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Abstract

A vast amount of public RNA-sequencing datasets have been generated and used
widely to study transcriptome mechanisms. These data offer precious opportunity for
advancing biological research in transcriptome studies such as alternative splicing. We
report the first large-scale integrated analysis of RNA-Seq data of splicing factors for
systematically identifying key factors in diseases and biological processes. We analyzed
1,321 RNA-Seq libraries of various mouse tissues and cell lines, comprising more than
6.6 TB sequences from 75 independent studies that experimentally manipulated 56
splicing factors. Using these data, RNA splicing signatures and gene expression
signatures were computed, and signature comparison analysis identified a list of key
splicing factors in Rett syndrome and cold-induced thermogenesis. We show that cold-
induced RNA-binding proteins rescue the neurite outgrowth defects in Rett syndrome
using neuronal morphology analysis, and we also reveal that SRSF1 and PTBP1 are
required for energy expenditure in adipocytes using metabolic flux analysis. Our study
provides an integrated analysis for identifying key factors in diseases and biological
processes and highlights the importance of public data resources for identifying

hypotheses for experimental testing.
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Introduction

High-throughput expression profiling has been used to identify transcriptional
changes associated with many diseases and biological processes (BPs). However, the
mechanism underlying the associated changes remains mostly unclear. To study the
underlying mechanisms, a large amount of high-throughput transcriptomic data have
been generated for various upstream factors such as splicing factors (SFs). SFs are
proteins regulating pre-mRNA splicing in various BPs and diseases including cancers'?.
Reanalyzing available public data renders an efficient approach to uncover upstream
factors in BPs and diseases.

Given the large scale of high-throughput expression profiling data that are publicly
available, any method that can utilize these data to identify upstream factors of
transcription in diseases and BPs will be of great value. High-throughput expression
profiling has become routine, and much of the resulting data are available from online
repositories, such as Gene Expression Omnibus (GEO)°. Up to the second quarter of
2019, GEO hosted more than 112,000 data series comprising more than 3,000,000
samples (Figure S1). As a popular method for transcriptome analysis, RNA-sequencing
(RNA-Seq)” has enabled genome-wide analyses of RNA molecules at a high sequencing
depth with high accuracy. It has been used successfully on many mouse models® ®, and
thousands of RNA-Seq datasets have been generated and released to the public. This
massive amount of biological data brings great opportunity for generating prominent
biological hypotheses” . However, these data were produced for diverse purposes and

are not friendly to large-scale data integration. Therefore, substantial work is needed to
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build well-organized resources using these data to enable efficient and extensive
integrated analysis. Here, we developed an integrated analysis to reveal upstream factors
of post-transcriptional changes and transcriptional changes in diseases and BPs using
these public RNA-Seq data.

We focused on datasets related to splicing factors (SFs), as approximately 95% of
human multi-exonic genes are alternatively spliced®. We previously curated the metadata
of a comprehensive and accurate list of mouse RNA-Seq data with perturbed SFs, which
are hosted on our SFMetaDB'® ''. Using these metadata, the corresponding RNA-Seq
data were used to compute alternative splicing changes related to perturbed SFs,
represented in RNA splicing signatures. Because SFs may also mediate gene
expression'?, gene expression changes also were calculated to generate gene
expression signatures. These signatures were used to determine the biological relevance
of SFs to a disease or a BP using signature comparison'®. Highly relevant SFs were
considered key factors in the disease or BP.

A number of signature comparison approaches have been introduced to infer
relations among various datasets. For example, connectivity map (CMAP) has been used
to measure the connectivity of gene expression signatures between disease datasets and
compound-treated datasets in drug repositioning'*. Compared to signature comparison
methods, datasets themselves are more critical for meaningful biological inference. In our
present study, we combined the works of public dataset collection and signature
comparisons. The public RNA-Seq datasets in SFMetaDB serve as a variable resource

for generating splicing and gene expression signatures. Using these signatures, new
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evaluation may provide additional biological insights that would not be possible when
analyzing these datasets alone.

To demonstrate the effectiveness and generalizability of our approach, we applied
it to Rett syndrome (RTT)'® and cold-induced thermogenesis (CIT)'®. Among the key SFs
identified in RTT (e.g., cold-induced RNA-binding protein [CIRBP], SF3B1, PTBP1,
PTBP2, and RBMS3), Cirbp knockdown partially rescued the neurite outgrowth defects
according to neuronal morphology analysis. In CIT, previous in vitro experiments
supported several key SFs identified, such as CELF1, PRMT5, HNRNPU, and PQBP1.
In addition, NOVA1 and NOVA2 identified by our analysis had been shown to suppress
adipose tissue thermogenesis activation via in vivo experiments'’. Here, we also show
SRSF1 and PTBP1 to regulate energy expenditure in adipocytes using Seahorse
metabolic flux analysis.

In summary, our systematic integration of disorganized and unstructured RNA-Seq
datasets along with generated signatures provides a novel approach for identifying the
most promising hypotheses for experimental testing. These novel hypotheses will form
the basis for new experiments leading to the elucidation of detailed regulatory

mechanisms at a molecular level.
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Results
Generation of a signature database using a comprehensive collection of mouse
RNA-Seq datasets with perturbed SFs

A signature database was constructed using a comprehensive collection of mouse
RNA-Seq dataset metadata deposited in SFMetaDB, with each dataset having at least
one SF perturbed. A group of 75 datasets was used to generate the signature database
targeting 56 SFs (some SFs are perturbed in multiple datasets). Specifically analyzed in
our workflow were more than 6.6-TB sequences from 1,321 RNA-Seq libraries from
various mouse tissues and cell lines.

RNA-Seq datasets in SFMetaDB have various types of SF manipulation (Figure
1a). Specifically, most SFs in SFMetaDB have been knocked-out (60%), knocked-down
(28.75%), overexpressed, knocked-in, and others (e.g., point mutation) in fewer datasets.
Besides various types of manipulation of SFs, datasets in SFMetaDB also span over
many tissues and cell lines (Figure 1b), of which the central nervous system-related
tissue/cell types are the most frequent, such as frontal cortex, neural stem cells, and
neural progenitor cells. In addition, embryonic tissues and cell lines are another prominent
source for studying SF perturbation.

To generate splicing and gene expression signatures for SFs, differential
alternative splicing (DAS) and differentially expressed gene (DEG) analyses (see
Methods section) were performed on the experimental comparisons of SF perturbation
datasets. DAS events and DEGs formed splicing signatures and gene expression

signatures for SFs. Among generated signatures, circular Manhattan overview plots show
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genome-wide splicing and gene expression changes regulated by SFs (Data S1 and
Figure 2).
DAS events and DEGs of the datasets curated for SFMetaDB

To explore the entirety of our generated signature database, we examined the DAS
events and the DEGs of the RNA-Seq datasets curated for SFMetaDB. Our DAS analysis
identified large-scale splicing changes (Figure S2a), with exon skipping (ES) being the
most common event type (Figure S2b), which is consistent with previous studies’®. In
addition, we also identified a large number of DEGs (Figure S2c). The normalized
numbers of DAS events and DEGs correlated significantly (Pearson correlation coefficient
r = 0.66, p-value = 2.29x107?) in the selected comparisons (Figure S2d) (see Methods
section), supporting the existence of potential crosstalk between the splicing process and
the transcription process'®.
Identification of key factors in RTT

To demonstrate the effectiveness of our integrated analysis, it first was used to
identify SFs in RTT, which is a severe neurological disorder® without a cure. Because
Mecp2-null mice feature RTT-like phenotypes®', our signature database and RNA-Seq
data from Mecp2-deficient mice were integrated into our workflow to identify several key
factors in RTT at the splicing and gene expression levels, respectively.

A DAS analysis was performed on the RNA-Seq data from dentate gyrus of six-
week Mecp2” mice (see Methods section)??. Under |A¥| > 0.05 and g < 0.05, 526 DAS
events were identified in Mecp2 knockout mice (Table S1 and Figure S3a). The heatmap

of percent-spliced-in (PSI, ¥) values of ES events demonstrated large splicing changes
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in Mecp2 knockout mice (Figure S3b). These large-scale splicing changes facilitated the
downstream splicing signature comparison analysis in Mecp2 knockout mice to elucidate
key SFs that may regulate the splicing changes in RTT.

To discover key factors in RTT, a splicing signature comparison analysis was
performed between the splicing signatures of the Mecp2 knockout mice and each of the
splicing signatures of the SF perturbation datasets (see Methods section). Out of 56 SFs,
7 SFs were identified as the potential key SFs that may regulate the splicing changes in
Mecp2 knockout mice (i.e., CIRBP, DDX5, METTL3, PRMT5, PTBP1, PTBP2, and
SF3B1) (Table S2).

Among the identified SFs, CIRBP ranked highly (Table S2), indicating its potential
role in modulating a significant number of splicing changes. We conducted a loss-of-
function analysis to validate the role of Cirbp in the Mecp2 knockout mice. The expression
of Cirbp was increased significantly in Mecp2 knockout mice according to our DEG
analysis using RNA-Seq data (g-value= 1.27x10~*°and log,(fold change) = 1.064). This
was confirmed experimentally using gRT-PCR (Figure S4a). A northern blot analysis of
Cirbp also had shown that its expression level was up-regulated in RTT whole-brain
samples®. Therefore, a knockdown of Cirbp was used to check whether it would rescue
the neuronal morphology changes caused by lack of Mecp2. Here, the knockdown of
Cirbp by shRNAs was efficient, as confirmed by the qRT-PCR assays (Figure S4b). We
analyzed the neuronal morphology of primary hippocampal neurons isolated from
embryonic stage 18 (E18) rats, where replicates of neurons were examined from three

groups of neurons, namely Mecp2 knockdown, Cirbp, and Mecp2 double knockdown, and
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the control (see Methods section)?* 2> %2’ The representative neuronal images depict
the neuron morphology for three groups of neurons (Figure 3a). Specifically, the branch
numbers and the neurite lengths were decreased in Mecp2 knockdown cells compared
to the controls, but were partially rescued by the additional Cirbp knockdown (Figure 3b-
c). These results suggest that the Cirbp knockdown can rescue the neurite outgrowth
defects caused by Mecp2 silencing.

To confirm the splicing changes in MecpZ2 knockout mice, the reverse-transcription
polymerase chain reaction (RT-PCR) technique was performed on selected DAS events
in Mecp2 knockout mice (see Methods section)?. The effectiveness of our DAS analysis
in RTT has been demonstrated in previous work'. Here, we specifically confirmed the
potential effect of CIRBPs in this study by validating a subset of RTT DAS events that are
also changed by CIRBP knockdown. A total of 11 predicted DAS events were tested by
RT-PCR (see Methods section), and 8 events were differentially alternatively spliced in
Mecp2 knockout mice (Figure S5). These RT-PCR results confirmed the potential
splicing regulatory contribution of CIRBP in RTT.

SFs may regulate gene expression alterations in various diseases and BPs. For
example, Celf1 promotes expression of Cebpb via interacting with Eif2s1 and Eif2s2 in
proliferating livers and in tumor cells®. Therefore, we examined the potential role of SFs
in regulating gene expression changes in RTT. A DEG analysis was performed on the
Mecp2 knockout mice to facilitate the key factors that regulate gene expression changes

in RTT. Under |Iogz(fold change)| > 0.2 and q < 0.05, 579 genes were differentially

expressed in Mecp2 knockout mice (Table S3). The corresponding heatmap showed
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large expression changes in Mecp2 knockout mice compared to wild-type mice (Figure
S6).

To elucidate the key factors responsible for the expression changes in RTT, agene
expression signature comparison analysis was performed using the gene expression
signatures of Mecp2 knockout mice compared to the gene expression signatures derived
from the SF perturbation datasets (see Methods section). The up-regulated genes in
Mecp2 knockout mice were compared to the up-/down-regulated genes in the SF
perturbation datasets, and one SF was potentially responsible for the expression changes
in Mecp2 knockout mice, i.e. RBM3 (Table S4).

Identification of key factors in cold-induced thermogenesis

To demonstrate the utility of our integrated analysis further, key factors of cold-
induced thermogenesis (CIT) in adipose tissue were identified. CIT in adipose tissue can
increase resting energy expenditure by approximately 10%%. If not compensated by
changes in food intake, small changes in resting energy expenditure can have long-term
effects on body weight. Therefore, activating CIT in adipose tissue is an attractive strategy
to combat obesity. Although much is known about adipose commitment and
differentiation®!, the transcriptional mechanisms that ensure the readiness of mature
adipose tissue to carry out adaptive thermogenesis remain unknown, including
interactions between SFs and thermogenesis®. Thus, to improve our understanding of
this complexity further, we combined the RNA-Seq data from SF perturbations and from
adipose tissues under cold exposure to identify key factors relevant to CIT at the splicing

and gene expression levels.
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A DAS analysis was performed on RNA-Seq data from brown adipose tissue (BAT)
and subcutaneous white adipose tissue (SWAT) from cold-exposed mice (see Methods
section). Under |A¥| > 0.05 and g < 0.05, the DAS analysis revealed large-scale
alternative splicing events in both BAT and sWAT upon cold exposure (Figure 4a and
Figure S7a). Specifically, 760 and 1,481 alternative splicing events were identified in BAT
and sWAT, respectively (Table S5). The heatmaps of PSI values demonstrated the large
splicing changes of ES events in BAT and sWAT upon cold exposure (Figure 4b and
Figure S7b).

To discover key factors in CIT, a splicing signature comparison analysis then was
performed on the signatures of BAT and sWAT derived from cold-exposed mice
compared to the curated SF perturbation datasets (see Methods section). Out of the full
SF perturbation datasets that related to a total of 56 SFs, 2 SFs and 6 SFs were shown
to be potentially responsible for the splicing changes in BAT and sWAT upon cold
exposure, respectively. From these data, NOVA1 and PRMT5 were associated with
splicing changes in BAT (Table S6). In addition, MAGOH, PRMT5, PTBP1, RBFOX2,
RBMB8A, and U2AF1 were linked with alternative splicing events in SWAT (Table S6).
These SFs potentially regulate the splicing changes in adipose tissue that are critical for
the activation of adipose tissue thermogenesis upon cold exposure.

In addition to the DAS analysis, a DEG analysis was performed on the RNA-Seq
data of BAT and sWAT from cold-exposed mice to help identify key factors of gene

expression in adipose tissue CIT. Under |Iogz(fold change)| > 1.0 and q < 0.05, a total of

1,836 and 5,266 genes were identified as differentially expressed in BAT and sWAT,
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respectively (Table S7). The heatmaps showed large expression changes in BAT and
SWAT upon cold exposure (Figure S8a and Figure S8b).

A gene expression signature comparison analysis was performed using the gene
expression signatures derived from adipose tissue upon cold exposure, compared to the
gene expression signatures calculated from the curated SF perturbation datasets (see
Methods section). Up-regulated genes in adipose tissue were compared to the up-/down-
regulated genes in the SF perturbation datasets, and 22 SFs were shown to potentially
regulate gene expression changes in BAT upon cold exposure (i.e., CD2BP2, CELF1,
ESRP1, ESRP2, HNRNPK, HNRNPL, HNRNPU, MBNL1, MBNL2, METTL3, NOVA1,
NOVA2, PQBP1, PRMT5, PRMT7, PTBP1, QK, RBM10, SF3A1, SF3B1, SRRM4, and
U2AF1) (Table S8). In addition, 21 SFs were identified to potentially regulate gene
expression changes in sWAT upon cold exposure (i.e., ACTA1, CELF1, CIRBP, EIF4AS,
ESRP1, ESRP2, HNRNPA2B1, HNRNPU, MBNL1, MBNL2, MBNL3, PAF1, PHF5A,
PRMT5, PRMT7, QK, RBFOX2, RBM17, RBM3, RBM8A, and U2AF1) (Table S8). These
SFs potentially regulate the expression changes in adipose tissue upon cold exposure.

We specifically evaluated SRSF1 in splicing signature comparison results for CIT,
and a Seahorse metabolic flux analysis demonstrated a potential regulatory role of
SRSF1 on mitochondria respiration in 3T3-L1 adipocytes (see Methods section). These
adipocytes recently have been found to have characteristics of brown adipocytes,
including high levels of uncoupled respiration®® **. Such uncoupled respiration was
assessed because it is a major component of CIT*®. Knockdown of Srsff in 3T3-L1

adipocytes by siRNA reduced Srsf1 gene expression by approximately 95% (Figure S9;
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p < 0.0001) and reduced oxygen consumption rate (OCR) due to uncoupled respiration
by approximately 35% (Figure 5; p = 0.02). This experimental finding supports the
prediction that SRSF1 is an important factor in CIT. SRSF1 knockdown also reduced
OCR coupled to ATP synthesis in these adipocytes (Figure 5, p <0.001), suggesting that
it has a broader role in regulating mitochondrial function. SRSF1 knockdown reduced
basal adipocyte OCR, which is the sum of these two respiratory measures® (Figure 5, p
<0.001). And our analysis showed no difference in extracellular acidification rate (ECAR),
a proxy measure of glycolytic flux, in these adipocytes (Figure S10). Therefore, these
data suggest a potential role of SRSF1 in regulating energy expenditure in adipose
tissues specific to aspects of mitochondrial function.

To determine whether PTBP1 is involved in adaptive thermogenesis, we
performed Ptbp1 knockdown using shRNA constructs in undifferentiated brown
adipocytes (see Methods section)®’. Partial Ptbp1 knockdown was achieved with two
independent shRNA constructs, as seen by western blot (Figure S11a). To investigate
whether Ptbp1 affected mitochondrial function, we performed Ptbp1 knockdown in
undifferentiated brown adipocytes before assessing mitochondrial respiration by
Seahorse metabolic flux analysis. Ptbp1 knockdown reduced cellular respiration and
affected respiratory reserve capacity (Figure S11b)*®. The decrease in respiration was
caused mostly by coupled respiration. In agreement with the mitochondrial activity defect,
we observed a decrease in mitochondrial complex abundance by western blot, especially
for complexes |, Il, and IV (Figure S11c). These results demonstrate that PTBP1 affects

key components of brown adipocytes and may have a role during adaptive thermogenesis.
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According to both the splicing signature analysis and gene expression signature
analysis on cold-exposed adipose tissue, NOVA1 and NOVA2 were identified as key
factors in CIT. Vernia et al.'” revealed that NOVA-deficient (both NOVA1 and NOVA?2)
mice have a significantly increased core body temperature compared to wild-type mice
upon cold challenge. In addition, the expression of “browning” phenotype marker genes
increased in subcutaneous adipocytes of NOVA-deficient mice. These findings indicate
that NOVA proteins in adipocytes suppress adipose tissue thermogenesis'®. Taken
together, our results demonstrate the power of signature comparison analyses.
Discussion

Technological advances have enabled RNA-Seq for the study of human diseases
and BPs. However, RNA-Seq analyses have focused primarily on downstream
expression changes, but the genes with changed expression do not necessarily play a
critical role in regulating diseases or BPs. Standard RNA-Seq analysis with data limited
to a specific biological context is unable to identify key factors in a disease or BP. We
filled this void by generating a comprehensive compendium of RNA-Seq data for 56 SFs;
these expression profiles were used in an integrated analysis to reveal key factors in
diseases and BPs. DAS or DEG analysis alone only reveals genes whose expressions
are changed in a disease or BP, but these genes do not necessarily regulate the disease
process or BP. However, our signature comparison analyses aimed to reveal key factors
that contribute to the regulation of the disease process or BP. As long as a significant
portion of the SF targets derived in the SF perturbed datasets is maintained in the disease

or BP, our integrated analysis is expected to reveal true factors that may not be ranked
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highly in DAS or DEG analysis. While the present study focused on an application in
neuroscience and an application in metabolism, the integrated analysis described here
can be generalized to other diseases and BPs. Thus, we expect that similar resources for
other regulatory mechanisms and proteins, such as RNA-binding proteins®, as well as

full-length RNA-Seq and proteogenomics data®***!

, will serve as an important
foundation for identifying key factors in human diseases and BPs.

A number of studies have been conducted to investigate splicing in RTT. For
example, dozens of splicing changes were reported in a mouse model of RTT*? based on
a splicing microarray study. A mutant gene in RTT, MECP2 physically interacts with
dozens of proteins, including SFs PSIP1 and DHX9, and hundreds of alternative splicing
events were misregulated in the cortex of Mecp2 knockout mice*®. However, few studies
have identified key SFs in RTT development systematically. Our work provides an
integrated analysis to fill the gap. For example, our identified factor CIRBP plays a critical
role in controlling cellular responses to a variety of cellular stresses. Additionally, it has
been shown that CIRBP migrates into stress granules under oxidative stress™.
Interestingly, oxidative stress has been linked to RTT*. These facts suggest that CIRBP
may affect RTT via the regulation of oxidative stress.

Some identified factors in CIT have been validated experimentally in vivo or in vitro.
For example, NOVA1 has been validated previously in vivo'. In addition, evidence from
in vitro experiments has been collected for other identified factors that may have roles in

relevant processes related to CIT (Online-only Table 1). For example, they may affect

adipogenesis (NOVA1*® and PRMT5*), the activity of BAT maker genes (CELF1*® and
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HNRNPU*), and lipid storage (HNRNPU*® and PQBP1°9). In particular, CELF1 represses
the expression of its targets by binding their 3’-UTR, such as Ppargc1a mRNA and BAT-
enriched long noncoding RNA (IncRNA) 10 (IncBATE10). By repressing the expression
of Ppargcila mRNA and IncBATE10, thermogenesis was suppressed in brown
adipocytes®®. These experimental results corroborate our computational results, as
CELF1 was predicted by our gene expression signature comparison instead of our
splicing signature comparison. Online-only Table 1 also records regulation directionality
of the seven identified factors according to the gene expression changes of markers
related to thermogenesis or other relevant BPs. The regulation directionality of three
factors predicted by our method, CELF1, NOVA1, and PRMT5, were consistent with
experimental results. An alternative direction for PRMT5 also was predicted (Table S8).
This prediction is not surprising because PRMT5 is a protein arginine methyltransferase
with many substrates®', and different conditions may lead to methylation of different
substrates, which results in diversity in signatures. Such discrepancy can be resolved by
additional experiments. The regulation directions of the remaining four factors, HNRNPU,
HNRNPK, METTLS3, and PQBP1, have not been determined because the corresponding
references in Online-only Table 1 do not contain expression data of marker genes.

In addition to the SFs supported by evidence of functional roles, those identified
SFs without current literature support are connected to those with literature support
according to the STRING database® (Figure S$12). For example, CIRBP, PTBP1, SF3Af1,
SRSF1, SRSF7, and U2AF1 share STRING associations with the SFs that have literature

evidence (Online-only Table 1), suggesting that they also may affect thermogenesis in
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adipose tissue. Notably, some SFs are highly connected in the interaction network, such
as PTBP1, SF3A1, SRSF1, and SRSF7. The g-value cutoff of 0.25 used in our integrated
analysis may be relaxed. For example, SRSF1 in CIT has p-value = 0.045 and g-value =
0.59. These values indicate that additional SFs may be key factors as well. Specifically,
we examined the functional roles of SRSF1 and PTBP1 in Seahorse metabolic flux
analysis. Srsf1 knockdown showed reduced OCR in multiple mitochondrial respiratory
indices, suggesting a regulation role of SRSF1 for energy expenditure in adipose tissues.
Ptbp1 knockdown also reduced cellular respiration and affected the respiratory reserve
capacity in brown adipocytes. Thus, the identified factors may be potentially critical
candidates for future in vivo experiments that study CIT mechanisms.

Even though our integrated analysis identified many factors in CIT, SFs are not yet
well-studied in vivo, with NOVA1 being the only one with in vivo experimental validation.
Among more than 100 genes that enhance or suppress CIT supported by in vivo
experiments'®, SFs are not enriched (one-sided Fisher’s test, p-value = 0.8772). Thus,
the importance of SFs is not appreciated by the CIT community fully. RNA-related BPs
can be a fruitful direction for studying CIT mechanisms. Given that only approximately 15%
of SFs currently have related RNA-Seq data®, more RNA-Seq data will be generated,
which will fuel our integrated analysis to predict more key factors of CIT in the future.

Signatures generated from different tissues or cell types may share similarity for
specific SFs. For example, four splicing and gene expression signatures of SRRM4 from
different tissue/cell types shared significant similarities (Figure S13a and Table S9).

However, there are cases in which signatures are different for the same SF perturbation
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in different cell types or tissues. For example, PRMT5 has two compact groups of splicing
and gene expression signatures from different tissues (Figure S13b). Identification of
multiple compact signatures for a given SF ensures that the signature comparison results
will have a broad coverage of possible effects of the SF.

It is worth noting that although the data used to derive the SF signatures were not
necessarily from neuronal and adipose tissues, they still could assist the identification of
potential key regulatory factors of RTT and CIT, respectively. For RTT, the RNA-Seq data
for CIRBP were from mouse embryonic fibroblasts (Table S9). Because our validation
results for CIRBP indicated its potential role in RTT, it can be suggested that tissues other
than neuronal tissues can be used to generate hypotheses related to neurological
diseases. For CIT, cardiac tissues were used to generate the RNA-Seq data for CELF1
(Table S9). The heart has a connection to adipose tissue in that catecholamine signaling,
which activates thermogenesis in BAT and browning of WAT®, also can lead to
cardiomyopathy and heart failure®* when persistently activated in cardiac tissue. This
potential suggests that the rich resources of publicly available gene expression data,
despite the fact that they may not be from the tissue/cell type seemingly relevant to the
biological problem at hand, should not be dismissed, and informative results can be
derived from them. Our work is expected to extend beyond the current applications of
neuroscience and metabolism, and the integrated analysis based on a compendium of
SF RNA-Seq data is an efficient and economical approach to speed up the accurate

identification of complex regulatory relationships in more disease and BP studies.
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Some SFs belong to several protein types with different functions in the pre-
mRNA-splicing process, including the SR family of splicing proteins, polypyrimidine tract-
binding proteins, branch site-binding proteins, heterogeneous nuclear ribonucleoproteins
(hnRNPs), and small nuclear ribonucleoproteins (snRNPs)®°. Table S10 shows
classification of the identified SFs. To facilitate classification of the SFs, their Pfam family
annotations were extracted from Uniprot because domain structures can elucidate the
biological functions of proteins®. Although some SFs have clear functions according to
the domains, there is still a subset of SFs that cannot be annotated unambiguously. For
example, RBM10 has three Pfam domain family annotations (i.e., RNA recognition motif
[PF0O0076], Zn-finger in Ran binding protein and others [PF00641], and G-patch domain
[PFO1585]). These SFs without a clear single domain classification were annotated as
“Unclassified.” The classification result of the SFs provides a clue for a deeper
understanding of mechanisms underlying their regulatory roles.

Methods
DAS analysis using RNA-Seq data

To identify the DAS events, we performed DAS analysis®” °% % €% %1 Briefly, the
raw RNA-Seq reads first were aligned to mouse genome (mm9) using STAR®? with default
settings, and those uniquely mapped reads were retained to calculate the counts of the
reads for each exon and each exon-exon junction annotated in the UCSC knownGene
(mm9) table®® using the Python package HTSeq®. UCSC mm9 annotation was
downloaded from the table knownGene in the UCSC public MySQL database “mm9”

hosting at “genome-mysql.cse.ucsc.edu” with the user “genome.” The mapped exon and
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exon-exon junction counts were used to construct a directed-acyclic graph representation
of DAS events®. After modeling the counts in each alternative splicing event using
Dirichlet-multinomial (DMN)®, the likelihood ratio test was used to test the significance of
the changes in alternative splicing between the comparison conditions®’. The Benjamini-
Hochberg-adjusted g-value was calculated from the p-values in the likelihood ratio test®.
To integrate the effect size, PSI ( W) was calculated for the splicing events to examine the
inclusion level of the variable exons over the total mature mMRNAs®. The DAS events
were identified under |A¥| > 0.05 and q < 0.05.
DEG analysis using RNA-Seq data

To identify the DEGs, we performed a DEG analysis using RNA-Seq data’® "
3 A count table was constructed by counting the number of reads aligned to each gene
of each sample. The genes with low counts were filtered out for the downstream testing.
Normalization and differential gene expression analysis were performed using DESeq2’*.
False discovery rate (FDR)-adjusted g-values were calculated using the Benjamini-
Hochberg procedure. The log,(fold change) also was calculated for each gene. The

DEGs were identified under |log,(fold change)| > 0.5 and g < 0.05.

Comparison of the number of DAS events and DEGs

Because of the crosstalk between splicing and transcription'®, the DAS and DEG
analysis results may reflect this relation. To demonstrate this relation, the difference in
the experimental designs of the datasets must be accounted. Specifically, we formulated
the numbers of DAS events and DEGs using linear models®’.

Linear models of the number of DAS events and DEGs
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The number of DAS events and the number of DEGs were formulated as linear
combinations of the main factors concerning experimental designs, i.e., the total number
of reads (T7), the effective read length (L), and the number of samples (S). The total
number of reads refers to the number of reads of all the samples in comparison to the
perturbed samples and the baseline samples. For single-end reads, the effective read
length is just the read length; for paired-end reads, the effective read length is the sum of
the length of each read in a pair. The number of samples is the sum of the perturbed and
unperturbed samples in a comparison.

The number of DAS events was formulated by the following linear model:

#DAS = Bo+Br*T+BL*L+ Bs*S+ Bry* (T:L) + Brs * (T:S5).

It includes the additive terms of the three metadata factors. More reads (T) results in more
statistical power unless the number of reads is saturated. Given all the other conditions
being the same, the greater the total number of reads (T), the more likely it is that the rare
splicing junctions are covered. Longer effective read lengths (L) may result in more exon-
exon junctions with reads mapped, leading to the detection of more DAS events. More
samples (S) will result in more accurate estimates of variation, enabling more robust
detection of DAS events. This linear model also includes two interaction terms. The
interaction term T:L formulates the effect of T depending on the value of L. For example,
increasing the number of reads (i.e., greater T) will make it more difficult to increase the
number of detected DAS events in a short read length compared to a long read length
because a short read length is more likely to have insufficient junction coverage. Similarly,

the interaction term T:S formulates the effect of T depending on the value of S. However,
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our linear model does not include the interaction terms L:S and T:L:S because there is no
prior knowledge that these two interaction terms should exist, and ttests of the
coefficients of these two terms were not statistically significant.

The number of DEGs was formulated by the following linear model:

#DEG = By + Py *T + Bs * S + Brs * (T:S).
Different from splicing analysis, in which longer reads cover more splicing junctions
enhancing the detection of DAS events, increasing read lengths beyond a reasonable
length (e.g., 50 bps) will not increase read mappablility. Therefore, the effective length (L)
is not expected to have an effect on the number of DEGs. Hence, the term L and the
corresponding interaction term T:L were omitted in this linear model.

Information from the three factors was retrieved via the SRA Run Info CGI”®. The
coefficients of both linear models were estimated using 1m( ) in R, and their significances
were tested by t-test.

Comparison of normalized numbers of DAS events and DEGs

Under the linear models, the number of DAS events and DEGs was normalized to
a canonical experimental design for a fair comparison across multiple analyzed datasets.
The normalization was performed by shifting standardized residuals in the fitted DAS and
DEG models.

A subset of the comparisons was selected for examining the number of DAS
events and DEGs. Some comparisons generated few DAS events because the original
purpose to collect them was to study gene expression, which only needed relatively short
reads. Much longer reads were needed to have enough coverage of exon-exon junctions

for splicing analysis. These datasets designed for gene expression analysis performed
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poorly in detecting DAS events. Therefore, it was required to filter out these comparisons
to produce a meaningful comparison between alternative splicing and gene expression
analysis results.

The analysis of the linear model for DAS showed significant linear correlations of
the number of DAS events with the total number of reads (t-test: p-value = 0.000172), the
effective read length (t-test: p-value = 0.000825), and their interaction (t-test: p-value =
0.001188). We selected the high-quality comparisons with the total number of reads >
100 million spots and the effective read length > 150 bps because few DAS events were
detected for the comparisons with < 100 millions of reads, and the three coefficients in
the linear model became insignificant for comparing with effective read length < 150 bps.
These two cut-off parameters were consistent with typical experimental design
suggestions for splicing studies’®.

Splicing signature comparison analysis

To identify the regulatory role of key SFs in a BP, a splicing signature comparison
analysis was performed among the splicing signatures derived from the experimental
comparisons of SF perturbation datasets and the experiments in the BP, which was
previously described by Li et al.”. A DAS event was considered positively regulated by
an SF (notated as +) if the event had more inclusion of the variable exon (i.e., AW > 0.05)
upon increased expression of the SF or if the event had less inclusion of the variable exon
(i.e., A¥ < —0.05) upon decreased expression of the SF. Alternatively, an event was
negatively regulated by an SF (notated as —) if the event had more inclusion of the

variable exon (i.e., AW > 0.05) upon decreased expression of the SF or if the event had
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less inclusion of the variable exon (i.e., AW < —0.05) upon increased expression of the
SF. Given the DAS events in one experimental comparison of the SF and the biological
experiments, two vectors of +/—/0 were generated for both experimental comparisons,
in which + /- indicated the event was positively or negatively regulated by the SF, and 0
meant that there was no evidence that the event was regulated by the SF. To compare
two splicing signatures, a 3x3 contingency table was constructed with rows and columns
named as +/-/0 that counted the number of events in the two splicing signatures. To
determine the specific regulatory roles of an SF, the 3x3 table was collapsed into two
2x2 contingency tables so that two tables could be used to test the enrichment of + +
events and — — events using Fisher’s exact test (with the null hypothesis Ho: log-odds-
ratio < 0.5), respectively. Figure S14 illustrates how the splicing signature comparison
analysis works with an example. FDR-adjusted g-values were calculated using the
Benjamini-Hochberg procedure among p-values of all SF biological comparisons.
Candidate SFs were identified by g < 0.25 77,
Gene expression signature comparison analysis

To determine the gene expression correlation relationship between SFs and DEGs
in a BP, a gene expression signature comparison analysis was performed using gene
expression signatures derived from the experimental comparisons of SF perturbation
datasets and the BP. In the SF perturbation datasets, a DEG was up-regulated when
log,(fold change) > 0.5 wupon increased expression of the SF or when

log,(fold change) < —0.5 upon decreased expression of the SF. In the opposite case, the

DEG was down-regulated in the SF perturbation dataset. However, in the experimental
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comparison of the BP, the DEGs were up-/down-regulated when log,(fold change) > 0.5

or < —0.5, regardless of the expression changes of a specific SF. Given two gene sets of
up-/down-regulated genes from experimental comparisons of the SF perturbation dataset
and the BP, taking the expressed genes as background, Fisher’s exact test (with the null
hypothesis Ho: log-odds-ratio < 0.5) was used to test the significance of the genes shared
by the two comparisons. Similar to the splicing signature comparison analysis, FDR-
adjusted g-values were calculated using the Benjamini-Hochberg procedure among p-
values of all SF biological comparisons. Candidate SFs were identified by q < 0.25.
Generation of RNA-Seq datasets for Mecp2 knockout mice
Animals

B6.129P2(C)-Mecp2™'-'5"1J mice were purchased from The Jackson Laboratory.
Used to genotype the null allele (Mecp2) were 5-AAATTGGGTTACACCGCTGA-3'
(universal forward primer) and 5-CCACCTAGCCYGCCTGTACT-3' (knockout reverse
primer). The universal forward primer and 5-CTGTATCCTTGGGTCAAGCTG-3' (wild-
type reverse primer) were used to genotype the wild-type allele. Wild-type C57BL/6J male
mice (The Jackson Laboratory) were bred with Mecp2'" heterozygous females to
generate MecpZ” mice and their wild-type littermates (Mecp2¥). Mice for the
experiments were euthanized by CO. at 6 to 7 weeks old. Hippocampal dentate gyrus
were dissected bilaterally and removed from the brain under a stereomicroscope®. All
animal procedures were performed in accordance with the protocol approved by the
Emory University Animal Care and Use Committee.

RNA isolation, RNA-Seq library preparation, and high-throughput sequencing
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Total cellular RNA was purified from dentate gyrus using the TRIzol Reagent
(Invitrogen), Phasemaker tubes (Invitrogen), and RNA Clean & Concentrator (Zymo
Research) according to manufacturer instructions. DNase | treatment was included. RNA-
Seq libraries were generated from 1 ug of total RNA from duplicated samples per
condition using the TruSeq LT RNA Library Preparation Kit v2 (lllumina) following
manufacturer protocol. Agilent 2100 BioAnalyzer and DNA1000 kit (Agilent) were used to
quantify amplified complementary DNA (cDNA) and to control the quality of the libraries.
lllumina HiSeg2500 was used to perform 100-cycle pair-end (PE100) sequencing. Image
processing, sequence extraction, and adapter trimming were done using the standard
cloud-based lllumina pipeline in BaseSpace.

RT-PCR for confirmation of alternative splicing changes in Mecp2 knockout mice

cDNA for RT-PCR was prepared from 120 ng of total RNA using SuperScript VILO
MasterMix (Life Technologies) to verify gene expression levels. RT-PCR was performed
using EmeraldAmp GT PCR Master Mix (Clontech) for 25 to 30 cycles with exon-specific
primers as indicated®®. PCR products were resolved on 2% agarose gel electrophoresis
stained with ethidium bromide and visualized with an ultraviolet (UV) transilluminator. All
events were tested in the dentate gyrus of three wild-type mice and five knockout mice
(littermates) by RT-PCR. PSI was calculated by measuring the relative intensity of the
PCR product, including the exon or retained intron, etc., divided by intensity of the PCR
product, including the exon or retained intron, etc., plus the intensity of the PCR product,

excluding the exon or retained intron, etc., multiplied by 100%. Statistical significance was
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calculated using a one-tailed Student’s t-test with unequal distribution of the variance and
p smaller than 0.05 being considered significant.
RT-PCR confirmation of DAS events in Mecp2 knockout mice

To confirm DAS analysis in Mecp2 knockout mice, a subset of DAS events was
selected for RT-PCR experiment. Because Cirbp was increased significantly in Mecp2
knockout mice (fold change: 2.04), and Cirbp was up-regulated in RTT whole-brain
samples in a northern blot analysis®®, we hypothesized that Cirbp may play a regulatory
role in RTT. Therefore, we overlapped DAS events between Mecp2 knockout mice and a
dataset of Cirbp knockdown mouse embryonic fibroblasts (GSE40468). A total of 12 DAS
events were commonly identified in two datasets (Data S2). Primer sequences of 11 DAS
events were designed for RT-PCR experiments (Data S3), with the DAS event in Vcam1
excluded because of low expressions of its variable exon in the event.
qRT-PCR for Cirbp RNA expression in Mecp2 knockout mice

Total RNA was isolated from mouse cortex using TRIzol Reagent (Invitrogen,
Carlsbad, CA). cDNA was synthesized according to manufacturer protocol, using the
QuantiTect Reverse Transcription Kit (Qiagen). Real-time gRT-PCR was performed using
Sybr Green (Bioline) on an ABi ViiiA 7 in 384-well format using primers to Cirbp (F-
GTCTTCTCCAAGTATGGGCAGAT, R-TCCTTAGCGTCATCGATATTTTC), with results
normalized to GAPDH. Fold change was calculated relative to wild-type. Reactions were
performed as three biological replicates.
Neuronal morphology experiment

Primary neuron culture
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Procedures for the dissociation and maintenance of primary neuron cultures were
performed as described in previous work®*. Briefly, time-mated Sprague-Dawley dams
were euthanized via carbon dioxide asphyxiation, in accordance with guidelines set out
by the SingHealth Institutional Animal Care and Use Committee. Embryonic day-18
embryos were extracted from the uterus and decapitated in order to remove their brains.
The harvested brains were placed in ice-cold Earle’s Balanced Salt Solution (EBSS)
containing 10-mM HEPES. The hippocampi were dissected out, minced, and digested
using papain (in EBSS) for 30 minutes at 37 °C. The digested tissues were resuspended
in a neuronal plating medium (minimum essential medium containing 10% fetal bovine
serum, 1x N2 supplement, 1x penicillin/streptomycin, and 3.6-mg/mL glucose). The
tissue suspension was passed through a 70-pm cell strainer to sieve out tissue clamps.
To obtain neuronal cells, the tissue suspension then was passed through a 7.5% bovine
serum albumin (in phosphate-buffered saline [PBS]) layer by centrifuging at 200x g for 5
minutes. The resultant cell pellet was resuspended in a neuronal plating medium and
seeded onto poly-I-lysine-coated glass coverslips (for immunohistochemistry) or culture
plates (for RNA extraction). On the following day, the plating medium was exchanged for
a maintenance medium (Neurobasal medium supplemented with 1x B27 supplement,
0.5x L-glutamine, and 1x penicillin/streptomycin). The cells were maintained in a
humidified incubator at 37 °C and 5% CO: level.

ShRNA cloning and vector transduction
shRNAs against different regions of rat Cirbp were cloned into FUGW lentiviral

vectors. The shRNA target sequence is GCAGGTCTTCTCCAAGTAT. The shRNA
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sequence against rat Mecp2, and the control sequence were cloned into PLL lentiviral
vectors—shMeCP2: GGGAAACTTCTCGTCAAGA and shCtrl:
AGTTCCAGTACGGCTCCAA?. shRNA expression was under the control of the human
U6 promoter, while their fluorescent reporters (GFP or mCherry) were co-expressed
under the control of the human ubiquitin C promoter in the same vector. Calcium
phosphate precipitation was used to transfect the plasmids, and packaging and envelope
proteins vectors into HEK293 cells for the production of lentiviruses, as previously
described in previous work®. Viruses were collected via ultracentrifugation and
resuspended in sterile PBS for use in transduction of primary neurons. The shRNA
viruses were added to the cultures at days in vitro 1 (DIV 1). Thereafter, the cells were
monitored for the expression of fluorescent tags to verify efficient expression of the
shRNAs.
RNA extraction, cDNA conversion, and semiquantitative PCR

DIV 7-cultured neurons first were washed twice with ice-cold PBS. Total RNA was
extracted from the cells using an RNeasy Mini Kit (QIAGEN) according to manufacturer
instructions. The RNA was eluted with nuclease-free water and stored at --80 °C until use.
cDNA was synthesized from 1-pg RNA using SuperScript® Il First-Strand Synthesis
System (Invitrogen) with oligo(dT) primers. Conventional RT-PCR was performed on a
DNA Engine Peltier Thermal Cycler (Bio-Rad Inc.). Primer sequences used were as
follows — Cirbp: TCAGCTTCGACACCAATGAG (forward [F]),
GTATCCTCGGGACCGGTTAT (reverse [R]) and Gapdh:

CATCACTGCCACTCAGAAGA [F], CAACGGATACATTGGGGGTA [R]. PCR products
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were separated via agarose gel electrophoresis, and their band intensities were
quantitated using ImageJ.
Immunohistochemistry

DIV 7 neurons grown on glass coverslips were washed twice with PBS and fixed
with 4% paraformaldehyde (with 4% sucrose added to maintain osmolality) for 15 minutes
at room temperature. Afterward, the cells were washed twice (5 minutes per wash) with
Tris-buffered saline (TBS) to remove traces of the fixative. They then were permeabilized
for 5 minutes with 0.1% Triton X-100 in TBS (TBS-Tx). Donkey serum (5%) in TBS-Tx
was used to block the cells for 2 hours at room temperature. They then were incubated
with primary antibodies overnight at 4 °C. Primary antibodies used were as follows —anti-
GFP (1:3000, Rockland) and anti-Map2 (1:500, Sigma). On the following day, the primary
antibodies were removed, and the cells were washed thrice with TBS-Tx. They then were
incubated with Alexa Fluor® secondary antibodies diluted 1:500 in TBS-Tx for 2 hours at
room temperature. After removing the secondary antibodies, the cells were washed three
times in TBS-Tx and then stained with DAPI (1:5000 in TBS-Tx) for 10 minutes at room
temperature. After three final washes, two with TBS and one with phosphate buffer, the
coverslips were mounted onto glass microscope slides and allowed to dry before imaging.
Image acquisition and analysis

Images were taken with a Zeiss LSM 710 confocal microscope. For examining
neuronal morphology, images were taken at a single plane. Length measurements and

tracings of neurites were made based on Map2 immunofluorescence using LSM Image
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Browser. To evaluate branch complexity, a Sholl analysis was performed on the tracings
of the neurite arbors using an ImageJ plugin®’.
Statistical analysis

At least 50 cells from three independent cultures were analyzed for each condition.
Statistical testing was performed using GraphPad PRISM 5. One-way analysis of
variance (ANOVA) with a Bonferroni test post hoc was used for comparing the conditions.
Statistical significance was set at p-value < 0.05.
RNA-Seq data generated from adipose tissues in cold treated mice
Animals

The study of adipose tissue upon cold exposure was performed on 20 male
C57/BI6 wild-type mice aged 8 to 12 weeks that were divided into two groups. The first
group (n = 10) was exposed to thermoneutral temperatures (30 °C) for 72 hours, and the
second group (n = 10) was exposed to cold (4 °C) conditions for 72 hours. All
experimental mice were housed in a barrier animal facility with a 12-hour dark-light cycle,
with free access to water and food. All animal experiments conducted in this study were
approved by the Institutional Animal Care and Research Advisory Committee at the
University of Texas Southwestern Medical Center (APN# 2015-101207).
RNA extraction and quantitative and quality RNA controls

SWAT and BAT were harvested and immediately snap-frozen in liquid nitrogen.
Total RNA extraction was performed utilizing Trizol reagent (Invitrogen, Carlsbad, CA)
and an RNeasy RNA extraction kit (#74106, Qiagen, Valencia, CA). Briefly, after

homogenizing the tissues using a TissuelLyser (Qiagen), RNA was isolated following
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manufacturer protocol (Qiagen, Valencia, CA). RNA quality and concentration were
determined using a Nanodrop Spectrophotometer (N1-1000, Thermo Scientific,
Wilmington, DE). RNA quality was confirmed using an Agilent 2100 Bioanalyzer following
manufacturer protocol. The nanochip used for evaluating RNA quality produces
electrophoresis peaks, from which the RNA integrity number (RIN) is calculated. RIN is
the best predictor for assessing the integrity of the mRNA molecules. The RIN algorithm
was calculated for all the normal and tumor tissue samples. The RIN is a decimal number
ranging from 1 to 10, where 1 is attributed to completely degraded samples and 10 to
intact RNA samples with very good quality. The main features taken into consideration
for RNA quality evaluation are the size of the 18S and 28S peaks, the shape of these two
peaks, the stability of the baseline, the appearance of additional peaks on the
electropherogram, and the elevation of the baseline between the two peaks. A total of
1,000 ng of RNA was used to prepare libraries following lllumina TruSeq protocol. The
criteria included the following: total RNA-Seq, 35M (4/lane) reads per samples, 100PE,
long reads, full regular MC pipeline analysis. We performed the experiment on 20 mice.
Ten mice were exposed to thermoneutrality, and 10 mice were exposed to cold
temperatures (4 °C), both for 72 hours.
Adipocyte mitochondrial respiration experiments
Cell culture and reverse transfection

Mouse-immortalized 3T3-L1 fibroblasts (ATCC) were maintained in growth media
consisting of high-glucose DMEM (4.5-g/L glucose; Life Technologies) supplemented

with 10% heat-inactivated fetal bovine serum (HI-FBS; Thermo Scientific). Cells were
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maintained in 10-cm dishes and differentiated into adipocytes upon reaching confluence,
as previously described’®. Briefly, cells were induced to differentiate by supplementing
growth media with 3 nM insulin (Humulin R; Eli Lilly), 0.25-uM dexamethasone (Sigma-
Aldrich), and 0.5 mM isobutyl-1-methyl xanthine (Sigma-Aldrich) for 3 days before being
exposed to growth media supplemented with 3 nM insulin only for an additional 4 days.
Adipocytes then were maintained in normal growth media for 24 hours before undergoing
reverse transfection of control and Srsf1 siRNA’®. For respiration analyses, Seahorse V7
plates were coated with ECM (Sigma-Aldrich), and siRNA was prepared for transfection
using OPTI-MEM and RNAIMAX (Life Technologies). Per well, 0.45 uL of RNAIMAX was
added to 7.5 uL of OPTI-MEM and 0.45 uL of 10-uM ON-TARGETplus SMARTpool
siRNA (Dharmacon) directed against Srsf1, or nontargeting control siRNA was added to
7.5 uL of OPTI-MEM. The diluted RNAIMAX was mixed with diluted siRNA, and 15 uL
per well was added to ECM-coated Seahorse plates and incubated at room temperature
for 25 minutes. Adipocytes were trypsin-digested from their 10-cm dish before being
seeded into the Seahorse plate at 10,000 cells per well. For gene expression analysis,
the differentiation and reverse transfection protocol was followed as described above, but
adipocytes were seeded into 12 well plates.
Respiration analysis

Cells were maintained for 3 days in reverse transfection media prior to respiration
analysis. One hour prior to the assay, media were replaced with assay media consisting
of unbuffered DMEM (Life Technologies), 25-mM glucose (Sigma-Aldrich), 1-mM sodium

pyruvate, and 1-mM Glutamax (Life Technologies), a pH of 7.4, and were incubated at
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37 °C in a non-CO: incubator for 60 minutes. Cellular respiration was assessed, and
mitochondrial function parameters were calculated as previously described® using the
Seahorse XF24 analyzer. Specifically, OCR was measured before and after injection of
inhibitors to derive mitochondrial respiration parameters. Initially, 3 basal measurement
cycles consisting of 3-minute mix, 4-minute wait, and 2-minute measure periods were
performed, and basal respiration was derived by subtracting nonmitochondrial respiration
from the baseline cellular OCR. Next, oligomycin, an inhibitor of ATP synthase
(mitochondria complex V) was injected (1 uM final; Sigma-Aldrich), with results able to be
used to derive the coupled respiration (also called ATP-linked respiration) and uncoupled
respiration (i.e., proton leak). This step was followed by another 3 measurement cycles
before the injection of rotenone and antimycin A (both 1 puM final; Sigma-Aldrich).
Rotenone is a mitochondria complex | inhibitor, and antimycin A is a mitochondria
complex Il inhibitor. They shut down mitochondrial respiration, enabling the calculation
of nonmitochondrial respiration. Respiration coupled to ATP-linked respiration was
defined as the difference between respiration under basal and oligomycin conditions, and
proton leak was calculated as the difference in respiration between oligomycin and
rotenone/antimycin A conditions. Two independent experiments consisting of five
biological replicates were pooled by normalizing all respiration indices to control group
values within each experiment.
Gene expression analysis

Cells were maintained for 3 days in reverse transfection media prior to collection.

Media was aspirated from cells and replaced with 500-uL Trizol (Thermo Fisher), which
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was collected and frozen at -80 °C. Samples were thawed later, and RNA was extracted
using RNeasy columns (Qiagen). RNA was reverse-transcribed to cDNA using the
SuperScript lll First-Strand Synthesis System (Life Technologies), and real-time RT-PCR
was performed as previously described®, with primers for Srsf1 (Forward 5-GGC TAC
GAC TAC GAC GG TA-3' Reverse 5-GGA GGC AGT CCA GAG ACA AC-3’) and using
cyclophilin (Forward 5-CCC ACC GTG TTC TTC GAC A-3’ Reverse 5-CCA GTG CTC
AGA GCT CGA AA-3’) as the housekeeping gene.
Statistics

All data were expressed as mean + SEM and were analyzed by unpaired t-test.
Statistical significant differences were identified where p < 0.05.
Ptbp1 knockdown in brown adipocytes
Cell culture

An established mouse brown adipocyte cell line was obtained from Dr. Bruce
Spiegelman (Dana-Farber Cancer Institute, Boston, US). Four mouse shRNA constructs
against Ptbp1 and a scrambled shRNA in pGFP-V-RS vector were purchased from
Origene. shBRNA constructs B (TTCTCTAAGTTTGGCACCGTCCTGAAGAT) and D
(ACAATGATAAGAGCAGAGACTACACTCGA) were efficient at knocking down
endogenous Ptbp1 expression and were selected to perform experiments. Plasmids were
transfected with BioT reagent (Bioland) according to the manufacturer protocol. Cells
were analyzed or collected 2 days post-transfection.

Cellular bioenergetics
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Cellular respiration was measured using a Seahorse XF24 analyzer (Agilent), as
previously published®’. Transfected brown pre-adipocytes were replated in the XF24
plates at a density of 30,000 cells per well using trypsin. Measurements were obtained
before and after the sequential injection of 0.75 uM oligomycin, 0.75 yM FCCP, and 0.75
UM rotenone/myxothiazol. Results were normalized to total protein. Maximal respiration
was determined after FCCP injection. Coupled respiration corresponded to the oligomycin
response.

Immunoblot analysis

Cells were lysed in 10 mM Tris pH 7.5, 10 mM NaCl, 1 mM EDTA and 0.5% Triton
X-100, supplemented with complete mini EDTA-free protease (Roche Diagnostics) and
phosphatase (Cocktail 2 and 3, Sigma) inhibitors, followed by 10 second sonication.
Protein lysates were separated by SDS-PAGE (4-12% Bis-Tris, Invitrogen) and
transferred to a nitrocellulose membrane. Transfer was confirmed by Ponceau staining
(P7170, Sigma). After blocking in 5% milk, 0.1% Tween-20 in Tris-buffered saline (TBS),
primary antibody was incubated overnight at 4°C in 5% bovine serum albumin and 0.1%
Tween-20 in TBS. Primary antibodies against PTBP1 (gift from Douglas L. Black, UCLA)
and electron transport chain protein complexes (Total OXPHOS rodent WB antibody
cocktail ab110413, Abcam) were used at 1:2000. Peroxidase goat anti-rabbit (sc-2030,
Santa Cruz Biotechnology, Inc) or rabbit anti-mouse (A9044, Sigma) secondary antibody
was used at a 1:10,000 dilution for 1 hour at room temperature in 5% milk and 0.1%
Tween-20 in TBS. Immunoreactive bands were revealed with ECL Prime (Amersham)

and visualized with a Bio-Rad Gel-doc imager.
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Statistical analyses
Statistical analyses were performed by an unpaired two-tailed Student’s t-test. A

value of p < 0.05 was considered significant.

Data availability

The metadata of analyzed datasets are available in SFMetaDB

(http://SFMetaDB.yubiolab.org). The analyzed datasets are listed in Data Citations®'"°8,

and the processed splicing and gene expression signature data from this study are
available at Figshare "°.
Code availability

The scripts and source codes of raw DAS and DEG analyses are deployed in
Docker image and deposited at Docker Hub with the public tag sfrs/dasdegdocker:latest
1" The docker image for signature comparison analysis workflow also was deposited at

Docker Hub with the public tag sfrs/sfsigdb:latest '°8,
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Figure 1. Meta-information of RNA-Seq datasets analyzed in the signature database.
RNA-Seq datasets analyzed in our signature database include various perturbation and
tissue types. (a) The pie chart shows the percentage of RNA-Seq datasets with perturbed
SFs, including knockout (KO), knockdown (KD), overexpression (OE), knockin (Kl), and
other types (e.g., point mutation). (b) The pie chart depicts the number of RNA-Seq

libraries for various tissues or cell lines.
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Figure 2. Genome-W|de splicing and gene expression changes regulated by PRMT5.
To evaluate splicing and gene expression changes regulated by SFs, circular Manhattan
plots were generated across the whole genome (Data S1). This figure depicts the
changes regulated by PRMT5 using the comparison in GSE63800. (a) Splicing changes
are identified by |AW| > 0.05 and g < 0.05. Magenta or golden bars represent AWs, and
blue bars mean —log,,(g-value). (b) Gene expression changes are identified by
llog,(fold change)| > 0.5 and ¢ <0.05 . Magenta or golden bars represent

log, (fold change), and blue bars mean —log, ,(g-value).
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Figure 3. Neuronal morphology analysis on the role of Cirbp in RTT. (a) A neuronal
morphology analysis was performed on the hippocampal neurons of Mecp2 knockdown
(KD), Mecp2-Cirbp double KD, and control. Mecp2 KD neurons have less neurite
outgrowth compared to normal neurons, yet Mecp2-Cirbp double KD neurons have more

neurite outgrowth. (b) The normalized branch numbers are shown for control (Ctrl),
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Mecp2 KD, and Mecp2 and Cirbp KD neurons. ANOVA was used to test the changes of
branch numbers among the three groups of neurons. Mecp2 KD significantly reduced the
branch numbers. The figure also depicts the significantly increased branch numbers in
Mecp2 and Cirbp KD neurons compared to Mecp2 KD neurons but decreased branch
numbers in Mecp2 and Cirbp KD neurons compared to Ctrl. (c) The normalized neurite
lengths were shown for Ctrl, Mecp2 KD, and Mecp2 and Cirbp KD neurons. ANOVA was
used to test the changes of neurite lengths between the three groups of cells. Mecp2 KD
significantly reduced the neurite lengths. The figure also depicts the significantly
increased neurite lengths in Mecp2 and Cirbp KD neurons compared to Mecp2 KD alone,
but also significantly decreased neurite lengths in Mecp2 and Cirbp KD neurons
compared to Ctrl neurons. (ANOVA test. *: p-value < 0.05, **: p-value < 0.01, ***: p-value

< 0.001. n =47 to 61 neurons in each group).
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Figure 4. DAS events of BAT. (a) DAS analysis identified seven DAS event types, i.e.
exon skipping (ES), alternative 5' splice sites (A5SS), alternative 3' splice sites (A3SS),
mutually exclusive (ME) exons, intron retention (IR), alternative first exons (AFEs), and
alternative last exons (ALEs). The pie chart depicts the number of DAS events of the
seven splicing event types in BAT. (b) The heatmaps show the PSI values (scaled by
standard deviation) for the differential alternative ES events in BAT. Yellow: high PSI

value; blue: low PSI value.
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Figure 5. OCRs of mitochondrial respiration experiments with Srsf1 knockdown.

OCRs were recorded in Seahorse metabolic flux analysis. Three mitochondrial respiration
OCRs (for basal cellular respiration, coupled respiration, and uncoupled respiration) were
measured for both Srsf1 knockdown adipocytes (red boxes) and controls (blue boxes).
Srsf1 knockdown adipocytes showed significantly reduced OCRs for all three
measurements compared to controls (Unpaired t-test: *: p-value < 0.05, ***: p-value <

0.001, n=8to 10 in each group).
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