Each component of each
ICA system are associated to the PDX histological classification. b. Distribution of the association
between every component in each ICA system and the histological classification. —log10
transformation of the ANOVA p-value is represented. c. Distribution for the selected component
to be used as the Molecular Gradient.

Figure S3. Reproducibility of the identification of the Molecular Gradient in human primary tumor
series. Distribution of the Spearman correlation (absolute value) between the gene weights in the
PDX-derived Molecular Gradient and every component of a given ICA system derived from the
blind deconvolution of transcriptomic data from the ICGC series (a) and the Puleo et al. cohort
(b). The maximum correlation, the best matching component, of each ICA system is shown in red.

Figure S4. Additional analyses of the Molecular Gradient in the ICGC series. a. Association
between Molecular Gradient and traditional histological characterization. b. Multivariate survival
analysis including both the Molecular Gradient and the PurIST classification. ¢. Univariate survival
analysis including all three versions of the Molecular Gradient.

Figure S5. Additional analyses of the Molecular Gradient in the Puleo et al. cohort. a. Association
between Molecular Gradient and traditional histological characterization. b. Multivariate survival
analysis including both the Molecular Gradient and the PurIST classification. ¢. Univariate survival
analysis including all three versions of the Molecular Gradient.
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Supplementary information

PaCaOmics patient derived tumor xenograft and RNA-sequencing

All animal experiments were conducted in accordance with institutional guidelines and were
approved by the “Plateforme de Stabulation et d’Expérimentation Animale” (PSEA, Scientific Park
of Luminy, Marseille). Resected PDAC tissue was fragmented, mixed with 100 uL of Matrigel and
implanted with a 10-gauge trocar (Innovative Research of America, Sarasota, FL) in the
subcutaneous right upper flank of an anesthetized male NMRI-nude mouse (Swiss Nude Mouse
Crl: NU(lco)-Foxnlnu; Charles River Laboratories, Wilmington, MA). Alternatively, samples
obtained from direct tumor endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) were
mixed with 100 uL of Matrigel (BD Biosciences, Franklin Lakes, NJ) and injected as above. Once
xenografts reached 1 cm3, they were removed and passed to NMRI-nude mice. After 3 passages,
tumors were isolated and RNA extracted using the miRneasy mini kit (Qiagen). RNA-seq was
performed as previously described [9, 20] using lllumina’s TrueSeq Stranded RNA LT protocol to
obtain 100b paired-end reads. RNA-seq reads were mapped using STAR and SMAP on the
human hgl9 and mouse mmu38 genomes. Gene expression profiles were obtained using
FeatureCount and normalized using the upper-quartile approach [21].

Tumor differentiation was defined based on the following established criteria, briefly: tumors were
considered poorly differentiated when tissue architecture is solid, forming massive structures or
with isolated cells without visible glandular structures in more than 50% of the tissue. This group
included two classes (I and Il) based on the degree of cyto-nuclear atypia and degree of mitosis.
Class | tumors showed high nucleo-cytopasmic ratios (>0.5), and nuclei with irregular contours,
dense chromatin, and/or prominent nucleolus. A high proportion of mitoses (>5 per 10 high-power
field [HPF]) was also visible in this subgroup. Class Il includes tumors with fewer atypia with a
nucleo-cytoplasmic ratio < 0.5, regular-contoured nuclei, fine chromatin and a fine nucleolus.
Mitoses were less frequent than in class | (< 5 mitosis/10 HPF). Class lll includes tumors that
were moderately differentiated with both types of architectures, glands made up 50-95% of the
tumor, massive structures and nucleo-cytoplasmic atypia were less frequent (approximately 50%
of nuclei) than in class | and Il. Class IV and V were included in well differentiated PDX. They
present a glandular architecture without solid component in more than 95%. In this group, class
IV presents glands with cubic or short cylindrical cells with low or absent mucus secretion. The
nuclei remain predominantly polarized and the atypia are more marked than in class V (looser
chromatin, increase in the size of the nuclei when compared with class V). Mitoses were more
frequent than in class V (2-5 mitosis / 10 HPF). Class V corresponds to the most differentiated
tumors, the glands secrete mucin and cells present a cylindrical form, the nucleus was localized
at the basal pole of the cell (polarized). Nuclei were small, with regular contours and mature
chromatin without visible nucleolus. Mitoses were less frequent (0-1 mitosis / 10 HPF) that in class
V.

PDX and TMA immunohistochemistry (IHC)

76 blocks of pancreatic ductal adenocarcinoma (PDAC) xenografts embedded in paraffin were
selected to be included in the PDX-TMA. Each block was cut with a HM340E microtome with
Niagara system. Hematoxylin eosin staining (HES) was performed on 3 pm thick sections to
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localize the tumor. A Minicore Tissue Arrayer was used to punch cores from the selected paraffin
blocks, and distribute them in new blocks. Two cores of 0.6 mm diameter were used for each
PDX. The PDX-TMA paraffin blocks were cut and stained (HES) to validate the tumor morphology
of each core. Blocks were then stored at 4°C.

The GATA6 (AF 1700, R&D Systems) and Vimentin (V6389, Sigma) immunostaining were
performed on 3um thick serial sections of PDAC PDX tumors or for the PDAC PDX- TMA. The
immunohistochemistry was carried out on the Ventana Discovery XT (IPC-CRCM Experimental
Pathology Platform - ICEP, CRCM, Marseille). After deparaffinization, antigens retrieval was
performed with Citrate-based buffer pH 6.0 (Cell Conditioner #2) for GATA6 and with tris-based
buffer with a slightly basic pH (pH 8.0, Cell Conditioner #1) for Vimentin IHC. Primary antibodies
were both incubated for 1 hour at 37°C. Then, an OmniMap anti-Goat HRP (HRP multimer) was
used with DAB for GATAG staining while a rabbit secondary antibody (Santa Cruz sc-454 at 1:500
dilution) was used before the appropriated OmniMap-HRP (anti-rabbit) for vimentin IHC. Finally,
the counterstaining was done with hematoxylin and slides were cleaning, deshydrated and
coversliped with permanent mounting media. GATA6 antibody was used at 1:40 dilution and
Vimentin at 1:1200. GATA6 quantification was done in a score from 1 to 4 considering diferent
intesities of positive staining and four different percetages of stained cells (1=1-24, 2=26-50,
3=51-75 and 4=76-100%).

BACAP patient cohort and transcriptome profiling of EUS-FNA needle flushing and RNA-
sequencing

The diagnostic EUS-FNA biopsy needle flushing of 60 advanced patients from the prospective
BACAP cohort were obtained from the biorepository (the BACAP database is managed by the
Montpellier Cancer Institute Data Center with the Clinsight® software). RNA was extracted using
the Qiagen Allprep purification Kit® (Qiagen, Courtaboeuf, France). RNA-Seq libraries are
performed with NEBNext® Ultra™ Il Directional RNA Library Prep Kit for lllumina according to
supplier recommendations (NEB). The capture is then performed on cDNA libraries with the Twist
Human Core Exome Enrichment System according to supplier recommendations (Twist
Bioscience).

After each EUS-FNA process, needle flushing is done as previously described [22, 23] in an
Eppendorf cryovial containing 500 pl of RNAprotect Cell Reagent (Qiagen, Courtaboeuf, France)
for subsequent DNA and RNA extraction using the Qiagen Allprep purification Kit (Qiagen,
Courtaboeuf, France).

RNA-Seq libraries are performed with NEBNext Ultra Il Directional RNA Library Prep Kit for
lllumina according to supplier recommendations (NEB). The capture is then performed on cDNA
libraries with the Twist Human Core Exome Enrichment System according to supplier
recommendations (Twist Bioscience). First of all, an RNA quality control is performed on
Fragment Analyzer (AATI) with the RNA kit (DNF-489) to check the integrity of the RNA profile.
The protocol permits to convert total RNA into a library of template molecules of known strand
origin. Then a capture of the coding regions of the transcriptome is performed and the resulting
library is suitable for subsequent cluster generation and sequencing. Briefly, the RNA is
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fragmented into small pieces using divalent cations under elevated temperature. cDNA is
generated from the cleaved RNA fragments using random priming during first and second strand
synthesis and sequencing adapters are ligated to the resulting double-stranded cDNA fragments
and enriched by 7 PCR cycles. The coding regions of the transcriptome are then captured from
this library using sequence-specific probes to create the final library. For that purpose, 500 ng of
purified Libraries are hybridized to the Twist oligo probe capture library for 16h in a singleplex
reaction. After hybridization, washing, and elution, the eluted fraction is PCR-amplified with 8
cycles, purified and quantified by QPCR to obtain sufficient DNA template for downstream
applications. Each eluted-enriched DNA sample is then sequenced on an lllumina HiSeq4000 as
paired-end 75b reads. Image analysis and base calling is performed using Illlumina Real Time
Analysis (2.7.3) with default parameters. RNA-seq reads were mapped using STAR [24] on the
human hgl9 genome. Gene expression profiles were obtained using FeatureCount [25] and
normalized using the upper-quartile approach.

Bioinformatics and Statistical analysis
This section described all the analysis performed on the processed and normalized datasets.

Classification and z-score of previously published signatures

A Gene expression classifier and subtype specific gene sets were identified for each of the
previously published PDAC classification systems. The z-score of each gene set is defined as the
average expression in a single sample of all the genes of a given gene set, after gene-wise zero-
centering and unit variance scaling.

PDX: basal-like and classical gene sets were obtained from a differential analysis of the human
(i.e. transformed epithelial cell compartment) RNAseq comparing the multiomics-based
classification (supplementary table of the original article). A centroid based classifier with Pearson
distance was used as described in the bladder and colorectal consensus classification studies
[26, 27]. The number of genes in each gene sets is: classical n=776 and basal-like n=1,002.
Moffitt-PuriST: The PuriST classifier was applied directly on normalized counts using the weights
available from the article [13]. The gene sets for basal-like and classical subtypes were extracted
from the original NMF [28] assigning to each gene the component for which it has the highest
weight. The number of genes in each gene sets is: classical n=879 and basal-like n=692.

Bailey et al.: A centroid classifier was derived using the 1,000 most differentially expressed genes
of each subtype versus all others. The number of genes in each gene sets is: Progenitor n=62
and Squamous n=755.

Puleo et al: The centroid classifier from the original study was used. All classes were used,
though only the pure tumor classes were identified in PDX. Gene sets were extracted from the
ICA definition by selecting all the genes for which the highest weight is found in one of the tumor
components. The number of genes in each gene sets is: classical n=830 and basal-like n=733.
Chan-Seng-Yue et al.. The gene sets from each NMF tumor component were taken from
supplementary Table 4 of the original article. The number of genes in each gene sets is: Classic
B n=193, Classic A n=436, Basal B n= 194 and Basal A n=436.

Unsupervised clustering of PDX

The unsupervised clustering of the 76 PDX transcriptomic profiles was performed as in a previous
unsupervised classification of a subset of these PDX [20]. The consensus cluster plus approach
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was applied on subsets of the most varying genes in the expression matrix using a Pearson
distance and aggregating over several linkage methods (average, complete and Ward). Several
thresholds of the most varying genes were applied (5% to 25% most variant) and results were
aggregated.

Discovery of Pancreatic Adenocarcinoma Molecular Gradient (PAMG) in PDX

Independent Component analyses were performed on the 50% most variant genes (n=20,434),
after gene-wise zero-centering (no unit scaling) and using the JADE algorithm [29]. This resulted
in an A matrix of sample projections onto | components defined by a matrix S of gene weights.
This matrix decomposition was applied on the 20,026 most variable genes of the 76 PDX with an
increasing number of components (2 <! < 25). The sample projections of each ICA systems
were associated with sample characteristics (e.g. PDX molecular classification and histology
classes). Most PDX ICA systems had a component associated with the histological description of
the PDX. The ICA system with the component with the highest association with the histological
classes (ANOVA, p< 101% was selected (I = 3) and the histological-associated component was
identified as the PAMG, which is defined at the sample level by the projection of each sample on
the component (from matrix A) and at the gene level by the weights of the selected component
(from matrix S).

Comparing continuum versus dichotomy

From the human compartment of the PDX gene expression, a generalized linear model was fit to
each gene in each published signature using either the PAMG or the PurlST classification labels
as independent variables. The difference in R2 is reported. As it may be expected that in some
cases, the model may better fit to continuous then to discrete independent variables, a
background R2-differences was computed on the 25% most variable genes that were not found
in any of the published gene set signatures (n=7,393 genes).

Reproducible identification of the PAMG in other datasets

To reproduce the identification of the PAMG, a blind deconvolution is first applied on the
transcriptome profiles and a component with a similar definition than the PDX-based molecular
gradient is searched for. Independent Component analyses were performed on the 50% most
variant genes/probes of the 309 Affymetrix microarray from Puleo et al. (probes n=24,693) and
the 269 microarrays from the PDAC ICGC (genes n=23,632). Increasing numbers of components
were extracted (2 to 25). For each ICA system of each of these new datasets, the gene weights
(matrix S') were compared to the gene weights of the PDX-based Molecular Gradient ICA system
(S), using Spearman’s correlation on the common genes. As shown on supplementary Figure S3,
most ICA systems with a sufficient number of components showed at least one component with
a high correlation with the PDX-derived PAMG. For each dataset, the system with the highest
correlation was selected, and the high correlation component was defined as the dataset-specific
PAMG.

PAMG projection on external cohorts
In order to project a PAMG on a new dataset, the genes found both in the new transcriptome
profiles and in the gene weight matrix S of the PAMG ICA system are selected. The cross-product
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between the Moore-Penrose generalized inverse of the sub-matrix of S and the sub matrix of
gene expression with only the common genes is computed.

Survival analysis

Overall survival was used for survival analysis, using surgery date as the starting of follow-up.
Univariate and multivariate Cox proportional hazard regressions were performed using the
survival package in R (version 3.6.0). Relative risk plots representing the association between
risk of decease and the PAMG were produced by extracting the patient-specific risk of the fitted
Cox proportional hazard model, including the 95% confidence interval. Kaplan-Meier curves were
generated using t
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Supplementary Table |
Clinical Characteristics of patients included in the study

Patient characteristics n %
Total, Median age (66 ) 76 100
Gender
Female 29 38.2
Male 47 61.8
Advancement
Localized 38 50
Locally advanced 7 9.2
Metastatic 31 40.8
Source of material
Curatively resected 40 52.6
EUS-FNA 25 32.9
from Primary tumor 22 -
from Hepatic meta 3 -
Surgical biopsies 11 14.5
from Carcinosis 5 -
from Liver 4 -
from Lymph node 1 -
from Primary tumor 1 -
Survival Status at July 2017
Alive 12 15.8
Dead 64 84.2
Clinical histol. for Curatively Resected
Well differentiated 13 -
Moderately differentiated 15 -
Poor differentiated 10 -
Missing 2 -

Supplementary Table 1
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