

1 Increased power from bacterial genome-wide association conditional
2 on known effects identifies *Neisseria gonorrhoeae* macrolide
3 resistance mutations in the 50S ribosomal protein L4

4

5 Kevin C Ma¹, Tatum D Mortimer¹, Marissa A Duckett¹, Allison L Hicks¹, Nicole E Wheeler²,
6 Leonor Sánchez-Busó², Yonatan H Grad^{1,3*}

7

8 ¹ Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public
9 Health, Boston, USA

10 ² Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome
11 Campus, Hinxton, Cambridgeshire, United Kingdom

12 ³ Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School,
13 Boston, USA

14

15

16 * Corresponding author

17 E-mail: ygrad@hsph.harvard.edu (YHG)

18

19 **Abstract**

20 The emergence of resistance to azithromycin complicates treatment of *N. gonorrhoeae*, the
21 etiologic agent of gonorrhea. Population genomic analyses of clinical isolates have
22 demonstrated that some azithromycin resistance remains unexplained after accounting for the
23 contributions of known resistance mutations in the 23S rRNA and the MtrCDE efflux pump.
24 Bacterial genome-wide association studies (GWAS) offer a promising approach for identifying
25 novel resistance genes but must adequately address the challenge of controlling for genetic
26 confounders while maintaining power to detect variants with lower effect sizes. Compared to a
27 standard univariate GWAS, conducting GWAS conditioned on known resistance mutations with
28 high effect sizes substantially reduced the number of variants that reached genome-wide
29 significance and identified a G70D mutation in the 50S ribosomal protein L4 (encoded by the
30 gene *rplD*) as significantly associated with increased azithromycin minimum inhibitory
31 concentrations ($\beta = 1.03$, 95% CI [0.76, 1.30]). The role and prevalence of these *rplD* mutations
32 in conferring macrolide resistance in *N. gonorrhoeae* had been unclear. Here, we experimentally
33 confirmed our GWAS results, identified other resistance-associated mutations in RplD, and
34 showed that in total these RplD binding site mutations are prevalent (present in 5.42% of 4850
35 isolates) and geographically and temporally widespread (identified in 21/65 countries across two
36 decades). Overall, our findings demonstrate the utility of conditional associations for improving
37 the performance of microbial GWAS and advance our understanding of the genetic basis of
38 macrolide resistance in a prevalent multidrug-resistant pathogen.

39

40 **Introduction**

41 Increasing antibiotic resistance in *Neisseria gonorrhoeae*, the causative agent of the sexually
42 transmitted disease gonorrhea, threatens effective control of this prevalent pathogen [1-3].
43 Current empiric antibiotic therapy in the US comprises a combination of the cephalosporin
44 ceftriaxone and the macrolide azithromycin, but increasing prevalence of azithromycin
45 resistance has led some countries, such as the UK, to instead recommend ceftriaxone
46 monotherapy [4]. Rapid genotypic diagnostics for antimicrobial susceptibility have been
47 proposed as a platform to tailor therapy and to extend the clinically useful lifespan of anti-
48 gonococcal antibiotics [5, 6]. These rapid diagnostics rest on robust genotype-to-phenotype
49 predictions. For some antibiotics, such as ciprofloxacin, resistance is predictable by target site
50 mutations in a single gene, *gyrA* [3, 5]. However, recent efforts to predict azithromycin minimum
51 inhibitory concentrations (MICs) using regression-based or machine-learning approaches have
52 indicated that a substantial fraction of phenotypic resistance is unexplained, particularly among
53 strains with lower-level resistance [3, 7, 8]. An improved understanding of the genetic
54 mechanisms and evolutionary pathways to macrolide resistance will therefore be critical for
55 informing the development of diagnostics.

56

57 Macrolides function by binding to the 50S ribosome and inhibiting protein synthesis [9].
58 Increased resistance can occur in *N. gonorrhoeae* through target site modification, primarily via
59 23S rRNA mutations C2611T [10] and A2059G [11], and through efflux pump upregulation. The
60 main efflux pump associated with antibiotic resistance in the gonococcus is the Mtr efflux pump,
61 comprising a tripartite complex encoded by the *mtrCDE* operon under the regulation of the MtrR
62 repressor and the MtrA activator [1, 12-17]. Active site or frameshift mutations in the coding
63 sequence of *mtrR* and promoter mutations in the *mtrR* promoter upregulate *mtrCDE* and result
64 in increased macrolide resistance [1, 18]. Mosaic sequences originating from recombination with
65 homologs from commensal *Neisseria* donors can also result in structural changes to *mtrD* and
66 increased expression of *mtrCDE*, which synergistically act to confer resistance [19, 20].

67

68 Here, we used genome-wide association on a global meta-analysis dataset to identify additional
69 genetic variants that confer increased azithromycin resistance in *N. gonorrhoeae*. We found that
70 conventional single-locus bacterial GWAS approaches that univariately test genetic variants
71 resulted in confounded results and reduced power. Conducting GWAS conditional on known

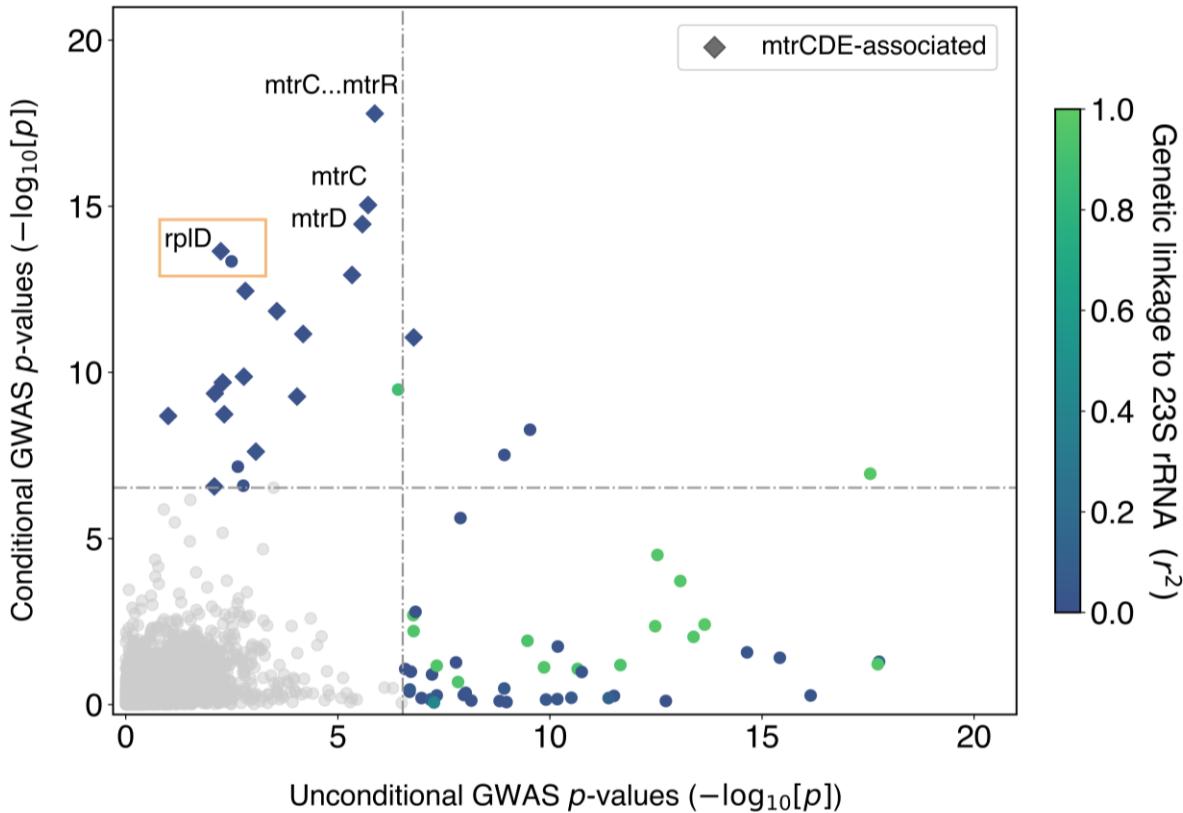
72 resistance mutations in 23S rRNA reduced linkage-mediated confounding and increased power
73 to recover known and candidate mutations associated with lower-level resistance. We
74 experimentally validated one such mutation in the 50S ribosomal protein RplD and identified
75 other rare RplD variants associated with resistance, highlighting the ability of conditional
76 bacterial GWAS to identify causal genes for polygenic microbial phenotypes.

77

78 **Results**

79 We previously conducted a linear mixed model GWAS on continuous azithromycin MICs in
80 4535 *N. gonorrhoeae* isolates where we observed highly significant unitigs (i.e., genetic variants
81 generated from *de novo* assemblies) mapping to the 23S rRNA, associated with increased
82 resistance, and to the efflux pump gene *mtrC*, associated with increased susceptibility and
83 cervical infections [7]. We re-analyzed the GWAS results focusing on the remaining significant
84 variants, which were closer in significance to the Bonferroni-corrected *p*-value threshold of
85 2.97×10^{-7} . Numerous variants were significantly associated with increased MICs, many of which
86 mapped to genes (e.g., *hprA*, *ydfG*, and *efeB*) that had not previously been implicated in
87 macrolide resistance in *Neisseria* (Supplementary Table 1). While these signals could represent
88 novel causal resistance genes, we hypothesized that at least some of these variants had been
89 spuriously driven to association via genetic linkage with the highly penetrant (A2059G: β , or
90 effect size, = 7.21, 95% CI [6.52, 7.90]; C2611T: β = 3.62, 95% CI [3.42, 3.82]) and population-
91 stratified 23S rRNA resistance mutations (Supplementary Figure 1). Supporting this hypothesis,
92 r^2 – a measure of linkage ranging from 0 to 1 – between significant variants and 23S rRNA
93 resistance mutations exhibited a bimodal distribution with a peak at 0.84 and at 0.04
94 (Supplementary Figure 2). The three most significant variants after the 23S rRNA substitutions
95 and *mtrC* deletion mapping to *hprA*, WHO_F.1254, and *ydfG* had elevated r^2 values of 0.16,
96 0.82, and 0.80 respectively; all three variants demonstrated clear phylogenetic overlap with 23S
97 rRNA mutations (Supplementary Figure 1). We additionally did not observe unitigs associated
98 with experimentally validated resistance mutations in the *mtrR* promoter [14] or the *mtrCDE*
99 mosaic alleles [19, 20], suggesting decreased power to detect known causal variants with lower
100 effect sizes.

101


102 To control for the confounding effect of the 23S rRNA mutations, we conducted a conditional
103 GWAS by incorporating additional covariates in our linear mixed model encoding the number of

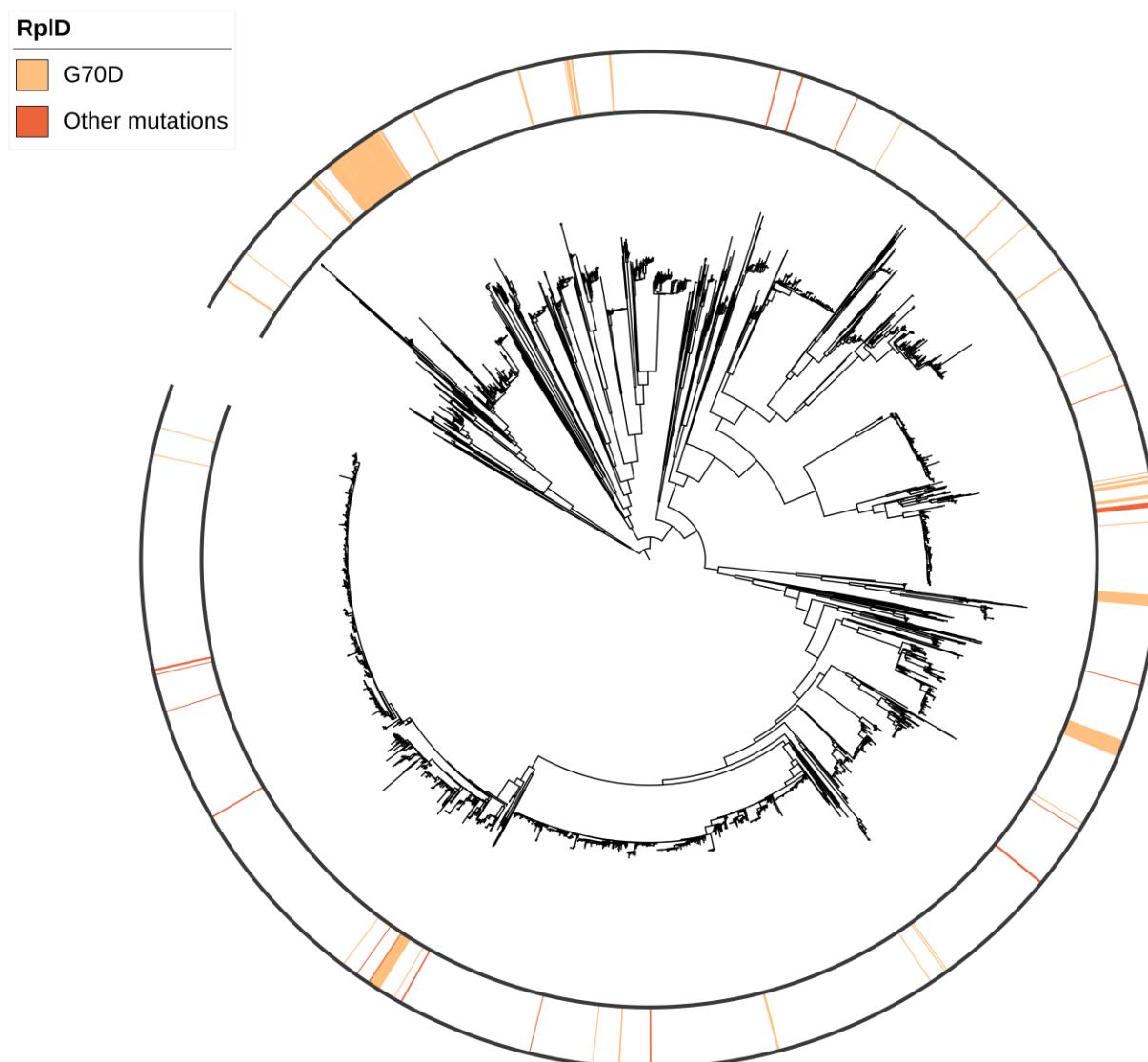
104 copies of the resistance-conferring 23S rRNA substitutions C2611T and A2059G. We also
105 conditioned on isolate dataset of origin to address potential spurious hits arising from study-
106 specific sequencing methodologies. After conditioning, the previously significant genes linked to
107 23S rRNA ($r^2 > 0.80$) decreased below the significance threshold, indicating that they were
108 indeed driven to significance by genetic linkage (Figure 1, Supplementary Table 2). The most
109 significant variants after the previously reported *mtrC* indel [7] mapped to the *mtrR* promoter (β ,
110 or effect size, $= -0.79$, 95% CI [-0.62, -0.96]; p -value $= 1.62 \times 10^{-18}$), encoding the *mtrR* promoter
111 1 bp deletion [21], and to *mtrC* ($\beta = 1.21$, 95% CI [0.92, 1.50]; p -value $= 9.17 \times 10^{-16}$), in linkage
112 with mosaic *mtr* alleles [19, 20]. The increased significance of these known efflux pump
113 resistance mutations suggested improved power to recover causal genes with lower effects.
114 Conditioning on dataset did not substantially affect these results but helped to remove other
115 spurious variants arising due to study-specific biases (Supplementary Figure 3, Supplementary
116 Table 3).

117

118 A glycine to glutamic acid substitution at site 70 of the 50S ribosomal protein L4 (RplD) was
119 significantly associated with increased azithromycin MICs after conducting the conditional
120 GWAS ($\beta = 1.03$, 95% CI [0.76, 1.30]; p -value $= 4.56 \times 10^{-14}$) (Figure 1, Supplementary Table 2).
121 Structural analysis of the *Thermus thermophilus* 50S ribosome complexed with azithromycin
122 suggests that this amino acid is an important residue in macrolide binding (Supplemental Figure
123 4), and RplD substitutions at this binding site modulate macrolide resistance in other bacteria
124 [22, 23]. This substitution has previously been observed rarely in gonococcus and the
125 association with binarized azithromycin resistance was non-significant [3, 24, 25]; as a result,
126 the role of RplD mutations in conferring macrolide resistance was unclear. To assess the
127 contribution of RplD mutations to continuous azithromycin MIC levels, we modeled MICs using a
128 linear regression framework with known genetic resistance determinants as predictors [7, 26].
129 Compared to this baseline model, inclusion of the RplD G70D mutation decreased the number
130 of strains with unexplained MIC variation (defined as absolute model error greater than one MIC
131 dilution) from 1430 to 1333, improved adjusted R^2 from 0.721 to 0.734, and significantly
132 improved model fit (p -value $< 2.2 \times 10^{-16}$; Likelihood-ratio χ^2 test for nested models). These
133 results indicate that RplD G70D is a strong candidate for addressing a portion of the
134 unexplained azithromycin resistance in *N. gonorrhoeae*.

135

136
137
138
139
140
141
142
143
144
145
146

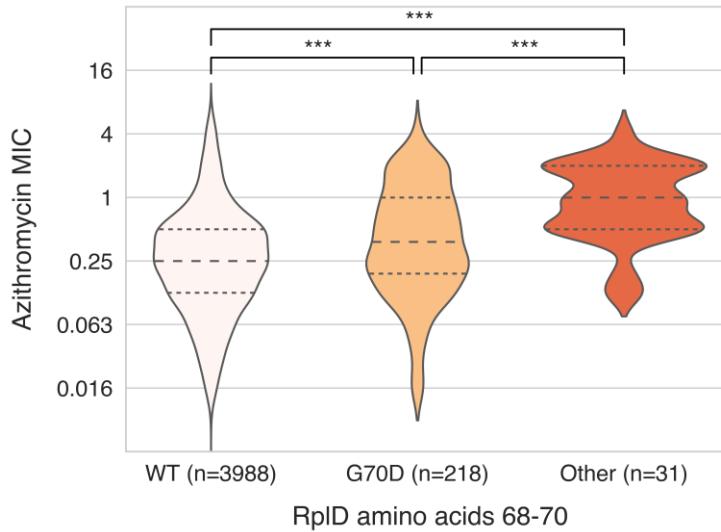

Figure 1 – GWAS conditional on 23S rRNA mutations and dataset demonstrates decreased confounding due to genetic linkage and increased power to recover known and candidate lower-level resistance alleles. Genetic linkage measured by r^2 to 23S rRNA mutations A2059G and C2611T is colored as indicated on the right. Variants associated with previously experimentally verified resistance mechanisms in the *mtrR* and *mtrCDE* promoters and coding regions are denoted in the legend. Bonferroni thresholds for both GWASes are depicted using a dashed line at 2.97×10^{-7} . Plot axes are limited to highlight variants associated with lower-level resistance; as a result, the highly significant 23S rRNA substitutions and *mtrC* indel mutations are not shown.

147 We next assessed population-wide prevalence and diversity of RplD-azithromycin binding site
148 mutations. The RplD G70D mutation was present in 231 out of 4850 isolates (4.76%) with
149 multiple introductions observed across varied genetic backgrounds (Figure 2). An additional 34
150 isolates contained mutations at amino acids 68 (G68D, G68C), 69 (T69I), and 70 (G70S, G70A,
151 G70R, G70duplication) (Figure 3). These other putative RplD binding site mutations were
152 associated with significantly higher azithromycin MICs compared to both RplD G70D and RplD
153 wild-type strains, indicating multiple avenues for disruption of macrolide binding (Figure 3).
154 Strains with RplD binding site mutations were identified from 21 countries from 1993 to 2015
155 with prevalence reaching over 10% in some datasets (New York City 2011-2015 [Mortimer et
156 al., 2020] and Japan 1996-2015 [27]; Supplementary Table 4 and [28]), in line with sustained

157 transmission of RplD G70D strains (Figure 2). Our results suggest that macrolide binding to the
158 50S ribosome can be disrupted via multiple mutations and that these mutations are widespread
159 contributors to azithromycin resistance in some populations.

160

Tree scale: 1000 →


161

162 **Figure 2 – Population structure of RplD binding site mutations in a global meta-analysis**
163 **dataset of *N. gonorrhoeae*.** A midpoint rooted recombination-corrected maximum likelihood
164 phylogeny of 4882 genomes based on 68697 SNPs non-recombinant from [7] was annotated
165 with the presence of RplD binding site mutations Branch length represents total number of
166 substitutions after removal of predicted recombination.

167

168

Mutation	Number (out of 4850 strains)	Geometric mean of azithromycin MIC
G70D [3, 24]	231	0.41
G70S [29]	2	1.0
G70A	8	0.92
G70R	2	4.0
T69I [29]	4	0.52
G68D [3, 25]	13	0.88
G68C	1	2.0
G68D and G70D	2	1.41
G68D and G70duplication	1	4
G70duplication	1	12

169

170 **Figure 3 – RplD amino acid diversity at positions 68 through 70 and corresponding**
171 **geometric mean (left) and distribution (right) of azithromycin MICs.** Previously reported
172 mutations are cited with the first reporting publications. Violin plots and statistical analyses were
173 limited to isolates with MICs < 8 to exclude isolates with 23S rRNA mutations. Quartiles within
174 violin plots are depicted using dotted lines. Statistical significance between RplD variants and
175 RplD wildtype MIC distributions was assessed by Mann-Whitney U Test: * p<0.05, ** p<0.01,
176 and *** p<0.001.

177
178

179 To experimentally verify that RplD G70D contributes to macrolide resistance, we constructed
180 two isogenic strains (C5 and E9) with the G70D substitution and tested for MIC differences
181 across a panel of macrolides. Azithromycin and erythromycin MICs increased by three-fold, and
182 clarithromycin MICs increased by six-fold on average in the G70D strains compared to isogenic
183 wild-type strains (Table 1). The estimate from our linear model for the azithromycin MIC of a
184 strain that contains the RplD G70D mutation and no other resistance mutations was 0.252,
185 which is in line with the experimental results. Macrolide resistance has been associated with a
186 fitness cost in other species [30], prompting us to measure the *in vitro* growth dynamics of the
187 RplD G70D strain. Time-course growth curves of the wild-type strain and isogenic G70D strain
188 E9 were similar (Supplementary Figure 5) with overlapping estimates of doubling times: 28BI
189 doubling time = 1.756 hours, 95% CI [1.663, 1.861] versus 28BI RplD^{G70D} (E9) doubling time =
190 1.787 hours, 95% CI [1.671, 1.920] (Supplementary Table 5). These results confirm the role of
191 RplD G70D in mediating macrolide resistance and indicate a lack of severe associated *in vitro*
192 fitness costs.

193

Isolate	Azithromycin MIC (µg/mL)	Clarithromycin MIC (µg/mL)	Erythromycin MIC (µg/mL)
28BI	0.094	0.25	0.38
28BI RplD ^{G70D} (C5)	.25 (2.66x)	1.5 (6x)	1.5 (3.94x)
28BI RplD ^{G70D} (E9)	.38 (4.04x)	1.5 (6x)	1.0 (2.63x)

194

195 **Table 1 – Macrolide MICs of laboratory strain 28BI and two isogenic derivatives confirms**
196 **increased macrolide resistance conferred by RplD G70D.** Fold change relative to baseline is
197 shown in parentheses. MICs were measured using Etest strips placed onto GCB agar plates
198 supplemented with 1% IsoVitaleX.

199

200

201 **Discussion**

202

203 Azithromycin resistance in *N. gonorrhoeae* is a polygenic trait involving contributions from
204 mutations in different 50S ribosomal components, up- and down-regulation of efflux pump
205 activity, and additional unknown factors. Genome-wide association methods offer one approach
206 for uncovering the genotypic basis of unexplained resistance in clinical isolates, but novel
207 causal genes associated with lower effects have been difficult to identify with traditional
208 microbial GWAS approaches [23]. Our results indicate that extending the GWAS linear mixed
209 model to incorporate known causal genetic variants could address some of these challenges,
210 particularly when known genes exhibit strong penetrance and population stratification,
211 obfuscating signals with lower effects. After conducting conditional GWAS on azithromycin
212 MICs, we observed a reduction in spurious results attributable to genetic linkage with known
213 high level resistance mutations in the 23S rRNA and an increase in power to recover secondary
214 resistance mutations in the MtrCDE efflux pump. We also identified a resistance-associated
215 mutation in the macrolide binding site of 50S ribosomal protein RplD as significant only after
216 conditioning. While the improvements in GWAS performance suggested by these empirical
217 results will need to be further validated on other bacterial species and through simulations [31],
218 they are in line with studies of multi-locus methods in the human GWAS field [32, 33] and
219 complementary methods using whole-genome elastic nets for microbial genome data [31, 34].

220

221 The role of RplD G70D mutations in conferring azithromycin resistance has previously been
222 unclear, in part because of its lower effect size relative to 23S rRNA mutations. The G70D
223 mutation was first observed in isolates from France 2013-2014 [24] and in the US Centers for
224 Disease Control Gonococcal Isolate Surveillance Program (CDC GISP) surveillance isolates
225 from 2000-2013 [3], and a related G68D mutation was described in the GISP collection and in
226 European isolates from 2009-2014 [25]. However, these analyses reported no clear association
227 with binarized resistance levels. Follow up studies in the US, Eastern China, and a historical
228 Danish collection also reported strains with the G70D mutation [29, 35, 36], but other
229 surveillance datasets from Canada, Switzerland, and Nanjing did not [10, 37-39], indicating
230 geography-specific circulation. As a result of this ambiguity, previous studies modeling
231 phenotypic azithromycin resistance from genotype did not include RplD mutations [26, 40].

232

233 Here, we provided confirmatory evidence that the RplD G70D mutation increases macrolide
234 MICs several-fold, in line with the GWAS analyses. While RplD G70D mutations on their own
235 are not predicted to confer resistance levels above the clinical CLSI non-susceptibility threshold
236 of 1.0 μ g/mL, there is growing appreciation of the role that sub-breakpoint increases in
237 resistance can play in mediating treatment failure [41]. For example, treatment failures in Japan
238 after a 2 g azithromycin dose were associated with MICs as low as 0.5 μ g/mL [42], and
239 treatment failures in several case studies of patients treated with a 1 g azithromycin dose were
240 associated with MICs of 0.125 to 0.25 μ g/mL [43]. Low level azithromycin resistance may also
241 serve as a stepping stone to higher level resistance, as suggested by an analysis of an outbreak
242 of a high level azithromycin resistant *N. gonorrhoeae* lineage in the UK [44].

243

244 We also observed multiple previously undescribed in the RplD macrolide binding site associated
245 with even higher MICs than the G70D mutation. The transmission of these isolates has been
246 relatively limited, potentially due to increased fitness costs commensurate with increased
247 resistance. In contrast, several lines of evidence suggest that the G70D mutation carries a
248 relatively minimal fitness cost. Time-course growth experiments indicated that the RplD G70D
249 isogenic pair of strains have similar doubling times, and phylogenetic analyses suggest multiple
250 acquisitions of G70D in distinct genetic backgrounds with a lineage in NYC showing evidence of
251 sustained transmission. As macrolide use continues to select for increased resistance in *N.*

252 *gonorrhoeae*, both the RplD G70D and rarer binding site mutations should be targets for
253 surveillance in future whole-genome sequencing studies.

254

255 In summary, by reducing genetic confounders and amplifying true signals through bacterial
256 GWAS conditional on known effects, we identified and experimentally characterized mutations
257 in the 50S ribosome that contribute to increased macrolide resistance in *N. gonorrhoeae*.

258

259 **Methods**

260

261 **Genomics and GWAS:** We conducted whole-genome sequencing assembly, resistance allele
262 calling, phylogenetic inference, genome-wide association, and significant unitig mapping using
263 methods from a prior GWAS [7]. Briefly, we created a recombination-corrected phylogeny by
264 running Gubbins (version 2.3.4) [45] on an alignment of pseudogenomes generated from filtered
265 SNPs from Pilon (version 1.16) [46] after mapping reads in BWA-MEM (version 0.7.17-r1188)
266 [47] to a reference genome (RefSeq accession: NC_011035.1). To conduct the GWAS in
267 Pyseer (version 1.2.0) [48], unitigs were generated from GATB using SPAdes (version 3.12.0)
268 [49] *de novo* assembled genomes, and a population structure matrix was generated from the
269 Gubbins phylogeny for the linear mixed model. Isolates included in this study are listed in
270 Supplementary Table 6. As in the prior study, azithromycin MICs prior to 2005 from the CDC
271 GISP dataset were doubled to account for an MIC protocol testing change [50]. We conducted
272 conditional GWAS in Pyseer (version 1.2.0) [48] by including additional columns in the covariate
273 file encoding 23S rRNA mutations and including flags --covariates and --use-covariates. All
274 phylogenies and annotation rings were visualized in iTOL (version 5.5) [51].

275 We assessed genetic linkage by calculating r^2 , or the squared correlation coefficient between
276 two variants defined as $r^2 = (p_{ij} - p_i p_j)^2 / (p_i(1 - p_i) p_j(1 - p_j))$, where p_i is the proportion of strains
277 with variant i , p_j is the proportion of strains with variant j , and p_{ij} is the proportion of strains with
278 both variants [52, 53]. For a given GWAS variant, we calculated r^2 between that variant and the
279 significant unitig from the GWAS mapping to 23S rRNA C2611T. We repeated the calculation
280 for the same variant but with the unitig mapping to 23S rRNA A2059G, and took the maximum r^2
281 value from the two calculations.

282 Azithromycin log-transformed MICs were modeled using a panel of resistance markers [7]
283 including pairwise interactions and country of origin in R (version 3.5.1), with and without
284 inclusion of RplD G70D and proximal mutations:

285 Model 1: Country + (MtrR 39 + MtrR 45 + MtrR LOF + MtrC LOF + MtrR promoter + MtrCDE
286 BAPS + 23S rRNA 2059 + 23S rRNA 2611)^2

287 Model 2: Country + (MtrR 39 + MtrR 45 + MtrR LOF + MtrC LOF + MtrR promoter + MtrCDE
288 BAPS + 23S rRNA 2059 + 23S rRNA 2611 + RplD G70D + RplD other 68-70 mutations)^2

289 Model fit was assessed using Anova for likelihood-ratio tests for nested models in R (version
290 3.5.1). BAPS groups for MtrCDE were called as previously described using FastBAPS (version
291 1.0.0) [7].

292

293 **Diversity of RplD macrolide binding site mutations:** We ran BLASTn (version 2.6.0) [54] on
294 the *de novo* assemblies using a query *rplD* sequence from FA1090 (Genbank accession:
295 NC_002946.2). *rplD* sequences were aligned using MAFFT (version 7.450) [55]. Binding site
296 mutations were identified after *in silico* translation of nucleotide alignments in Geneious Prime
297 (version 2019.2.1, <https://www.geneious.com>). Subsequent analyses identifying prevalence,
298 geometric mean azithromycin MIC, and MIC distribution differences were conducted in Python
299 (version 3.6.5) and R (version 3.5.1).

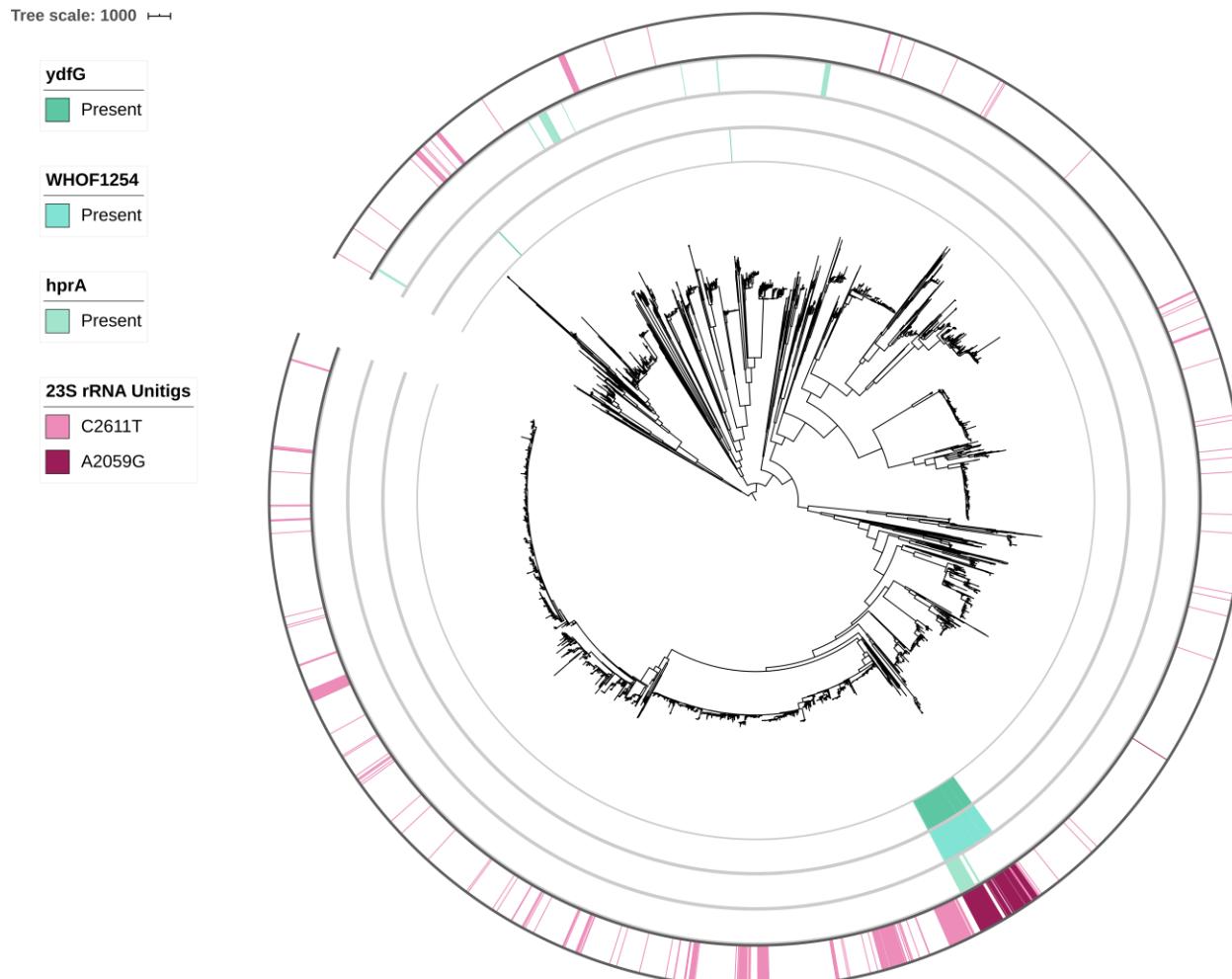
300

301 **Experimental validation:** We cultured *N. gonorrhoeae* on GCB agar (Difco) plates
302 supplemented with 1% Kellogg's supplements (GCBK) at 37°C in a 5% CO₂ incubator [56].
303 We conducted antimicrobial susceptibility testing using Etests (bioMérieux) placed onto GCB
304 agar plates supplemented with 1% IsoVitaleX (Becton Dickinson). We selected laboratory
305 strain 28BI for construction of isogenic strains and measured its MIC for azithromycin,
306 clarithromycin, and erythromycin [20]. *rplD* encoding the G70D mutation was PCR amplified
307 from RplD G70D isolate GCGS1043 [3] using primers rplD_FWD_DUS (5'
308 CATGCCGTCTGAACAAGACCCGGGTCGCG 3') (containing a DUS tag to enhance
309 transformation [57]) and rplD_REV (5' TTCAGAAACGACAGGCGCC 3'). The resulting ~1 kb
310 amplicon was spot transformed [56] into 28BI. We selected for transformants by plating onto
311 GCBK plates with clarithromycin 0.4 µg/mL and erythromycin 0.4 µg/mL. We confirmed via
312 Sanger sequencing that transformants had acquired the RplD G70D mutation and selected
313 one transformant from each selection condition (strain C5 for clarithromycin and strain E9 for
314 erythromycin) for further characterization. We confirmed that for all macrolides used for
315 selection, no spontaneous resistant mutants were observed after conducting control
316 transformations in the absence of GCGS1043 PCR product.

317

318 **Growth assays:** We streaked 28BI and 28BI RplD^{G70D} (E9) onto GCBK plates and grew them
319 overnight for 16 hours at 37°C in a 5% CO₂ atmosphere. We prepared 1 L of fresh Graver
320 Wade (GW) media [58] and re-suspended overnight cultures into 1 mL of GW. After normalizing

321 cultures to OD 0.1, we diluted cultures 1:10⁵ and inoculated central wells of a 24-well plate with
322 1.5 mL GW and cells in triplicate. Edge wells were filled with 1.5 mL water. After growth for 1
323 hour to acclimate to media conditions, we sampled CFUs every 2 hours for a total of 12 hours.
324 For each timepoint, we aspirated using a P1000 micropipette to dissolve clumps and then plated
325 serial dilutions onto a GCBK plate. We counted CFUs the following day and used GraphPad
326 Prism (version 8.2.0 for Windows, GraphPad Software) to graph the data and estimate
327 exponential phase growth rates following removal of lag phase data points and log-
328 transformation of CFU / mLs.

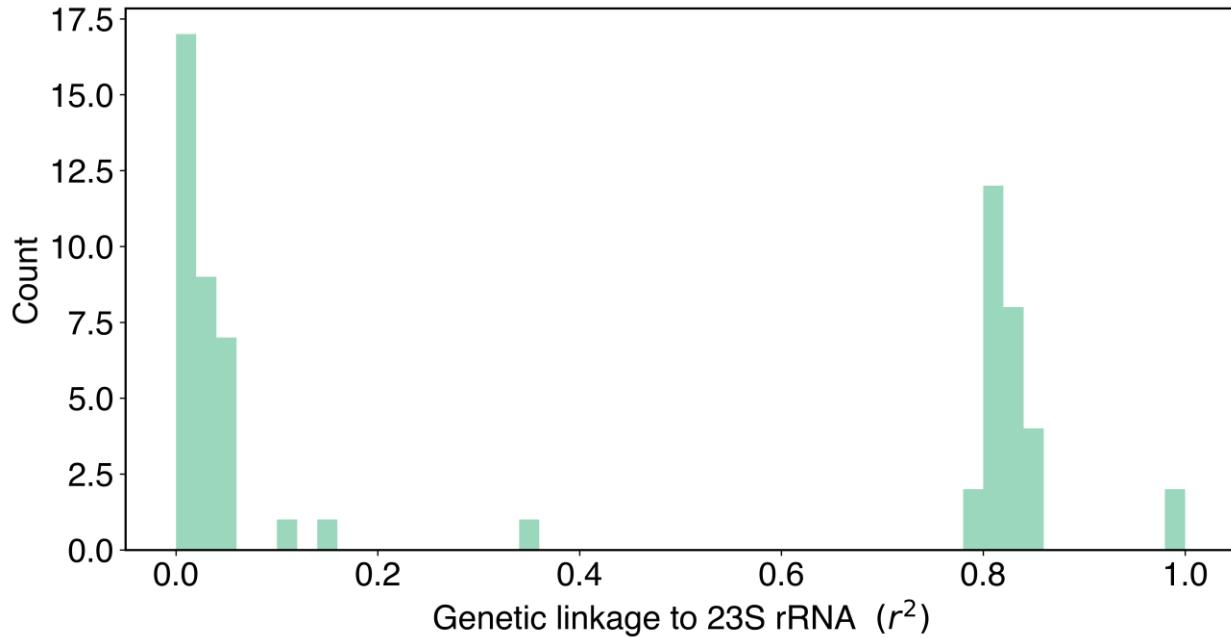

329

330

331 **Acknowledgements**

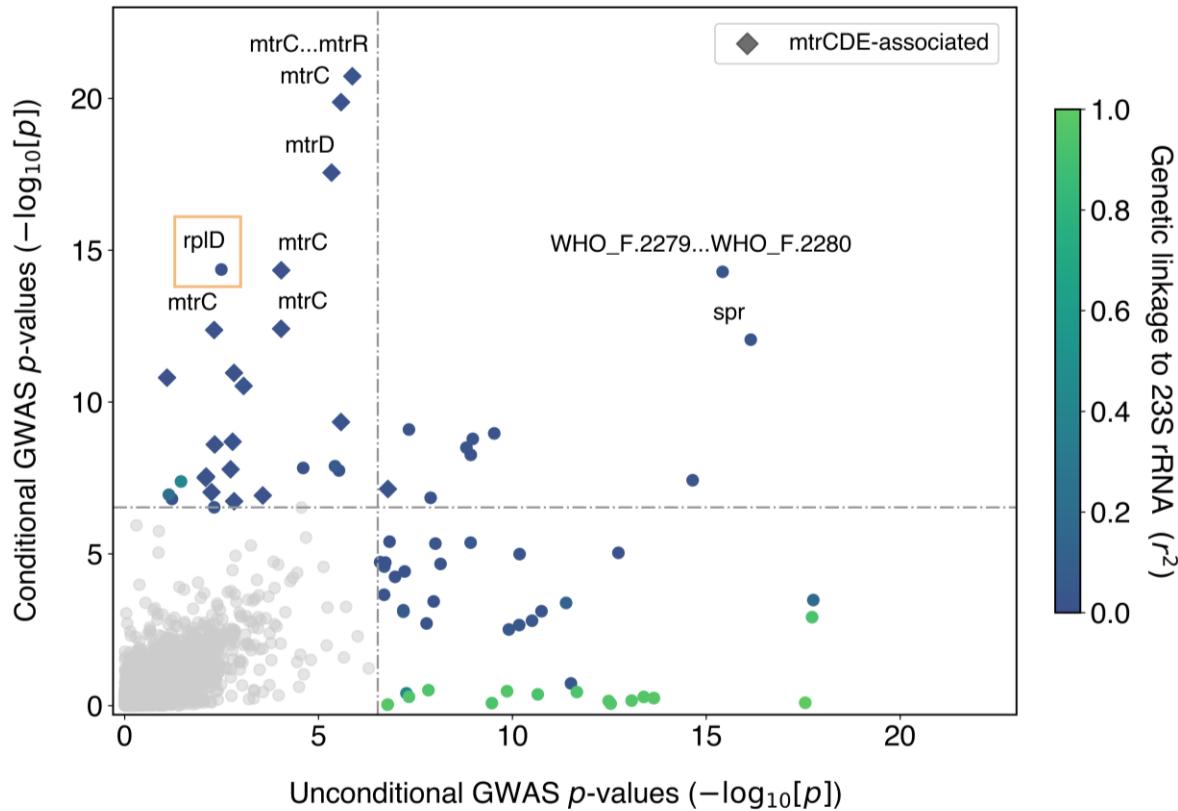
332 This work was supported by the NIH/NIAID grant 1R01AI132606-01 and the Smith Family
333 Foundation. TDM is additionally supported by the NIH/NIAID 1 F32 AI145157-01, and KCM is
334 additionally supported by the NSF GRFP. Portions of this research were conducted on the O2
335 high-performance computing cluster, supported by the Research Computing Group at Harvard
336 Medical School. The authors additionally thank Daniel Rubin, Samantha Palace, Crista
337 Wadsworth, and other members of the Grad Lab for helpful comments during development of
338 the project.

339

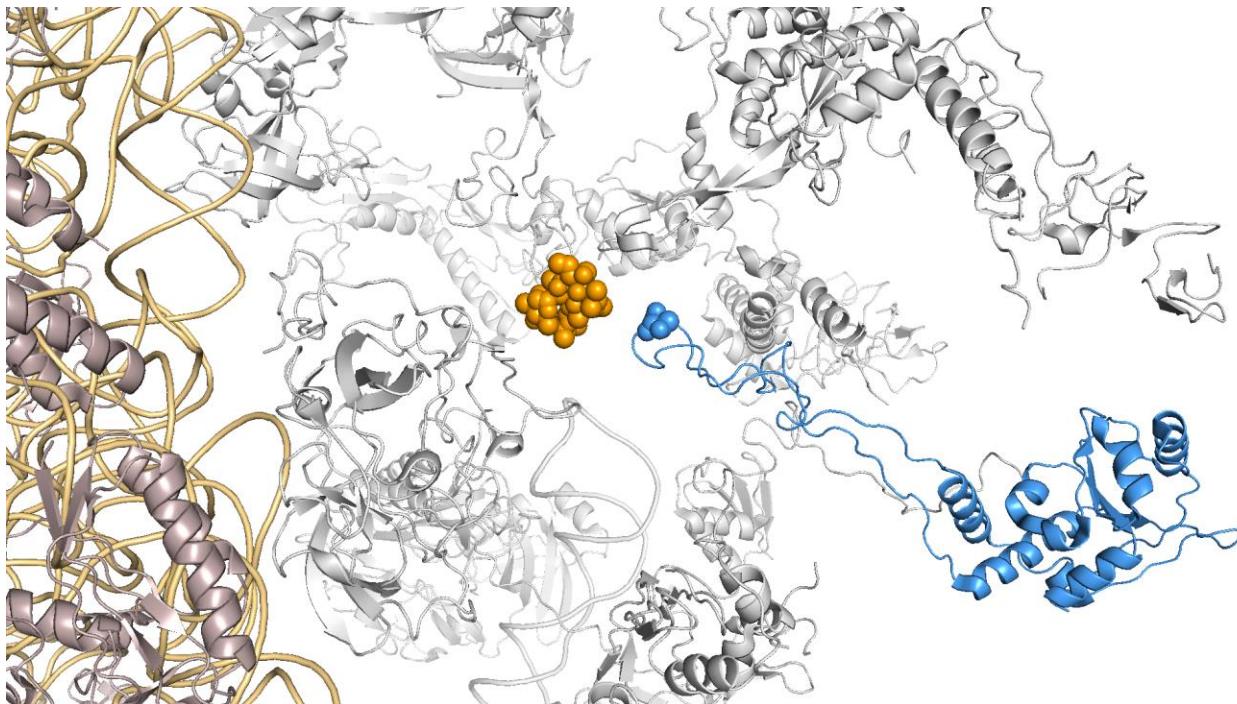


340

341


342 **Supplementary Figure 1 – Genetic linkage between significant azithromycin MIC-
343 associated variants in the GWAS.** The recombination-corrected phylogeny from Figure 1 was
344 annotated with the presence and absence of significant variants from the GWAS corresponding
345 to 23S rRNA, *hprA*, WHO_F.1254, and *ydfG* (outermost to innermost). Branch length represents
346 total number of substitutions after removal of predicted recombination.

347


348

349 **Supplementary Figure 2 – Distribution of r^2 values between significant variants (p -value <
350 2.97×10^{-7}) and 23S rRNA-associated unitigs in the single-locus GWAS.** Significant variants
351 with high linkage to 23S rRNA are likely to be spurious associations. See methods for details on
352 calculation of r^2 .

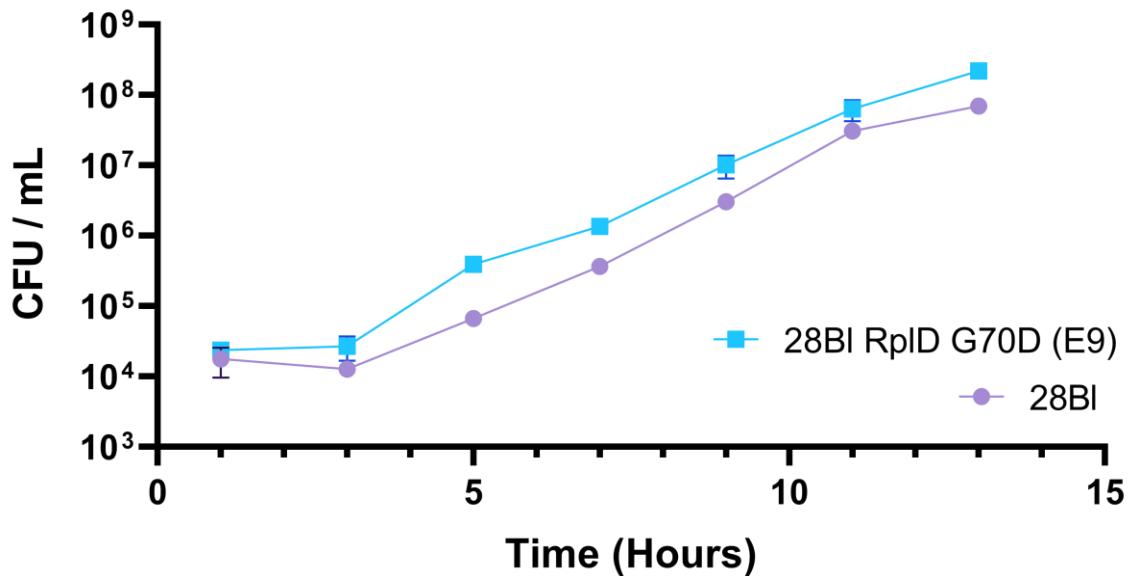
353

354 **Supplementary Figure 3 – GWAS conditional on 23S rRNA mutations compared to**
355 **unconditional GWAS results recovers similar results as in Figure 1 but does not control**
356 **for dataset-specific confounders (spr and the intergenic region between genes**
357 **WHO_F.2279 and 2280).** As in Figure 1, genetic linkage measured by r^2 to 23S rRNA mutations
358 A2059G and C2611T is colored as indicated on the right. Variants associated with previously
359 experimentally verified resistance mechanisms in the *mtrR* and *mtrCDE* promoters and coding
360 regions are denoted in the legend. Bonferroni thresholds for both GWASes are depicted using a
361 dashed line at 2.97×10^{-7} . Plot axes are limited to highlight variants associated with lower-level
362 resistance; as a result, the highly significant 23S rRNA substitutions and *mtrC* indel mutations
363 are not shown.
364

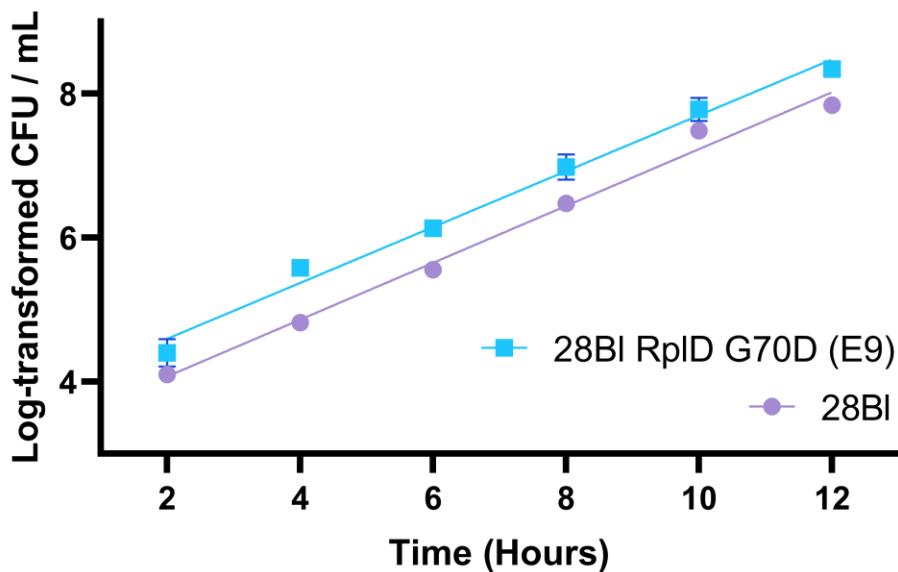
365

366 **Supplementary Figure 4 – RplD G70 and the azithromycin binding pocket in the 50S**
367 **ribosome from *Thermus thermophilus* (PDB ID: 4v7y).** *N. gonorrhoeae* RplD is relatively
368 similar to its *T. thermophilus* homolog (28.4% identical, 49.1% similarity using a BLOSUM62
369 matrix over 218 amino acids with 20 insertions/deletions). PyMOL (The PyMOL Molecular
370 Graphics System, Version 2.0 Schrödinger, LLC) was used to depict azithromycin in orange and
371 RplD in blue (with the G70 amino acid highlighted as blue spheres) and to hide the 23S rRNA
372 for clarity.

373


374

375


376

377

378

379

380

381 **Supplementary Figure 5 – Growth curve experiments for RplD G70D isogenic strains.**
382 Error bars are SD for three technical replicates. Top – Calculated CFU / mLs from the full
383 growth experiment for the two strains graphed on a logarithmic axis. Bottom – estimation of
384 exponential phase best fit lines using GraphPad Prism following removal of lag phase data
385 points and log-transformation of CFU / mLs; see Supplementary Table 5 for estimated
386 parameters.

387

Dataset	Region and Timespan	Prevalence of RplD macrolide binding site mutations
Demczuk et al., 2015 [59]	Canada 1989-2013	0.0439
Demczuk et al., 2016 [37]	Canada 1982-2011	0.0804
Eyre et al., 2017 [60]	Brighton, UK 2004-2011	0.0346
Ezewudo et al., 2015 [61]	Global 1982-2011	0
Fifer et al., 2018 [62]	UK 2004-2017	0.0200
Grad et al., 2016 [3] and 2014 [63]	US 2000-2013	0.0582
Harris et al., 2018 [64]	Europe 2013	0.0258
Kwong et al., 2017 [65]	Melbourne, Australia 2005-2014	0.0532
Lee et al., 2018 [66]	New Zealand 2014-2015	0.0050
Mortimer et al., 2020	NYC 2011-2015	0.1013
Ryan et al., 2018 [67]	Ireland 2012-2016	0.0513
Sánchez-Busó et al., 2019 [68]	Global 1979-2012	0.0212
Yahara et al., 2018 [27]	Kyoto and Osaka, Japan 1996-2015	0.1346

388

389 **Supplementary Table 4 – Prevalence of RplD macrolide binding site mutations across**
390 **included datasets.** Datasets with prevalence over 10% are highlighted.

391

	28BI	28BI RpID^{G70D} (E9)
Best-fit values		
logY0	3.285	3.822
k	0.3947	0.3879
Doubling Time	1.756	1.787
95% CI (profile likelihood)		
logY0	3.113 to 3.458	3.612 to 4.032
k	0.3725 to 0.4169	0.3610 to 0.4149
Doubling Time	1.663 to 1.861	1.671 to 1.920
Goodness of Fit		
Degrees of Freedom	16	16
R squared	0.9889	0.9831
Sum of Squares	0.3673	0.5431
Sy.x	0.1515	0.1842
Number of points		
# of X values	18	18
# Y values analyzed	18	18

392

393 **Supplementary Table 5 – Estimated growth curve parameters.** Estimation of exponential
394 phase growth parameters using GraphPad Prism following removal of lag phase data points and
395 log-transformation of CFU / mLs; see Supplementary Figure 6 (bottom) for estimated best fit
396 lines.

397

398 **References**

- 399 1. Unemo M, Shafer WM. Antimicrobial resistance in *Neisseria gonorrhoeae* in the 21st
400 century: past, evolution, and future. *Clin Microbiol Rev.* 2014;27(3):587-613. Epub 2014/07/02.
401 doi: 10.1128/CMR.00010-14. PubMed PMID: 24982323; PubMed Central PMCID:
402 PMCPMC4135894.
- 403 2. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial
404 resistance in *Neisseria gonorrhoeae*: Global surveillance and a call for international
405 collaborative action. *PLoS Med.* 2017;14(7):e1002344. Epub 2017/07/08. doi:
406 10.1371/journal.pmed.1002344. PubMed PMID: 28686231; PubMed Central PMCID:
407 PMCPMC5501266.
- 408 3. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al. Genomic
409 Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides,
410 and Fluoroquinolones in the United States, 2000-2013. *J Infect Dis.* 2016;214(10):1579-87.
411 Epub 2016/10/30. doi: 10.1093/infdis/jiw420. PubMed PMID: 27638945; PubMed Central
412 PMCID: PMCPMC5091375.
- 413 4. Fifer H, Saunders J, Soni S, Sadiq ST, Fitzgerald M. British Association for Sexual
414 Health and HIV national guideline for the management of infection with *Neisseria gonorrhoeae*:
415 BASHH; 2019. Available from: <https://www.bashhguidelines.org/media/1208/gc-2019.pdf>.
- 416 5. Allan-Blitz L-T, Hemarajata P, Humphries RM, Wynn A, Segura ER, Klausner JD. A Cost
417 Analysis of Gyrase A Testing and Targeted Ciprofloxacin Therapy Versus Recommended 2-
418 Drug Therapy for *Neisseria gonorrhoeae* Infection. *Sex Transm Dis.* 2018;45(2):87-91. doi:
419 10.1097/OLQ.0000000000000698.
- 420 6. Tuite AR, Gift TL, Chesson HW, Hsu K, Salomon JA, Grad YH. Impact of Rapid
421 Susceptibility Testing and Antibiotic Selection Strategy on the Emergence and Spread of
422 Antibiotic Resistance in Gonorrhea. *J Infect Dis.* 2017;216(9):1141-9. doi: 10.1093/infdis/jix450.
- 423 7. Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L, Golparian D, et al.
424 Increased antibiotic susceptibility in *Neisseria gonorrhoeae* through adaptation to the cervical
425 environment. *bioRxiv.* 2020. doi: 10.1101/2020.01.07.896696.
- 426 8. Hicks AL, Wheeler N, Sanchez-Buso L, Rakeman JL, Harris SR, Grad YH. Evaluation of
427 parameters affecting performance and reliability of machine learning-based antibiotic
428 susceptibility testing from whole genome sequencing data. *PLoS Comput Biol.*
429 2019;15(9):e1007349. Epub 2019/09/04. doi: 10.1371/journal.pcbi.1007349. PubMed PMID:
430 31479500; PubMed Central PMCID: PMCPMC6743791 that no competing interests exist.
- 431 9. Gaynor M, Mankin AS. Macrolide antibiotics: binding site, mechanism of action,
432 resistance. *Curr Top Med Chem.* 2003;3(9):949-61. Epub 2003/04/08. doi:
433 10.2174/1568026033452159. PubMed PMID: 12678831.
- 434 10. Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide
435 resistance in *Neisseria gonorrhoeae*. *Antimicrob Agents Chemother.* 2002;46(9):3020-5. Epub
436 2002/08/17. doi: 10.1128/aac.46.9.3020-3025.2002. PubMed PMID: 12183262; PubMed
437 Central PMCID: PMCPMC127397.
- 438 11. Zhang J, van der Veen S. *Neisseria gonorrhoeae* 23S rRNA A2059G mutation is the
439 only determinant necessary for high-level azithromycin resistance and improves in vivo
440 biological fitness. *J Antimicrob Chemother.* 2019;74(2):407-15. doi: 10.1093/jac/dky438.
- 441 12. Rouquette C, Harmon JB, Shafer WM. Induction of the mtrCDE-encoded efflux pump
442 system of *Neisseria gonorrhoeae* requires MtrA, an AraC-like protein. *Mol Microbiol.*
443 1999;33(3):651-8. Epub 1999/07/27. doi: 10.1046/j.1365-2958.1999.01517.x. PubMed PMID:
444 10417654.
- 445 13. Shafer WM, Folster JP, Warner DEM, Johnson PJT, Balthazar JT, Kamal N, et al.
446 Expression of the MtrC-MtrD-MtrE Efflux Pump in *Neisseria gonorrhoeae* and Bacterial Survival

447 in the Presence of Antimicrobials. National Institute of Allergy and Infectious Diseases, NIH;
448 2008: Humana Press; 2008. p. 55-63.

449 14. Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump
450 due to an mtrR mutation is required for chromosomally mediated penicillin resistance in
451 *Neisseria gonorrhoeae*. *J Bacteriol*. 2002;184(20):5619-24. Epub 2002/09/25. doi:
452 10.1128/jb.184.20.5619-5624.2002. PubMed PMID: 12270819; PubMed Central PMCID:
453 PMC139619.

454 15. Warner DM, Folster JP, Shafer WM, Jerse AE. Regulation of the MtrC-MtrD-MtrE efflux-
455 pump system modulates the in vivo fitness of *Neisseria gonorrhoeae*. *J Infect Dis*.
456 2007;196(12):1804-12. Epub 2008/01/15. doi: 10.1086/522964. PubMed PMID: 18190261.

457 16. Warner DM, Shafer WM, Jerse AE. Clinically relevant mutations that cause derepression
458 of the *Neisseria gonorrhoeae* MtrC-MtrD-MtrE Efflux pump system confer different levels of
459 antimicrobial resistance and in vivo fitness. *Mol Microbiol*. 2008;70(2):462-78. Epub 2008/09/03.
460 doi: 10.1111/j.1365-2958.2008.06424.x. PubMed PMID: 18761689; PubMed Central PMCID:
461 PMC2602950.

462 17. Zalucki YM, Dhulipala V, Shafer WM. Dueling regulatory properties of a transcriptional
463 activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in *Neisseria*
464 *gonorrhoeae*. *MBio*. 2012;3(6):e00446-12. doi: 10.1128/mBio.00446-12. PubMed Central
465 PMCID: PMC3517864.

466 18. Zarantonelli L, Borthagaray G, Lee E-H, Shafer WM. Decreased Azithromycin
467 Susceptibility of *Neisseria gonorrhoeae* Due to mtrR Mutations. *Antimicrob Agents Chemother*.
468 1999;43(10):2468-72.

469 19. Rouquette-Loughlin CE, Reimche JL, Balthazar JT, Dhulipala V, Gernert KM, Kersh EN,
470 et al. Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of
471 *Neisseria gonorrhoeae* Possessing a Mosaic-Like mtr Efflux Pump Locus. *MBio*. 2018;9(6).
472 Epub 2018/11/30. doi: 10.1128/mBio.02281-18. PubMed PMID: 30482834; PubMed Central
473 PMCID: PMC6282211.

474 20. Wadsworth CB, Arnold BJ, Sater MRA, Grad YH. Azithromycin Resistance through
475 Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional
476 Regulator in *Neisseria gonorrhoeae*. *MBio*. 2018;9(4). Epub 2018/08/09. doi:
477 10.1128/mBio.01419-18. PubMed PMID: 30087172; PubMed Central PMCID:
478 PMC6083905.

479 21. Cousin SL, Jr., Whittington WLH, Roberts MC. Acquired macrolide resistance genes and
480 the 1 bp deletion in the mtrR promoter in *Neisseria gonorrhoeae*. *J Antimicrob Chemother*.
481 2003;51(1):131-3.

482 22. Diner EJ, Hayes CS. Recombineering reveals a diverse collection of ribosomal proteins
483 L4 and L22 that confer resistance to macrolide antibiotics. *J Mol Biol*. 2009;386(2):300-15. doi:
484 10.1016/j.jmb.2008.12.064. PubMed PMID: 19150357; PubMed Central PMCID:
485 PMC2644216.

486 23. Wheeler NE, Reuter S, Chewapreecha C, Lees JA, Blane B, Horner C, et al. Contrasting
487 approaches to genome-wide association studies impact the detection of resistance mechanisms
488 in *Staphylococcus aureus*. *bioRxiv*. 2019. doi: 10.1101/758144.

489 24. Belkacem A, Jacquier H, Goubard A, Mougar F, La Ruche G, Patey O, et al. Molecular
490 epidemiology and mechanisms of resistance of azithromycin-resistant *Neisseria gonorrhoeae*
491 isolated in France during 2013-14. *J Antimicrob Chemother*. 2016;71(9):2471-8. doi:
492 10.1093/jac/dkw182. PubMed PMID: 27301565.

493 25. Jacobsson S, Golparian D, Cole M, Spiteri G, Martin I, Bergheim T, et al. WGS analysis
494 and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) *Neisseria*
495 *gonorrhoeae* isolates in Europe from 2009 to 2014. *J Antimicrob Chemother*. 2016;71(11):3109-
496 16. doi: 10.1093/jac/dkw279. PubMed PMID: 27432597.

497 26. Demczuk W, Martin I, Sawatzky P, Allen V, Lefebvre B, Hoang L, et al. Equations to
498 predict antimicrobial minimum inhibitory concentrations in *Neisseria gonorrhoeae* using
499 molecular antimicrobial resistance determinants. *Antimicrob Agents Chemother*. 2019. doi:
500 10.1128/AAC.02005-19.

501 27. Yahara K, Nakayama SI, Shimuta K, Lee KI, Morita M, Kawahata T, et al. Genomic
502 surveillance of *Neisseria gonorrhoeae* to investigate the distribution and evolution of
503 antimicrobial-resistance determinants and lineages. *Microb Genom*. 2018;4(8). Epub
504 2018/08/01. doi: 10.1099/mgen.0.000205. PubMed PMID: 30063202; PubMed Central PMCID:
505 PMCPMC6159555.

506 28. Hicks AL, Kissler SM, Mortimer TD, Ma KC, Taiaroa G, Ashcroft M, et al. Targeted
507 surveillance strategies for efficient detection of novel antibiotic resistance variants. *bioRxiv*.
508 2020.

509 29. Zheng Z, Liu L, Shen X, Yu J, Chen L, Zhan L, et al. Antimicrobial Resistance And
510 Molecular Characteristics Among *Neisseria gonorrhoeae* Clinical Isolates In A Chinese Tertiary
511 Hospital. *Infect Drug Resist*. 2019;12:3301-9. doi: 10.2147/IDR.S221109. PubMed PMID:
512 31695449; PubMed Central PMCID: PMCPMC6815782.

513 30. Zeitouni S, Collin O, Andraud M, Ermel G, Kempf I. Fitness of macrolide resistant
514 *Campylobacter coli* and *Campylobacter jejuni*. *Microb Drug Resist*. 2012;18(2):101-8. doi:
515 10.1089/mdr.2011.0188.

516 31. Saber M, Shapiro B. Benchmarking bacterial genome-wide association study methods
517 using simulated genomes and phenotypes. *Microbial Genomics*. 2020. doi:
518 doi:10.1099/mgen.0.000337.

519 32. Ma L, Han S, Yang J, Da Y. Multi-locus test conditional on confirmed effects leads to
520 increased power in genome-wide association studies. *PLoS One*. 2010;5(11):e15006. Epub
521 2010/11/26. doi: 10.1371/journal.pone.0015006. PubMed PMID: 21103364; PubMed Central
522 PMCID: PMCPMC2982824.

523 33. Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, et al. An efficient multi-
524 locus mixed-model approach for genome-wide association studies in structured populations. *Nat
525 Genet*. 2012;44(7):825-30. Epub 2012/06/19. doi: 10.1038/ng.2314. PubMed PMID: 22706313;
526 PubMed Central PMCID: PMCPMC3386481.

527 34. Lees JATM, T; Galardini, Marco; Wheeler, Nicole E; Corander, Jukka. Improved
528 inference and prediction of bacterial genotype-phenotype associations using pangenome-
529 spanning regressions. *bioRxiv*. 2019. doi: 10.1101/852426.

530 35. Thomas JC, Seby S, Abrams AJ, Cartee J, Lucking S, Vidyaprakash E, et al. Evidence
531 of Recent Genomic Evolution in Gonococcal Strains with Decreased Susceptibility to
532 Cephalosporins or Azithromycin in the United States, 2014-2016. *J Infect Dis*. 2019. doi:
533 10.1093/infdis/jiz079.

534 36. Golparian D, Harris SR, Sanchez-Buso L, Hoffmann S, Shafer WM, Bentley SD, et al.
535 Genomic evolution of *Neisseria gonorrhoeae* since the preantibiotic era (1928-2013):
536 antimicrobial use/misuse selects for resistance and drives evolution. *BMC Genomics*.
537 2020;21(1):116. doi: 10.1186/s12864-020-6511-6. PubMed PMID: 32013864; PubMed Central
538 PMCID: PMCPMC6998845.

539 37. Demczuk W, Martin I, Peterson S, Bharat A, Van Domselaar G, Graham M, et al.
540 Genomic Epidemiology and Molecular Resistance Mechanisms of Azithromycin-Resistant
541 *Neisseria gonorrhoeae* in Canada from 1997 to 2014. *J Clin Microbiol*. 2016;54(5):1304-13.
542 Epub 2016/03/05. doi: 10.1128/JCM.03195-15. PubMed PMID: 26935729; PubMed Central
543 PMCID: PMCPMC4844716.

544 38. Endimiani A, Guilarte YN, Tinguely R, Hirzberger L, Selvini S, Lupo A, et al.
545 Characterization of *Neisseria gonorrhoeae* isolates detected in Switzerland (1998-2012):
546 emergence of multidrug-resistant clones less susceptible to cephalosporins. *BMC Infect Dis*.

547 2014;14:106. doi: 10.1186/1471-2334-14-106. PubMed PMID: 24568221; PubMed Central
548 PMCID: PMCPMC3941690.

549 39. Wan C, Li Y, Le W-J, Liu Y-R, Li S, Wang B, et al. Increasing resistance to azithromycin
550 of *Neisseria gonorrhoeae* in eastern Chinese cities: mechanisms and genetic diversity of
551 resistant Nanjing isolates. *Antimicrob Agents Chemother*. 2018. doi: 10.1128/AAC.02499-17.

552 40. Harrison OB, Clemence M, Dillard JP, Tang CM, Trees D, Grad YH, et al. Genomic
553 analyses of *Neisseria gonorrhoeae* reveal an association of the gonococcal genetic island with
554 antimicrobial resistance. *J Infect*. 2016;73(6):578-87. doi: 10.1016/j.jinf.2016.08.010. PubMed
555 PMID: 27575582; PubMed Central PMCID: PMCPMC5127880.

556 41. Colangeli R, Jedrey H, Kim S, Connell R, Ma S, Chippada Venkata UD, et al. Bacterial
557 Factors That Predict Relapse after Tuberculosis Therapy. *N Engl J Med*. 2018;379(9):823-33.
558 Epub 2018/08/30. doi: 10.1056/NEJMoa1715849. PubMed PMID: 30157391; PubMed Central
559 PMCID: PMCPMC6317071.

560 42. Yasuda M, Ito S, Hatazaki K, Deguchi T. Remarkable increase of *Neisseria gonorrhoeae*
561 with decreased susceptibility of azithromycin and increase in the failure of azithromycin therapy
562 in male gonococcal urethritis in Sendai in 2015. *J Infect Chemother*. 2016;22(12):841-3. Epub
563 2016/09/01. doi: 10.1016/j.jiac.2016.07.012. PubMed PMID: 27578029.

564 43. Tapsall JW, Shultz TR, Limnios EA, Donovan B, Lum G, Mulhall BP. Failure of
565 azithromycin therapy in gonorrhea and disconnection with laboratory test parameters. *Sex
566 Transm Dis*. 1998;25(10):505-8. doi: 10.1097/00007435-199811000-00002.

567 44. Fifer H, Cole M, Hughes G, Padfield S, Smolarchuk C, Woodford N, et al. Sustained
568 transmission of high-level azithromycin-resistant *Neisseria gonorrhoeae* in England: an
569 observational study. *Lancet Infect Dis*. 2018. doi: 10.1016/S1473-3099(18)30122-1.

570 45. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid
571 phylogenetic analysis of large samples of recombinant bacterial whole genome sequences
572 using Gubbins. *Nucleic Acids Res*. 2015;43(3):e15. Epub 2014/11/22. doi:
573 10.1093/nar/gku1196. PubMed PMID: 25414349; PubMed Central PMCID: PMCPMC4330336.

574 46. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
575 integrated tool for comprehensive microbial variant detection and genome assembly
576 improvement. *PLoS One*. 2014;9(11):e112963. Epub 2014/11/20. doi:
577 10.1371/journal.pone.0112963. PubMed PMID: 25409509; PubMed Central PMCID:
578 PMCPMC4237348.

579 47. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
580 arXiv preprint. 2013;1303.3997.

581 48. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. pyseer: a comprehensive tool
582 for microbial pangenome-wide association studies. *Bioinformatics*. 2018;34(24):4310-2. Epub
583 2018/12/12. doi: 10.1093/bioinformatics/bty539. PubMed PMID: 30535304; PubMed Central
584 PMCID: PMCPMC6289128.

585 49. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a
586 new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol*.
587 2012;19(5):455-77. Epub 2012/04/18. doi: 10.1089/cmb.2012.0021. PubMed PMID: 22506599;
588 PubMed Central PMCID: PMCPMC3342519.

589 50. Kersh EN, Allen V, Ransom E, Schmerer M, St Cyr S, Workowski K, et al. Rationale for
590 a *Neisseria gonorrhoeae* Susceptible Only Interpretive Breakpoint for Azithromycin. *Clin Infect
591 Dis*. 2019. Epub 2019/04/10. doi: 10.1093/cid/ciz292. PubMed PMID: 30963175; PubMed
592 Central PMCID: PMCPMC6785360.

593 51. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
594 developments. *Nucleic Acids Res*. 2019;47(W1):W256-W9. Epub 2019/04/02. doi:
595 10.1093/nar/gkz239. PubMed PMID: 30931475; PubMed Central PMCID: PMCPMC6602468.

596 52. Arnold B, Sohail M, Wadsworth C, Corander J, Hanage WP, Sunyaev S, et al. Fine-
597 scale haplotype structure reveals strong signatures of positive selection in a recombining
598 bacterial pathogen. *Mol Biol Evol.* 2019. doi: 10.1093/molbev/msz225.

599 53. Hill WG, Robertson A. Linkage disequilibrium in finite populations. *Theor Appl Genet.*
600 1968;38(6):226-31. doi: 10.1007/BF01245622. PubMed PMID: 24442307.

601 54. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
602 *J Mol Biol.* 1990;215(3):403-10. Epub 1990/10/05. doi: 10.1016/S0022-2836(05)80360-2.
603 PubMed PMID: 2231712.

604 55. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
605 improvements in performance and usability. *Mol Biol Evol.* 2013;30(4):772-80. doi:
606 10.1093/molbev/mst010. PubMed Central PMCID: PMCPMC3603318.

607 56. Dillard JP. Genetic Manipulation of *Neisseria gonorrhoeae*. *Curr Protoc Microbiol.*
608 2011;Chapter 4:Unit4A 2. Epub 2011/11/03. doi: 10.1002/9780471729259.mc04a02s23.
609 PubMed PMID: 22045584; PubMed Central PMCID: PMCPMC4549065.

610 57. Ambur OH, Frye SA, Tønrum T. New functional identity for the DNA uptake sequence in
611 transformation and its presence in transcriptional terminators. *J Bacteriol.* 2007;189(5):2077-85.
612 doi: 10.1128/JB.01408-06. PubMed Central PMCID: PMCPMC1855724.

613 58. Wade JJ, Graver MA. A fully defined, clear and protein-free liquid medium permitting
614 dense growth of *Neisseria gonorrhoeae* from very low inocula. *FEMS Microbiol Lett.*
615 2007;273(1):35-7. doi: 10.1111/j.1574-6968.2007.00776.x.

616 59. Demczuk W, Lynch T, Martin I, Van Domselaar G, Graham M, Bharat A, et al. Whole-
617 genome phylogenomic heterogeneity of *Neisseria gonorrhoeae* isolates with decreased
618 cephalosporin susceptibility collected in Canada between 1989 and 2013. *J Clin Microbiol.*
619 2015;53(1):191-200. Epub 2014/11/08. doi: 10.1128/JCM.02589-14. PubMed PMID: 25378573;
620 PubMed Central PMCID: PMCPMC4290921.

621 60. Eyre DW, De Silva D, Cole K, Peters J, Cole MJ, Grad YH, et al. WGS to predict
622 antibiotic MICs for *Neisseria gonorrhoeae*. *J Antimicrob Chemother.* 2017;72(7):1937-47. Epub
623 2017/03/24. doi: 10.1093/jac/dkx067. PubMed PMID: 28333355; PubMed Central PMCID:
624 PMCPMC5890716.

625 61. Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, Del Rio C, Didelot X, et al.
626 Population structure of *Neisseria gonorrhoeae* based on whole genome data and its relationship
627 with antibiotic resistance. *PeerJ.* 2015;3:e806. Epub 2015/03/18. doi: 10.7717/peerj.806.
628 PubMed PMID: 25780762; PubMed Central PMCID: PMCPMC4358642.

629 62. Fifer H, Cole M, Hughes G, Padfield S, Smolarchuk C, Woodford N, et al. Sustained
630 transmission of high-level azithromycin-resistant *Neisseria gonorrhoeae* in England: an
631 observational study. *Lancet Infect Dis.* 2018;18(5):573-81. Epub 2018/03/11. doi:
632 10.1016/S1473-3099(18)30122-1. PubMed PMID: 29523496.

633 63. Grad YH, Kirkcaldy RD, Trees D, Dordel J, Harris SR, Goldstein E, et al. Genomic
634 epidemiology of *Neisseria gonorrhoeae* with reduced susceptibility to cefixime in the USA: a
635 retrospective observational study. *Lancet Infect Dis.* 2014;14(3):220-6. Epub 2014/01/28. doi:
636 10.1016/S1473-3099(13)70693-5. PubMed PMID: 24462211; PubMed Central PMCID:
637 PMCPMC4030102.

638 64. Harris SR, Cole MJ, Spiteri G, Sanchez-Buso L, Golparian D, Jacobsson S, et al. Public
639 health surveillance of multidrug-resistant clones of *Neisseria gonorrhoeae* in Europe: a genomic
640 survey. *Lancet Infect Dis.* 2018;18(7):758-68. Epub 2018/05/20. doi: 10.1016/S1473-
641 3099(18)30225-1. PubMed PMID: 29776807; PubMed Central PMCID: PMCPMC6010626.

642 65. Kwong JC, Chow EPF, Stevens K, Stinear TP, Seemann T, Fairley CK, et al. Whole-
643 genome sequencing reveals transmission of gonococcal antibiotic resistance among men who
644 have sex with men: an observational study. *Sex Transm Infect.* 2018;94(2):151-7. doi:
645 10.1136/sextrans-2017-053287. PubMed PMID: 29247013; PubMed Central PMCID:
646 PMCPMC5870456.

647 66. Lee RS, Seemann T, Heffernan H, Kwong JC, Goncalves da Silva A, Carter GP, et al.
648 Genomic epidemiology and antimicrobial resistance of *Neisseria gonorrhoeae* in New Zealand.
649 *J Antimicrob Chemother.* 2018;73(2):353-64. doi: 10.1093/jac/dkx405. PubMed PMID:
650 29182725; PubMed Central PMCID: PMC5890773.

651 67. Ryan L, Golparian D, Fennelly N, Rose L, Walsh P, Lawlor B, et al. Antimicrobial
652 resistance and molecular epidemiology using whole-genome sequencing of *Neisseria*
653 *gonorrhoeae* in Ireland, 2014-2016: focus on extended-spectrum cephalosporins and
654 azithromycin. *Eur J Clin Microbiol Infect Dis.* 2018. doi: 10.1007/s10096-018-3296-5. PubMed
655 PMID: 29882175.

656 68. Sanchez-Buso L, Golparian D, Corander J, Grad YH, Ohnishi M, Flemming R, et al. The
657 impact of antimicrobials on gonococcal evolution. *Nat Microbiol.* 2019. Epub 2019/07/31. doi:
658 10.1038/s41564-019-0501-y. PubMed PMID: 31358980.

659