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Abstract 

Head motion is a major confounding factor in neuroimaging studies. While numerous studies have 

investigated how motion impacts estimates of functional connectivity, the effects of motion on 

structural connectivity measured using diffusion MRI have not received the same level of attention, 

despite the fact that, like functional MRI, diffusion MRI relies on elaborate preprocessing pipelines 

that require multiple choices at each step. Here, we report a comprehensive analysis of how these 

choices influence motion-related contamination of structural connectivity estimates. Using a healthy 

adult sample (N = 252), we evaluated 240 different preprocessing pipelines, devised using plausible 

combinations of different choices related to explicit head motion correction, tractography 

propagation algorithms, track seeding methods, track termination constraints, quantitative metrics 

derived for each connectome edge, and parcellations. We found that an approach to motion 

correction that includes outlier replacement and within-slice volume correction led to a dramatic 

reduction in cross-subject correlations between head motion and structural connectivity strength, 

and that motion contamination is more severe when quantifying connectivity strength using mean 

tract fractional anisotropy rather than streamline count. We also show that the choice of 

preprocessing strategy can significantly influence subsequent inferences about network 

organization, with the location of network hubs varying considerably depending on the specific 

preprocessing steps applied. Our findings indicate that the impact of motion on structural 

connectivity can be successfully mitigated using recent motion-correction algorithms that include 

outlier replacement and within-slice motion correction. 
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Highlights 

 We assess how motion affects structural connectivity in 240 preprocessing pipelines 

 Motion contamination of structural connectivity depends on preprocessing choices 

 Advanced motion correction tools reduce motion confounds 

 FA edge weighting is more susceptible to motion effects than streamline count 
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Generating comprehensive maps of brain connectivity, called connectomes (Sporns, Tononi, 

& Kötter, 2005), has become one of the central goals of neuroscience. In humans, diffusion magnetic 

resonance imaging (dMRI) is the most widely used technique for studying the anatomical 

connectivity of the brain. Typically, the outcomes of a tractography experiment are combined with a 

brain parcellation to generate a whole-brain connectivity matrix, which can then be analysed using 

the tools of graph theory (Bullmore & Sporns, 2009; Fornito, Zalesky, & Bullmore, 2016). This 

approach has generated new insights into principles of brain network organization (Bullmore & 

Sporns, 2009, 2012; van den Heuvel & Sporns, 2013), development (Bassett, Xia, & Satterthwaite, 

2018; Cao, Huang, & He, 2017; Morgan, White, Bullmore, & Vértes, 2018; Oldham & Fornito, 2019; 

Zhao, Xu, & He, 2019), how network anatomy constrains function (Goñi et al., 2014; Honey, 

Thivierge, & Sporns, 2010; Skudlarski et al., 2008), and how brain connectivity is affected by disease 

(Crossley et al., 2014; Fornito, Zalesky, & Breakspear, 2015; Stam, 2014).  

A major problem for any in vivo brain imaging experiment is participant head motion. The 

potential artefacts caused by motion have been studied extensively for functional MRI, where 

numerous motion estimation & correction strategies have been proposed (Ciric et al., 2017; Fair et 

al., 2013; Parkes, Fulcher, Yücel, & Fornito, 2018; Power, Barnes, Snyder, Schlaggar, & Petersen, 

2012; Satterthwaite et al., 2013, 2012). It has been widely acknowledged that motion can induce 

numerous artefacts in dMRI––including misalignment between slice acquisitions, attenuation of 

signal intensities, and signal dropout––that conspire to limit the accuracy of diffusion signal models 

and subsequent tractography (Anderson & Gore, 1994; Jones & Basser, 2004; Le Bihan, Poupon, 

Amadon, & Lethimonnier, 2006). However, the consequences of head motion for dMRI estimates of 

connectivity, and the efficacy of methods to address them, have not received the same scrutiny as in 

the functional MRI literature. 

Studies examining motion-related contamination of dMRI measures have mostly considered 

effects on voxel-wise estimates of popular metrics, such as fractional anisotropy (FA). A common 

finding is that motion can inflate the FA of low anisotropy regions, while diminishing the FA of high 

anisotropy regions (Jones & Basser, 2004; Le Bihan et al., 2006; Tijssen, Jansen, & Backes, 2009). 

Residual motion effects can still contaminate data even when motion correction techniques, such as 

realignment of diffusion volumes, are employed (Ling et al., 2012; Liu, Zhu, & Zhong, 2015; Oguz et 

al., 2014; Yendiki, Koldewyn, Kakunoori, Kanwisher, & Fischl, 2014). One recent study (Baum et al., 

2018) examined how motion affects dMRI measures of pairwise structural connectivity between 

regions, as typically analysed in a connectomic study. The authors found that motion reduced the 

strength of connections that are consistently found across people, while increasing the strengths of 

connections that are inconsistent and/or short-range. They also found that the effects of motion 
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were contingent on the specific tractography algorithm employed, such that motion exerted a larger 

effect on connectivity estimates of inconsistently detected edges for connectomes generated using a 

deterministic tractography algorithm compared to probabilistic tractography. This result suggests 

that the type of tractography algorithm used will influence the extent to which motion biases 

estimates of structural connectivity. 

Choice of tractography algorithm is not the only decision to make in a dMRI connectomic 

analysis. Indeed, such analyses rely on elaborate, multi-stage preprocessing pipelines that depend 

on decisions made at each stage. It is plausible that such choices may also influence the degree to 

which head motion contaminates the resulting connectivity estimates. For instance, one step with 

an obvious impact is the rigid realignment of each diffusion volume to a common reference (usually 

the first b = 0, or an average of all b = 0 images; a step sometimes referred to as motion correction) 

(Andersson & Skare, 2002; Rohde, Barnett, Basser, Marenco, & Pierpaoli, 2004). Different algorithms 

are available for performing this step, each varying in their sophistication and efficacy in dealing with 

other problems, such as signal outliers and within-volume head motion (Andersson et al., 2017; 

Andersson, Graham, Zsoldos, & Sotiropoulos, 2016; Andersson & Sotiropoulos, 2016).  

Other preprocessing steps in dMRI pipelines are not designed to explicitly address head 

motion confounds but may still influence the severity of motion-related contamination. For example, 

some techniques filter reconstructed streamlines according to their biological plausibility (e.g., 

Girard, Whittingstall, Deriche, & Descoteaux, 2014; R. E. Smith, Tournier, Calamante, & Connelly, 

2012), such that streamlines do not terminate in inappropriate anatomical regions. Other 

approaches either filter or reweight streamlines by altering connectivity estimates to more closely 

match the underlying diffusion signal (Daducci, Dal Palù, Lemkaddem, & Thiran, 2015; Pestilli, 

Yeatman, Rokem, Kay, & Wandell, 2014; R. E. Smith, Tournier, Calamante, & Connelly, 2013, 2015a). 

To the extent that motion results in spurious streamlines, such filtering or reweighting methods may 

be effective in mitigating motion-related confounds in dMRI connectomics, despite not being 

explicitly intended to do so. Given the wide variety of preprocessing techniques available in dMRI 

pipelines, a comprehensive analysis of how different preprocessing steps, either alone or in 

combination, mitigate or exacerbate motion contamination in structural connectivity analyses is 

required. 

In this study, we evaluate the degree to which 16 distinct preprocessing options, and the 240 

unique (and sensible) combinations thereof, were successful in mitigating head-motion confounds in 

dMRI connectomes reconstructed for a sample of 252 individuals. We hypothesized a priori that 

more advanced image realignment methods, such as those that also correct for within-volume 
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motion, combined with methods designed to derive more biologically plausible estimates of 

structural connectivity (e.g., R. E. Smith et al., 2012, 2015a), would be more effective in mitigating 

motion-related confounds.  Across pipelines, we quantified residual correlations between inter-

subject variability in connectivity estimates and motion measures using both the raw structural 

connectome matrix data and derivative network measures, with the aim of seeing whether 

particular preprocessing steps were associated with weaker or stronger susceptibility to motion 

related effects. 

Methods 

Overview 

We identified seven key steps in dMRI connectomic pipelines that require investigators to 

make choices that might affect final estimates of structural connectivity. Each of these steps had 2-3 

available choices. A schematic overview of these steps and choices is provided in Figure 1. We 

constructed distinct preprocessing pipelines based on every feasible combination of choices, 

resulting in a total of 240 different pipelines. We used this comprehensive, combinatorial approach 

because specific choices at one stage may interact with choices at other stages. The steps that we 

focused on are featured prominently in preprocessing pipelines that are implemented as part of the 

FSL  (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) and MRtrix3 (Tournier et al., 2019) 

software packages. From FSL, we rely on the preprocessing tools topup and eddy (Jenkinson et al., 

2012), which provide estimation of B0 field inhomogeneities (Andersson, Skare, & Ashburner, 2003; 

S. M. Smith et al., 2004), and correction for these distortions in addition to correction for motion, 

eddy current distortions, and signal dropout (Andersson et al., 2017, 2016; Andersson & 

Sotiropoulos, 2016), respectively. From MRtrix3, we relied on the standard workflow for 

connectome construction (Tournier, Calamante, & Connelly, 2012; Tournier et al., 2019), due to the 

availability of many different relevant preprocessing algorithms and choices thereof, particularly 

those designed to optimize connectomic measures. We focus on these steps and packages because 

they are commonly used in connectome construction and include many relevant preprocessing 

choices in a simple workflow. We note that other software packages are available (e.g., DTIstudio, 

ExploreDTI), and these may entail other preprocessing choices which we do not examine here.  Data 

processing took was conducted using the Multi-modal Australian ScienceS Imaging and Visualisation 

Environment (MASSIVE) high performance computing infrastructure (Goscinski et al., 2014). Details 

of each of the steps and choices we consider in our analysis, and the data used, are described in the 

following sections. 
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Can you replace the arrows in this figure with thin, single-line arrows? Will help reduce clutter 

Figure 1. Workflow of preprocessing steps/phases used in structural connectome construction. Square boxes group related steps, round boxes with a 
continuous border indicate a step used across all pipelines, and round boxes with a dashed border indicate a step requiring choices between different 
options. Arrows indicate which outputs of preprocessing steps/phases feed into other steps (note in the case of the “Tractography” phase, all the 
preprocessing steps apart from tractogram filtering occur concurrently, filtering is applied after these steps). Terminology: Constrained spherical 
deconvolution (CSD), Fibre Assignment by Continuous Tractography (FACT), second-order Integration over Fibre Orientation Distributions (iFOD2), Grey and 
white matter (GWM), Anatomically Constrained Tractography (ACT), white-matter (WM), grey-matter white-matter interface (GMWMI), Spherical-
deconvolution Informed Filtering of Tractograms (SIFT2), sum of streamline weights (SSW), fractional anisotropy (FA). See text for a comprehensive 
description of each step. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008979
http://creativecommons.org/licenses/by-nc/4.0/


Participants 

A total of 294 healthy participants were recruited as part of a larger study being conducted 

at Monash University (the participants selected all had both structural and diffusion MRI scans 

available). Participants were all right-handed, of European ancestry, and had no personal history of 

neurological or psychiatric disorders, had never suffered loss of consciousness or memory due to 

head injury, and did not have a history of drug abuse (for further details, see Sabaroedin et al., 

2019). The study was conducted in accordance with the Monash University Human Research Ethics 

Committee (reference number 2012001562). Participants with very large head motion were 

excluded (further details below), resulting in a final sample of 252 individuals (mean age 23.05 ± 5.28 

years, 139 females). 

Image acquisition 

Structural and diffusion MRI data were acquired using a Siemens Skyra 3T scanner with a 32-

channel head coil at Monash Biomedical Imaging in Clayton, Victoria, Australia. Diffusion data used 

an interleaved acquisition with the following parameters: 2.5mm3 voxel size, TR = 8800ms, TE 

= 110ms, FOV 240mm, 60 directions with b = 3000 s/mm2, and seven b = 0 s/mm2 volumes. In 

addition, a single b = 0 s/mm2 was obtained with reversed phase encoding direction for susceptibility 

field estimation. T1-weighted (T1w) structural scans were acquired using: 1mm3 isotropic voxels, TR 

= 2300ms, TE = 2.07ms, TI = 900ms, and a FOV of 256mm. 

Preprocessing steps common to all pipelines 

T1w image preprocessing 

T1w scans were processed with Freesurfer version 5.3 (Fischl, 2012) to extract cortical 

surface models of the grey/white matter surface and grey/CSF (pial) surface. All Freesurfer output 

was checked and, if required, manually corrected for errors in surface reconstruction. The cortical 

surface models were parcellated to define network nodes for connectomic analysis (parcellations 

are described in detail below). All images derived from the structural MRI data (including masks and 

parcellations) were then co-registered to the processed diffusion data, as described below. 

DWI preprocessing 

Diffusion data were processed using MRtrix3 (Tournier et al., 2019) and FSL (Jenkinson et al., 

2012).The raw diffusion data were first processed with FSL’s topup, using the forward and reverse 

phase-encoded b = 0 s/mm2 images toestimate the susceptibility induced off-resonance field 

(Andersson et al., 2003; S. M. Smith et al., 2004). After motion and eddy current correction, the 
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diffusion data was corrected for B1 field inhomogeneities using FAST in FSL (S. M. Smith et al., 2004; 

Zhang, Brady, & Smith, 2001). 

Preprocessing steps varying across pipelines 

In this section, we outline the specific choices made at each step of the connectome reconstruction 

pipeline. 

Motion and eddy current correction 

We compare the effects of two different motion correction strategies implemented by FSL’s 

eddy tool: 

1. The first strategy corrected for eddy-induced current distortions, susceptibility-

induced distortions (using the field inhomogeneity estimate from topup), and inter-

volume head motion (Andersson & Sotiropoulos, 2016). Here, a Gaussian Process-

based generative model is used to obtain a prediction of each diffusion volume. 

Comparison of the predicted and actual images yields estimates of eddy current-

induced distortions, which are then used to realign the data (Andersson & 

Sotiropoulos, 2016). This approach is henceforth referred to as EDDY1. 

2. The second strategy additionally corrected for outliers in the diffusion signal and 

within-volume motion (Andersson et al., 2017, 2016). Outliers are detected by 

comparing the diffision signal to the prediction obtained from the generative 

model. Any slices where the image intensity is at least four standard deviations 

lower than the prediction are classified as containing signal dropout, and intensities 

within that slice are replaced by those produced by the generative model. Within-

volume motion is estimated and corrected by incorporating data regarding the 

timing of acquisition of each image slice and a smooth model of subject rigid-body 

motion during the acquisition of each image volume into the same generative 

model. A forward model then uses these estimates of slice-wise movement to 

reconstruct the corrected diffusion data. Herceforth we refer to this procedure as 

EDDY2.  

Streamline tractography algorithm 

Diffusion MRI can be used to reconstruct the brain’s white matter pathways using one of 

several different streamlines tractography algorithms (Jeurissen, Descoteaux, Mori, & Leemans, 

2019). While many details of such algorithms can vary substantially, they are commonly assigned to 

one of two classifications: (1) Determinstic: At each streamline vertex, the orientation in which to 
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propagate the streamline is chosen non-stochastically; (2) Probabilistic: At each streamline vertex, 

one of a distribution of plausible orientations is chosen in which to propagate the streamline. 

 In general, probabilistic algorithms are more sensitive in tracking non-dominant fibre 

pathways and are prone to false positives; determinsitic algorithms, on the other hand, are more 

conservative and prone to false neagtives (Reveley et al., 2015; Thomas et al., 2014). This trade-off 

between specificity and sensitivity can affect network analyses (Zalesky et al., 2016). We thus chose 

exemplars of each algorithm class to evaluate their relative relationships to motion.  

Deterministic tractography was performed using the Fibre Assignment by Continuous 

Tractography (FACT) algorithm (Mori, Crain, Chacko, & van Zijl, 1999; Mori & van Zijl, 2002) as 

implaimented in MRtrix3 (Tournier et al., 2019). The algorithm propagates streamlines in the 

direction of the most collinear fibre orientation estimated within the voxel in which the streamline 

vertex resides. We definied one fibre orientation in each voxel by estimating the diffusion tensor 

using iteratively reweighted linear least squares (Veraart, Sijbers, Sunaert, Leemans, & Jeurissen, 

2013) and then calculating the primary eigenvector.  

Probabilistic tractography was performed using the second-order Integration over Fibre 

Orientation Distributions (iFOD2) algorithm, as impliamented in MRtrix3 (Tournier et al., 2019), 

which utilises Fibre Orientation Distributions (FODs) estimated for each voxel using Constrained 

Spherical Deconvolution (Tournier, Calamante, & Connelly, 2010; Tournier, Calamante, & Connelly, 

2007; Tournier et al., 2012). For candidate streamline trajectories emanating from the current 

vertex, probabilities are calculated based on the amplitudes of the FODs along those trajectories; 

trajectories with greater probabilities are then more likely to be randomly chosen for streamline 

propagation. This approach can improve the reconstruction of tracts in highly curved and crossing 

fibre regions (Tournier et al., 2010, 2012). 

For both tractography algorithms, we used a maximum streamline length of 400mm, 

maximum curvature of 45° per step, and generated 1,000,000 streamlines. Default parameters for 

each algorithm were used for step size (0.25mm for iFOD2; 1.25mm for FACT) and streamline 

termination criteria (0.05 FOD amplitude for iFOD2; 0.05 amplitude of the primary eigenvector for 

FACT). 

Spatial constraints on streamline propogation 

  Some spatial constraints are often applied to tractography algorithms to limit the 

reconstruction of biologically implausible streamlines. A simple constraint is the use of a tissue mask 

that ensures streamlines are only generated within that mask. One masking stratgey that we 
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evalulated is the use of a binary mask of grey and white matter (GWM) areas, which ensured that 

streamlines began, traversed, and terminated, within the brain parenchyma. The GWM masks were 

generated by combining the Freesurfer segmenation of the grey and white matter into a single 

binary mask.  

A second set of constraints we evaluated were implemented as part of the Anatomically 

Constrained Tractography (ACT) framework. In this approach, the brain is segmented (Patenaude, 

Smith, Kennedy, & Jenkinson, 2011; S. M. Smith, 2002; S. M. Smith et al., 2004; Zhang et al., 2001) 

into different tissue types (cortical grey matter, subcortical grey matter, white matter, and 

cerebrospinal fluid [CSF]). ACT exploits the information provided by the segmentation to ensure that 

streamlines only trace paths through, and terminate at, anatomically correct tissue locations (e.g. 

streamlines cannot terminate in white matter regions, or pass through CSF). This approach can 

reduce false positives in tract reconstruction (R. E. Smith et al., 2012). When combined specifically 

with the probabilistic iFOD2 algorithm, we utilised the “backtracking” capability of ACT, in which 

streamlines that are improperly terminated are truncated and a new trajectory is sought (R. E. Smith 

et al., 2012).We hypothesized that ACT, by removing biologically implausible streamlines, may 

indirectly mitigates motion confounds.  

Streamline seeding algorithm 

We evaluated three different strategies for seeding streamlines: 

1. randomly seeding from voxels in the white matter (WM); 

2. randomly seeding streamlines from the grey matter - white matter interface 

(GMWMI), which has been shown to improve the reconstruction of shorter 

pathways (R. E. Smith et al., 2013; R. E. Smith, Tournier, Calamante, & Connelly, 

2015b); and 

3.  dynamic seeding, whereby streamlines are seeded preferentially from voxels where 

the streamline density is under-estimated with respect to fibre density estimates 

from the diffusion model, helping to improve the reconstruction of those pathways 

that are more difficult to track (R. E. Smith et al., 2015a). 

Streamline re-weighting 

Commonly, every streamline produced by tractography is interpreted as having the same 

“weight” as every other streamline. However, the density of streamlines produced during 

tractography is not necessarily reflective of the density of the underlying white matter fibres, which 

limits biological interpretability of tractogram-based connectivity estimates. A class of semi-global 
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tractogram re-weighting algorithms seek to modulate the contributions of different streamlines 

toward the model by weighting individual streamlines in order to minimise this discrepancy 

(Sherbondy 2008; Sherbondy 2009; Smith 2013; Smith 2015; Daducci 2014; Pestilli 2014). By 

improving the biological plausibility of connectivity estimates, it is plausible that such approaches 

may potentially reduce motion-related confounds. Here, we evaluated the effects of both using and 

not using the second Spherical-deconvolution Informed Filtering of Tractograms (SIFT2) method (R. 

E. Smith et al., 2015a). SIFT2 operates by modelling the expected fibre densities at every voxel and 

then weighting each streamline according to how well it fits the model. 

Parcellation 

Construction of a structural brain network necessitates division of the brain grey matter into 

different regions to represent the distinct nodes of the network. As the choice of parcellation can 

affect numerous properties of a brain network (Fornito, Zalesky, & Bullmore, 2010; Zalesky et al., 

2010), we investigated three different parcellations: 

1. 82 nodes: 34 cortical (Desikan et al., 2006) and seven subcortical regions (Fischl et 

al., 2002) per hemisphere delineated using sulcal, gyral and other anatomical 

boundaries. 

2. 220 nodes: random division of each hemisphere into 100 approximately equal sized 

cortical regions (Fornito et al., 2011; Zalesky 2010), combined with a subcortical 

parcellation of three striatal (Tziortzi et al., 2014) and seven thalamic (Behrens, 

Johansen-Berg, et al., 2003; Behrens, Woolrich, et al., 2003) regions. Subcortical 

regions were non-linearily registered using FSLs FNIRT (Jenkinson et al., 2012) to the 

subject’s T1w image data. 

3. 380 nodes: a recent 180-region cortical parcellation generated by combining 

information from multiple imaging modalities (Glasser et al., 2016) was combined 

with the same subcortical regions as the 220 node parcellation to produce a final 

parcellation of 380 regions.  

Cortical parcellations were generated on the Freesurfer-estimated surface models and 

projected out to the T1w image grid. This volume-based  cortical parcellation was then merged with 

the subcortical parcellations. Following rigid-body coregistration of the subject’s diffusion image to 

their T1w image, using FSLs FLIRT (Greve & Fischl, 2009; Jenkinson, Bannister, Brady, & Smith, 2002; 

Jenkinson & Smith, 2001), and subsequent inversion of the resulting transformation, each combined 

parcellation image was mapped to the subject’s diffusion image data in native space.  
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Network construction and edge weight 

Connectivity matrices were generated from the tractogram and parcellation data by 

assigning streamlines to each of the closest regions within a 5 mm radius of the streamline 

endpoints (R. E. Smith et al., 2015b), yielding an undirected 𝑁 × 𝑁 connectivity matrix, where 𝑁 is 

the number of regions defined in the parcellation. In this matrix, each element [𝑖, 𝑗] indicates the 

presence and some measure of strength of connectivity (i.e. edge weight) between regions 𝑖 and 𝑗.  

Various metrics can be derived from the reconstruction and/or image data to quantify the 

magnitude of connectivity between each pair of regions (i.e. the weight of the edge). Here we assess 

two options: 

1. Sum of streamline weights (SSW). The weights of each streamline connecting a pair 

of regions are summed to give the weight of that edge. Note that in the absence of 

use of the SIFT2 method, this is equivalent to streamline count (i.e. a weight of 1.0 is 

assumed for all streamlines). 

2. Weighting edges by FA values (Baker et al., 2015; Baum et al., 2017; van den Heuvel 

& Sporns, 2011). Weighting edges in this manner is thought to provide an index of 

the microstructural integrity of the underlying white matter connections, although 

this interpretation is likely simplistic (Beaulieu, 2002; Jones, 2010; Jones, Knösche, & 

Turner, 2013). To obtain these edge weights, streamlines are assigned the mean FA 

of the voxels they traverse. For streamlines connecting regions/nodes 𝑖 and 𝑗, the 

mean of these FA streamline weights is taken (note that when SIFT2 is used, the 

streamline weights it provides are also incorporated into this computation). 

Prior studies suggest that the relationship between motion and edge consistency is stronger 

in FA rather than SSW edge weighted networks (Baum et al., 2018), and other DWI studies have 

shown that FA is more susceptible to the effects of motion (Jones & Basser, 2004; Le Bihan et al., 

2006; Tijssen et al., 2009).  

Combining preprocessing choices into distinct pipelines 

In summary, the possibilities for combining components into preprocessing pipelines are as 

follows: 

 Motion correction (MotionCorr): EDDY1, EDDY2; 

 Streamline tractography algorithm: FACT, iFOD2; 

 Spatial constrainsts on streamline propogation: GWM, ACT; 

 Streamline seeding algorithm (SeedAlgor): WM, GMWMI, dynamic; 
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 Tractogram re-weighting : SIFT2, none; 

 Parcellation: 82, 220 and 380 nodes; 

 Edge weight (EdgeWeight): SSW, FA. 

We examined every possible combination of these preprocessing steps, which resulted in 

240 distinct pipelines (note that because the implementation of GMWMI seeding in MRtrix3 is 

dependent upon ACT, pipelines combining GWM and GMWMI were excluded). 

Quantifying in-scanner head motion 

Previous studies investigating the influence of head motion on dMRI measures have 

quantified motion by measuring the spatial displacement that occurs between volumes acquired 

through time (Baum et al., 2018; Roalf et al., 2016). A comparable estimate of in-scanner head 

motion can be directly obtained from eddy outputs (Andersson & Sotiropoulos, 2016; Bastiani et al., 

2019) by taking the square root of the mean voxelwise squared displacement of each volume. This 

displacement is calculated for each volume with respect to both the previous volume, and to the 

first volume; from these, we take the mean across all volumes to obtain scalar estimates of relative 

(RELall) and absolute (ABSall) head motion. For each pipeline, the corresponding motion parameter 

estimates from EDDY1 or EDDY2 were utilized. In this article we focus on results obtained using 

ABSall; the results for RELall, along with five other measures that have also been used to characterise 

motion (Baum et al., 2018; Roalf et al., 2016), are presented in the supplementary material (Table 

S1). Note these other measures are calculated based on the transformation matrix used when 

performing an affine registration on the raw dMRI images.  

Six measures of head motion (ABSall and RELall for both EDDY1 and EDDY2, and mean 

absolute/relative b = 0 volume-to-volume displacement; see Table S1) were used to identify subjects 

with excessive head motion. Our criterion was that participants must not exceed 1.5 inter-quartile 

ranges above the third quartile for any measure. We adopted this stringent criterion to focus our 

experiment on the effects of normal levels of in-scanner head motion. This resulted in removal of 42 

participants.  

Quantifying motion-related contamination of connectivity strength 

To quantify the influence of motion on anatomical connectivity, we computed, 

independently for each edge, a Spearman correlation between edge weight and each specific 

measure of head motion across participants (Baum et al., 2018). We term this measure the quality 

control – structural connectivity (QC-SC) correlation. Note that such correlations were computed at 

an edge consistency-based threshold of 5% – only edges that had a nonzero edge weight in over 5% 
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of participants were analysed – and the correlations were estimated using only those subjects with 

nonzero connectivity in that specific edge (i.e. zero edge weights were excluded). We evaluated 

pipeline performance as the proportion of edges in the network for which where there was a 

significant QC-SC relationship (p < .05 uncorrected) , as per past work (Parkes et al., 2018). We also 

examined how QC-SC related  to edge length (the mean length of the streamlines connecting two 

regions), edge consistency (the proportion of participants in which a given edge was present), edge 

weight variability (the coefficient of variation in edge weights across participants), and edge length 

(Baum et al., 2018). 

In addition, we considered the impact of thresholding on QC-SC estimates. Thresholding is 

often implemented when analysing human brain structural networks to remove spurious edges (de 

Reus & van den Heuvel, 2013; Roberts, Perry, Roberts, Mitchell, & Breakspear, 2017; Rubinov & 

Sporns, 2010; Zalesky et al., 2016). A common procedure is to exclude edges based on the extent to 

which reconstruction of that edge varies across individuals.  We examined two such approaches: 

1. An edge consistency-based threshold: considering edges that are non-zero in over 

some fraction of participants (de Reus 2013), where we considered thresholds 

varying from 5% to 90%; 

2. An edge variability-based threshold: considering those edges with the smallest 

coefficient of variation (CoV) (Roberts et al 2017), where we considered thresholds 

varying from the 10th to 100th percentiles. 

Many connectomic analyses consider properties of the network that are calculated for each 

node, rather than, or in addition to, each edge (Bullmore & Sporns, 2009; Fornito et al., 2016). These 

properties are also likely to be affected by motion, because they are derived directly from the edge 

weights. One of the most widely examined properties is nodal centrality - the capacity of a node to 

influence or be influenced by other nodes – which is used to identify network ‘hubs’ (Fornito et al., 

2016; van den Heuvel & Sporns, 2013). Although there are many ways to determine nodal centrality 

(Oldham et al., 2019), we focus here on node strength (the sum of edge weights assigned to a node) 

as it is the simplest and most commonly used centrality measure, and it has previously been found 

to be affected by motion (Baum et al., 2018). To assess how node strength is related to motion we 

calculated, at each threshold (as defined above), the proportion of nodes whose strength 

demonstrated a significant correlation with motion (Spearman correlation, p < .05 uncorrected). 

Previous studies have found that the choice of preprocessing steps can result in different network 

topologies (Li, Rilling, Preuss, Glasser, & Hu, 2012; Yeh, Smith, Dhollander, Calamante, & Connelly, 

2019), including the locations of hubs. To this end, we calculated, independently for each pipeline, 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008979
http://creativecommons.org/licenses/by-nc/4.0/


the mean rank of node strength for each node across all participants; we then quantified, for every 

possible pair of pipelines, the correlation coefficient between these values across all nodes; we refer 

to these as “Node strength rank (NSR) correlations” . 

Results 

Basic connectome properties 

Across the various reconstruction pipelines, the mean edge density (i.e. fraction of non-zero 

edges) across participants ranged from 3−94%. As would be expected, the sparsest networks 

resulted from the combination of FACT and high-resolution parcellations (e.g., the 380-node 

parcellation), whereas the densest networks resulted from the combination of iFOD2 and low-

resolution parcellations (82 nodes). 

 

Figure 2 displays how the basic network properties of edge density (fraction of non-zero 

edges) and mean edge weight vary across pipelines, when specifically using the 220 node 

parcellation (data for other parcellations are shown in Figures S1-S2), averaged across individuals 

(using a  5% edge consistency based threshold). As expected, the edge densities and mean edge 

weights of connectomes generated with iFOD2 (average density of 74%) were higher than those 

generated with FACT (average density of 9%). When using both iFOD2 and SSW edge weighting, 

variations in mean edge weight across pipeline choices were smaller than other combinations, but 

nonetheless spanned a range of 49 to 78. In contrast, when using FACT, mean edge weight showed 

greater variability as a function of other pipeline choices. For instance, the combination of ACT with 

no streamline filtering resulted in a mean edge weight that was approximately double that obtained 

when employing SIFT2, or when using GWM rather than ACT. By forbidding streamlines from 

Figure 2. Network density and mean edge-weight for the 220 node parcellation across 80 combinations of preprocessing 
choices. (A) The mean participant network density (y-axis) in each pipeline (x-axis). (B) The mean edge weight for SSW (left y-axis) 
and FA (right y-axis) in each pipeline (x-axis). (C) The preprocessing options used in each pipeline. Each row corresponds to a 
preprocessing step, with the possible options for that step colour-coded; the colour of the squares in each column indicate the 
specific methods used for a given pipeline. 
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terminating in the white matter, ACT ensures that a greater fraction of reconstructed streamlines 

contribute to the connectome, thereby increasing the mean edge weight. 

Relationship between in-scanner head motion and structural connectivity 

Sample estimates of mean head motion are presented in Table S2, and are comparable to 

those reported in previous analyses (Baum et al., 2018; Roalf et al., 2016). The distribution of scores 

on each of the motion measures for the sample are displayed in Figure S3. To quantify the effects of 

motion on structural connectivity, we correlated edge weight and head motion (ABSall) across 

participants independently at each edge, to obtain an edgewise QC-SC correlation estimate. We then 

calculated the proportion of edges that had a significant QC-SC correlation at p < .05, uncorrected. 

This proportion varied widely across pipelines, ranging from 2.3% to 83.5%.  

Figure 3A shows the proportion of tested edges (i.e. edges that were nonzero in at least 5% 

of participants) with a significant QC-SC relationship across those pipelines utilising the 220 node 

parcellation (4.79-71.78%), along with a key to indicate the specific preprocessing steps applied in 

each case (Figure 3C). This figure suggests that in most cases, there were more significant negative 

than positive QC-SC correlations; i.e. where estimated motion leads to statistically significant 

changes in connectivity estimates, greater motion leads to reduced reconstructed connectivity.  

Figure 3B shows the distributions of QC-SC correlations across pipelines. In most cases, the 

distributions are centred on zero or a negative value, suggesting that increased head motion most 

often correlates with lower estimated SC. Pipelines exhibiting a negative mode generally used a 

combination of EDDY1 and SIFT2. Qualitatively similar results were obtained across all parcellations, 

although connectomes constructed at coarser resolution parcellations suffer less motion-related 

contamination (Fig S4-S5).  
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The biggest effect on QC-SC correlations was the choice of motion correction strategy, with 

EDDY2 dramatically reducing the proportion of significant QC-SC correlations relative to EDDY1, 

regardless of other preprocessing choices. Compared to EDDY1, EDDY2 comprises two additional 

capabilities: outlier replacement and within-volume motion correction (Andersson et al., 2017, 2016; 

Andersson & Sotiropoulos, 2016). To determine which of these was responsible for the reduction in 

QC-SC correlations, we also evaluated performance for a selected number of pipelines in which eddy 

had been run with outlier replacement only, which we term EDDY1.5. The proportion of significant 

QC-SC correlations was intermediate between the results of EDDY1 and EDDY2, suggesting that 

these two capabilities contribute approximately equally toward reducing correlations between 

connectivity and motion (Figure S6). The difference between EDDY1.5 and EDDY2 was particularly 

notable for pipelines using iFOD2 and FA-weighting, where EDDY2 reduced the proportion of 

significant QC-SC correlations from approximately 30% to 12%. 

The differences between EDDY1 and EDDY2 were most pronounced when either iFOD2 or FA 

edge weighting were used. The combination of EDDY1, iFOD2 and FA weighting results in particularly 

poor performance, with 60-72% of edges showing significant QC-SC correlations. Applying EDDY2 

prior to iFOD2 and FA edge weighting reduced the QC-SC proportions to levels comparable to other 

choices (except when ACT was also used, in which case the proportions were slightly elevated). 

The method of constraining streamline propagation also impacted QC-SC correlations. For 

pipelines that combined EDDY1, iFOD2, and SSW edge weighting, use of ACT displayed greater 

correlation with motion than otherwise equivalent pipelines that used a simple GWM mask. 

Conversely, when connectomes were weighted using FA rather than SSW, ACT was associated with a 

Figure 3. The effect of in-scanner motion (ABSall) on structural connectivity when using a 220 node parcellation. (A) The proportion 
of edges (y-axis) that had a significant (p < .05, uncorrected) QC-SC correlation in each pipeline (x-axis). Each bar is coloured to show 
out of those significant edges, what proportion were negative (blue) or positive (red). (B) The full distributions of QC-SC correlations 
(y-axis) for each pipeline (x-axis). (C) The preprocessing options used in each pipeline. Each row corresponds to a preprocessing step, 
with the possible options for that step colour-coded; the colour of the squares in each column indicate the specific methods used for a 
given pipeline. 
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lower proportion of significant QC-SC correlations relative to GWM mask. This trend was reversed 

again with the use of EDDY2 in conjunction with FA weighting, where ACT increased the proportion 

of QC-SC correlations relative to the GWM mask. These findings suggest complex interactions are 

possible between different choices in DWI preprocessing pipelines. 

As all of our correlations were conducted using only those subjects with a non-zero 

connectivity value for each specific edge, the number of data points available for any given QC-SC 

correlation varied across edges. To check whether omission of subjects with absent connectivity 

affected our findings, we computed correlations across all subjects for all edges in which at least one 

subject had registered a connectivity value. The results of this analysis were similar to our main 

findings; the key exceptions were a weaker average magnitude of QC-SC values, and no 

differentiation between ACT and the GWM mask when iFOD2, EDDY1 and FA edge weighting were 

used (Fig S7). In a second analysis, we applied a range of different edge thresholds (5-90% edge 

consistency and 10th-100th percentile edge variability) and calculated the proportion of remaining 

edges significantly correlated with motion estimates; this analysis revealed a similar pattern of 

results (Fig S8), suggesting that our primary observations are not due to connectome thresholding 

effects. 

Finally, we also examined QC-SC correlations when alternative measures of head motion 

were used. As with our main findings, pipelines with FA edge weighting, iFOD2 and EDDY1 displayed 

notably higher levels of correlation with motion compared to other pipelines (Figures S9-S14). 

However, when estimating motion with RELb3000 (Figure S13) or TSNR (Figure S14), differences 

between pipelines using EDDY1 and EDDY2 were much smaller.  

Relationship between QC-SC correlations and edge metrics 

Next, we evaluated how QC-SC correlations relate to edge consistency, edge variability, and 

edge length. Figure 4 shows these associations for 10 example pipelines (selected as exemplars of 

the patterns observed across all data). Across all pipelines, short-range edges were most likely to be 

reconstructed consistently across subjects (Fig 4A-E). The dependence of QC-SC correlations on edge 

consistency was similar across pipelines, having a funnel-like shape characterised by a wider range of 

QC-SC correlations for less consistent edges and a smaller range of low-value QC-SC correlations for 

more consistent edges; in other words, edges that are found more consistently across individuals 

show a lower range of motion susceptibility. 
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The relationship between QC-SC correlations, edge length, and edge weight variability 

(rather than edge consistency) was more complex, with a stronger dependency on pipeline (Fig 4F-J). 

Pipelines that used iFOD2 and SSW edge weighting showed a wide range of QC-SC correlations for 

edges with higher weight variability (e.g. pipeline 11; Fig 4F), in line with the edge consistency 

findings. However, the combination of these choices (i.e., iFOD2 and SSW edge weighting) with SIFT2 

led to a larger range of QC-SC correlations for edges with moderate weight variability (e.g. pipelines 

14 and 34; Fig 4G and 4H). Pipelines using FACT and SSW edge weighting showed a wide range of 

QC-SC correlations for edges with lower weight variability (e.g. pipeline 46; Fig 4I). Weighting edges 

by FA increased the variability of QC-SC correlations for moderate weight variability (e.g. pipeline 80; 

Fig 4J). Finally, we compared QC-SC correlations to edge weighting, finding that for SSW the weakest 

edges displayed the strongest QC-SC correlations, while for FA the strongest edges displayed the 

strongest QC-SC correlations (Figure S15). 

 We re-evaluated these relationships after estimating QC-SC correlations across all subjects 

for all edges in which at least one subject had registered a connectivity value (i.e. retaining null 

connectivity values). The relationship between edge consistency and QC-SC correlation no longer 

displayed the same funnel shape; instead, this funnel shape was reversed (the most consistent edges 

displayed the strongest QC-SC relationships) or the relationship was now clearly negative (Figure 

S16). Additionally, the relationship between edge weight variability and QC-SC correlations showed 

greater heterogeneity across pipelines.  

Relationship between head motion and node strength 

Having characterized effects at the level of individual edges, we next assessed the impact of 

motion on node strength, a node-level measure that is used in many connectomic analyses to define 

network hubs. For each region in the 220-node parcellation, we estimated the cross-subject 

Figure 4. Relationship between QC-SC correlations and edge length, edge consistency, and edge weight variability. The first 
row shows the relationship between QC-SC correlations (y-axis), edge consistency (x-axis), and edge length (colourmap), while 
the second shows the relationship between QC-SC correlations(x-axis), edge weight variability (y-axis), and edge length 
(colourmap). Pipeline 11: EDDY1, SSW edge weighting, iFOD2, dynamic seeding, ACT, no SIFT2. Pipeline 14: EDDY1, SSW edge 
weighting, iFOD2, dynamic seeding, GWM, SIFT2. Pipeline 34: EDDY1, FA edge weighting, iFOD2, dynamic seeding, GWM, SIFT2. 
Pipeline 46: EDDY2, SSW edge weighting, iFOD2, WM seeding, ACT, SIFT2. Pipeline 80: EDDY2, FA edge weighting, iFOD2, 
GMWMI seeding, GWM, SIFT2. 
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correlation between its strength (i.e., the sum of a nodes edge weights) and head motion of that 

person (henceforth termed QC-strength correlation). Figure 5 shows the proportion of nodes with a 

significant QC-strength correlation (p < .05, uncorrected) across different consistency thresholds. 

Pipelines using SSW edge weighting showed consistent effects of motion on node strength across 

different consistency thresholds: specifically, more stringent thresholds increased the proportion of 

nodes with a significant QC-strength correlation. The converse was observed specifically for 

pipelines using EDDY2, iFOD2, and FA weighting, where less stringent consistency thresholds 

increased the proportion of significant QC-Strength correlations.  

 

As done previously (Baum et al., 2018), we used a 50% edge consistency-based threshold to 

calculate node strength and then assessed how node strength correlated with motion. The mean 

magnitude of correlations across pipelines varied from 0.13—0.31, with the strongest correlation of 

any node in any pipeline using the 220 node parcellation being -0.46. QC-strength correlations 

differed markedly across pipelines: in some pipelines, both positive and negative correlations could 

be observed (Figure 6A); whereas in others, widespread positive correlations were found (typically 

when iFOD2, SSW edge weighting, and EDDY1 were used; Figure 6B). With EDDY2, few nodes 

displayed any significant QC-strength relationships regardless of other aspects of the preprocessing 

pipeline (Figure 6D-E); the exception being when FA weighting and iFOD2 were used, where 

anatomically distributed and significant negative QC-strength correlations were observed with either 

EDDY1 (Figure 6C) or EDDY2 (Figure 6F), albeit with reduced magnitude in the latter case. Across 

pipelines, there was little consistency as to which regions showed significant QC-strength 

correlations, with no node exhibiting a significant correlation in more than 24% of pipelines (Fig S17). 

Figure 5. The effect of in-scanner motion (ABSall) on node strength when using a 220 node parcellation in 80 combinations of 
preprocessing choices across different edge consistency and variability thresholds. (A) The percentage of nodes (y-axis) which 
had a significant QC-strength correlation (y-axis) for each pipeline (x-axis) across edge consistency-based thresholds from 5% to 
90%. (B) The percentage of nodes (y-axis) which had a significant QC-strength correlation (y-axis) for each pipeline (x-axis) across 
edge variability-based thresholds from the10thto 100th percentile. In (A) and (B) darker colours indicate a more stringent threshold. 
(C) The preprocessing options used in each pipeline. Each row corresponds to a preprocessing step, with the possible options for 
that step colour-coded; the colour of the squares in each column indicate the specific methods used for a given pipeline. 
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Node strength sequence variation across pipelines 

Given the finding that motion can affect node strength estimates in a pipeline-dependent 

way, we sought to determine whether preprocessing pipelines influenced which nodes were defined 

as hubs; i.e. we sought to determine whether the relative ranking of nodes based on node strength 

was subject to variation, or whether it was preserved across pipelines. To do this, we calculated 

node strength rank (NSR) correlations (Spearman correlation of node strengths in a given pipeline) 

between every pair of pipelines. Finally, we reordered the NSR correlation matrix using hierarchical 

clustering (Figure 7). 

 

This analysis revealed two key findings. First, there was considerable variability in NSR 

correlations between pairs of pipelines: 0.27<𝜌<1.00. Thus, the spatial topography of a given node 

strength map, and therefore the designation of nodes as hubs, varied considerably depending on 

how the data were processed. Secondly, similarity in NSR was largely dictated by specific 

preprocessing steps. Figure 7 indicates the presence of four discrete clusters in the pipeline-by-

pipeline correlation matrix. These clusters were predominantly determined by the tractography 

algorithm, streamline spatial constraints, and edge weighting methods used (note that these 

preprocessing steps almost entirely drove the clustering solution regardless of the edge consistency 

threshold being used). Pipelines that used SSW edge weighting grouped together in one cluster (blue 

cluster). NSR correlations between these pipelines ranging between 0.53 and 1.00 and were thus 

Figure 6. Correlation between in-scanner motion (quantified by mean absolute volume-to-volume displacement) and node strength 
for six different pipelines. Individual networks were thresholded using an edge-based consistency threshold of 50%, and each nodes’ 
strength across participants was correlated with mean absolute volume-to-volume displacement. Grey indicates a non-significant 
correlation. Pipeline numbers correspond to those in Figures 2, 3,5, and 7. (A) Significant QC-strength correlations for (A) iFOD2, SSW 
edge weighting, ACT mask, and with EDDY1(pipeline 11 shown as an example); (B) iFOD2, SSW edge weighting, GWM mask, and 
EDDY1 (pipeline 14 shown as an example); (C) iFOD2 and FA edge weighting, with EDDY1 (pipeline 40 shown as an example); (D) 
iFOD2, SSW edge weighting, ACT mask, and with EDDY2 (pipeline 51 shown as an example); (E) iFOD2, SSW edge weighting, GWM 
mask, with EDDY2 (pipeline 54 shown as an example); (F) iFOD2 and FA edge weighting, with EDDY2 (pipeline 80 shown as an 
example). The spatial topography, magnitude and polarity of QC-Strength correlations varies considerably across pipelines.  
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reasonably consistent. Other pipelines – all of which used FA edge weighting – were further 

stratified by the tractography algorithm and type of streamline spatial constraint being used. 

Specifically, pipelines using a GWM mask and FACT grouped together (purple cluster in dendrogram; 

0.99<𝜌<1.00), as did those using ACT and FACT (pink cluster in dendrogram; 0.64<𝜌<1.00). Finally, 

pipelines using iFOD2 and FA were clustered together (green cluster in dendrogram; 0.80<𝜌<1.00). 

We illustrate the two most dissimilar pipelines (𝜌 = 0.27) in Figure 8, where we mapped node 

strength across the brain for pipelines 39 and 53: with pipeline 39 (EDDY1, FACT, ACT, GWMI 

seeding, no SIFT and FA edge weighting), the hubs are located in parietal and posterior cingulate 

regions; with pipeline 53 (EDDY2, FACT, a GWM mask, dynamic seeding, no SIFT and SSW edge 

weighting), the hubs are located primarily in the occipital lobe. The most dissimilar pipelines (mean 

correlation of 0.277 ± 0.004) were those that used iFOD2, ACT, FA edge weighing, and GMWMI 

seeding (pipelines 13, 14, 53, 54), as compared to those which using iFOD2, a GWM mask, SSW edge 

weighting and dynamic seeding (pipelines 39, 40, 79, 80).  

 

 

Figure 7. Node strength rank correlations. The correlation matrix has been reordered using hierarchical clustering (using correlation 
distances between rows and average linkage). Dendrogram on left, pipeline details at bottom. Four main clusters are apparent: 
pipelines using SSW edge weighting; pipelines using FA edge weighting, a GWM mask and FACT; pipelines using FA edge weighting, 
ACT and FACT; and pipelines using FA edge weighting and iFOD2. 
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Discussion 

Our experiments sought to characterise the degree to which different preprocessing choices 

mitigate motion-related contamination of diffusion MRI by examining 240 pipelines combining 16 

different choices that are commonly made when preprocessing DWI data in preparation for 

connectome construction. Our analysis indicates that the degree of motion contamination varies 

considerably across pipelines.  The biggest impact involved the use of state-of-the-art DWI 

preprocessing capabilities - specifically outlier replacement and within-volume motion-correction - 

which dramatically reduced the proportion of edges showing significant QC-SC correlations. Beyond 

this primary effect, the use of FA edge-weighting and iFOD2 resulted in higher QC-SC correlations. 

The strongest motion effects tended to be concentrated on long-range, inconsistent edges. Critically, 

these effects are distributed throughout the connectome in a pipeline-dependent manner. Motion 

effects can have a major impact on subsequent graph-theoretical analyses, leading to marked 

differences in conclusions, such as the labelling of which brain regions are network hubs. 

Outlier replacement and within-volume motion are powerful methods for mitigating motion-related 

artefact in diffusion MRI connectomics 

Compared to EDDY1, the use of EDDY2 dramatically reduced the proportion of edges with 

significant QC-SC correlations.  Our post-hoc analysis indicated that, of the novel capabilities 

incorporated in EDDY2, both outlier replacement and within-volume correction contribute to the 

superior efficacy of EDDY2 in this context, though the latter was particularly influential for FA-

weighted connectomes. Incorporating outlier replacement and within-volume correction into 

connectome construction pipelines is therefore strongly encouraged as it confers significant 

advantages in mitigating motion-related contamination. 

Figure 8. Spatial maps of mean node strength rankings for two dissimilar pipelines. A higher rank indicates the node has a higher strength. 
(A) Strength spatial distribution for pipeline 39, which used EDDY1, FACT, ACT, GWMI seeding, no SIFT and FA edge weighting. (B) Strength 
spatial distribution for pipeline 52, which used EDDY2, FACT, a GWM mask, dynamic seeding, no SIFT and SSW edge weighting.  
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The effect of tractography algorithm 

The magnitude of QC-SC correlations was substantially affected by the choice of 

tractography algorithm. When using EDDY1, FACT resulted in fewer significant QC-SC correlations 

than iFOD2 (although this difference was greatly diminished when using EDDY2). This might be partly 

because algorithms like FACT have difficulty reconstructing complex fibre pathways, and these 

pathways may be more susceptible to motion related effects, rather than reflecting any intrinsic 

robustness to motion. Regardless, it is still useful to know which tractography algorithms may be 

more affected by motion as this can be one factor to consider when trying to decide on an algorithm 

to use, or when considering the application of other preprocessing steps. 

The effect of edge weighting 

Connectomes in which edge weights were defined using the mean FA of the connecting 

bundle exhibited stronger QC-SC correlations than those constructed using SSW edge weighting, 

particularly when used in conjunction with EDDY1. Other studies have noted that FA is highly 

susceptible to contamination by motion (Jones & Basser, 2004; Le Bihan et al., 2006; Tijssen et al., 

2009), and that FA-weighting increases the proportion of edges significantly correlated with motion 

estimates compared to SSW-weighting (Baum et al., 2018). This effect was diminished by the use of 

EDDY2, consistent with prior work showing that outlier-replacement and within-volume correction 

improves the measurement of FA in the presence of motion artefacts (Andersson et al., 2017, 2016). 

For both FA and SSW edge weighting, inconsistent long-range connections displayed the 

strongest motion effects, although these effects were neither systematically positive nor negative. 

Long-range connections tend to pass through deep WM in addition to superficial WM areas, with the 

former having higher FA values/simpler FOD shapes, but they also inherit a greater number of 

opportunities to stray from the ideal reconstruction trajectory; this increases the prospect of 

motion-related image contamination biasing connectivity estimates in one direction or the other 

depending on the surrounding WM fibre geometry and the resulting erroneous trajectories. 

However, because inconsistent edges by definition have fewer non-zero values to use in calculating 

QC-SC values, this absence of zero values may result in overinflated correlations with motion 

estimates. Indeed, when we included all edge weight values (i.e., did not exclude subjects whose 

edge weight was zero) in the estimation of QC-SC correlations, the magnitudes of these correlations 

decreased. Although the inclusion of zero edge weights did not have a major effect on the 

proportion of significant QC-SC correlations, it did change the relationships between QC-SC, edge 

consistency, length, and weight variability, becoming more uniform across the range of edge weights 

in line with previous results (Baum et al., 2018). Therefore, the way in which QC-SC is calculated (i.e., 
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including or excluding zero edge weights) can alter the conclusions that one draws when assessing 

efficacy of motion contamination removal.  

Although we favour excluding subjects for whom there is no edge when calculating this 

value (as otherwise the correlation becomes more reflective of edge presence/absence than actual 

variability in edge weight values), this omission of subject data must also be considered in its own 

right: a pipeline where connectome edges disappear entirely due to motion should not be 

considered “robust to motion” only because values for those subjects where the edge is preserved 

do not correlate with motion estimates. 

Interactions between preprocessing steps 

Some preprocessing steps showed complex interactions between one another. For example, 

when using EDDY1, FA-weighted connectomes generated with ACT showed fewer significant QC-SC 

correlations than those generated with a GWM mask, whereas this trend was reversed for SSW-

weighted connectomes (i.e. using ACT resulted in more significant QC-SC correlations than GWM 

masking). When using EDDY2, the combination of ACT, iFOD2, and FA weighting yielded higher 

residual motion contamination than when using a GWM mask, reversing the trend observed 

following EDDY1, albeit with a reduced magnitude of that difference (the mean difference in the 

proportion of significant QC-SC correlations between pipelines using ACT or not being 24.4% for 

EDDY1, 6.46% for EDDY2). These findings indicate that the combination of different preprocessing 

steps can interact to influence residual noise structure in the connectome data. 

Preprocessing choices influence network architecture 

Our region-level analysis of the correlation between node strength (specifically rank thereof) 

and head motion revealed three noteworthy findings. First, as with the edge-level analysis, EDDY2 

dramatically reduced QC-strength correlations. Second, the spatial distribution of these correlations 

varied considerably across pipelines, indicating that there were no regional ‘hotspots’ consistently 

affected by motion: the specific brain regions affected by motion depend strongly on the 

preprocessing choices made. Finally, node strength rankings, which generally determine which 

nodes are considered to be hubs, varied considerably across different pipelines. Variability was 

smaller between those pipelines using SSW (mean correlation = 0.83, SD = 0.11). Correlations 

between pipelines using FA-weighting were more heterogeneous (mean correlation = 0.71, SD = 

0.19), and such pipelines were classified into three clusters where node strength rankings were 

internally consistent: one that combined iFOD2 with FA, and two that segregated FACT-based FA-

weighted connectomes into those that used ACT or a grey-white matter mask. Preprocessing choices 
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may thus have a significant impact on the final architecture of the connectome; as shown in Figure 8, 

nodes of high strength in visual cortex and rostral prefrontal cortex in one pipeline (panel B) have 

low strength in another pipeline (panel A). These variations result in very different hub locations in 

the connectome, and hence experimental conclusions that may be drawn from such. Although, the 

distinction between SSW-weighting and FA-weighting is known to result in connectomes with a very 

different distribution of weights, researchers must be cognisant of the strong dependence of 

experimental outcomes on the details of their reconstruction pipeline. 

Limitations 

Our analyses focused on preprocessing steps implemented in two software packages: FSL 

and MRtrix3. Although these are among the most popular in connectomics, many other programs 

are available, each of which rely on different models, algorithms, and assumptions. We opted here 

to focus on well-defined choices available within integrated packages, rather than exploring the full 

parameter space of possible combinations between steps implemented in different packages. Our 

findings represent an initial step that can be extended by further exploration of other tools and 

algorithms. 

We restricted our analyses to examining the fundamental decisions with respect to pipeline 

design, rather than the myriad tuneable parameters within each. For example, in tractography 

algorithms an FA or FOD amplitude threshold is often set so streamlines will terminate when they 

reach a voxel below that threshold. Given the vulnerability of FA to motion (Jones & Basser, 2004; Le 

Bihan et al., 2006; Tijssen et al., 2009), differences in this threshold may affect the extent to which 

residual motion artefacts bias tractography. From the few studies that have evaluated in detail how 

the tuning of tractography and diffusion parameters affects structural connectivity estimates, initial 

results suggest they can be consequential (Bastiani, Shah, Goebel, & Roebroeck, 2012; Li et al., 2012; 

Yeh et al., 2019). Given the large number of available diffusion and tractography approaches, it is 

important to understand the effect of these more fine-grained parameter choices, but these were 

beyond the feasible scope of our study. 

Finally, one difficulty in evaluating the impact of motion on structural connectivity is the 

absence of a ground truth. This limitation makes it difficult to clearly establish the extent to which 

head motion is driving false-positive or false-negative connections. Previous studies examining the 

validity of different tractography algorithms have used synthetic DWI data where ground truth fibre 

bundles are known (Maier-Hein et al., 2017; Schilling, Daducci, et al., 2019; Schilling, Nath, et al., 

2019), or have relied on comparisons to axonal tract-tracing data (Sinke et al., 2018; Thomas et al., 

2014). Simulations of head motion in a model where ground truths are known could allow for a 
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more detailed characterisation of how streamline reconstructions are affected under such 

conditions, which in turn would allow for a better understanding of how preprocessing steps are or 

are not sensitive to residual motion-related artefacts. 

Conclusions 

Our findings indicate that the choice of preprocessing pipeline strongly influences the extent 

to which motion may contaminate estimates of structural connectivity. These effects are 

heterogeneous throughout the network, affecting different network elements in a pipeline-

dependent way, and with complex interactions between pipeline components. The fact that the final 

topology and topography of the network is highly variable and depends on prior preprocessing 

choices is an important consideration when interpreting the results of connectomic analysis. 

Importantly, the use of outlier replacement and within-volume motion correction (as implemented 

in EDDY2) can dramatically mitigate the residual effects of motion on connectome construction; we 

therefore encourage the use of this approach in future dMRI studies. 

Code and data availability 

All the data used in this study is openly available online on Figshare at 

https://figshare.com/s/3310385f29a156c93ca3. Scripts to analyse this data are available on gitHub 

at https://github.com/BMHLab/MotionStructuralConnectivity. 
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Oldham, S., Fulcher, B., Parkes, L., Arnatkevicĭūtė, A., Suo, C., & Fornito, A. (2019). Consistency and 

differences between centrality measures across distinct classes of networks. Plos One, 14(7), 

e0220061. https://doi.org/10.1371/journal.pone.0220061 

Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of the efficacy, reliability, and 

sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage, 

171(December 2017), 415–436. https://doi.org/10.1016/j.neuroimage.2017.12.073 

Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and 

appearance for subcortical brain segmentation. NeuroImage, 56(3), 907–922. 

https://doi.org/10.1016/j.neuroimage.2011.02.046 

Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N., & Wandell, B. A. (2014). Evaluation and statistical 

inference for human connectomes. Nature Methods, 11(10), 1058–1063. 

https://doi.org/10.1038/nmeth.3098 

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but 

systematic correlations in functional connectivity MRI networks arise from subject motion. 

NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018 

Reveley, C., Seth, A. K., Pierpaoli, C., Silva, A. C., Yu, D., Saunders, R. C., … Ye, F. Q. (2015). Superficial 

white matter fiber systems impede detection of long-range cortical connections in diffusion MR 

tractography. Proceedings of the National Academy of Sciences, 201418198. 

https://doi.org/10.1073/pnas.1418198112 

Roalf, D. R., Quarmley, M., Elliott, M. A., Satterthwaite, T. D., Vandekar, S. N., Ruparel, K., … Gur, R. 

E. (2016). The impact of quality assurance assessment on diffusion tensor imaging outcomes in 

a large-scale population-based cohort. NeuroImage, 125, 903–919. 

https://doi.org/10.1016/j.neuroimage.2015.10.068 

Roberts, J. A., Perry, A., Roberts, G., Mitchell, P. B., & Breakspear, M. (2017). Consistency-based 

thresholding of the human connectome. NeuroImage, 145, 118–129. 

https://doi.org/10.1016/j.neuroimage.2016.09.053 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008979
http://creativecommons.org/licenses/by-nc/4.0/


Rohde, G. K., Barnett, A. S., Basser, P. J., Marenco, S., & Pierpaoli, C. (2004). Comprehensive 

approach for correction of motion and distortion in diffusion-weighted MRI. Magnetic 

Resonance in Medicine, 51(1), 103–114. https://doi.org/10.1002/mrm.10677 

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and 

interpretations. NeuroImage, 52(3), 1059–1069. 

https://doi.org/10.1016/j.neuroimage.2009.10.003 

Sabaroedin, K., Tiego, J., Parkes, L., Sforazzini, F., Finlay, A., Johnson, B., … Fornito, A. (2019). 

Functional Connectivity of Corticostriatal Circuitry and Psychosis-like Experiences in the 

General Community. Biological Psychiatry, 86(1), 16–24. 

https://doi.org/10.1016/j.biopsych.2019.02.013 

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., … Wolf, D. 

H. (2013). An Improved Framework for Confound Regression and Filtering for Control of 

Motion Artifact in the Preprocessing of Resting- State Functional Connectivity Data. 

NeuroImage, 64, 240–256. https://doi.org/10.1016/j.neuroimage.2012.08.052 

Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., … Gur, R. E. 

(2012). Impact of in-scanner head motion on multiple measures of functional connectivity: 

Relevance for studies of neurodevelopment in youth. NeuroImage, 60(1), 623–632. 

https://doi.org/10.1016/j.neuroimage.2011.12.063 

Schilling, K. G., Daducci, A., Maier-Hein, K., Poupon, C., Houde, J. C., Nath, V., … Descoteaux, M. 

(2019). Challenges in diffusion MRI tractography – Lessons learned from international 

benchmark competitions. Magnetic Resonance Imaging, 57(October 2018), 194–209. 

https://doi.org/10.1016/j.mri.2018.11.014 

Schilling, K. G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., … Landman, B. A. (2019). 

Limits to anatomical accuracy of diffusion tractography using modern approaches. 

NeuroImage, 185(October 2018), 1–11. https://doi.org/10.1016/j.neuroimage.2018.10.029 

Sinke, M. R. T., Otte, W. M., Christiaens, D., Schmitt, O., Leemans, A., van der Toorn, A., … Dijkhuizen, 

R. M. (2018). Diffusion MRI-based cortical connectome reconstruction: dependency on 

tractography procedures and neuroanatomical characteristics. Brain Structure and Function, 

223(5), 2269–2285. https://doi.org/10.1007/s00429-018-1628-y 

Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B. A., & Pearlson, G. (2008). 

Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008979
http://creativecommons.org/licenses/by-nc/4.0/


correlations. NeuroImage, 43(3), 554–561. https://doi.org/10.1016/j.neuroimage.2008.07.063 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained 

tractography: Improved diffusion MRI streamlines tractography through effective use of 

anatomical information. NeuroImage, 62(3), 1924–1938. 

https://doi.org/10.1016/j.neuroimage.2012.06.005 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2013). SIFT: Spherical-deconvolution 

informed filtering of tractograms. NeuroImage, 67, 298–312. 

https://doi.org/10.1016/j.neuroimage.2012.11.049 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2015a). SIFT2: Enabling dense quantitative 

assessment of brain white matter connectivity using streamlines tractography. NeuroImage, 

119, 338–351. https://doi.org/10.1016/j.neuroimage.2015.06.092 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2015b). The effects of SIFT on the 

reproducibility and biological accuracy of the structural connectome. NeuroImage, 104, 253–

265. https://doi.org/10.1016/j.neuroimage.2014.10.004 

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. 

https://doi.org/10.1002/hbm.10062 

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … 

Matthews, P. M. (2004). Advances in functional and structural MR image analysis and 

implementation as FSL. NeuroImage, 23(SUPPL. 1), 208–219. 

https://doi.org/10.1016/j.neuroimage.2004.07.051 

Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the 

human brain. PLoS Computational Biology, 1(4), 0245–0251. 

https://doi.org/10.1371/journal.pcbi.0010042 

Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews Neuroscience, 

15(10), 683–695. https://doi.org/10.1038/nrn3801 

Thomas, C., Ye, F. Q., Irfanoglu, M. O., Modi, P., Saleem, K. S., Leopold, D. a., & Pierpaoli, C. (2014). 

Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently 

limited. Proceedings of the National Academy of Sciences, 111(46), 16574–16579. 

https://doi.org/10.1073/pnas.1405672111 

Tijssen, R. H. N., Jansen, J. F. A., & Backes, W. H. (2009). Assessing and minimizing the effects of 

noise and motion in clinical DTI at 3 T. Human Brain Mapping, 30(8), 2641–2655. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008979
http://creativecommons.org/licenses/by-nc/4.0/


https://doi.org/10.1002/hbm.20695 

Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation 

distribution in diffusion MRI: Non-negativity constrained super-resolved spherical 

deconvolution. NeuroImage, 35(4), 1459–1472. 

https://doi.org/10.1016/j.neuroimage.2007.02.016 

Tournier, J. D., Calamante, F., & Connelly, A. (2010). Improved probabilistic streamlines tractography 

by 2nd order integration over fibre orientation distributions. Proceedings of the International 

Society for Magnetic Resonance in Medicine, 1670. 

Tournier, J. D., Calamante, F., & Connelly, A. (2012). MRtrix: Diffusion tractography in crossing fiber 

regions. International Journal of Imaging Systems and Technology, 22(1), 53–66. 

https://doi.org/10.1002/ima.22005 

Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., … Connelly, A. (2019). 

MRtrix3: A fast, flexible and open software framework for medical image processing and 

visualisation. NeuroImage, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137 

Tziortzi, A. C., Haber, S. N., Searle, G. E., Tsoumpas, C., Long, C. J., Shotbolt, P., … Gunn, R. N. (2014). 

Connectivity-based functional analysis of dopamine release in the striatum using diffusion-

weighted MRI and positron emission tomography. Cerebral Cortex, 24(5), 1165–1177. 

https://doi.org/10.1093/cercor/bhs397 

van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The 

Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(44), 15775–

15786. https://doi.org/10.1523/JNEUROSCI.3539-11.2011 

van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive 

Sciences, 17(12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012 

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., & Jeurissen, B. (2013). Weighted linear least squares 

estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls. NeuroImage, 81, 

335–346. https://doi.org/10.1016/j.neuroimage.2013.05.028 

Yeh, C. H., Smith, R. E., Dhollander, T., Calamante, F., & Connelly, A. (2019). Connectomes from 

streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly 

consequential. NeuroImage, 199(April), 160–171. 

https://doi.org/10.1016/j.neuroimage.2019.05.005 

Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2014). Spurious group 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008979
http://creativecommons.org/licenses/by-nc/4.0/


differences due to head motion in a diffusion MRI study. NeuroImage, 88, 79–90. 

https://doi.org/10.1016/j.neuroimage.2013.11.027 

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., & Breakspear, M. (2016). 

Connectome sensitivity or specificity: which is more important? NeuroImage, 142, 407–420. 

https://doi.org/10.1016/j.neuroimage.2016.06.035 

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. (2010). 

Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage, 50(3), 970–

983. https://doi.org/10.1016/j.neuroimage.2009.12.027 

Zhang, Y., Brady, M., & Smith, S. M. (2001). Segmentation of brain MR images through a hidden 

Markov random field model and the expectation-maximization algorithm. IEEE Transactions on 

Medical Imaging, 20(1), 45–57. https://doi.org/10.1109/42.906424 

Zhao, T., Xu, Y., & He, Y. (2019). Graph theoretical modeling of baby brain networks. NeuroImage, 

185(June), 711–727. https://doi.org/10.1016/j.neuroimage.2018.06.038 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.008979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008979
http://creativecommons.org/licenses/by-nc/4.0/

