
  
 

                                               Circulating immune cell phenotype dynamics                                                                                           
Page 1 of 18 
 

Title  1 
Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell 2 
interactions in patients during immunotherapy 3 

 4 

Authors 5 
Jason I Griffiths1,2†, Pierre Wallet1†, Lance T. Pflieger1†, David Stenehjem3, Xuan Liu4, 6 
Patrick A. Cosgrove1, Neena A. Leggett4, Jasmine McQuerry1,5,6, Gajendra Shrestha6, 7 
Maura Rossetti7, Gemalene Sunga7, Philip J. Moos6, Frederick R. Adler2, Jeffrey T. 8 
Chang4, Sunil Sharma8*, Andrea H. Bild1*  9 
 10 

Classification 11 

BIOLOGICAL SCIENCES: Systems Biology 12 
 13 
Affiliations  14 

1 Department of Medical Oncology & Therapeutics Research, City of Hope National 15 
Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.  16 
2 Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, 17 
UT, 84112, USA. 18 
3 College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.  19 
4 Department of Integrative Biology and Pharmacology, School of Medicine, School of 20 
Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX, 77030, 21 
USA.  22 
5 Department of Oncological Sciences, School of Medicine, University of Utah, 2000 23 
Circle of Hope Drive, Salt Lake City, UT 84112, USA. 24 
6 Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 25 
30 South 2000 East, Salt Lake City, UT 84112, USA. 26 
7 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, 27 
University of California Los Angeles, CA 90095, USA. 28 
8 Translational Oncology Research & Drug Discovery, Translational Genomics Research 29 
Institute (TGen), 445 N. Fifth Street, Phoenix, AZ 85004, USA. 30 
† These authors contributed equally to this work 31 

Corresponding Authors:   32 
Andrea Bild, Ph.D. Professor, 33 
Department of Medical Oncology and Therapeutics 34 
City of Hope Comprehensive Cancer Institute 35 
1218 S Fifth Ave, Monrovia, CA 91016 36 
Email: abild@coh.org 37 

Sunil Sharma, MD, FACP, MBA, 38 
Translational Genomics Research Institute (TGen) 39 
445 N. Fifth Street, Phoenix, AZ 85004 40 
Email: ssharma@tgen.org 41 

 42 
 43 
One sentence summary: Peripheral immune cell differentiation and signaling, upon initiation of 44 
immunotherapy, reflects tumor attacking ability and patient response. 45 
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Significance statement 48 

The evolution of peripheral immune cell abundance and signaling over time, as well as 49 
how these immune cells interact with the tumor, may impact a cancer patient’s response to 50 
therapy.  By developing an ecological population model, we provide evidence of a dynamic 51 
predator-prey like relationship between circulating immune cell abundance and tumor size in 52 
patients that respond to immunotherapy. This relationship is not found either in patients that are 53 
non-responsive to immunotherapy or during chemotherapy.  Single cell RNA-sequencing 54 
(scRNAseq) of serial peripheral blood samples from patients show that the strength of tumor-55 
immune cell interactions is reflected in T-cells interferon activation and differentiation early in 56 
treatment. Thus, circulating immune cell dynamics reflect a tumor’s response to immunotherapy. 57 
 58 
Abstract 59 

The extent that immune cell phenotypes in the peripheral blood reflect within-tumor 60 
immune activity prior to and early in cancer therapy is unclear. To address this question, we 61 
studied the population dynamics of tumor and immune cells, and immune phenotypic changes, 62 
using clinical tumor and immune cell measurements and single cell genomic analyses.  These 63 
samples were serially obtained from a cohort of advanced gastrointestinal cancer patients enrolled 64 
on a trial with chemotherapy and immunotherapy. Using an ecological population model, fitted to 65 
clinical tumor burden and immune cell abundance data from each patient, we find evidence of a 66 
strong tumor-circulating immune cell interaction in responder patients, but not those patients that 67 
progress on treatment. Upon initiation of therapy, immune cell abundance increased rapidly in 68 
responsive patients, and once the peak level is reached, tumor burden decreases, similar to models 69 
of predator-prey interactions; these dynamic patterns were absent in non-responder patients. To 70 
interrogate phenotype dynamics of circulating immune cells, we performed single cell RNA 71 
sequencing at serial time points during treatment.  These data show that peripheral immune cell 72 
phenotypes were linked to the increased strength of patients’ tumor-immune cell interaction, 73 
including increased cytotoxic differentiation and strong activation of interferon signaling in 74 
peripheral T-cells in responder patients. Joint modeling of clinical and genomic data highlights 75 
the interactions between tumor and immune cell populations and reveals how variation in patient 76 
responsiveness can be explained by differences in peripheral immune cell signaling and 77 
differentiation soon after the initiation of immunotherapy. 78 
 79 
Introduction 80 

Immune checkpoint inhibitors can treat a wide range of cancers by targeting immune 81 
inhibitory pathways that cancer cells frequently coopt to avoid recognition and to regulate 82 
immune proliferation, survival, and effector functions (1-11). However, clinical response varies 83 
substantially, with approximately 40% of patients currently experiencing no objective benefit (12, 84 
13). Numerous studies have investigated the role of tumor or tumor-associated immune cell 85 
phenotypes in response to immunotherapy (14-19). Patient responsiveness has been associated 86 
with increased tumor cell mutational load and antigen production (20, 21), and also with greater 87 
tumor-associated immune cell infiltration (22), signal production (14), and crosstalk (23). 88 
However, the consensus is that these markers are weakly associated with patient response (24). 89 
Furthermore, obtaining tumor tissue samples is challenging, especially if a tumor’s 90 
immunosuppressive phenotypes evolve over time.  91 

Disease can regulate host immune cell abundance and signaling (25-29).  Recently, it has 92 
been suggested that the frequency of specific peripheral blood immune cells can provide a non-93 
invasive pre-treatment indicator of immunotherapy responsiveness, at least in melanoma cancer 94 
patients (30). As peripheral blood is easily accessible for serial analysis compared to tumor 95 
biopsies, a key question is whether circulating immune cells can serve as a surrogate 96 
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measurement of a tumor’s interaction with the host immune cells and reflect response to therapy 97 
early in the course of treatment. If true, simple blood tests could be developed to guide patient 98 
specific clinical management decisions following the initiation of immunotherapy. 99 

To address these questions, we have measured the strength of patients’ tumor-immune cell 100 
interactions, using a data driven ecological mathematical model of the concurrent dynamics of 101 
tumor and immune cell abundance. The strength of patients’ tumor-immune cell interactions was 102 
then related to immune cell phenotypes experimentally measured using single cell RNA-103 
sequencing (scRNAseq). Fitting the tumor-immune cell interaction model to clinical tumor 104 
burden and immune abundance data revealed a consistently increased ability of responders’ 105 
immune cells to increase in abundance and indicated that improved tumor cells attack, drove 106 
decreased tumor burden. The increase in circulating immune cell abundance is concordant with a 107 
bolstered anti-tumor interferon signaling state of circulating immune cells and differentiation of 108 
T-cells to more cytotoxic states; as measured by scRNAseq. This combination of mathematical 109 
modeling and genomic analyses suggest that peripheral blood immune cell phenotypes reflect 110 
cancer-immune cell interactions and can reliably reveal patient responsiveness to immunotherapy.  111 
 112 
 113 
Results  114 

1. Overview of trial and patient cohort 115 

Patients with advanced GI cancers (colorectal, gastroesophageal, pancreatic and biliary) were 116 
enrolled in a single institution phase I trial (NCT02268825) of modified FOLFOX6 117 
(mFOLOFX6) chemotherapy regimen followed by a combination of chemotherapy and anti-PD-1 118 
immunotherapy (pembrolizumab) (Fig. 1A). Patient response was assessed according to the 119 
RECIST 1.1 guidelines, with responders showing complete/partial response (CR/PR) or stable 120 
disease (SD), and non-responders exhibiting progressive disease (PD) (Table S1-S2). Confirming 121 
our classification, 89% of responders survived more than 18 months after completion of treatment 122 
compared to only 26% of non-responders (Fig. 1B). As reported previously, the tumor’s PD-L1 123 
expression was not strongly predictive of patient response (24). Single cell phenotypic insights 124 
(Fig. 1C-D) were linked to immune cell function by: i) mathematically modelling patients’ time 125 
courses of tumor burden and immune abundance, ii) fitting this model to the clinical data, iii) 126 
analyzing temporal changes in the growth rate of the tumor and immune cells and iv) relating 127 
patient specific model predictions to scRNAseq peripheral immune cell phenotype (Fig. 1E).  128 

 129 

2. Patient specific immune function linked to immunotherapy success 130 

Time courses of tumor burden and immune abundance (peripheral blood mononuclear cells: 131 
PBMC’s) were constructed for each patient (Fig. 1Ei). Lymphocyte and monocyte abundance 132 
was strongly positively correlated with total immune abundance (Fig. S13), indicating a tight 133 
coupling of their population dynamics and motivating the modelling of total immune counts. 134 
Tumor burden was measured by combining information from cancer specific antigen biomarkers 135 
and RECIST 1.1 measurements of tumor size, using a Gaussian process latent variable model (SI 136 
Appendix). The changes in patients’ tumor burden and immune cell abundance during the trial 137 
were described mathematically by a dynamic model of cancer-immune cell interactions (Fig. 138 
1Eii). In ecology, interactions between species, where the survival of one depends on attack by 139 
another, can be described using predator-prey equations. An adaptation of this ecological theory 140 
allowed us to describe the interactions between populations of tumor and immune cells within 141 
individual patients. We estimated the strength of this interaction, by statistically matching the 142 
changing frequency of immune cells and tumor size to model predictions. In the model, the tumor 143 
cells (T) are attacked by immune cells (I) and tumor cells induce increase immune cell 144 
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recruitment. Chemotherapy (C) kills both tumor and immune cells, whilst PD-1i immunotherapy 145 
(P) impacts immune proliferation, recruitment and cytotoxic tumor activity (Fig. 2A). 146 

Changes in tumor and immune cell abundance over time were accurately described by 147 
statistically fitting the mathematical model to the clinical data, using a Bayesian hierarchical 148 
approach (Fig. 2B). This analysis captured the biological differences between tumor and immune 149 
populations of responders and non-responders and the substantial variation between patients 150 
within these response categories. Key biological rates that were estimated included: a) how 151 
effectively immune cells attack the tumor and b) the impact of chemotherapy on tumor and 152 
immune populations. This identified the consistently improved ability of responder patients’ 153 
immune cells to attack the tumor, compared to non-responders (Fig. 2C).  154 

The timing of most rapid growth/decline of tumor and immune populations were determined 155 
by analyzing the population’s relative growth rates (RGR= speed of population change, 156 
positive=growth, negative=decline) (Fig. 2D-E). The response dynamics were not dependent on 157 
the patient’s cancer tissue type. The tumor burden of the responders declined more rapidly during 158 
the chemotherapy phase and continued to decline (negative RGR) over time (Fig. 2D). The 159 
exception is a time window around day 100 when the immune population was still increasing but 160 
the chemotherapy effect was generally decreased; once immune abundance reached a critical 161 
level, the tumor began to shrink once again and tumor burden remained substantially below the 162 
pre-treatment level for the duration of the trial. Interestingly, responders’ PBMC’s were also 163 
initially less abundant and more sensitive to chemotherapy (more negative RGR) (Fig. S14). 164 
However, their immune cell abundance was boosted following the addition of immunotherapy 165 
(Fig. 2D; spike in PBMC’s RGR around days 48-100). Their immune abundance then stabilized 166 
at this level or even increased gradually during the rest of the trial (overall positive RGR).  167 

In contrast to responsive patients, the tumor burden non-responsive patients declined very 168 
little during the pre-immunotherapy chemotherapy phase, and only marginally in the first weeks 169 
of immunotherapy (Fig. 2D). Subsequently, tumor growth accelerated, and the tumor burden 170 
returned to the pre-treatment level within just 80-150 days. Further, non-responders exhibited a 171 
continual decline in immune cell number (negative RGR over most of the trial) and did not 172 
experience the immunotherapy induced boost in immune population growth following the 173 
addition of immunotherapy or benefit from immunotherapy. Model analysis showed that prior to 174 
immunotherapy, the responders’ immune populations less effectively regulated tumor growth 175 
(Fig. 2E). However, after immunotherapy induced the growth spike in the responders’ immune 176 
population, they became more effective at regulating tumor growth. In contrast, the ability of non-177 
responders’ immune cells to regulate tumor growth declined continually during the trial and very 178 
little benefit of immunotherapy was detected. 179 

 180 

3. Immune cell populations identified using scRNA-Seq profiles  181 

To understand how phenotype changes of circulating immune cells related to the population 182 
dynamics and cell interactions (detailed above), we analyzed phenotypes of PBMCs isolated at 3 183 
time points during the trial (Fig. 1A, C). Samples at cycle 1 (C1) provide the baseline before 184 
treatment, cycle 3 (C3) reflects treatment with only mFOLFOX6 chemotherapy, and cycle 5 (C5) 185 
reflect treatment with both chemotherapy and anti-PD-1 immunotherapy. A total of 13 patients 186 
(responder n=7, non-responder n=6) were analyzed by scRNAseq (Fig. 1C). The transcriptional 187 
profile of 70,781 immune cells was obtained, revealing a diverse set of 35 cell types. All major 188 
PBMC lineages were identified using canonical gene expression markers and analysis of a 189 
uniform manifold approximation and projection (UMAP) (Fig.3, Fig. S1-S3, Table S3).  190 
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The cell type annotations were validated by comparing our transcriptional profiles and 191 
corresponding annotations with published studies of PBMC’s (31) and tumor infiltrating immune 192 
cells (32). We found that 96.5% of T-cells from the PBMC database and 94.1% of T-cells from 193 
the tumor infiltrating dataset were correctly predicted using a machine learning classifier trained 194 
using our annotations (Fig. 3B, Fig. S3). A similarly high agreement was found between our 195 
annotations and published annotations when examining cell type specific marker genes and 196 
comparing the cell type connections (Fig 3B, Fig. S3-S4). As a final validation, we profiled 8 197 
patients (6 responders, 2 non-responders) with both scRNAseq and flow cytometry (Fig. S5). An 198 
approximate 1:1 correspondence was found between the abundance of immune cell types 199 
obtained using each method (Fig. S6). Immune cell numbers were quantified in two ways: i) the 200 
frequency of cells refers to the percentage of cells in a sample, ii) the abundance refers to the 201 
measured number of cells per unit of peripheral blood. 202 

 203 

4. Signaling activation in responders’ T-cells upon initiation of immunotherapy 204 

Signaling dynamics upon initiation of immunotherapy were examined through single cell 205 
pathway activity analysis, using single sample Gene Set Enrichment Analysis (ssGSEA) scores 206 
(33) of C2-level and Hallmark pathway signatures (34, 35). Pathway differences before therapy, 207 
during chemotherapy and during the early-immunotherapy phase of the trial were identified using 208 
a random effects linear modeling framework (Fig. 4). This approach partitioned the effects of 209 
chemotherapy and immunotherapy on pathway activity while accounting for individual variability 210 
in expression. The statistical significance of P-values was corrected using Holm’s conservative 211 
multiple comparison correction procedure. 212 

Overall, immune cell gene expression was not greatly altered during chemotherapy treatment 213 
(Fig. 4A, left panel). In contrast, after the start of anti-PD-1 treatment, there were a subset of 214 
pathway changes common to both responder and non-responder’s monocytes and T-cells (Fig. 215 
4A, middle panel). Further, a majority of signaling changes were identified that were specific to 216 
responders (Fig. 4A, right panel, Table S3). For each immune cell type, the most significantly 217 
altered GSEA pathways were classified into categories reflecting major biological processes.  218 

Strikingly, interferon signaling pathway activity was significantly upregulated in CD4+ and 219 
CD8+ T-cells of responder patients following the initiation of anti-PD-1 treatment (C3-C5) 220 
(CD4+: t=19.00, p<0.001, CD8+: t=16.00, p<0.001) (Fig. 4B, Fig. S7). CD8+ T-cells of non-221 
responders showed a lesser upregulation of interferon signaling after the start of anti-PD-1 222 
(t=7.61, p<0.001), while CD4+ T-cells show no such increase. Upon initiation of immunotherapy, 223 
a range of interferon related genes were upregulated in the CD8+ and CD4+ T-cells of just the 224 
responders (Fig. 4C, Fig. S8). Responders’ CD8+ cells showed greater upregulation of the IFN-γ 225 
gene (p<0.01) and IFN target genes (IRF1/2/7, STAT1/2 and interferon-stimulated genes (Table 226 
S4). In contrast, non-responders’ CD4+ and CD8+ T-cells had greater upregulation of IFN 227 
repressing genes (e.g. SOCS1 and SOCS2) (p<0.05), indicating impaired transduction of IFN 228 
signaling upon anti-PD-1 treatment (36). Inflammatory response pathways were also upregulated 229 
in T-cells of responders (Fig. 4B), including CD8+ T-cells of responders prior to the onset of any 230 
treatment (t=5.14, p<0.001) and after addition of anti-PD-1 (t=3.8, p<0.001).  Inflammatory genes 231 
induced with anti-PD-1 include major histocompatibility complex (MHC class I/II) sorting and 232 
processing genes (e.g. CD74, HLA-A/B/C and PSM) as well as NF-κB pathway genes (NFKB1, 233 
IKBKB, MYD88) in responders’ CD8+ and CD4+ T-cells (Fig. 4C, Table S4). The NF-κB 234 
activation of responders’ T-cells may suggest a shift to a pro-survival state. Overall, this shows 235 
the activation of these peripheral cells and the increased signal transduction in responders. 236 

 237 
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5. Patients responsive to therapy exhibit changes in monocyte signaling during treatment 238 

Monocytes also exhibited different phenotypes in responders versus non-responders but with 239 
distinct signaling changes from those of T-cells. Before treatment (C1), monocytes from 240 
responders had significantly higher activation of three pathways representing related but distinct 241 
measures of monocyte developmental states: growth factor production (t=9.2, p<0.001), 242 
inflammation (t=6.1, p<0.001), and differentiation (t=6.3, p<0.001) (Fig. 4D). While 243 
chemotherapy decreased each of these pathway scores in both responders and non-responders, 244 
patients responsive to anti-PD1 treatment exhibited a significant reduction in all three pathways 245 
after anti-PD-1 treatment (p<0.001 for each pathway) while non-responders showed a significant 246 
increase (p<0.001 for each pathway). During immunotherapy, responders and non-responders’ 247 
monocytes showed specific gene dysregulation of: growth factor, IFN, TNF, NF-κB, and MHC 248 
genes (Fig. 4E, Fig. S9). In addition, genes promoting the migration and recruitment of other 249 
immune cells types were initially upregulated in responders’ monocytes (CXCR4, CCR and CCL 250 
family members) (37) (Table S4).  Overall, monocytes showed pretreatment differences in 251 
signaling and divergent developmental trajectories in responders versus non-responders. 252 
Activation of monocytes after the start of anti-PD-1 may reflect responses to the upregulation of 253 
IFN and cytokine gene expression observed in responders’ T-cells. 254 

 255 

6. During therapy, T-cells of responders differentiate, while non-responder CD8 T-cells 256 
lose cytotoxicity 257 

The major phenotypic differences within each immune type were identified, using pseudotime 258 
reconstruction of scRNAseq profiles (Fig. S10). By overlaying the cellular phenotype scores onto 259 
a UMAP of the expression profile, we validated that the phenotypes reflect the key sources of 260 
transcriptional variation within immune cell types (Fig. 3D). The CD4+ T-cell phenotypic 261 
gradient captured the continuum of differentiation from naïve to effector helper T-cells (Fig. 3D 262 
left panel). Similarly, the CD8+ T-cell phenotype gradient captured differentiation from a naive to 263 
highly cytotoxic state. In both cases, naive, central memory, and effector T-cell subtypes aligned 264 
clearly along the continuous phenotype gradient and in the expected order. 265 

We next evaluated the distribution of T-cell phenotypes in the peripheral blood of responders 266 
and non-responders and examined how they shifted during the course of therapy (Fig. 5A-B). 267 
Before treatment (C1), responders had a higher frequency of undifferentiated (naive) CD4+ T-268 
cells, which may have been symptomatic of the tumor-mediated immune suppression (Fig. 5B). 269 
In contrast, non-responders had more differentiated CD4+ T-cells, especially CD4+ EM cells (t=-270 
7.5, p<0.001) (Fig. 5B). This difference remained following the onset of chemotherapy (C3); 271 
however, after immunotherapy (C5), the CD4+ T-cells of responders showed a significant shift 272 
towards increased differentiation (t=9.9, p<0.001) and converged with non-responders (Fig. 273 
S11a). Interestingly, responders had a higher frequency of cytotoxic differentiated CD8+ T-cells 274 
than non-responders, both before and during treatment (Fig. 5B, Fig. S11b) (F=16.8, p<0.001). 275 
With the addition of anti-PD-1, responders’ CD8+ T-cells became even more cytotoxic (t=3.9, 276 
p<0.001), while non-responder’s CD8+ T-cells shifted to a less cytotoxic state (t=-4.0, p<0.001). 277 

 278 

7. Monocytes of responders were activated after the start of anti-PD-1 therapy and the 279 
frequency of classical monocytes was associated with response 280 

Within monocytes, the expression of interferon response genes was the major axis of 281 
phenotypic variation (Fig. 3C-D right panel). Monocytes with high interferon response scores 282 
(including dendritic cells) had upregulation of IFN stimulation genes (e.g. IFIT1/3, PSME2, and 283 
ISG15) and higher MHC class II expression (e.g. HLA.DPA1, HLA.DPB1, and HLA.DMA). In 284 
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contrast, cells with low interferon scores had upregulation of proliferation (e.g. FOS, JUN, and 285 
JUNB), differentiation (e.g. BTG1, RGS2, and DDX17), inflammation (e.g. SELL, S100A12, and 286 
CD36) and migration (e.g. VCAN and VIM) genes. After immunotherapy, monocytes with the 287 
highest interferon score became prevalent in responders (t=15.463, p<0.001) (Fig. 5C, Fig. S14d). 288 
Responder patients shifted from having the lowest to the highest average level of interferon 289 
activation and MHC class II gene expression (Fig. S12). In contrast, the distribution of interferon 290 
response in non-responder monocytes remained relatively constant across the trial period. 291 

 292 

8. Linking immune function and phenotypes of the peripheral blood 293 
Finally, we linked the patient specific estimates of immune attack and chemotherapy 294 

sensitivity to the single cell transcriptomic observations of increased immune cell signaling and 295 
phenotypic differentiation states in responders (Fig. 5D-E). Patients whose immune population 296 
had a greater ability to attack tumor cells and response to immunotherapy were found to have 297 
CD8+ T-cells with higher activity of interferon gamma signaling pathways and more 298 
differentiated cytotoxic CD8+ T immune cells (Fig. 5D). Finally, patients whose monocytes 299 
showed lower activity of interferon gamma response pathways (classical monocyte differentiation 300 
score) before treatment had tumor cells that were significantly less sensitive to chemotherapy 301 
(Fig. 5E). 302 

 303 
 304 

Discussion  305 

Our findings indicate that peripheral blood immune cell phenotypes reflect the strength of 306 
tumor-immune interactions before or early in the course of immunotherapy, and these phenotypes 307 
are indicative of patient responsiveness. By combining scRNAseq analysis of peripheral immune 308 
phenotypes with dynamical models of patient specific clinical data, we linked peripheral immune 309 
cell phenotypes with the strength of patients’ tumor-immune cell interactions. Increased 310 
interferon signaling and differentiation of T-cells was related to an increased ability of immune 311 
cells to attack cancer cells, regulate tumor growth and drive patient responsiveness to anti-PD-1 312 
therapy. These results provide motivation for studies interrogating the utility of peripheral blood 313 
phenotypes as a biomarker of patient responsiveness to therapy.  314 

Although mathematical modeling has provided important insights into cancer-immune cell 315 
interactions and cancer immunotherapy, models incorporating patient specific clinical or 316 
phenotypic data had not previously been developed (38-45). Previous theoretical models that do 317 
not include patient data have described the potential for cancer-immune interactions to act as 318 
“predator-prey like” systems (reviewed in (45)). This study is a step forward in that it uses 319 
temporal clinical and single cell immune phenotyping for data driven ecological modelling of 320 
patient-specific responses during treatment.   321 

The cancer-immune interaction model predicts that in general, patients whose tumors have 322 
an immunosuppressive phenotype (e.g. expressing high levels of PD-L1) will have a lower 323 
immune cell count prior to treatment, as immune activation and proliferation is inhibited. Hence, 324 
we expect that patients with a low PBMC abundance should benefit most from anti-PD-1 immune 325 
re-activation therapy. In agreement, we observed significantly lower PBMC abundances in 326 
responders at the onset of therapy (Fig.S15a). These patients showed gradually increasing 327 
immune counts during therapy, in contrast to declines observed in non-responders. Model 328 
analysis indicated that, at the onset of the trial, the immune cells of responders had a substantially 329 
weaker effect of tumor regulation compared to those in non-responders, primarily due to the low 330 
immune cell count (Fig.S15b). During immunotherapy, the responders’ immune population 331 
gradually increased and their tumor regulatory effect increased towards the level of the non-332 
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responders. This leads to the prediction that, unlike chemotherapy, the tumor’s response to 333 
immunotherapy will be delayed. This is a general prediction that emerges from predator-prey 334 
models. Due to fewer immune cells present and few cancer antigens being presented to initiate 335 
further immune response prior to therapy, several rounds of the cancer-immune response cycle 336 
are needed for the immune population to rebuild following PD-L1 suppression. 337 

Our model also predicts that chemotherapy acts as a double edged sword when used as a 338 
combination therapy with immunotherapy. It has the positive effect of inducing tumor cells death 339 
and promoting immune cell recruitment; however, it also kills immune cell progenitors, reducing 340 
the active immune cell abundance. Therefore, too high a chemotherapy dosage may inhibit the 341 
effectiveness of immunotherapy, whilst too low a level may not promote immune re-activation. 342 

The analyses of T-cell and monocyte signaling states, before and during therapy, suggest 343 
that circulating immune cells rapidly shift phenotypes during the treatment in GI cancer patients. 344 
We suggest that this peripheral immune signaling activation is a valuable early marker of patient 345 
responsiveness. The interferon surge after initiation of anti-PD-1 therapy, seen only in 346 
responders’ T-cells and monocytes, indicates that treatment with anti-PD-1 is promoting 347 
differentiation and activation of T-cells, resulting in antitumor activity, cytokine release, and 348 
stimulation of the immune system. In particular, only responders CD8+ T-cells upregulate IFN-γ 349 
signaling and immune cell activation and anti-tumor effect (46). Despite PD-1 blockade, non-350 
responders’ immune cells were not fully activated, indicating that they struggle to detect cancer 351 
cells. Possibly, low cancer antigen release, reduced activation of antigen presenting cells and T-352 
cells, and prevented initiation of an immune response.  Additional studies support an interaction 353 
of chemotherapy with immunotherapy in some settings (47-51). Using our scRNAseq time 354 
courses, we also detected that immunotherapy induces a shift to a more differentiated CD4+ T-cell 355 
state. Long term chemotherapy may increase the production of PD-1 expressing regulatory CD4+ 356 
EM cells, diminishing pembrolizumab availability to tumor-specific CD8+ T-cells (Fig.S16).  357 

Additionally, patients may have been non-responsive because cancer cells had PD-1 358 
independent resistance mechanisms of immune avoidance. Indeed, we found that non-responder’ 359 
classical monocytes had low MHC II receptor expression suggesting lower antigen recognition 360 
and presentation. They also developed a more immunosuppressed phenotype, with upregulation 361 
of CD86, a ligand of both PD-1 and CTLA-4, and CD28, a costimulatory signal for activation of 362 
T-cells. Contrastingly, under anti-PD-1 therapy responders’ monocytes showed activation of 363 
costimulatory immune function (upregulated ISG and MHC). 364 

Overall, we find that the abundance, signaling activity and differentiation state of 365 
peripheral immune cells reflect tumor-immune cell interactions and patient response to 366 
immunotherapy. The combination of total PBMC abundance and the relative infrequency of 367 
differentiated/ activated effector T-cells likely provides a non-invasive upfront marker of 368 
therapeutic responsiveness. Models of tumor-immune cell interactions, which use clinical and 369 
phenotype data, allow quantification of the immune system’s effectiveness in regulating tumor 370 
growth and demonstrate the potential of using peripheral blood-based models to assess the 371 
dynamics of the immune and tumor cell interactions during treatment. 372 
 373 
 374 
Materials and Methods 375 
 376 

Study design 377 

Cryopreserved peripheral blood mononuclear cell (PBMC) samples from patients with 378 
advanced (stage 3/4) gastrointestinal cancers were collected from patients in a clinical trial 379 
(NCT02268825), and were treated with modified FOLFOX6 regimen every 2 weeks (i.e. 1 cycle) 380 
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until disease progression, death, or completion of the study. After 4 weeks of mFOLFOX6 (cycle 381 
3), pembrolizumab (200 mg IV every two weeks) was added to mFOLFOX6. Before treatment 382 
and then every two weeks, patients’ blood was collected and PBMCs were isolated and 383 
cryopreserved. All human biological samples were collected after written informed patient 384 
consent and ethics committee approval, following federal and institutional guidelines. The 385 
University of Utah Institutional Review Board and the Huntsman Cancer Institute Protocol 386 
Review and Data and Safety Monitoring Committee approved and monitored this study. 387 

The primary outcomes of this phase I study was safety and dose limiting toxicities.  388 
Patients were excluded if they had active infection, autoimmune disease, or were on chronic 389 
systemic steroids or immunosuppressant’s. Samples from 13 patients (responder n=7, non-390 
responder n=6) were used for scRNAseq analysis at C1, C3 and C5 time points. Samples from 391 
eight patients were utilized for both FACS and scRNAseq analysis (responder n=6, non-responder 392 
n=2), to validate the consistency of inferences. Single cell transcriptional profiling provided 393 
information for a total of 70,781 cells from 13 patients.  394 

Clinical response was measured by computed tomography scans and assessed according to 395 
RECIST1.1 and immune-related response criteria (irRC) every 12 weeks. Responders were 396 
defined as patients with clinical benefit at 24 weeks (complete response (CR), partial response 397 
(PR) or stable disease (SD)). Non-responders included patients with progressive disease (PD 398 
defined as > 20% increase in tumor volume or appearance of new metastatic lesions) between 12 399 
and 24 weeks after the trial began. Median of previous history of chemotherapy treatment for 400 
responders was 101 days and 42 days for non-responders (Table S1).  401 

 402 

Single-cell RNA sequencing and annotation 403 

PBMC samples analyzed using a Chromium 10X Cell Instrument (10X Genomics) (1200-404 
2000 cells/sample) and sequenced on an Illumina HiSeq 2500 with 2x125 paired-end reads. Raw 405 
BCL sequencing files were processed using Cell Ranger Single Cell Software Suite and samples 406 
were aligned to hg19 using the STAR aligner (52). Count tables were generated for 70,781 cells 407 
and used as input into Seurat v2 (53). No batch effects were found corresponding to time, patient 408 
or cancer (Fig.S2 b-d).  409 

To identify cell types, variable genes (n=1000) and non-overlapping known immune cell 410 
marker genes (n=1480) were used for PCA (54-56). The first 25 PCs captured significant 411 
variation, based on Seurat’s jackstraw analysis, and were used for graph-based clustering and 412 
UMAP visualization (57). Major T-cell clusters were identified using CD3D, CD4 and CD8 413 
expression along with 500 T-cell specific variable genes and 273 known T-cell markers (56). 414 
Differential expression markers for each cluster were generated using MAST(58). Pathway 415 
ssGSEA enrichment scores were generated using the R package GSVA 1.30.0 (33). Immune cell 416 
annotations were verified using two public datasets (31, 32) (SI Appendix, Fig. S3-4) using 417 
training and classification to measure similarity of annotation.  418 

 419 

Identifying gene set expression differences between responders and non-responders 420 

Differences in the gene set expression of immune cell types were examined between 421 
responder and non-responder patients (R). For each immune cell type, we examine the changes in 422 
pathway (X) expression over time (T) and with the addition of the anti-PD-1 (P). A random 423 
effects model with the following linear predictor (η) and error structure was constructed for each 424 
pathway:   425 

����������	 �� � 
� � 
� � � 
� � � 
�� � � �  
�� � � � 
��� � � � � ��  
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Initial differences in gene set expression between immune cells from responders and non-426 
responders, at the pre-treatment time point (C1), were captured by the group-specific intercepts 427 

(
�  ��. 
� ). Differential trends in expression over the first 5 treatment cycles were described by 428 
the group specific slope terms of responders and non-responders (
� �� 
��). Differential effects 429 
of the addition of anti-PD-1 on gene expression, over cycle C3-C5, were described by the group 430 

specific anti-PD-1 treatment effect terms of responders and non-responders (
�� �� 
���).  431 

Background individual variability in gene expression, independent of therapy impacts, 432 

were accounted for by allowing the model intercept to vary among patients (��). Significant 433 
differences in: A) initial pathway scores, B) temporal trend and C) anti-PD-1 treatment effects 434 
between non-responders and responders were assessed using likelihood ratio tests. Multiple 435 
comparison corrections were made using Holm’s p-value correction. 436 

 437 

Quantifying immune cell phenotypes 438 

Major axes of phenotypic variation were identified separately for CD4+/CD8+ T-cells and 439 
monocytes using affinity-based pseudotime reconstruction of cell states (60, 61). This allowed the 440 
description of continuous spectrums of cellular states, as is produced by differentiation and 441 
activation processes (SI Appendix). These phenotypic axes were validated using comparisons to 442 
PCA, zinbwave and UMAP dimension reduction (57, 63). Random effects linear regression was 443 
used to test the statistical differences in immune population phenotype distributions between 444 
responders and non-responders, whilst accounting for patient-specific random effects. 445 

 446 

Modeling and measuring tumor-immune cell interactions 447 

Overall measures of tumor burden 448 

We assessed the strength of tumor-immune cell interactions and the predictability of 449 
responsive to therapy by fitting a coupled tumor-immune population model to clinical patient data 450 
(SI Appendix Dataset S1). For each patient, a time series of tumor burden was first constructed, 451 
by combining RECIST 1.1 measurements, from CT scans, with information from tumor burden 452 
biomarkers (CA 19-9 and CEA), using a Gaussian process model (64). Gaussian process models 453 
probabilistically combine these tumor burden data sources, allowing inference of tumor burden 454 
(SI Appendix). 455 

 456 

Tumor-immune interaction model 457 

The dynamics of tumor and immune cell abundance were coupled with the 458 
immunotherapy and chemotherapy dosing schedules, using a patient specific tumor-immune 459 
population dynamic model. The ecologically inspired model (Equ.1) describes the patient specific 460 
changes in tumor (T) and immune cell (I) abundance over time. Over short periods of time, the 461 
increase or decrease in tumor and immune cell abundance was measured by the populations 462 
relative growth rate (���� for tumor and ����for immune cells). Positive RGR values indicate 463 
population growth, whilst negative values show population decline. The data driven model 464 
decomposed this population growth rate into effects of different concurrent biological processes. 465 
Tumor and immune cells interact in two main ways, with tumor cells being attacked by immune 466 
cells (α) and also inducing increased immune cell recruitment (λ). Therapeutic dosing impacts the 467 
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cell populations and the strength of their interactions, with chemotherapy (C) killing both tumor 468 

(��    !) and immune cells (��   !), whilst PD-1i immunotherapy (P) influences immune proliferation 469 
(

), recruitment (
�) and cytotoxic tumor killing activity (
�). Both tumor and immune cells 470 

experience density dependent population growth ("� & "�), reflecting competition for resources 471 
or growth stimulating molecules. This leads to the equations: 472 

���� � 1
�

$�
$% � ���1 & "��� & '( � 
��)* – , ��    !�-	

�

.- ,          �/�. 1 

���� � 1
*

$*
$% � ��� � 

���1 & "�*� � �0 � 
���� & , ��   !�-	

�

.-                  

We simultaneously fitted this model to all of the patients’ time course tumor and immune 473 
data, and accounted for the differing dosages and timings of therapy. To capture inter-patient 474 
biological differences, patient specific parameters were assumed to be drawn from a hyper-475 
distribution of parameters, creating a hierarchical model structure. Model parameters were 476 
estimated using Bayesian inference in Stan (65). 477 

 478 

Linking immune phenotypes and model estimated biological processes 479 

Immune cell phenotypes were related to the model estimates of: a) the effectiveness of 480 
immune cells at attacking tumor cells and b) the tumor cell sensitivity to chemotherapy. These 481 
biological estimates of immune and chemotherapy function (X) were regressed against the 482 
peripheral immune cell phenotypes identified in: i) the GSEA pathway analysis and ii) the 483 
pseudotime analysis of the major phenotypic variation within cell types. For each phenotype, the 484 
significance of the relationship between single cell peripheral immune phenotypes (Y) and 485 
immune/chemotherapy function (X) was assessed. A patient specific intercept was added to 486 
account for non-independence of cell phenotypes within a patient. The random effects regression 487 
model was simply: 488 

1�,�~ �����
� � 
	 � � ������ 

��~ �������0, ���


� 

The significance of the relationship between peripheral phenotypes and immune/chemotherapy 489 
function was assessed using a likelihood ratio test, with the sample size corrected for the non-490 
independence of data points. 491 
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Figure Legends. 678 

 679 

Figure 1: Overview of the clinical trial treatment strategy, patients’ classification, immune 680 
single cell analysis pipeline and tumor-immune interaction modelling. (A) Advanced 681 
gastrointestinal patients received mFOLFOX6 chemotherapy at the beginning of the trial 682 
for two 14-day cycles. From cycles 3 through 12, they received both mFOLFOX6 and 683 
anti-PD-1 immunotherapy. At baseline (cycle 1=C1), cycle 3 (C3), cycle 5 (C5) blood was 684 
collected and PBMCs were isolated and frozen. (B) Overall survival of responders and 685 
non-responders. (C) PBMC analyses using single-cell RNA sequencing and flow 686 
cytometry validation. (D) Flow chart of patient sample selection criteria, showing how 687 
patient samples were filtered and analyzed. (E) Mathematical modelling flow chart, 688 
depicting how i) clinical tumor burden data was synthesized and linked to concurrent 689 
measurements of PBMC abundance and ii) how a dynamic model of tumor-immune cell 690 
interactions, fitted to this data, allow inference of key biological processes (e.g. the ability 691 
of immune cells to kill tumor cells). 692 

 693 

Figure 2: Patients’ immune cell function in attacking cancer cells and regulating tumor 694 
growth measured using a data driven tumor-immune cell interaction model. (A) 695 
Schematic of the mathematical model describing the strength of tumor-immune cell 696 
interactions and how their abundances change within a given patient over time. Blue 697 
arrows indicate recruitment (triangle tip) and attack interactions (circle tip) between cell 698 
types. Green arrows show how immunotherapy influences these interactions and immune 699 
population growth. Red arrows indicate chemotherapy effects. Curved arrows indicate 700 
intrinsic growth and density dependence within cell types. (B) Statistically fitting the 701 
model to clinical data allows an accurate description of observed tumor burden and PBMC 702 
abundance across patients and over time. (Dashed black line=1:1 model -data 703 
correspondence). (C) Histogram showing that responder patients consistently have 704 
immune cells with a higher ability to attack cancer cells. (D) Comparison of the speed of 705 
growth or decline of the tumor and immune cell populations during the trial, as measured 706 
by the relative growth rate of each component between observations.  The distinct burst of 707 
immune activation in responders (LHS panel) and subsequent tumor decline was 708 
negligible in non-responders (RHS panel). Solid lines show mean trajectories and shaded 709 
regions signify model uncertainty intervals (vertical dashed line= start of immunotherapy, 710 
horizontal grey dashed line= stable population size). (E) Tumor-immune interaction model 711 
predictions of the ability of the immune cells of responders and non-responders to regulate 712 
the growth of the tumor during the trial. 713 

 714 

Figure 3: Validated classification of immune cell types, T-cells and monocyte subtypes and 715 
identification of the major phenotypic variation within these populations. (A) 716 
Uniform Manifold Approximation and Projection (UMAP) of the single cell RNA 717 
sequencing (scRNAseq) data of all patient’s PBMC’s across analyzed time points. Major 718 
PBMC types are labeled (RBC= red blood cells, pDC= plasmacytoid dendritic cells). (B) 719 
The agreement between our predicted clusters and public classifications of cell types 720 
annotated in two published datasets. Top panel (machine learning prediction): the 721 
distribution of immune cells in public datasets predicted to our annotation clusters by 722 
Random Forest learner using our predicted clusters as a training set.  Bottom panel 723 
(Shared marker genes): the number of shared genes between public datasets and our 724 
predicted clusters (SI Appendix; NKT=Natural killer T-cells, DCs=Dendritic cells).  (C) 725 
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UMAP identification of CD4+ and CD8+ T-cell subclusters (TFH = Follicular helper) and 726 
monocyte subtypes. (D) UMAP representing phenotypic gradients of CD4+ differentiation 727 
(top of left subplot: lowest score at right and highest to the left), CD8+ cytotoxic 728 
differentiation (bottom of left subplot: lowest score towards the top right and highest at the 729 
bottom) and monocyte interferon activation. 730 

 731 
Figure 4: Pathway signaling activation of multiple immune cell types in responders but not 732 

non-responders following initiation of immunotherapy. (A) The number of molecular 733 
pathways impacted by chemotherapy and PD-1 immunotherapy and whether PD-1 734 
immunotherapy effects are specific to responders (black bars) or common across patients. 735 
The “chemotherapy all patients” panel shows the numbers pathways changing expression 736 
between time C1 and C3 in different-cell types. The “immunotherapy all patients” panel 737 
shows the numbers of pathways showing trends in expression between C3 and C5 which 738 
are common to responders and non-responders. Finally, the “immunotherapy responders” 739 
panel shows the numbers of pathways with trends in expression that are unique to 740 
responder patients. Pathways with very differing trends in responders and non-responders 741 
are exemplified on the right side. (NK = Natural killer, ssGSEA=single sample Gene Set 742 
Enrichment Analysis). (B) Interferon and inflammatory signaling of CD4+ and CD8+ T-743 
cells is upregulated in responders more than non-responders. GSEA pathway categories 744 
reflect the most enriched types of pathways for each cell type. Individual GSEA pathways 745 
exhibiting differential trends in expression between responders and non-responders are 746 
shown (dashed lines). Overall trends of pathways within each cellular process (solid lines) 747 
and variation (shaded regions) are overlaid (IFN=Interferon). (C) Heatmap of changes in 748 
gene expression of responder and non-responder CD4+ and CD8+ T-cells over time. IFN, 749 
cell death, NF-κB, MHC (major histocompatibility complex) I & II and migration 750 
signature genes are displayed as the proportion of maximum level of each gene. Genes not 751 
detected in a cell type are shaded grey. (D) Differences in inflammatory signaling, 752 
differentiation and growth factor production between the monocytes of responders and 753 
non-responders showing overall trends of pathways within each cellular process (solid 754 
lines) and variation (shaded regions). Trends of pathways exhibiting differential 755 
expression patterns in responders and non-responders are indicated by dashed lines. (E) 756 
Heatmap of changes in gene expression of responder and non-responder monocytes over 757 
time. Interferon, cell death, NF-κB, TNF-α, growth factors production, and migration 758 
signature genes are displayed as the proportion of maximum level of each gene. Statistical 759 
significance of differences between responders and non-responders was determined for 760 
each gene and corrected for multiple comparisons. C1= cycle 1: baseline, C3= cycle 3: 761 
chemotherapy mFOLOFX6 regimen, C5= cycle 5: Chemotherapy + anti PD-1 762 
immunotherapy. One cycle = 14 days.  763 

 764 

Figure 5: Peripheral blood immune cell phenotypes linked to patients’ immune cell function 765 
and immunotherapy responsiveness. Responsiveness to immunotherapy depends on 766 
circulating memory T-cell differentiation and monocyte interferon activation prior to 767 
therapy. (A) Comparison of CD4+ and CD8+ T-cell subtype differentiation scores (all 768 
subtypes differ with a Tukey test) (EM=Effector memory, EMRA=Effector memory 769 
CD45RA+, CM=Central memory). (B) Frequency of CD4+ and CD8+ T-cells with 770 
different states of differentiation/cytotoxicity in responders and non-responders at each 771 
treatment time point. (C) Frequency of monocytes with different interferon (IFN) 772 
activation states in responders and non-responders at each time point. (D) The ability of 773 
patients’ immune cells to attack cancer cells and also the tumor’s sensitivity to 774 
chemotherapy was linked to immune cell signaling and differentiation phenotypes. For 775 
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each patient, the single cell variability in immune cell phenotypes are presented as 776 
individual violins densities. Black line indicates the relationship between a patient's 777 
average immune cell phenotype and the strength of immune cell attack /chemotherapy 778 
sensitivity.  Shaded regions = credible intervals for the predicted range of phenotypes of 779 
95% of the immune cells, given the strength of immune cell attack/chemotherapy 780 
sensitivity. 781 

 782 
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