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Abstract

The emergence of resistance to azithromycin complicates treatment of N. gonorrhoeae, the
etiologic agent of gonorrhea. Population genomic analyses of clinical isolates have
demonstrated that some azithromycin resistance remains unexplained after accounting for the
contributions of known resistance mutations in the 23S rRNA and the MtrCDE efflux pump.
Bacterial genome-wide association studies (GWAS) offer a promising approach for identifying
novel resistance genes but must adequately address the challenge of controlling for genetic
confounders while maintaining power to detect variants with lower effect sizes. Compared to a
standard univariate GWAS, conducting GWAS conditioned on known resistance mutations with
high effect sizes substantially reduced the number of variants that reached genome-wide
significance and identified a G70D mutation in the 50S ribosomal protein L4 (encoded by the
gene rpID) as significantly associated with increased azithromycin minimum inhibitory
concentrations (B = 1.03, 95% CI [0.76, 1.30]). The role and prevalence of these rpID mutations
in conferring macrolide resistance in N. gonorrhoeae had been unclear. Here, we experimentally
confirmed our GWAS results, identified other resistance-associated mutations in RpID, and
showed that in total these RpID binding site mutations are prevalent (present in 5.42% of 4850
isolates) and geographically and temporally widespread (identified in 21/65 countries across two
decades). Overall, our findings demonstrate the utility of conditional associations for improving
the performance of microbial GWAS and advance our understanding of the genetic basis of

macrolide resistance in a prevalent multidrug-resistant pathogen.
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Introduction

Increasing antibiotic resistance in Neisseria gonorrhoeae, the causative agent of the sexually
transmitted disease gonorrhea, threatens effective control of this prevalent pathogen [1-3].
Current empiric antibiotic therapy in the US comprises a combination of the cephalosporin
ceftriaxone and the macrolide azithromycin, but increasing prevalence of azithromycin
resistance has led some countries, such as the UK, to instead recommend ceftriaxone
monotherapy [4]. Rapid genotypic diagnostics for antimicrobial susceptibility have been
proposed as a platform to tailor therapy and to extend the clinically useful lifespan of anti-
gonococcal antibiotics [5, 6]. These rapid diagnostics rest on robust genotype-to-phenotype
predictions. For some antibiotics, such as ciprofloxacin, resistance is predictable by target site
mutations in a single gene, gyrA [3, 5]. However, recent efforts to predict azithromycin minimum
inhibitory concentrations (MICs) using regression-based or machine-learning approaches have
indicated that a substantial fraction of phenotypic resistance is unexplained, particularly among
strains with lower-level resistance [3, 7, 8]. An improved understanding of the genetic
mechanisms and evolutionary pathways to macrolide resistance will therefore be critical for

informing the development of diagnostics.

Macrolides function by binding to the 50S ribosome and inhibiting protein synthesis [9].
Increased resistance can occur in N. gonorrhoeae through target site modification, primarily via
23S rRNA mutations C2611T [10] and A2059G [11], and though efflux pump upregulation. The
main efflux pump associated with antibiotic resistance in the gonococcus is the Mtr efflux pump,
comprising a tripartite complex encoded by the mtrCDE operon under the regulation of the MtrR
repressor and the MtrA activator [1, 12-17]. Active site or frameshift mutations in the coding
sequence of mtrR and promoter mutations in the mtrR promoter upregulate mtrCDE and result
in increased macrolide resistance [1, 18]. Mosaic sequences originating from recombination with
homologs from commensal Neisseria donors can also result in structural changes to mtrD and

increased expression of mtrCDE, which synergistically act to confer resistance [19, 20].

Here, we used genome-wide association on a global meta-analysis dataset to identify additional
genetic variants that confer increased azithromycin resistance in N. gonorrhoeae. We found that
conventional single-locus bacterial GWAS approaches that univariately test genetic variants

resulted in confounded results and reduced power. Conducting GWAS conditional on known
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resistance mutations in 23S rRNA reduced linkage-mediated confounding and increased power
to recover known and candidate mutations associated with lower-level resistance. We
experimentally validated one such mutation in the 50S ribosomal protein RpID and identified
other rare RpID variants associated with resistance, highlighting the ability of conditional

bacterial GWAS to identify causal genes for polygenic microbial phenotypes.

Results

We previously conducted a linear mixed model GWAS on continuous azithromycin MICs in
4535 N. gonorrhoeae isolates where we observed highly significant unitigs (i.e., genetic variants
generated from de novo assemblies) mapping to the 23S rRNA, associated with increased
resistance, and to the efflux pump gene mtrC, associated with increased susceptibility and
cervical infections [7]. We re-analyzed the GWAS results focusing on the remaining significant
variants, which were closer in significance to the Bonferonni-corrected p-value threshold of
2.97x107. Numerous variants were significantly associated with increased MICs, many of which
mapped to genes (e.g., hprA, ydfG, and efeB) that had not previously been implicated in
macrolide resistance in Neisseria (Supplementary Table 1). While these signals could represent
novel causal resistance genes, we hypothesized that at least some of these variants had been
spuriously driven to association via genetic linkage with the highly penetrant (A2059G: {3, or
effect size, = 7.21, 95% CI [6.52, 7.90]; C2611T: B = 3.62, 95% CI [3.42, 3.82]) and population-
stratified 23S rRNA resistance mutations (Supplementary Figure 1). Supporting this hypothesis,
r2 — a measure of linkage ranging from 0 to 1 — between significant variants and 23S rRNA
resistance mutations exhibited a bimodal distribution with a peak at 0.84 and at 0.04
(Supplementary Figure 2). The three most significant variants after the 23S rRNA substitutions
and mtrC deletion mapping to hprA, WHO_F.1254, and ydfG had elevated r? values of 0.16,
0.82, and 0.80 respectively; all three variants demonstrated clear phylogenetic overlap with 23S
rRNA mutations (Supplementary Figure 1). We additionally did not observe unitigs associated
with experimentally validated resistance mutations in the mtrR promoter [14] or the mtrCDE
mosaic alleles [19, 20], suggesting decreased power to detect known causal variants with lower

effect sizes.

To control for the confounding effect of the 23S rRNA mutations, we conducted a conditional

GWAS by incorporating additional covariates in our linear mixed model encoding the number of
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104  copies of the resistance-conferring 23S rRNA substitutions C2611T and A2059G. We also

105 conditioned on isolate dataset of origin to address potential spurious hits arising from study-
106  specific sequencing methodologies. After conditioning, the previously significant genes linked to
107 23S rRNA (r?> 0.80) decreased below the significance threshold, indicating that they were

108 indeed driven to significance by genetic linkage (Figure 1, Supplementary Table 2). The most
109  significant variants after the previously reported mtrC indel [7] mapped to the mtrR promoter (j3,
110  or effect size, = -0.79, 95% CI [-0.62, -0.96]; p-value = 1.62x10!®), encoding the mtrR promoter
111 1 bp deletion [21], and to mtrC (B = 1.21, 95% CI [0.92, 1.50]; p-value = 9.17x101%), in linkage
112 with mosaic mtr alleles [19, 20]. The increased significance of these known efflux pump

113  resistance mutations suggested improved power to recover causal genes with lower effects.
114  Conditioning on dataset did not substantially affect these results but helped to remove other
115  spurious variants arising due to study-specific biases (Supplementary Figure 3, Supplementary
116  Table 3).

117

118 A glycine to glutamic acid substitution at site 70 of the 50S ribosomal protein L4 (RpID) was

119  significantly associated with increased azithromycin MICs after conducting the conditional

120 GWAS (B = 1.03, 95% CI [0.76, 1.30]; p-value = 4.56x107%) (Figure 1, Supplementary Table 2).
121 Structural analysis of the Thermus thermophilus 50S ribosome complexed with azithromycin
122 suggests that this amino acid is an important residue in macrolide binding (Supplemental Figure
123 4), and RplID substitutions at this binding site modulate macrolide resistance in other bacteria
124  [22, 23]. This substitution has previously been observed rarely in gonococcus and the

125  association with binarized azithromycin resistance was non-significant [3, 24, 25]; as a result,
126  the role of RpID mutations in conferring macrolide resistance was unclear. To assess the

127  contribution of RplD mutations to continuous azithromycin MIC levels, we modeled MICs using a
128 linear regression framework with known genetic resistance determinants as predictors [7, 26].
129  Compared to this baseline model, inclusion of the RpID G70D mutation decreased the number
130  of strains with unexplained MIC variation (defined as absolute model error greater than one MIC
131 dilution) from 1430 to 1333, improved adjusted R? from 0.721 to 0.734, and significantly

132 improved model fit (p-value < 2.2x107¢; Likelihood-ratio x? test for nested models). These

133  results indicate that RpID G70D is a strong candidate for addressing a portion of the

134  unexplained azithromycin resistance in N. gonorrhoeae.

135
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137  Figure 1 - GWAS conditional on 23S rRNA mutations and dataset demonstrates

138 decreased confounding due to genetic linkage and increased power to recover known
139  and candidate lower-level resistance alleles. Genetic linkage measured by r? to 23S rRNA
140 mutations A2059G and C2611T is colored as indicated on the right. Variants associated with
141 previously experimentally verified resistance mechanisms in the mtrR and mtrCDE promoters
142  and coding regions are denoted in the legend. Bonferroni thresholds for both GWASes are

143  depicted using a dashed line at 2.97x107. Plot axes are limited to highlight variants associated
144  with lower-level resistance; as a result, the highly significant 23S rRNA substitutions and mtrC
145  indel mutations are not shown.

146

147  We next assessed population-wide prevalence and diversity of RplD-azithromycin binding site
148  mutations. The RpID G70D mutation was present in 231 out of 4850 isolates (4.76%) with

149  multiple introductions observed across varied genetic backgrounds (Figure 2). An additional 34
150 isolates contained mutations at amino acids 68 (G68D, G68C), 69 (T69l), and 70 (G70S, G70A,
151  G70R, G70duplication) (Figure 3). These other putative RplID binding site mutations were

152  associated with significantly higher azithromycin MICs compared to both RpID G70D and RpID
153  wild-type strains, indicating multiple avenues for disruption of macrolide binding (Figure 3).

154  Strains with RplID binding site mutations were identified from 21 countries from 1993 to 2015
155  with prevalence reaching over 10% in some datasets (New York City 2011-2015 [Mortimer et
156  al., 2020] and Japan 1996-2015 [27]; Supplementary Table 4 and [28]), in line with sustained
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157  transmission of RpID G70D strains (Figure 2). Our results suggest that macrolide binding to the
158  50S ribosome can be disrupted via multiple mutations and that these mutations are widespread

159  contributors to azithromycin resistance in some populations.

160
Tree scale: 1000 +——
RpID
| | G7oD
. Other mutations [
161

162  Figure 2 — Population structure of RpID binding site mutations in a global meta-analysis
163 dataset of N. gonorrhoeae. A midpoint rooted recombination-corrected maximum likelihood
164  phylogeny of 4882 genomes based on 68697 SNPs non-recombinant from [7] was annotated
165  with the presence of RpID binding site mutations Branch length represents total number of
166  substitutions after removal of predicted recombination.

167
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170  Figure 3 — RplID amino acid diversity at positions 68 through 70 and corresponding

171  geometric mean (left) and distribution (right) of azithromycin MICs. Previously reported
172 mutations are cited with the first reporting publications. Violin plots and statistical analyses were
173 limited to isolates with MICs < 8 to exclude isolates with 23S rRNA mutations. Quartiles within
174  violin plots are depicted using dotted lines. Statistical significance between RpID variants and
175  RpID wildtype MIC distributions was assessed by Mann-Whitney U Test: * p<0.05, ** p<0.01,
176  and *** p<0.001.

177
178

179  To experimentally verify that RpID G70D contributes to macrolide resistance, we constructed
180 two isogenic strains (C5 and E9) with the G70D substitution and tested for MIC differences

181  across a panel of macrolides. Azithromycin and erythromycin MICs increased by three-fold, and
182  clarithromycin MICs increased by six-fold on average in the G70D strains compared to isogenic
183  wild-type strains (Table 1). The estimate from our linear model for the azithromycin MIC of a
184  strain that contains the RpID G70D mutation and no other resistance mutations was 0.252,

185  which is in line with the experimental results. Macrolide resistance has been associated with a
186  fitness cost in other species [30], prompting us to measure the in vitro growth dynamics of the
187  RplID G70D strain. Time-course growth curves of the wild-type strain and isogenic G70D strain
188  E9 were similar (Supplementary Figure 5) with overlapping estimates of doubling times: 28BI
189  doubling time = 1.756 hours, 95% CI [1.663, 1.861] versus 28BI RpID®"? (E9) doubling time =
190  1.787 hours, 95% CI [1.671, 1.920] (Supplementary Table 5). These results confirm the role of
191 RpID G70D in mediating macrolide resistance and indicate a lack of severe associated in vitro

192 fitness costs.
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193
Isolate Azithromycin Clarithromycin | Erythromycin
MIC (pg/mL) MIC (pg/mL) MIC (ng/mL)
288l 0.094 0.25 0.38
28BI RpID®7°P (C5) .25 (2.66x) 1.5 (6x) 1.5 (3.94x%)
28BI RpID®7°P (E9) .38 (4.04x) 1.5 (6x) 1.0 (2.63%)
194

195 Table 1 — Macrolide MICs of laboratory strain 28BIl and two isogenic derivatives confirms
196 increased macrolide resistance conferred by RpID G70D. Fold change relative to baseline is
197 shown in parentheses. MICs were measured using Etest strips placed onto GCB agar plates
198  supplemented with 1% IsoVitaleX.

199
200
201  Discussion
202

203  Azithromycin resistance in N. gonorrhoeae is a polygenic trait involving contributions from

204  mutations in different 50S ribosomal components, up- and down-regulation of efflux pump

205  activity, and additional unknown factors. Genome-wide association methods offer one approach
206  for uncovering the genotypic basis of unexplained resistance in clinical isolates, but novel

207  causal genes associated with lower effects have been difficult to identify with traditional

208  microbial GWAS approaches [23]. Our results indicate that extending the GWAS linear mixed
209  model to incorporate known causal genetic variants could address some of these challenges,
210  particularly when known genes exhibit strong penetrance and population stratification,

211  obfuscating signals with lower effects. After conducting conditional GWAS on azithromycin

212 MICs, we observed a reduction in spurious results attributable to genetic linkage with known
213 high level resistance mutations in the 23S rRNA and an increase in power to recover secondary
214  resistance mutations in the MtrCDE efflux pump. We also identified a resistance-associated

215  mutation in the macrolide binding site of 50S ribosomal protein RpID as significant only after
216  conditioning. While the improvements in GWAS performance suggested by these empirical

217  results will need to be further validated on other bacterial species and through simulations [31],
218 they are in line with studies of multi-locus methods in the human GWAS field [32, 33] and

219  complementary methods using whole-genome elastic nets for microbial genome data [31, 34].

220


https://doi.org/10.1101/2020.03.24.006650
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.24.006650; this version posted March 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

221  The role of RpID G70D mutations in conferring azithromycin resistance has previously been
222 unclear, in part because of its lower effect size relative to 23S rRNA mutations. The G70D

223  mutation was first observed in isolates from France 2013-2014 [24] and in the US Centers for
224  Disease Control Gonococcal Isolate Surveillance Program (CDC GISP) surveillance isolates
225  from 2000-2013 [3], and a related G68D mutation was described in the GISP collection and in
226  European isolates from 2009-2014 [25]. However, these analyses reported no clear association
227  with binarized resistance levels. Follow up studies in the US, Eastern China, and a historical
228 Danish collection also reported strains with the G70D mutation [29, 35, 36], but other

229  surveillance datasets from Canada, Switzerland, and Nanjing did not [10, 37-39], indicating

230 geography-specific circulation. As a result of this ambiguity, previous studies modeling

231  phenotypic azithromycin resistance from genotype did not include RplD mutations [26, 40].
232

233  Here, we provided confirmatory evidence that the RpID G70D mutation increases macrolide

234  MICs several-fold, in line with the GWAS analyses. While RpID G70D mutations on their own
235  are not predicted to confer resistance levels above the clinical CLSI non-susceptibility threshold
236  of 1.0 ug/mL, there is growing appreciation of the role that sub-breakpoint increases in

237  resistance can play in mediating treatment failure [41]. For example, treatment failures in Japan
238  after a 2 g azithromycin dose were associated with MICs as low as 0.5 pug/mL [42], and

239 treatment failures in several case studies of patients treated with a 1 g azithromycin dose were
240  associated with MICs of 0.125 to 0.25 pug/mL [43]. Low level azithromycin resistance may also
241  serve as a stepping stone to higher level resistance, as suggested by an analysis of an outbreak

242  of a high level azithromycin resistant N. gonorrhoeae lineage in the UK [44].
243

244  We also observed multiple previously undescribed in the RpID macrolide binding site associated
245  with even higher MICs than the G70D mutation. The transmission of these isolates has been
246  relatively limited, potentially due to increased fithess costs commensurate with increased

247  resistance. In contrast, several lines of evidence suggest that the G70D mutation carries a

248 relatively minimal fitness cost. Time-course growth experiments indicated that the RpID G70D
249  isogenic pair of strains have similar doubling times, and phylogenetic analyses suggest multiple
250  acquisitions of G70D in distinct genetic backgrounds with a lineage in NYC showing evidence of

251 sustained transmission. As macrolide use continues to select for increased resistance in N.


https://doi.org/10.1101/2020.03.24.006650
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.24.006650; this version posted March 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

252 gonorrhoeae, both the RpID G70D and rarer binding site mutations should be targets for

253  surveillance in future whole-genome sequencing studies.
254

255  In summary, by reducing genetic confounders and amplifying true signals through bacterial
256 GWAS conditional on known effects, we identified and experimentally characterized mutations

257  inthe 50S ribosome that contribute to increased macrolide resistance in N. gonorrhoeae.

258
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259 Methods
260

261  Genomics and GWAS: We conducted whole-genome sequencing assembly, resistance allele
262  calling, phylogenetic inference, genome-wide association, and significant unitig mapping using
263  methods from a prior GWAS [7]. Briefly, we created a recombination-corrected phylogeny by
264  running Gubbins (version 2.3.4) [45] on an alignment of pseudogenomes generated from filtered
265  SNPs from Pilon (version 1.16) [46] after mapping reads in BWA-MEM (version 0.7.17-r1188)
266  [47] to a reference genome (RefSeq accession: NC_011035.1). To conduct the GWAS in

267  Pyseer (version 1.2.0) [48], unitigs were generated from GATB using SPAdes (version 3.12.0)
268  [49] de novo assembled genomes, and a population structure matrix was generated from the
269  Gubbins phylogeny for the linear mixed model. Isolates included in this study are listed in

270  Supplementary Table 6. As in the prior study, azithromycin MICs prior to 2005 from the CDC
271  GISP dataset were doubled to account for an MIC protocol testing change [50]. We conducted
272 conditional GWAS in Pyseer (version 1.2.0) [48] by including additional columns in the covariate
273 file encoding 23S rRNA mutations and including flags --covariates and --use-covariates. All

274  phylogenies and annotation rings were visualized in iTOL (version 5.5) [51].

275  We assessed genetic linkage by calculating r?, or the squared correlation coefficient between
276  two variants defined as r?= (pj — pip;)? / (pi (1 — pi) p; (1 — p;)), where pi is the proportion of strains
277  with variant i, p;j is the proportion of strains with variant j, and pj is the proportion of strains with
278  both variants [52, 53]. For a given GWAS variant, we calculated r? between that variant and the
279  significant unitig from the GWAS mapping to 23S rRNA C2611T. We repeated the calculation
280 for the same variant but with the unitig mapping to 23S rRNA A2059G, and took the maximum r?

281 value from the two calculations.

282  Azithromycin log-transformed MICs were modeled using a panel of resistance markers [7]
283  including pairwise interactions and country of origin in R (version 3.5.1), with and without

284  inclusion of RpID G70D and proximal mutations:

285  Model 1: Country + (MtrR 39 + MtrR 45 + MtrR LOF + MtrC LOF + MtrR promoter + MtrCDE
286  BAPS + 23S rRNA 2059 + 23S rRNA 2611)"2

287  Model 2: Country + (MtrR 39 + MtrR 45 + MtrR LOF + MtrC LOF + MtrR promoter + MtrCDE
288  BAPS + 23S rRNA 2059 + 23S rRNA 2611 + RpID G70D + RpID other 68-70 mutations)*2
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289  Model fit was assessed using Anova for likelihood-ratio tests for nested models in R (version
290 3.5.1). BAPS groups for MtrCDE were called as previously described using FastBAPS (version
291  1.0.0) [7].

292

293  Diversity of RpID macrolide binding site mutations: We ran BLASTn (version 2.6.0) [54] on
294  the de novo assemblies using a query rpID sequence from FA1090 (Genbank accession:

295 NC_002946.2). rpID sequences were aligned using MAFFT (version 7.450) [55]. Binding site
296  mutations were identified after in silico translation of nucleotide alignments in Geneious Prime

297  (version 2019.2.1, https://www.geneious.com). Subsequent analyses identifying prevalence,

298  geometric mean azithromycin MIC, and MIC distribution differences were conducted in Python
299  (version 3.6.5) and R (version 3.5.1).

300

301 Experimental validation: We cultured N. gonorrhoeae on GCB agar (Difco) plates

302  supplemented with 1% Kellogg’s supplements (GCBK) at 37°C in a 5% CO2 incubator [56].
303  We conducted antimicrobial susceptibility testing using Etests (bioMérieux) placed onto GCB
304  agar plates supplemented with 1% IsoVitaleX (Becton Dickinson). We selected laboratory
305  strain 28BlI for construction of isogenic strains and measured its MIC for azithromycin,

306 clarithromycin, and erythromycin [20]. rpID encoding the G70D mutation was PCR amplified
307 from RpID G70D isolate GCGS1043 [3] using primers rpID_FWD_DUS (5’

308 CATGCCGTCTGAACAAGACCCGGGTCGCG 3’) (containing a DUS tag to enhance

309 transformation [57]) and rpID_REV (5 TTCAGAAACGACAGGCGCC 3). The resulting ~1 kb
310 amplicon was spot transformed [56] into 28BIl. We selected for transformants by plating onto
311  GCBK plates with clarithromycin 0.4 ug/mL and erythromycin 0.4 ug/mL. We confirmed via
312  Sanger sequencing that transformants had acquired the RpID G70D mutation and selected
313  one transformant from each selection condition (strain C5 for clarithromycin and strain E9 for
314  erythromycin) for further characterization. We confirmed that for all macrolides used for

315  selection, no spontaneous resistant mutants were observed after conducting control

316  transformations in the absence of GCGS1043 PCR product.

317

318  Growth assays: We streaked 28BI and 28BI RplD®7P (E9) onto GCBK plates and grew them
319  overnight for 16 hours at 37°C in a 5% CO2 atmosphere. We prepared 1 L of fresh Graver
320 Wade (GW) media [58] and re-suspended overnight cultures into 1 mL of GW. After normalizing
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321  cultures to OD 0.1, we diluted cultures 1:10° and inoculated central wells of a 24-well plate with
322 1.5 mL GW and cells in triplicate. Edge wells were filled with 1.5 mL water. After growth for 1
323 hour to acclimate to media conditions, we sampled CFUs every 2 hours for a total of 12 hours.
324  For each timepoint, we aspirated using a P1000 micropipette to dissolve clumps and then plated
325  serial dilutions onto a GCBK plate. We counted CFUs the following day and used GraphPad

326  Prism (version 8.2.0 for Windows, GraphPad Software) to graph the data and estimate

327  exponential phase growth rates following removal of lag phase data points and log-

328 transformation of CFU / mLs.

329
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342  Supplementary Figure 1 — Genetic linkage between significant azithromycin MIC-

343  associated variants in the GWAS. The recombination-corrected phylogeny from Figure 1 was

344  annotated with the presence and absence of significant variants from the GWAS corresponding

345  to 23S rRNA, hprA, WHO_F.1254, and ydfG (outermost to innermost). Branch length represents
346  total number of substitutions after removal of predicted recombination.
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Supplementary Figure 2 — Distribution of r2 values between significant variants (p-value <
2.97x107) and 23S rRNA-associated unitigs in the single-locus GWAS. Significant variants
with high linkage to 23S rRNA are likely to be spurious associations. See methods for details on
calculation of r2.
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354  Supplementary Figure 3 — GWAS conditional on 23S rRNA mutations compared to

355 unconditional GWAS results recovers similar results as in Figure 1 but does not control
356 for dataset-specific confounders (spr and the intergenic region between genes

357  WHO_F.2279 and 2280). As in Figure 1, genetic linkage measured by r? to 23S rRNA mutations
358 A2059G and C2611T is colored as indicated on the right. Variants associated with previously
359  experimentally verified resistance mechanisms in the mtrR and mtrCDE promoters and coding
360 regions are denoted in the legend. Bonferroni thresholds for both GWASes are depicted using a
361 dashed line at 2.97x107. Plot axes are limited to highlight variants associated with lower-level
362  resistance; as a result, the highly significant 23S rRNA substitutions and mtrC indel mutations
363  are not shown.
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Supplementary Figure 4 — RpID G70 and the azithromycin binding pocket in the 50S
ribosome from Thermus thermophilus (PDB ID: 4v7y). N. gonorrhoeae RpID is relatively
similar to its T. thermophilus homolog (28.4% identical, 49.1% similarity using a BLOSUM®62
matrix over 218 amino acids with 20 insertions/deletions). PyMOL (The PyMOL Molecular
Graphics System, Version 2.0 Schrodinger, LLC) was used to depict azithromycin in orange and
RpID in blue (with the G70 amino acid highlighted as blue spheres) and to hide the 23S rRNA
for clarity.
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381 Supplementary Figure 5 — Growth curve experiments for RpID G70D isogenic strains.
382  Error bars are SD for three technical replicates. Top — Calculated CFU / mLs from the full
383  growth experiment for the two strains graphed on a logarithmic axis. Bottom — estimation of
384  exponential phase best fit lines using GraphPad Prism following removal of lag phase data
385  points and log-transformation of CFU / mLs; see Supplementary Table 5 for estimated

386  parameters.
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Dataset

Region and Timespan

Prevalence of RpID macrolide
binding site mutations

2015

Demczuk et al., 2015 [59] | Canada 1989-2013 0.0439
Demczuk et al., 2016 [37] | Canada 1982-2011 0.0804
Eyre et al., 2017 [60] Brighton, UK 2004-2011 0.0346
Ezewudo et al., 2015 [61] | Global 1982-2011 0

Fifer et al., 2018 [62] UK 2004-2017 0.0200
Grad et al., 2016 [3] and US 2000-2013 0.0582
2014 [63]

Harris et al., 2018 [64] Europe 2013 0.0258
Kwong et al., 2017 [65] Melbourne, Australia 2005-2014 0.0532
Lee et al., 2018 [66] New Zealand 2014-2015 0.0050
Mortimer et al., 2020 NYC 2011-2015 0.1013
Ryan et al., 2018 [67] Ireland 2012-2016 0.0513
Sanchez-Buso et al., Global 1979-2012 0.0212
2019 [68]

Yahara et al., 2018 [27] Kyoto and Osaka, Japan 1996- 0.1346

Supplementary Table 4 — Prevalence of RpID macrolide binding site mutations across
included datasets. Datasets with prevalence over 10% are highlighted.
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28BI 28B| RplID®" (EQ)
Best-fit values
logYO 3.285 3.822
Kk 0.3947 0.3879
Doubling Time 1.756 1.787
95% CI (profile likelihood)
logYO 3.113to 3.458 3.612 t0 4.032
Kk 0.3725 to 0.4169 0.3610 to 0.4149
Doubling Time 1.663t0 1.861 1.671 to 1.920
Goodness of Fit
Degrees of Freedom 16 16
R squared 0.9889 0.9831
Sum of Squares 0.3673 0.5431
Sy.x 0.1515 0.1842
Number of points
# of X values 18 18
# Y values analyzed 18 18

392

393  Supplementary Table 5 — Estimated growth curve parameters. Estimation of exponential
394  phase growth parameters using GraphPad Prism following removal of lag phase data points and
395 log-transformation of CFU / mLs; see Supplementary Figure 6 (bottom) for estimated best fit
396 lines.
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