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44 One sentence summary: Peripheral immune cell differentiation and signaling, upon initiation of
45  immunotherapy, reflects tumor attacking ability and patient response.
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Significance statement

The evolution of peripheral immune cell abundance and signaling over time, aswell as
how these immune cells interact with the tumor, may impact a cancer patient’s response to
therapy. By developing an ecological population model, we provide evidence of a dynamic
predator-prey like relationship between circulating immune cell abundance and tumor sizein
patients that respond to immunotherapy. This relationship isnot found either in patients that are
non-responsive to immunotherapy or during chemotherapy. Single cell RNA-sequencing
(scRNAseq) of serial peripheral blood samples from patients show that the strength of tumor-
immune cell interactionsis reflected in T-cells interferon activation and differentiation early in
treatment. Thus, circulating immune cell dynamics reflect a tumor’ s response to immunotherapy.

Abstract

The extent that immune cell phenotypes in the peripheral blood reflect within-tumor
immune activity prior to and early in cancer therapy is unclear. To address this question, we
studied the population dynamics of tumor and immune cells, and immune phenotypic changes,
using clinical tumor and immune cell measurements and single cell genomic analyses. These
samples were serially obtained from a cohort of advanced gastrointestinal cancer patients enrolled
on atrial with chemotherapy and immunotherapy. Using an ecological population modd, fitted to
clinical tumor burden and immune cell abundance data from each patient, we find evidence of a
strong tumor-circulating immune cell interaction in responder patients, but not those patients that
progress on treatment. Upon initiation of therapy, immune cell abundance increased rapidly in
responsive patients, and once the peak leve is reached, tumor burden decreases, similar to models
of predator-prey interactions; these dynamic patterns were absent in non-responder patients. To
interrogate phenotype dynamics of circulating immune cells, we performed single cell RNA
sequencing at serial time points during treatment. These data show that peripheral immune cell
phenotypes were linked to the increased strength of patients' tumor-immune cdll interaction,
including increased cytotoxic differentiation and strong activation of interferon signaling in
peripheral T-cellsin responder patients. Joint modeling of clinical and genomic data highlights
the interactions between tumor and immune cell populations and reveals how variation in patient
responsiveness can be explained by differences in peripheral immune cell signaling and
differentiation soon after the initiation of immunotherapy.

I ntroduction

Immune checkpoint inhibitors can treat a wide range of cancers by targeting immune
inhibitory pathways that cancer cells frequently coopt to avoid recognition and to regulate
immune proliferation, survival, and effector functions (1-11). However, clinical response varies
substantially, with approximately 40% of patients currently experiencing no objective benefit (12,
13). Numerous studies have investigated the role of tumor or tumor-associated immune cell
phenotypes in response to immunotherapy (14-19). Patient respons veness has been associated
with increased tumor cell mutational load and antigen production (20, 21), and also with greater
tumor-associated immune cell infiltration (22), signal production (14), and crosstalk (23).
However, the consensusis that these markers are weakly associated with patient response (24).
Furthermore, obtaining tumor tissue samplesis challenging, especialy if atumor’'s
immunosuppressive phenotypes evolve over time.

Disease can regulate host immune cell abundance and signaling (25-29). Recently, it has
been suggested that the frequency of specific peripheral blood immune cells can provide anon-
invasive pre-treatment indicator of immunotherapy responsiveness, at least in melanoma cancer
patients (30). As peripheral blood is easily accessible for serial analysis compared to tumor
biopsies, a key question is whether circulating immune cells can serve as a surrogate
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97  measurement of atumor’s interaction with the host immune cells and reflect response to therapy
98 early inthe course of treatment. If true, simple blood tests could be developed to guide patient
99  specific clinical management decisions following the initiation of immunotherapy.

100 To address these questions, we have measured the strength of patients' tumor-immune cell
101  interactions, using a data driven ecological mathematical model of the concurrent dynamics of

102  tumor and immune cell abundance. The strength of patients’ tumor-immune cell interactions was
103  thenredated to immune cell phenotypes experimentally measured using single cell RNA-

104  sequencing (SCRNAseq). Fitting the tumor-immune cell interaction model to clinical tumor

105  burden and immune abundance data revealed a consistently increased ability of responders

106 immune cellsto increase in abundance and indicated that improved tumor cells attack, drove

107  decreased tumor burden. The increase in circulating immune cell abundance is concordant with a
108  bolstered anti-tumor interferon signaling state of circulating immune cells and differentiation of
109  T-cellsto more cytotoxic states; as measured by sScRNAseq. This combination of mathematical
110  modeling and genomic analyses suggest that peripheral blood immune cell phenotypes reflect

111 cancer-immune cell interactions and can reliably reveal patient responsiveness to immunotherapy.
112

113

114  Results

115 1. Overview of trial and patient cohort

116 Patients with advanced Gl cancers (colorectal, gastroesophageal, pancreatic and biliary) were
117  enrolled inasingle institution phase | trial (NCT02268825) of modified FOLFOX6

118 (MFOLOFX6) chemotherapy regimen followed by a combination of chemotherapy and anti-PD-1
119  immunotherapy (pembrolizumab) (Fig. 1A). Patient response was assessed according to the

120  RECIST 1.1 guidelines, with responders showing complete/partial response (CR/PR) or stable
121 disease (SD), and non-responders exhibiting progressive disease (PD) (Table S1-S2). Confirming
122 our classification, 89% of responders survived more than 18 months after completion of treatment
123 compared to only 26% of non-responders (Fig. 1B). As reported previoudly, the tumor’s PD-L1
124  expression was not strongly predictive of patient response (24). Single cell phenotypic insights
125  (Fig. 1C-D) were linked to immune cell function by: i) mathematically modelling patients’ time
126 courses of tumor burden and immune abundance, ii) fitting this model to the clinical data, iii)

127 analyzing temporal changesin the growth rate of the tumor and immune cells and iv) relating

128  patient specific model predictions to ScRNAseq peripheral immune cell phenotype (Fig. 1E).

129
130 2. Patient specific immune function linked to immunotherapy success
131 Time courses of tumor burden and immune abundance (peripheral blood mononuclear cdlls:

132 PBMC's) were constructed for each patient (Fig. 1Ei). Lymphocyte and monocyte abundance
133 was strongly positively correlated with total immune abundance (Fig. S13), indicating a tight

134 coupling of their population dynamics and motivating the modelling of total immune counts.

135 Tumor burden was measured by combining information from cancer specific antigen biomarkers
136 and RECIST 1.1 measurements of tumor size, using a Gaussian process latent variable model (S
137 Appendix). The changes in patients’ tumor burden and immune cell abundance during the trial
138 were described mathematically by a dynamic model of cancer-immune cdll interactions (Fig.

139 1Eii). In ecology, interactions between species, where the survival of one depends on attack by
140  another, can be described using predator-prey equations. An adaptation of this ecological theory
141  allowed usto describe the interactions between populations of tumor and immune cells within
142 individual patients. We estimated the strength of thisinteraction, by statistically matching the
143 changing frequency of immune cells and tumor size to model predictions. In the model, the tumor
144  cells(T) are attacked by immune cells (1) and tumor cells induce increase immune cell
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145  recruitment. Chemotherapy (C) kills both tumor and immune cells, whilst PD-1i immunotherapy
146  (P) impactsimmune proliferation, recruitment and cytotoxic tumor activity (Fig. 2A).

147 Changes in tumor and immune cell abundance over time were accurately described by

148  statistically fitting the mathematical model to the clinical data, using a Bayesian hierarchical

149  approach (Fig. 2B). Thisanalysis captured the biological differences between tumor and immune
150  populations of responders and non-responders and the substantial variation between patients

151  within these response categories. Key biological rates that were estimated included: @) how

152 effectively immune cells attack the tumor and b) the impact of chemotherapy on tumor and

153  immune populations. Thisidentified the consistently improved ability of responder patients

154  immune cells to attack the tumor, compared to non-responders (Fig. 2C).

155 The timing of most rapid growth/decline of tumor and immune populations were determined
156 by analyzing the population’ s relative growth rates (RGR= speed of population change,

157  positive=growth, negative=decline) (Fig. 2D-E). The response dynamics were not dependent on
158  the patient’s cancer tissue type. The tumor burden of the responders declined more rapidly during
159  the chemotherapy phase and continued to decline (negative RGR) over time (Fig. 2D). The

160  exception isatime window around day 100 when the immune population was still increasing but
161  the chemotherapy effect was generally decreased; once immune abundance reached a critical

162  level, the tumor began to shrink once again and tumor burden remained substantially below the
163  pre-treatment level for the duration of thetrial. Interestingly, responders’ PBMC’ s were also

164  initially less abundant and more sensitive to chemotherapy (more negative RGR) (Fig. S14).

165 However, their immune cell abundance was boosted following the addition of immunotherapy
166 (Fig. 2D; spikein PBMC’s RGR around days 48-100). Their immune abundance then stabilized
167  atthislevel or even increased gradually during the rest of thetrial (overall positive RGR).

168 In contrast to responsive patients, the tumor burden non-responsive patients declined very
169 little during the pre-immunotherapy chemotherapy phase, and only marginaly in the first weeks
170  of immunotherapy (Fig. 2D). Subsequently, tumor growth accelerated, and the tumor burden

171 returned to the pre-treatment level within just 80-150 days. Further, non-responders exhibited a
172 continual declinein immune cell number (negative RGR over most of thetrial) and did not

173 experience the immunotherapy induced boost in immune population growth following the

174  addition of immunotherapy or benefit from immunotherapy. Model analysis showed that prior to
175  immunotherapy, the responders’ immune populations less effectively regulated tumor growth

176  (Fig. 2E). However, after immunotherapy induced the growth spike in the responders’ immune
177 population, they became more effective at regulating tumor growth. In contrast, the ability of non-
178  responders immune cells to regulate tumor growth declined continually during the trial and very
179  little benefit of immunotherapy was detected.

180
181 3. Immune cell populationsidentified using SCRNA-Seq profiles
182 To understand how phenotype changes of circulating immune cells related to the population

183  dynamics and cell interactions (detailed above), we analyzed phenotypes of PBM Csisolated at 3
184  time pointsduring thetria (Fig. 1A, C). Samples at cycle 1 (C1) provide the baseline before

185  treatment, cycle 3 (C3) reflects treatment with only mFOLFOX6 chemotherapy, and cycle 5 (C5)
186  reflect treatment with both chemotherapy and anti-PD-1 immunotherapy. A total of 13 patients
187  (responder n=7, non-responder n=6) were analyzed by scRNAseq (Fig. 1C). The transcriptional
188 profile of 70,781 immune cells was obtained, revealing adiverse set of 35 cdll types. All mgor
189  PBMC lineages were identified using canonical gene expression markers and analysis of a

190  uniform manifold approximation and projection (UMAP) (Fig.3, Fig. S1-S3, Table S3).
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The cell type annotations were validated by comparing our transcriptional profiles and
corresponding annotations with published studies of PBMC’s (31) and tumor infiltrating immune
cells (32). We found that 96.5% of T-cells from the PBMC database and 94.1% of T-cells from
the tumor infiltrating dataset were correctly predicted using a machine learning classifier trained
using our annotations (Fig. 3B, Fig. S3). A similarly high agreement was found between our
annotations and published annotations when examining cell type specific marker genes and
comparing the cell type connections (Fig 3B, Fig. S3-$4). As afinal validation, we profiled 8
patients (6 responders, 2 non-responders) with both scRNAseq and flow cytometry (Fig. S5). An
approximate 1.1 correspondence was found between the abundance of immune cell types
obtained using each method (Fig. S6). Immune cell numbers were quantified in two ways: i) the
frequency of cedlsrefersto the percentage of cellsin asample, ii) the abundance refersto the
measured number of cells per unit of peripheral blood.

4. Signaling activation in responders T-cells upon initiation of immunotherapy

Signaling dynamics upon initiation of immunotherapy were examined through single cell
pathway activity analysis, using single sample Gene Set Enrichment Analysis (SSGSEA) scores
(33) of C2-level and Hallmark pathway signatures (34, 35). Pathway differences before therapy,
during chemotherapy and during the early-immunotherapy phase of the trial were identified using
arandom effects linear modeling framework (Fig. 4). This approach partitioned the effects of
chemotherapy and immunotherapy on pathway activity while accounting for individual variability
in expression. The statistical significance of P-values was corrected using Holm’s conservative
multiple comparison correction procedure.

Overal, immune cell gene expression was not greatly altered during chemotherapy treatment
(Fig. 4A, I€ft panel). In contrast, after the start of anti-PD-1 treatment, there were a subset of
pathway changes common to both responder and non-responder’ s monocytes and T-cells (Fig.
4A, middle panel). Further, amgjority of signaling changes were identified that were specific to
responders (Fig. 4A, right panel, Table S3). For each immune cell type, the most significantly
altered GSEA pathways were classified into categories reflecting major biological processes.

Strikingly, interferon signaling pathway activity was significantly upregulated in CD4" and
CD8" T-cdlls of responder patients following theinitiation of anti-PD-1 treatment (C3-C5)
(CD4": t=19.00, p<0.001, CD8": t=16.00, p<0.001) (Fig. 4B, Fig. S7). CD8" T-cells of non-
responders showed alesser upregulation of interferon signaling after the start of anti-PD-1
(t=7.61, p<0.001), while CD4" T-cells show no such increase. Upon initiation of immunotherapy,
arange of interferon related genes were upregulated in the CD8" and CD4" T-cells of just the
responders (Fig. 4C, Fig. S8). Responders CD8" cells showed greater upregulation of the IFN-y
gene (p<0.01) and IFN target genes (IRF1/2/7, STAT1/2 and interferon-stimulated genes (Table
$4). In contrast, non-responders’ CD4" and CD8" T-cells had greater upregulation of IFN
repressing genes (e.g. SOCS1 and SOCS2) (p<0.05), indicating impaired transduction of IFN
signaling upon anti-PD-1 treatment (36). Inflammatory response pathways were also upregulated
in T-cells of responders (Fig. 4B), including CD8" T-cells of responders prior to the onset of any
treatment (t=5.14, p<0.001) and after addition of anti-PD-1 (t=3.8, p<0.001). Inflammatory genes
induced with anti-PD-1 include major histocompatibility complex (MHC class I/11) sorting and
processing genes (e.g. CD74, HLA-A/B/C and PSM) as well as NF-xB pathway genes (NFKB1,
IKBKB, MYD88) in responders CD8" and CD4" T-cells (Fig. 4C, Table S4). The NF-xB
activation of responders’ T-cells may suggest a shift to a pro-survival state. Overall, this shows
the activation of these peripheral cells and the increased signal transduction in responders.
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5. Patients responsive to therapy exhibit changesin monocyte signaling during treatment

Monocytes also exhibited different phenotypes in responders versus non-responders but with
distinct signaling changes from those of T-cells. Before treatment (C1), monocytes from
responders had significantly higher activation of three pathways representing related but distinct
measures of monocyte developmental states: growth factor production (t=9.2, p<0.001),
inflammation (t=6.1, p<0.001), and differentiation (t=6.3, p<0.001) (Fig. 4D). While
chemotherapy decreased each of these pathway scores in both responders and non-responders,
patients responsive to anti-PD1 treatment exhibited a significant reduction in all three pathways
after anti-PD-1 treatment (p<0.001 for each pathway) while non-responders showed a significant
increase (p<0.001 for each pathway). During immunotherapy, responders and non-responders
monocytes showed specific gene dysregulation of: growth factor, IFN, TNF, NF-xB, and MHC
genes (Fig. 4E, Fig. $9). In addition, genes promoting the migration and recruitment of other
immune cells types wereinitially upregulated in responders’ monocytes (CXCR4, CCR and CCL
family members) (37) (Table $4). Overall, monocytes showed pretreatment differencesin
signaling and divergent developmental trajectoriesin responders versus non-responders.
Activation of monocytes after the start of anti-PD-1 may reflect responses to the upregulation of
IFN and cytokine gene expression observed in responders T-cells.

6. During therapy, T-cells of responders differentiate, while non-responder CD8 T-cdlls
lose cytotoxicity

The major phenotypic differences within each immune type were identified, usng pseudotime
reconstruction of sScRNAseq profiles (Fig. S10). By overlaying the cellular phenotype scores onto
aUMAP of the expression profile, we validated that the phenotypes reflect the key sources of
transcriptional variation within immune cell types (Fig. 3D). The CD4" T-cell phenotypic
gradient captured the continuum of differentiation from naive to effector helper T-cells (Fig. 3D
left panel). Similarly, the CD8" T-cell phenotype gradient captured differentiation from anaive to
highly cytotoxic state. In both cases, naive, centra memory, and effector T-cell subtypes aligned
clearly along the continuous phenotype gradient and in the expected order.

We next evaluated the distribution of T-cell phenotypes in the peripheral blood of responders
and non-responders and examined how they shifted during the course of therapy (Fig. 5A-B).
Before treatment (C1), responders had a higher frequency of undifferentiated (naive) CD4" T-
cells, which may have been symptomatic of the tumor-mediated immune suppression (Fig. 5B).
In contrast, non-responders had more differentiated CD4" T-cells, especially CD4" EM célls (t=-
7.5, p<0.001) (Fig. 5B). This difference remained following the onset of chemotherapy (C3);
however, after immunotherapy (C5), the CD4" T-cells of responders showed a significant shift
towards increased differentiation (t=9.9, p<0.001) and converged with non-responders (Fig.
S11a). Interestingly, responders had a higher frequency of cytotoxic differentiated CD8" T-cells
than non-responders, both before and during treatment (Fig. 5B, Fig. S11b) (F=16.8, p<0.001).
With the addition of anti-PD-1, responders CD8" T-cells became even more cytotoxic (t=3.9,
p<0.001), while non-responder’s CD8" T-cells shifted to aless cytotoxic state (t=-4.0, p<0.001).

7. Monocytes of responders were activated after the start of anti-PD-1 therapy and the
frequency of classical monocytes was associated with response

Within monocytes, the expression of interferon response genes was the major axis of
phenotypic variation (Fig. 3C-D right pandl). Monocytes with high interferon response scores
(including dendritic cells) had upregulation of IFN stimulation genes (e.g. IFIT1/3, PSMEZ2, and
ISG15) and higher MHC class Il expression (e.g. HLA.DPAL, HLA.DPB1, and HLA.DMA). In
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contrast, cells with low interferon scores had upregulation of proliferation (e.g. FOS, JUN, and
JUNB), differentiation (e.g. BTG1, RGS2, and DDX17), inflammation (e.g. SELL, S100A12, and
CD36) and migration (e.g. VCAN and VIM) genes. After immunotherapy, monocytes with the
highest interferon score became prevalent in responders (t=15.463, p<0.001) (Fig. 5C, Fig. S14d).
Responder patients shifted from having the lowest to the highest average level of interferon
activation and MHC class Il gene expression (Fig. S12). In contrast, the distribution of interferon
response in non-responder monocytes remained relatively constant across the trial period.

8. Linking immune function and phenotypes of the peripheral blood

Finally, we linked the patient specific estimates of immune attack and chemotherapy
sengitivity to the single cell transcriptomic observations of increased immune cell signaling and
phenotypic differentiation states in responders (Fig. 5D-E). Patients whose immune population
had a greater ability to attack tumor cells and response to immunotherapy were found to have
CD8" T-cells with higher activity of interferon gamma signaling pathways and more
differentiated cytotoxic CD8" T immune cells (Fig. 5D). Finally, patients whose monocytes
showed lower activity of interferon gamma response pathways (classical monocyte differentiation
score) before treatment had tumor cells that were significantly less sensitive to chemotherapy
(Fig. 5E).

Discussion

Our findings indicate that peripheral blood immune cell phenotypes reflect the strength of
tumor-immune interactions before or early in the course of immunotherapy, and these phenotypes
areindicative of patient responsiveness. By combining sScCRNAseq analysis of peripheral immune
phenotypes with dynamical models of patient specific clinical data, we linked peripheral immune
cell phenotypes with the strength of patients’ tumor-immune cdll interactions. Increased
interferon signaling and differentiation of T-cells was related to an increased ability of immune
cellsto attack cancer cells, regulate tumor growth and drive patient responsiveness to anti-PD-1
therapy. These results provide motivation for studies interrogating the utility of peripheral blood
phenotypes as a biomarker of patient responsiveness to therapy.

Although mathematical modeling has provided important insights into cancer-immune cell
interactions and cancer immunotherapy, models incorporating patient specific clinical or
phenotypic data had not previously been developed (38-45). Previous theoretical models that do
not include patient data have described the potential for cancer-immune interactions to act as
“predator-prey like” systems (reviewed in (45)). Thisstudy is a step forward in that it uses
temporal clinical and single cell immune phenotyping for data driven ecological modelling of
patient-specific responses during treatment.

The cancer-immune interaction model predicts that in general, patients whose tumors have
an immunosuppressive phenotype (e.g. expressing high levels of PD-L1) will have alower
immune cell count prior to treatment, as immune activation and proliferation is inhibited. Hence,
we expect that patients with alow PBM C abundance should benefit most from anti-PD-1 immune
re-activation therapy. In agreement, we observed significantly lower PBMC abundancesin
responders at the onset of therapy (Fig.S15a). These patients showed gradually increasing
immune counts during therapy, in contrast to declines observed in non-responders. Model
analysisindicated that, at the onset of thetrial, the immune cells of responders had a substantially
weaker effect of tumor regulation compared to those in non-responders, primarily due to the low
immune cell count (Fig.S15b). During immunotherapy, the responders’ immune population
gradually increased and their tumor regulatory effect increased towards the level of the non-
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333  responders. Thisleadsto the prediction that, unlike chemotherapy, the tumor’s response to

334  immunotherapy will be delayed. Thisis ageneral prediction that emerges from predator-prey
335  models. Due to fewer immune cells present and few cancer antigens being presented to initiate
336 further immune response prior to therapy, several rounds of the cancer-immune response cycle
337 are needed for the immune population to rebuild following PD-L1 suppression.

338 Our modd also predicts that chemotherapy acts as a double edged sword when used as a
339  combination therapy with immunotherapy. It has the positive effect of inducing tumor cells death
340  and promoting immune cell recruitment; however, it also killsimmune cell progenitors, reducing
341 theactive immune cell abundance. Therefore, too high a chemotherapy dosage may inhibit the
342 effectiveness of immunotherapy, whilst too low alevel may not promote immune re-activation.

343 The analyses of T-cell and monocyte signaling states, before and during therapy, suggest
344  that circulating immune cells rapidly shift phenotypes during the treatment in Gl cancer patients.
345  Wesuggest that this peripheral immune signaling activation is a valuable early marker of patient
346  responsiveness. Theinterferon surge after initiation of anti-PD-1 therapy, seen only in

347  responders T-cells and monocytes, indicates that treatment with anti-PD-1 is promoting

348  differentiation and activation of T-cdlls, resulting in antitumor activity, cytokine release, and

349  stimulation of the immune system. In particular, only responders CD8" T-cells upregulate IFN-y
350 signaling and immune cell activation and anti-tumor effect (46). Despite PD-1 blockade, non-
351 responders immune cells were not fully activated, indicating that they struggle to detect cancer
352 cells. Possibly, low cancer antigen release, reduced activation of antigen presenting cellsand T-
353  cels, and prevented initiation of an immune response. Additional studies support an interaction
354  of chemotherapy with immunotherapy in some settings (47-51). Using our ScCRNAseq time

355  courses, we also detected that immunotherapy induces a shift to a more differentiated CD4" T-cell
356 state. Long term chemotherapy may increase the production of PD-1 expressing regulatory CD4"
357 EM cdls, diminishing pembrolizumab availability to tumor-specific CD8" T-cells (Fig.S16).

358 Additionally, patients may have been non-responsive because cancer cells had PD-1

359  independent resistance mechanisms of immune avoidance. Indeed, we found that non-responder’
360 classical monocytes had low MHC |l receptor expression suggesting lower antigen recognition
361  and presentation. They also developed a more immunosuppressed phenotype, with upregulation
362 of CD86, aligand of both PD-1 and CTLA-4, and CD28, a costimulatory signal for activation of
363  T-cells. Contrastingly, under anti-PD-1 therapy responders’ monocytes showed activation of

364  costimulatory immune function (upregulated ISG and MHC).

365 Overal, we find that the abundance, signaling activity and differentiation state of

366  peripheral immune cells reflect tumor-immune cell interactions and patient response to

367  immunotherapy. The combination of total PBM C abundance and the relative infrequency of
368  differentiated/ activated effector T-cells likely provides a non-invasive upfront marker of

369  therapeutic responsiveness. Models of tumor-immune cell interactions, which use clinical and
370  phenotype data, allow quantification of the immune system’ s effectiveness in regulating tumor
371 growth and demonstrate the potential of using peripheral blood-based models to assess the
372 dynamics of the immune and tumor cell interactions during treatment.

373

374

375  Materialsand Methods

376

377  Study design

378 Cryopreserved peripheral blood mononuclear cell (PBMC) samples from patients with
379  advanced (stage 3/4) gastrointestinal cancers were collected from patientsin aclinical tria
380 (NCT02268825), and were treated with modified FOLFOXG6 regimen every 2 weeks (i.e. 1 cycle)
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381  until disease progression, death, or completion of the study. After 4 weeks of mMFOLFOXG6 (cycle
382  3), pembrolizumab (200 mg IV every two weeks) was added to mFOLFOX6. Before treatment
383  and then every two weeks, patients' blood was collected and PBM Cs were isolated and

384  cryopreserved. All human biological samples were collected after written informed patient

385 consent and ethics committee approval, following federal and institutional guidelines. The

386 University of Utah Institutional Review Board and the Huntsman Cancer Institute Protocol

387 Review and Data and Safety Monitoring Committee approved and monitored this study.

388 The primary outcomes of this phase | study was safety and dose limiting toxicities.

389  Patients were excluded if they had active infection, autoimmune disease, or were on chronic

300  systemic steroids or immunosuppressant’s. Samples from 13 patients (responder n=7, non-

3901  responder n=6) were used for sScRNAseq analysis at C1, C3 and C5 time points. Samples from

392 eight patients were utilized for both FACS and scRNAseq analysis (responder n=6, non-responder
303 n=2), to validate the consistency of inferences. Single cell transcriptional profiling provided

394 information for atotal of 70,781 cells from 13 patients.

395 Clinical response was measured by computed tomography scans and assessed according to
306 RECIST1.1 and immune-related response criteria (irRC) every 12 weeks. Responders were

397  defined as patients with clinical benefit at 24 weeks (complete response (CR), partial response

308 (PR) or stable disease (SD)). Non-responders included patients with progressive disease (PD

309  defined as > 20% increase in tumor volume or appearance of new metastatic lesions) between 12
400 and 24 weeks after the trial began. Median of previous history of chemotherapy treatment for

401  responders was 101 days and 42 days for non-responders (Table S1).

402
403  Single-cell RNA sequencing and annotation

104 PBMC samples analyzed using a Chromium 10X Cell Instrument (10X Genomics) (1200-
405 2000 cells/sample) and sequenced on an IHlumina HiSeq 2500 with 2x125 paired-end reads. Raw
406 BCL sequencing files were processed using Cell Ranger Single Cell Software Suite and samples
407 werealigned to hgl9 using the STAR aligner (52). Count tables were generated for 70,781 cells
408  and used asinput into Seurat v2 (53). No batch effects were found corresponding to time, patient
409  or cancer (Fig.S2 b-d).

410 To identify cell types, variable genes (n=1000) and non-overlapping known immune cell
411 marker genes (n=1480) were used for PCA (54-56). The first 25 PCs captured significant

412 variation, based on Seurat’s jackstraw analysis, and were used for graph-based clustering and
413  UMAP visualization (57). Mgor T-cell clusters were identified usng CD3D, CD4 and CD8

414  expression along with 500 T-cell specific variable genes and 273 known T-cell markers (56).

415  Differential expression markers for each cluster were generated using MAST(58). Pathway

416  sSGSEA enrichment scores were generated using the R package GSV A 1.30.0 (33). Immune cell
417  annotations were verified using two public datasets (31, 32) (Sl Appendix, Fig. S3-4) using

418  training and classification to measure similarity of annotation.

419
420  ldentifying gene set expression differ ences between responder s and non-responder s

121 Differences in the gene set expression of immune cell types were examined between

422 responder and non-responder patients (R). For each immune cell type, we examine the changesin
423 pathway (X) expression over time (T) and with the addition of the anti-PD-1 (P). A random

124  effects model with the following linear predictor () and error structure was constructed for each
425  pathway:
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sSGSEA[X];. ~ Normal(E(ssGSEA[X] ); ,0x%)
u; ~ Normal(0,0,,%)

126 Initial differencesin gene set expression between immune cells from responders and non-
427  responders, at the pre-treatment time point (C1), were captured by the group-specific intercepts
128 (B, vs.fr). Differential trendsin expression over thefirst 5 treatment cycles were described by
429  the group specific slope terms of responders and non-responders (B vs Brg). Differential effects
430  of the addition of anti-PD-1 on gene expression, over cycle C3-C5, were described by the group
431 specific anti-PD-1 treatment effect terms of responders and non-responders (Spr vS Bprr)-

432 Background individual variability in gene expression, independent of therapy impacts,
433 were accounted for by alowing the model intercept to vary among patients (u;). Significant
434 differencesin: A) initial pathway scores, B) temporal trend and C) anti-PD-1 treatment effects
435  between non-responders and responders were assessed using likelihood ratio tests. Multiple
436 comparison corrections were made using Holm’ s p-value correction.

437
438 Quantifying immune cell phenotypes

439 Magjor axes of phenotypic variation were identified separately for CD4"CD8" T-cells and
440  monocytes using affinity-based pseudotime reconstruction of cell states (60, 61). This allowed the
441 description of continuous spectrums of cellular states, asis produced by differentiation and

442  activation processes (Sl Appendix). These phenotypic axes were validated using comparisons to
443 PCA, zinbwave and UMAP dimension reduction (57, 63). Random effects linear regression was
444  used to test the statistical differences in immune population phenotype distributions between

445  responders and non-responders, whilst accounting for patient-specific random effects.

446
447  Modeling and measuring tumor-immune cell interactions
448  Overall measures of tumor burden

449 We assessed the strength of tumor-immune cell interactions and the predictability of

450  responsive to therapy by fitting a coupled tumor-immune population model to clinical patient data
451 (Sl Appendix Dataset S1). For each patient, atime series of tumor burden was first constructed,
452 by combining RECIST 1.1 measurements, from CT scans, with information from tumor burden
453  biomarkers (CA 19-9 and CEA), using a Gaussian process model (64). Gaussian process models
454  probabilistically combine these tumor burden data sources, allowing inference of tumor burden
455 (S| Appendix).

156
457  Tumor-immune interaction model

458 The dynamics of tumor and immune cell abundance were coupled with the

459  immunotherapy and chemotherapy dosing schedules, using a patient specific tumor-immune

460  population dynamic model. The ecologically inspired model (Equ.1) describes the patient specific
461  changesin tumor (T) and immune cell (1) abundance over time. Over short periods of time, the
462  increase or decrease in tumor and immune cell abundance was measured by the populations

163  relative growth rate (RGRy for tumor and RGR;for immune cells). Positive RGR values indicate
464  population growth, whilst negative values show population decline. The data driven model

465  decomposed this population growth rate into effects of different concurrent biological processes.
466  Tumor and immune cells interact in two main ways, with tumor cells being attacked by immune
467  cells (o) and also inducing increased immune cell recruitment (A). Therapeutic dosing impacts the
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468  cell populations and the strength of their interactions, with chemotherapy (C) killing both tumor
169  (ur) and immune cells (i), whilst PD-1i immunotherapy (P) influencesimmune proliferation
470 (), recruitment (B;) and cytotoxic tumor killing activity (8,,). Both tumor and immune cells
471 experience density dependent population growth (y; & y;), reflecting competition for resources
472 or growth stimulating molecules. Thisleads to the equations:

1dT

RGRT == —

TE:TT(l_yTT)_(a"'ﬁqu)I‘Zﬂ_T)[i] Ci, Equ.1
B

1dI —piq
RGR, = 7= (4 BP)Y(L= 1) + (A4 BP)T = ) Fli] Ci

473 We simultaneoudly fitted this model to all of the patients' time course tumor and immune
474  data, and accounted for the differing dosages and timings of therapy. To capture inter-patient

475  biological differences, patient specific parameters were assumed to be drawn from a hyper-

476  distribution of parameters, creating a hierarchical model structure. Model parameters were

477  estimated using Bayesian inference in Stan (65).

478
479  Linking immune phenotypes and model estimated biological processes

480 Immune cell phenotypes were related to the model estimates of: a) the effectiveness of
481  immune cells at attacking tumor cells and b) the tumor cell sensitivity to chemotherapy. These
482 biological estimates of immune and chemotherapy function (X) were regressed against the

483  peripheral immune cell phenotypes identified in: i) the GSEA pathway analysis and ii) the

484  pseudotime analysis of the major phenotypic variation within cell types. For each phenotype, the
485  significance of the relationship between single cell peripheral immune phenotypes (Y) and

486  immune/chemotherapy function (X) was assessed. A patient specific intercept was added to

487  account for non-independence of cell phenotypes within a patient. The random effects regression
488  mode was simply:

Yip~ Norm(By + Bx X + Urime)
u;~ Normal(0,0,,%)

489  The significance of the relationship between peripheral phenotypes and immune/chemotherapy
490  function was assessed using a likelihood ratio test, with the sample size corrected for the non-
191  independence of data points.
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578  FigureLegends.

579

580  Figurel: Overview of the clinical trial treatment strategy, patients classification, immune
581 single cell analysis pipeline and tumor -immune interaction modelling. (A) Advanced
582 gastrointestinal patients received mFOLFOX6 chemotherapy at the beginning of the trial
583 for two 14-day cycles. From cycles 3 through 12, they received both mFOLFOX6 and

384 anti-PD-1 immunotherapy. At baseline (cycle 1=C1), cycle 3 (C3), cycle 5 (C5) blood was
385 collected and PBMCs were isolated and frozen. (B) Overall survival of responders and
386 non-responders. (C) PBMC analyses using single-cell RNA sequencing and flow

587 cytometry validation. (D) Flow chart of patient sample selection criteria, showing how
588 patient samples were filtered and analyzed. (E) Mathematical modelling flow chart,

389 depicting how i) clinical tumor burden data was synthesized and linked to concurrent

390 measurements of PBMC abundance and ii) how a dynamic model of tumor-immune cell
391 interactions, fitted to this data, allow inference of key biological processes (e.g. the ability
392 of immune cellsto kill tumor cells).

593

504  Figure2: Patients immune cell function in attacking cancer cellsand regulating tumor

395 growth measured using a data driven tumor -immune cell interaction model. (A)

396 Schematic of the mathematical model describing the strength of tumor-immune cell

597 interactions and how their abundances change within a given patient over time. Blue

398 arrows indicate recruitment (triangle tip) and attack interactions (circletip) between cell
399 types. Green arrows show how immunotherapy influences these interactions and immune
700 population growth. Red arrows indicate chemotherapy effects. Curved arrows indicate

701 intrinsic growth and density dependence within cell types. (B) Statistically fitting the

702 mode to clinical data allows an accurate description of observed tumor burden and PBMC
703 abundance across patients and over time. (Dashed black line=1:1 model -data

704 correspondence). (C) Histogram showing that responder patients consistently have

705 immune cells with a higher ability to attack cancer cells. (D) Comparison of the speed of
706 growth or decline of the tumor and immune cell populations during the trial, as measured
707 by the relative growth rate of each component between observations. The distinct burst of
708 immune activation in responders (LHS panel) and subsequent tumor decline was

709 negligible in non-responders (RHS panel). Solid lines show mean trajectories and shaded
710 regions signify model uncertainty intervals (vertical dashed line= start of immunotherapy,
711 horizontal grey dashed line= stable population size). (E) Tumor-immune interaction model
712 predictions of the ability of the immune cells of responders and non-responders to regulate
713 the growth of the tumor during the trial.

714

715  Figure 3: Validated classification of immune cell types, T-cellsand monocyte subtypes and
716 identification of the major phenotypic variation within these populations. (A)

717 Uniform Manifold Approximation and Projection (UMAP) of the single cell RNA

718 sequencing (ScCRNAseq) data of all patient’s PBM C’ s across analyzed time points. Mg or
719 PBMC types are labeled (RBC= red blood cells, pDC= plasmacytoid dendritic cells). (B)
720 The agreement between our predicted clusters and public classifications of cell types

721 annotated in two published datasets. Top pane (machine learning prediction): the

722 digtribution of immune cells in public datasets predicted to our annotation clusters by

723 Random Forest learner using our predicted clusters as atraining set. Bottom panel

724 (Shared marker genes): the number of shared genes between public datasets and our

725 predicted clusters (SI Appendix; NKT=Natural killer T-cells, DCs=Dendritic cells). (C)
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726 UMAP identification of CD4" and CD8" T-cell subclusters (Te4 = Follicular helper) and
727 monocyte subtypes. (D) UMAP representing phenotypic gradients of CD4" differentiation
728 (top of left subplot: lowest score at right and highest to the left), CD8" cytotoxic

729 differentiation (bottom of left subplot: lowest score towards the top right and highest at the
730 bottom) and monocyte interferon activation.

731

732 Figure4: Pathway signaling activation of multipleimmune cell typesin responder s but not
733 non-responder sfollowing initiation of immunotherapy. (A) The number of molecular
734 pathways impacted by chemotherapy and PD-1 immunotherapy and whether PD-1

735 immunotherapy effects are specific to responders (black bars) or common across patients.
736 The “chemotherapy all patients’ panel shows the numbers pathways changing expression
737 between time C1 and C3 in different-cell types. The “immunotherapy all patients’ panel
738 shows the numbers of pathways showing trends in expression between C3 and C5 which
739 are common to responders and non-responders. Finally, the “immunotherapy responders’
740 panel shows the numbers of pathways with trendsin expression that are unique to

741 responder patients. Pathways with very differing trends in responders and non-responders
742 are exemplified on the right sde. (NK = Natural killer, ssGSEA=single sample Gene Set
743 Enrichment Analysis). (B) Interferon and inflammatory signaling of CD4" and CD8" T-
744 cellsis upregulated in responders more than non-responders. GSEA pathway categories
745 reflect the most enriched types of pathways for each cell type. Individual GSEA pathways
746 exhibiting differential trendsin expression between responders and non-responders are
747 shown (dashed lines). Overall trends of pathways within each cellular process (solid lines)
748 and variation (shaded regions) are overlaid (IFN=Interferon). (C) Heatmap of changesin
749 gene expression of responder and non-responder CD4" and CD8" T-cells over time. IFN,
750 cell death, NF-xB, MHC (major histocompatibility complex) | & Il and migration

751 signature genes are displayed as the proportion of maximum level of each gene. Genes not
752 detected in acell type are shaded grey. (D) Differences in inflammatory signaling,

753 differentiation and growth factor production between the monocytes of responders and

754 non-responders showing overall trends of pathways within each cellular process (solid

755 lines) and variation (shaded regions). Trends of pathways exhibiting differential

756 expression patterns in responders and non-responders are indicated by dashed lines. (E)
757 Heatmap of changes in gene expression of responder and non-responder monocytes over
758 time. Interferon, cell death, NF-xB, TNF-a, growth factors production, and migration

759 signature genes are displayed as the proportion of maximum level of each gene. Statistical
760 significance of differences between responders and non-responders was determined for
761 each gene and corrected for multiple comparisons. C1= cycle 1: baseline, C3= cycle 3:

762 chemotherapy mFOL OFX6 regimen, C5= cycle 5: Chemotherapy + anti PD-1

763 immunotherapy. One cycle = 14 days.

764

765  Figure5: Peripheral blood immune cell phenotypeslinked to patients immune cell function
766 and immunother apy responsveness. Responsiveness to immunother apy depends on
767 circulating memory T-cell differentiation and monocyte interferon activation prior to
768 therapy. (A) Comparison of CD4" and CD8" T-cell subtype differentiation scores (all

769 subtypes differ with a Tukey test) (EM=Effector memory, EMRA=Effector memory

770 CD45RA*, CM=Central memory). (B) Frequency of CD4" and CD8" T-cells with

771 different states of differentiation/cytotoxicity in responders and non-responders at each
772 treatment time point. (C) Frequency of monocytes with different interferon (IFN)

773 activation states in responders and non-responders at each time point. (D) The ability of
774 patients’ immune cells to attack cancer cells and also the tumor’ s sensitivity to

775 chemotherapy was linked to immune cell signaling and differentiation phenotypes. For
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776 each patient, the single cell variability in immune cell phenotypes are presented as

777 individual violins densities. Black line indicates the relationship between a patient's

778 average immune cell phenotype and the strength of immune cell attack /chemotherapy
779 sensitivity. Shaded regions = credible intervals for the predicted range of phenotypes of
780 95% of the immune célls, given the strength of immune cell attack/chemotherapy

781 sensitivity.

782

Circulating immune cell phenotype dynamics Page 18 of 18


https://doi.org/10.1101/2020.03.24.993923
http://creativecommons.org/licenses/by-nc-nd/4.0/

(A)Clinical trial design (B) ., -
AntiPD-1
mFOLFOX6 Sta Treatment timeline
Start L —>

504 *x P=0.0047

(] c2 GC3 Ccs (] c12
Larr-rmd

L - - lResponders (n=10)

0 @ Non-responders (n=15)
/ / / / 0 5 10 15 20 25

Time (months)

Percent survival

i (D)

(C) Experimental flowchart [ Peripheral blood immune samples
Sequencing =25

» ‘ *XR @ "

TACGCGTGGCAAT %

AreeTACTACICSS p- 4 % @

— =—p  TCATGACTACTIAA TR — & I Defined patient response to therapy I

@ GCCTGCTT GAATTC

ATGCTAGTCTG n= 19
. . Cell Type
Blood PBMC isolation Si ngIe-CeII Identification
Expression Profile
T c
e ~ _ SCRNA 88 Flow
ST Mathematical Sequencin 2 8 cytometry
i modelling g 98 12
- - =i & n=13 n=8

Staining

Flow cytometry

(E) Mathematical model flowchart: tumor-immune cell interactions
i) Construct time course of tumor and immune abundance for each patient:

2 2 \ Tumorburden Immune abundance
Q>
) CA19-9 —_
a2 © = | @ RECIST .
@ c| SCEA D'E : g
8 -GQJ’ E S evaluations 1§.
c e « O ~
S| .. S < =
o . - E c
2 < + 3
Qo o
+ ~ E 1 o
—_ ~ GJ
g o . b3 z
25 = © | o
gy SQol
<0 x =
5 § “ s Day since diagnosis Day on trial
Oo
% = L & Tumor burden probabilistic prediction:
Day since diagnosis — Median ---- 0.5 -=- 0.9

-

ii) Model how strongly immune cells interact and attack tumor and
correlate to pathway activity:

Responder _ Non-responder
l !,w

Day on trial

"

)

Points=Data| Shaded regions=Model e xpe ctation Estimated immune-tumorinteraction

Probability given
clinical data
Pathway activity

Observed and expected
tumorburden

Patient specific estimated
immune attack


https://doi.org/10.1101/2020.03.24.993923
http://creativecommons.org/licenses/by-nc-nd/4.0/

i) Fit tumor-immune interaction model & estimate biological parameters (e.g. how effectively immune cells attack the tumor)
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